JP2006214033A - Spinneret for melt blend spinning and method for producing ultrafine fiber using the same - Google Patents

Spinneret for melt blend spinning and method for producing ultrafine fiber using the same Download PDF

Info

Publication number
JP2006214033A
JP2006214033A JP2005027675A JP2005027675A JP2006214033A JP 2006214033 A JP2006214033 A JP 2006214033A JP 2005027675 A JP2005027675 A JP 2005027675A JP 2005027675 A JP2005027675 A JP 2005027675A JP 2006214033 A JP2006214033 A JP 2006214033A
Authority
JP
Japan
Prior art keywords
island
component
sea
fiber
capillary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005027675A
Other languages
Japanese (ja)
Inventor
Keimei Wakabayashi
啓明 若林
Takeshi Katsuta
健 勝田
Tetsuo Ban
哲夫 伴
Shigeki Hirata
滋己 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2005027675A priority Critical patent/JP2006214033A/en
Publication of JP2006214033A publication Critical patent/JP2006214033A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spinneret for melt blend spinning uniformly elongating an island component in the fiber axis direction and stably affording a melt blend spun fiber having the island component at a high aspect ratio in the melt blend spinning of polymers in which an incompatible additive is kneaded. <P>SOLUTION: A blended resin passing through and flowing the interior of a spinneret is subjected to a flow field in which an elongational flow field is moderately combined with a shear flow field. Thereby, the shape and oriented state of the island phase are controlled. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、紡糸用口金に関する。更に詳しくは非相溶混合紡糸に用いる混合紡糸用口金およびそれを用いた極細繊維の製造方法に関する。   The present invention relates to a spinneret. More particularly, the present invention relates to a mixed spinning die used for incompatible mixed spinning and a method for producing ultrafine fibers using the same.

近年では、繊維に様々な機能を持たせるために、複数成分のポリマーを組み合わせて紡糸する様々な手法が考案されている。例えば、非相溶混合紡糸、複合紡糸などが挙げられる(例えば、特許文献1、2等)。このうち、非相溶混合紡糸とは互いに非相溶である複数成分のポリマーや樹脂をあらかじめ混合しておき、この混合樹脂を通常の単成分紡糸と同様にして紡糸する方法である。非相溶紡糸した場合、繊維の断面からみた成分の混合状態は海島構造を形成し、島成分が混合紡糸繊維自体の添加剤として機能する他、海成分を溶剤等の除去手段を用いて溶解除去させ島成分を取り出すことにより1μm以下の繊維径の極細繊維または不織布を容易に得ることができる。海島相の構造形成には混合樹脂の混合組成、溶融粘度、相溶性、機械的混合条件など様々な決定因子が存在し、これらの因子を制御し調整することで、目的とする所定の構造を形成することができる。   In recent years, various methods have been devised for spinning a combination of a plurality of component polymers in order to give the fiber various functions. Examples thereof include incompatible mixed spinning and composite spinning (for example, Patent Documents 1 and 2). Among these, incompatible mixed spinning is a method in which a plurality of components of polymers and resins that are incompatible with each other are mixed in advance, and the mixed resin is spun in the same manner as ordinary single component spinning. In the case of incompatible spinning, the mixed state of the components viewed from the cross section of the fiber forms a sea-island structure. By removing the island component by removal, an ultrafine fiber or nonwoven fabric having a fiber diameter of 1 μm or less can be easily obtained. There are various determinants such as the mixed composition of the mixed resin, melt viscosity, compatibility, and mechanical mixing conditions in the formation of the structure of the sea-island phase. By controlling and adjusting these factors, the desired predetermined structure can be obtained. Can be formed.

このようにして作成された極細繊維は人工皮革の基材、樹脂補強用フィラーなどとして用いられており(例えば、特許文献3参照)、それ以外への用途展開も期待されている。   The ultrafine fibers produced in this way are used as a base material for artificial leather, a filler for resin reinforcement, and the like (see, for example, Patent Document 3), and other applications are expected.

また、繊維径が細くなるほど特有の機能を発現することが可能であるため、島成分をより引き伸ばす技術が望まれるが、海成分に比べて島成分の軟化点が高い海島型混合紡糸繊維の製造過程においては、形成した糸条を延伸することにより島成分を引き伸ばそうとしても、島成分が先に固化しているため変形し難く、海成分のみが引き伸ばされることとなり、島相のアスペクト比を制御することが困難であるという問題があった。   In addition, because it is possible to develop a unique function as the fiber diameter becomes thinner, a technique to stretch the island component more is desired, but the production of sea-island type mixed spun fibers with a higher softening point of the island component than the sea component In the process, even if you try to stretch the island component by stretching the formed yarn, it is difficult to deform because the island component is solidified first, and only the sea component will be stretched, and the aspect ratio of the island phase There was a problem that it was difficult to control.

一方、樹脂などの高分子溶融体が輸送される際に受ける影響に関し、流動場に対する高分子鎖の応答は、せん断流動場と伸長流動場で本質的に異なると言われており、せん断流動場では分子の回転が引き起こされるのに対して、伸長流動場では鎖状分子が引き伸ばされると言われている。よって、島成分を制御する技術として紡糸口金部の構造に着目することができる。紡糸口金を通過することにより混合紡糸繊維中の島成分の状態は大きな影響を受けることが知られており、せん断付与方法を制御することにより添加成分を微細化・分散させる技術などが挙げられる(例えば、特許文献4参照)。   On the other hand, it is said that the response of the polymer chain to the flow field is essentially different between the shear flow field and the extension flow field with respect to the influence that the polymer melt such as resin is transported. Is said to cause the rotation of the molecule, whereas the elongated flow field causes the chain molecule to be stretched. Therefore, attention can be paid to the structure of the spinneret as a technique for controlling the island component. It is known that the state of the island component in the mixed spun fiber is greatly influenced by passing through the spinneret, and examples include a technique for finely dispersing and dispersing the additive component by controlling the shearing method (for example, (See Patent Document 4).

特に、上記のように海成分に比べて島成分の軟化点が高い海島型混合紡糸繊維の製造過程においては、糸形成後に固化しやすい島成分を引き伸ばすことが困難であることから、糸形成前である紡糸口金通過時に島成分を引き伸ばし高アスペクト比とする技術として、伸長流動場を効率よく付与することができる紡糸口金構造が望まれる。   In particular, in the production process of sea-island type mixed spun fiber, where the island component has a higher softening point than the sea component as described above, it is difficult to stretch the island component that tends to solidify after yarn formation. As a technique for stretching the island component when passing through the spinneret to achieve a high aspect ratio, a spinneret structure capable of efficiently providing an extension flow field is desired.

特開平6−158431号公報JP-A-6-158431 特開平8−296123号公報JP-A-8-296123 特開平5−156579号公報JP-A-5-156579 特開2003−193322号公報JP 2003-193322 A

本発明の目的は、上記従来技術が有していた問題点を解消し、島成分を均一に繊維軸方向に引き伸ばし高アスペクト比の島成分を有する混合紡糸繊維を安定的に得ることのできる、混合紡糸用口金を提供することにある。
更に本発明の他の目的は、上記混合紡糸用口金を用いた極細繊維の製造方法を提供することにある。
The object of the present invention is to solve the above-mentioned problems of the prior art, and stably obtain a mixed spun fiber having island components with a high aspect ratio by uniformly stretching the island components in the fiber axis direction. It is to provide a base for mixed spinning.
Still another object of the present invention is to provide a method for producing ultrafine fibers using the above mixed spinning base.

本発明者らは上記従来技術に鑑み鋭意検討を重ねた結果、紡糸口金内部を通過流動する混合樹脂に対し、伸長流動場及びせん断流動場を適切に組み合わせた流動場とすることにより、島相の形状及び配向状態を制御できることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of the above-described conventional techniques, the present inventors have made the island phase by making the flow field appropriately combining the extension flow field and the shear flow field with respect to the mixed resin flowing through the spinneret. The present inventors have found that the shape and orientation state can be controlled, and have completed the present invention.

即ち、本発明における目的は、
樹脂組成物から海島型混合紡糸繊維を製造するために用いる紡糸用口金であって、海島型混合紡糸繊維を形成するための樹脂組成物を導入するための導入孔部、絞り部及びキャピラリの順に組み合わせられて、樹脂吐出方向に連続的に小径化した流路を備えることを特徴とする、混合紡糸用口金によって達成される。
That is, the purpose of the present invention is to
A spinneret used for producing a sea-island type mixed spun fiber from a resin composition, which is an introduction hole, a drawn part and a capillary for introducing a resin composition for forming a sea-island type mixed spun fiber in this order. This is achieved by a mixed spinning die, which is provided with a flow path that is combined and continuously reduced in diameter in the resin discharge direction.

上記発明には、連続的に小径化する導入孔部において孔壁面と中心軸との間になす角度αが0度〜30度、該導入孔部とキャピラリとの接続箇所である絞り部において、絞り部壁面と中心軸との間になす角度βが10度〜60度、キャピラリのLc/Dc(キャピラリ長/キャピラリ径)が0.1〜10であって、該導入孔及び該絞り部各々の角度α、βが樹脂吐出方向に向かって連続的に小さくなるも包含される。   In the above invention, the angle α formed between the hole wall surface and the central axis in the introduction hole portion that continuously decreases in diameter is 0 ° to 30 °, and in the throttle portion that is the connection portion between the introduction hole portion and the capillary, The angle β formed between the wall surface of the throttle part and the central axis is 10 to 60 degrees, and the Lc / Dc (capillary length / capillary diameter) of the capillary is 0.1 to 10, each of the introduction hole and the throttle part Are included in which the angles α and β are continuously reduced in the resin discharge direction.

また、本発明の他の目的は、
海成分と島成分とを有する海島型混合紡糸繊維を製造し、該海島型混合紡糸繊維から海成分を除去して島成分を極細繊維として得る方法であって、軟化点が50℃〜350℃である熱可塑性樹脂を海成分として用い、該海成分に対して互いに非相溶であり該海成分の軟化点よりも50℃〜200℃高い軟化点を持つピッチ、ポリアクリロニトリル、ポリカルボジイミド、ポリイミド、ポリベンゾアゾールおよびアラミド類よりなる群から選ばれる少なくとも1種の熱可塑性炭素前駆体を島成分として容量分率(Vf)0.5%〜150%の範囲で添加した後に溶融混練し、導入孔部、絞り部及びキャピラリの順に組み合わせられて、樹脂吐出方向に連続的に小径化した流路を備える口金より吐出、固化させて海島型混合紡糸繊維を得て、次いで該海島型混合紡糸繊維の海成分を除去し島成分を極細繊維として得る、極細繊維の製造方法によって達成される。
Another object of the present invention is to
A method for producing a sea-island mixed spun fiber having a sea component and an island component, and removing the sea component from the sea-island mixed spun fiber to obtain the island component as an ultrafine fiber, having a softening point of 50 ° C to 350 ° C Pitch, polyacrylonitrile, polycarbodiimide, polyimide having a softening point of 50 ° C. to 200 ° C. higher than the softening point of the sea component. , Adding at least one thermoplastic carbon precursor selected from the group consisting of polybenzoazole and aramids as an island component in a volume fraction (Vf) in the range of 0.5% to 150%, then melt-kneading and introducing A combination of holes, constrictions, and capillaries in this order is discharged and solidified from a die having a flow path continuously reduced in diameter in the resin discharge direction to obtain a sea-island mixed spun fiber. The removal of the sea component of 該海 islands mixed spun fibers island component obtained as ultrafine fibers is achieved by the method for producing the ultrafine fiber.

上記発明には、連続的に小径化する導入孔部において孔壁面と中心軸との間になす角度αが0度〜30度、該導入孔部とキャピラリとの接続箇所である絞り部において、絞り部壁面と中心軸との間になす角度βが10度〜60度、キャピラリのLc/Dc(キャピラリ長/キャピラリ径)が0.1〜10であって、該導入孔及び該絞り部各々の角度α、βが樹脂吐出方向に向かって連続的に小さくなること、海成分の除去を、島成分は形状を保持する条件で焼成処理を施すことにより行うこと、海成分の除去を、島成分は形状を保持する条件で海成分の溶解能を有する溶液と接触させることにより行うこと、混合紡糸繊維中の島成分のアスペクト比(=島相繊維長(l)/島相繊維径(d))が1より大きく100万未満であること、海成分がポリエチレン、ポリ−4−メチルペンテン−1及び/又はその共重合体であること、も包含される。   In the above invention, the angle α formed between the hole wall surface and the central axis in the introduction hole portion that continuously decreases in diameter is 0 ° to 30 °, and in the throttle portion that is the connection portion between the introduction hole portion and the capillary, The angle β formed between the wall surface of the throttle part and the central axis is 10 to 60 degrees, and the Lc / Dc (capillary length / capillary diameter) of the capillary is 0.1 to 10, each of the introduction hole and the throttle part The angles α and β are continuously reduced in the resin discharge direction, the sea component is removed by subjecting the island component to a firing process under the condition of maintaining the shape, and the sea component is removed. The component is made by contacting with a solution having the ability to dissolve the sea component under the condition of maintaining the shape, and the aspect ratio of the island component in the mixed spun fiber (= island phase fiber length (l) / island phase fiber diameter (d)) Is greater than 1 and less than 1 million. Riechiren, poly-4-methylpentene-1 and / or its copolymers, are also included.

本発明の混合紡糸用口金によれば、混合紡糸繊維内部の添加成分を効果的に延伸することができる。また、長期間の連続紡糸でも繊維表面の状態は良好なまま持続するため、口金面の清掃周期(面掃周期)時間を延長することができるので、生産性も格段に向上させることが可能である。   According to the mixed spinning base of the present invention, the additive component inside the mixed spinning fiber can be effectively stretched. In addition, since the fiber surface remains in good condition even during long-term continuous spinning, it is possible to extend the cleaning period (face cleaning period) of the die surface, which can significantly improve productivity. is there.

以下、本発明を詳細に説明する。
本発明の混合紡糸用口金は、樹脂組成物から海島型混合紡糸繊維を製造するために用いる紡糸用口金であって、海島型混合紡糸繊維を形成するための樹脂組成物を導入するための導入孔部、絞り部及びキャピラリの順に組み合わせられて、樹脂吐出方向に連続的に小径化した流路を備えることを特徴とし、連続的に小径化する導入孔部において孔壁面と中心軸との間になす角度αが0度〜30度、該導入孔部とキャピラリとの接続箇所である絞り部において、絞り部壁面と中心軸との間になす角度βが10度〜60度、キャピラリのLc/Dc(キャピラリ長/キャピラリ径)が0.1〜10であって、該導入孔及び該絞り部各々の角度α、βが樹脂吐出方向に向かって連続的に小さくなることが好ましい。
Hereinafter, the present invention will be described in detail.
The mixed spinning nozzle of the present invention is a spinning nozzle used for producing a sea-island type mixed spinning fiber from a resin composition, and is introduced for introducing a resin composition for forming a sea-island type mixed spinning fiber. It is characterized by comprising a flow path that is combined in the order of a hole, a constriction, and a capillary, and is continuously reduced in diameter in the resin discharge direction, and between the hole wall surface and the central axis in the introduction hole that is continuously reduced in diameter. The angle α formed between the throttle wall and the central axis is 10 ° to 60 °, and the capillary Lc is 0 ° to 30 °. It is preferable that / Dc (capillary length / capillary diameter) is 0.1 to 10, and the angles α and β of the introduction hole and the narrowed portion are continuously reduced toward the resin discharge direction.

ここで、本発明の紡糸口金について、好ましい態様例を記載した図面を用いて説明する。
本発明による紡糸口金1は、図1の模式図で示すように導入孔2、絞り部3、キャピラリ4からなる流路で構成される。
Here, the spinneret of the present invention will be described with reference to the drawings describing preferred embodiments.
The spinneret 1 according to the present invention includes a flow path including an introduction hole 2, a throttle portion 3, and a capillary 4 as shown in the schematic diagram of FIG. 1.

従来通常用いられる紡糸口金は、図3の模式図で示すように該導入孔2が流路断面積が変わらない円筒状となっているが、本発明においては樹脂吐出方向に連続して小径化することを特徴とする。また、該絞り部3においても従来通常用いられる紡糸口金は図3の模式図で示すように壁面と中心軸との間になす角度が一定となっているが、本発明においては図2の模式図で示すように樹脂吐出方向に連続して該角度が小さくなることを特徴とする。これら吐出方向に連続して小径化する箇所は、該導入孔2、絞り部3の各々であっても良いし、組み合わせたものでも良い。   As shown in the schematic diagram of FIG. 3, the conventionally used spinneret has a cylindrical shape in which the introduction hole 2 does not change the cross-sectional area of the flow path. In the present invention, the diameter is continuously reduced in the resin discharge direction. It is characterized by doing. Further, the spinneret that is conventionally used in the narrowed portion 3 also has a constant angle formed between the wall surface and the central axis as shown in the schematic diagram of FIG. 3, but in the present invention, the schematic of FIG. As shown in the figure, the angle is continuously reduced in the resin discharge direction. The locations where the diameter is continuously reduced in the discharge direction may be the introduction hole 2 and the throttle portion 3 or may be combined.

溶融混練された混合樹脂は、紡糸口金1の樹脂流入面6より導入孔2へ流入し、絞り部3で絞られた後、キャピラリ(細孔)4を通過し樹脂吐出面7より吐出孔5を通じて吐出され、冷却固化され糸条として引き取られる。   The melt-kneaded mixed resin flows into the introduction hole 2 from the resin inflow surface 6 of the spinneret 1, is squeezed by the constriction part 3, passes through the capillary (pore) 4, and is discharged from the resin discharge surface 7 to the discharge hole 5. It is discharged through, cooled and solidified, and taken up as a yarn.

小径化する該導入孔部2において、壁面と中心軸との間になす角度αが0度〜30度であることが好ましく、樹脂吐出方向に向かうに従い該角度が連続して小さくなることが通過樹脂に伸長流動を与える構造として望ましい。この角度αが30度以内であるときには、ポリマーが急縮小しないので、伸長流動よりもせん断流動が支配的になることがなく効果が大きくなる。ここで、壁面と中心軸との間になす角度が徐々に変化しない図2および図3の場合には、αは0度である。また、効率よく伸長流動を起こすため、該導入孔2での流路表面は鏡面仕上げであることが好ましい。   In the introduction hole portion 2 whose diameter is reduced, it is preferable that the angle α formed between the wall surface and the central axis is 0 to 30 degrees, and that the angle continuously decreases toward the resin discharge direction. It is desirable as a structure that gives an elongation flow to the resin. When the angle α is within 30 degrees, the polymer does not shrink rapidly, so that the shear flow does not become more dominant than the extension flow, and the effect is increased. Here, in the case of FIG. 2 and FIG. 3 in which the angle formed between the wall surface and the central axis does not gradually change, α is 0 degree. Moreover, in order to raise | generate an elongate flow efficiently, it is preferable that the flow-path surface in this introduction hole 2 is mirror surface finish.

また、導入孔2とキャピラリ4の接続箇所である絞り部3において、壁面と中心軸との間になす角度βは10度〜60度であることが好ましく、更に好ましくは15度〜30度である。   In addition, in the narrowed portion 3 which is a connection point between the introduction hole 2 and the capillary 4, the angle β formed between the wall surface and the central axis is preferably 10 degrees to 60 degrees, and more preferably 15 degrees to 30 degrees. is there.

この角度を上回ると該絞り部3周縁がデッドスペースとなりポリマー滞留が発生しポリマーの変質、熱劣化等品質上の問題が生じるため好ましくない。この角度を下回ると、ノズル加工が困難となるため口金コストが上がり好ましくない。   Exceeding this angle is not preferable because the periphery of the narrowed portion 3 becomes a dead space and polymer retention occurs, resulting in quality problems such as polymer alteration and thermal degradation. Below this angle, nozzle processing becomes difficult, and the die cost increases, which is not preferable.

更に、キャピラリ4のLc/Dc(=キャピラリ長/キャピラリ径)は0.1〜10であることが好ましく、更に好ましくは0.5〜6である。
この値を下回ると、圧力損失が小さく吐出圧が小さくなるため、紡糸口金が複数の吐出孔を有する場合、紡糸口金1外周部付近の導入孔に導入されるポリマー量が少なく口金中央部で多くなり、吐出孔間で吐出されるポリマー量にバラツキが生じやすくなるため好ましくない。Lc/Dcがこの値を上回ると、該紡糸口金1通過時の吐出圧が上昇し、計量ポンプの定量性、装置の耐圧といった生産上の問題が生じるため好ましくない。
Furthermore, Lc / Dc (= capillary length / capillary diameter) of the capillary 4 is preferably 0.1 to 10, and more preferably 0.5 to 6.
Below this value, the pressure loss is small and the discharge pressure becomes small. Therefore, when the spinneret has a plurality of discharge holes, the amount of polymer introduced into the introduction hole near the outer periphery of the spinneret 1 is small and large in the center of the base. This is not preferable because the amount of polymer discharged between the discharge holes tends to vary. If Lc / Dc exceeds this value, the discharge pressure when passing through the spinneret 1 is increased, which causes production problems such as quantitativeness of the metering pump and pressure resistance of the apparatus, which is not preferable.

次に、本発明の極細繊維の製造方法について説明する。
本発明の製造方法は、海成分と島成分とを有する海島型混合紡糸繊維を製造し、該海島型混合紡糸繊維から海成分を除去して島成分を極細繊維として得る方法であって、
軟化点が50℃〜350℃である熱可塑性樹脂を海成分として用い、該海成分に対して互いに非相溶であり該海成分の軟化点よりも50℃〜200℃高い軟化点を持つピッチ、ポリアクリロニトリル、ポリカルボジイミド、ポリイミド、ポリベンゾアゾールおよびアラミド類よりなる群から選ばれる少なくとも1種の熱可塑性炭素前駆体を島成分として容量分率(Vf)0.5%〜150%の範囲で添加した後に溶融混練し、導入孔部、絞り部及びキャピラリの順に組み合わせられて、樹脂吐出方向に連続的に小径化した流路を備える口金より吐出、固化させて海島型混合紡糸繊維を得て、次いで該海島型混合紡糸繊維の海成分を除去し島成分を極細繊維として得る、極細繊維の製造方法である。
Next, the manufacturing method of the ultrafine fiber of this invention is demonstrated.
The production method of the present invention is a method of producing a sea-island type mixed spinning fiber having a sea component and an island component, and removing the sea component from the sea-island type mixed spinning fiber to obtain the island component as ultrafine fibers,
A pitch having a softening point of 50 ° C to 200 ° C higher than the softening point of the sea component, using a thermoplastic resin having a softening point of 50 ° C to 350 ° C as the sea component, which is incompatible with the sea component. And at least one thermoplastic carbon precursor selected from the group consisting of polyacrylonitrile, polycarbodiimide, polyimide, polybenzoazole, and aramids as an island component in a volume fraction (Vf) of 0.5% to 150%. After the addition, melt-kneading, combined with the introduction hole portion, the narrowing portion and the capillary in this order, discharged from a die having a flow path continuously reduced in the resin discharge direction, solidified to obtain a sea-island type mixed spinning fiber Then, the sea-island type mixed spun fiber is removed from the sea component to obtain the island component as ultrafine fiber.

この時、容量分率(Vf)が0.5%未満であると、最終的に海成分を除去し、島成分のみを製品として得る場合には歩留まりが低いものとなり、一方、150%を越えると、混合紡糸繊維中の島相の存在比率が高くなりすぎ、島成分を海成分中に微分散させることが困難なものとなる。   At this time, when the volume fraction (Vf) is less than 0.5%, when the sea component is finally removed and only the island component is obtained as a product, the yield is low, whereas it exceeds 150%. Then, the existence ratio of the island phase in the mixed spun fiber becomes too high, and it becomes difficult to finely disperse the island component in the sea component.

一方、流動場に対する高分子鎖の応答は、せん断流動場と伸長流動場で本質的に異なると言われており、せん断流動場では分子の回転が引き起こされるのに対して、伸長流動場では鎖状分子が引き伸ばされると言われている。よって、せん断流動と伸長流動を適切に組合せ与えることにより紡糸口金通過時に島成分を制御することが可能となる。すなわち、島成分の配向を揃えたい場合にはせん断流動場を付与し、島成分を細長く伸長させたい場合には伸長流動場を付与することが有効である。   On the other hand, it is said that the response of the polymer chain to the flow field is essentially different between the shear flow field and the extension flow field. It is said that the molecules are stretched. Therefore, the island component can be controlled when the spinneret passes by appropriately combining the shear flow and the extension flow. That is, it is effective to provide a shear flow field when it is desired to align the orientation of the island component, and to apply an extension flow field when the island component is desired to be elongated.

このようにして得られた混合紡糸繊維は図4の模式図で示すように、海島構造の混合形態を取る。島相繊維の形態を特徴付けるパラメータのひとつにアスペクト比(島相繊維軸方向長(l)/島相繊維横断面方向径(d))が挙げられるが、島相繊維のアスペクト比が1より大きく100万未満であること、島相繊維径(d)が0.001μm〜2μm、好ましくは0.001μm〜1μmであることが海成分を除去した後不織布の基材、樹脂補強用フィラーなどとして使用する際に好ましい。   The mixed spun fiber thus obtained takes a mixed form of sea-island structure as shown in the schematic diagram of FIG. One of the parameters characterizing the form of island phase fibers is the aspect ratio (island phase fiber axial length (l) / island phase fiber cross-sectional direction diameter (d)), but the aspect ratio of island phase fibers is greater than 1. It is less than 1 million, and the island phase fiber diameter (d) is 0.001 μm to 2 μm, preferably 0.001 μm to 1 μm. This is preferable.

また混合紡糸繊維径(D)は0.5μm〜200μmであることが好ましい。この径を下回ると糸条の強度が下がることにより巻取り工程などで断糸が発生しやすくなり、生産性が悪化し好ましくない。この径を上回ると混合紡糸繊維の海成分を溶剤等で融解除去する場合には時間と手間がかかり生産性が悪化し好ましくない。   The mixed spinning fiber diameter (D) is preferably 0.5 μm to 200 μm. If the diameter is less than this value, the strength of the yarn is lowered, so that yarn breakage is likely to occur in a winding process or the like, and productivity is deteriorated. Exceeding this diameter is not preferable because when the sea component of the mixed spun fiber is melted and removed with a solvent or the like, it takes time and labor, and the productivity deteriorates.

また、海成分として、ポリエチレン、ポリ−4−メチルペンテン−1またはその共重合体のうちの少なくとも1種の熱可塑性樹脂を用い、島成分として、ピッチ、ポリアクリロニトリル、ポリカルボジイミド、ポリイミド、ポリベンゾアゾールおよびアラミド類よりなる群から選ばれる少なくとも1種の熱可塑性炭素前駆体を用いて、熱可塑性炭素前駆体を焼成して得られる炭素繊維を得ようとする場合には、海成分を除去する際、前処理として島成分である熱可塑性炭素前駆体を安定化処理し、安定化前駆体成形体を形成する。ここで、熱可塑性炭素前駆体の安定化は炭素化もしくは黒鉛化された炭素繊維を得るために必要な工程であり、これを実施せず次工程である熱可塑性樹脂の除去を行った場合、熱可塑性炭素前駆体が熱分解したり融着したりするなどの問題が生じる。   Further, as the sea component, at least one thermoplastic resin of polyethylene, poly-4-methylpentene-1 or a copolymer thereof is used, and as the island component, pitch, polyacrylonitrile, polycarbodiimide, polyimide, polybenzo are used. When at least one thermoplastic carbon precursor selected from the group consisting of azoles and aramids is used to obtain carbon fibers obtained by firing the thermoplastic carbon precursor, sea components are removed. At this time, as a pretreatment, the thermoplastic carbon precursor as an island component is stabilized to form a stabilized precursor molded body. Here, stabilization of the thermoplastic carbon precursor is a step necessary to obtain carbonized or graphitized carbon fiber, and when the thermoplastic resin is removed as the next step without performing this, Problems such as the thermal decomposition and fusion of the thermoplastic carbon precursor occur.

安定化の方法としては酸素などのガス気流処理、酸性水溶液などの溶液処理など公知の方法で行う事ができるが、生産性の面からガス気流下での不融化が好ましい。使用するガス成分としては前記熱可塑性樹脂への浸透性および熱可塑性炭素前駆体への吸着性の点から、また熱可塑性炭素前駆体を低温で速やかに不融化させうるという点から酸素および/またはハロゲンガスを含む混合ガスである事が好ましい。ハロゲンガスとしては、フッ素ガス、塩素ガス、臭素ガス、沃素ガスを挙げることができるが、これらの中でも臭素ガス、沃素ガスが特に好ましい。ガス気流下での不融化の具体的な方法としては、温度50〜350℃、好ましくは80〜300℃で、5時間以下、好ましくは2時間以下、さらには30分間以下で所望のガス雰囲気下に曝すことが好ましい。   As a stabilization method, a known method such as a gas flow treatment with oxygen or a solution treatment with an acidic aqueous solution can be used, but infusibilization under a gas flow is preferable from the viewpoint of productivity. As the gas component to be used, oxygen and / or from the viewpoint of permeability to the thermoplastic resin and adsorption to the thermoplastic carbon precursor, and from the point that the thermoplastic carbon precursor can be quickly infusibilized at low temperature. A mixed gas containing a halogen gas is preferred. Examples of the halogen gas include fluorine gas, chlorine gas, bromine gas, and iodine gas. Among these, bromine gas and iodine gas are particularly preferable. As a specific method of infusibilization under a gas stream, the temperature is 50 to 350 ° C., preferably 80 to 300 ° C., 5 hours or less, preferably 2 hours or less, and further 30 minutes or less in a desired gas atmosphere. Exposure to is preferred.

また、上記不融化により前駆体成形体中に含まれる熱可塑性炭素前駆体の軟化点は著しく上昇し、所望の炭素繊維を得るという目的から軟化点が400℃以上となる事が好ましく、500℃以上である事がさらに好ましい。   In addition, the softening point of the thermoplastic carbon precursor contained in the precursor molded body is significantly increased by the infusibilization, and the softening point is preferably 400 ° C. or higher for the purpose of obtaining a desired carbon fiber. More preferably, the above is true.

次いで、安定化前駆体成形体中に含まれる熱可塑性樹脂を除去し、繊維状炭素前駆体のみを分離するが、この工程では、炭素繊維前駆体の熱分解をできるだけ抑え、かつ熱可塑性樹脂を分解除去し、繊維状炭素前駆体のみを分離する必要がある。熱可塑性樹脂を分解除去する方法としては、例えば溶剤により熱可塑性樹脂を溶解させる方法、熱分解により熱可塑性樹脂を分解除去する方法を例示することができる。   Next, the thermoplastic resin contained in the stabilized precursor molded body is removed and only the fibrous carbon precursor is separated. In this step, the thermal decomposition of the carbon fiber precursor is suppressed as much as possible, and the thermoplastic resin is removed. It is necessary to decompose and remove only the fibrous carbon precursor. Examples of the method for decomposing and removing the thermoplastic resin include a method for dissolving the thermoplastic resin with a solvent and a method for decomposing and removing the thermoplastic resin by thermal decomposition.

最後に、熱可塑性樹脂を除いた繊維状炭素前駆体を不活性ガス雰囲気中で炭素化もしくは黒鉛化して炭素繊維を製造するが、得られる炭素繊維の繊維径としては0.001μm〜2μmであり、0.001μm〜1μmである事が好ましい。
また、本発明の紡糸口金に用いられる口金板単体の材質、寸法は特に限定されるものではなく、使用するポリマーの条件下で変形や歪みが発生しなければ良い。
Finally, carbon fiber is produced by carbonizing or graphitizing the fibrous carbon precursor excluding the thermoplastic resin in an inert gas atmosphere. The resulting carbon fiber has a fiber diameter of 0.001 μm to 2 μm. It is preferable that it is 0.001 micrometer-1 micrometer.
Further, the material and dimensions of the single base plate used in the spinneret of the present invention are not particularly limited, and it is sufficient that no deformation or distortion occurs under the conditions of the polymer used.

本発明の口金を用いて得られる繊維の断面形状は、特に限定されるものではなく、丸型、三角型、中空型、十字型で代表され、異なる断面の集合体であっても良い。またその異形度や中空率は特に限定されない。   The cross-sectional shape of the fiber obtained by using the die of the present invention is not particularly limited, and is represented by a round shape, a triangular shape, a hollow shape, and a cross shape, and may be an aggregate having different cross sections. Moreover, the deformity and the hollowness are not particularly limited.

以下、本発明を実施例により更に具体的に説明するが、本発明はこれにより何等限定を受けるものではない。
島成分の延伸程度を評価するため、島成分のアスペクト比(島相繊維軸方向長(l)/島相繊維横断面径(d))を下記の通りの操作により求めた。
即ち、試料を任意の面で切断したときの切断面を走査型電子顕微鏡(株式会社日立製作所製、S−2400)を用いて観察し、海相に分散している島成分の繊維径、繊維長を求め、これらの値を用いて島相繊維のアスペクト比を導出した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention does not receive any limitation by this.
In order to evaluate the degree of stretching of the island component, the aspect ratio of the island component (island phase fiber axial length (l) / island phase fiber cross-sectional diameter (d)) was determined by the following operation.
That is, the cut surface when the sample is cut at an arbitrary surface is observed using a scanning electron microscope (S-2400, manufactured by Hitachi, Ltd.), and the fiber diameter and fiber of island components dispersed in the sea phase The length was obtained and the aspect ratio of the island phase fiber was derived using these values.

また、紡糸の安定性を評価するパラメータとして、口金面掃周期を利用した。口金面掃とは、紡糸時に紡糸口金吐出孔の周縁部にポリマーの劣化物や添加物質が経時的に堆積することにより吐出糸のベンディングや断糸が頻発する現象を防止するために、堆積異物を除去する作業である。本実施例においては、紡糸口金面を観察し異物が目視できる度に実施したが、この口金面掃時には複合糸の製造が中断することになるため、口金面掃周期すなわち口金面掃から次の口金面掃までの間隔が長ければ長いほど、安定した紡糸が行われると言える。   In addition, as a parameter for evaluating the stability of spinning, the base surface cleaning period was used. In order to prevent the occurrence of frequent bending and breakage of the discharged yarn due to the deterioration of polymer and additive substances that accumulate over time on the peripheral edge of the spinneret discharge hole during spinning, It is work to remove. In this example, the spinneret surface was observed every time foreign matter could be visually observed, but since the production of the composite yarn was interrupted during this nozzle surface cleaning, It can be said that the longer the interval until the nozzle surface is cleaned, the more stable spinning is performed.

海成分としてポリ−4−メチルペンテン−1(融点約220℃)を用い、島成分としてメソフェーズピッチ(軟化点約280℃)を容量分率10%ブレンドし、同方向回転型2軸式溶融混練押出し機(株式会社神戸製鋼所製、KTX30)を用いて溶融混練した後、紡糸口金温度345℃にて、キャピラリ径Dc=0.1mm、キャピラリ長Lc=0.1mmのキャピラリから吐出させフィラメント数20本の糸条を引き取り速度1200m/分で製造した。
口金種類を変えて、添加成分である島相繊維径と口金面掃周期を比較した結果を表1に示す。
Poly-4-methylpentene-1 (melting point: about 220 ° C.) is used as the sea component, and mesophase pitch (softening point: about 280 ° C.) is blended as the island component at a volume fraction of 10%. After melt-kneading using an extruder (KTX30, manufactured by Kobe Steel), the number of filaments is discharged from a capillary having a capillary diameter Dc = 0.1 mm and a capillary length Lc = 0.1 mm at a spinneret temperature of 345 ° C. Twenty yarns were produced at a take-up speed of 1200 m / min.
Table 1 shows the results of comparing the island phase fiber diameter as an additive component and the die surface cleaning period by changing the kind of die.

Figure 2006214033
Figure 2006214033

上表のように、紡糸口金の流路形状を徐々に変化させることにより、繊維内部の添加成分を効果的に延伸できることが確認できた。また、口金面掃周期時間が延長できたことにより、繊維の表面性が向上し、吐出孔周縁への堆積物が減少していることが推測される。   As shown in the above table, it was confirmed that the additive component inside the fiber could be effectively stretched by gradually changing the shape of the spinneret channel. Moreover, it is estimated that the surface property of the fiber is improved and the deposits on the periphery of the discharge hole are reduced due to the extension of the base surface cleaning cycle time.

本発明の製造方法に用いる混合紡糸用口金の流路構成を模式的に示した図である。It is the figure which showed typically the flow-path structure of the nozzle | cap | die for mixed spinning used for the manufacturing method of this invention. 本発明の製造方法に用いる混合紡糸用口金の流路構成を模式的に示した図である。It is the figure which showed typically the flow-path structure of the nozzle | cap | die for mixed spinning used for the manufacturing method of this invention. 従来の製造方法に用いる混合紡糸用口金を模式的に示した図である。It is the figure which showed typically the nozzle | cap | die for mixed spinning used for the conventional manufacturing method. 本発明の製造方法によって得られる混合紡糸繊維の断面と、該繊維の四分の一円を切り抜いた時の内部構造を模式的に示した図である。It is the figure which showed typically the cross section of the mixed spinning fiber obtained by the manufacturing method of this invention, and the internal structure when a quarter circle of this fiber was cut out.

符号の説明Explanation of symbols

1 紡糸口金
2 導入孔
3 絞り部
4 キャピラリ(細孔)
5 吐出孔
6 樹脂流入面
7 樹脂吐出面
8 添加成分
9 海成分
Di 樹脂流入部径
Dc キャピラリ径
Lc キャピラリ長
D 混合紡糸繊維径
d 島相繊維径
l 島相繊維長
DESCRIPTION OF SYMBOLS 1 Spinneret 2 Introduction hole 3 Constriction part 4 Capillary (pore)
5 Discharge hole 6 Resin inflow surface 7 Resin discharge surface 8 Additive component 9 Sea component Di Resin inflow portion diameter Dc Capillary diameter Lc Capillary length D Mixed spinning fiber diameter d Island phase fiber diameter l Island phase fiber length

Claims (8)

樹脂組成物から海島型混合紡糸繊維を製造するために用いる紡糸用口金であって、
海島型混合紡糸繊維を形成するための樹脂組成物を導入するための導入孔部、絞り部及びキャピラリの順に組み合わせられて、樹脂吐出方向に連続的に小径化した流路を備えることを特徴とする、混合紡糸用口金。
A spinning die used for producing a sea-island type mixed spinning fiber from a resin composition,
It is characterized by comprising a flow path that is combined in the order of an introduction hole for introducing a resin composition for forming a sea-island mixed spun fiber, a constriction, and a capillary and is continuously reduced in diameter in the resin discharge direction. A spinneret for mixed spinning.
連続的に小径化する導入孔部において孔壁面と中心軸との間になす角度αが0度〜30度、該導入孔部とキャピラリとの接続箇所である絞り部において、絞り部壁面と中心軸との間になす角度βが10度〜60度、キャピラリのLc/Dc(キャピラリ長/キャピラリ径)が0.1〜10であって、該導入孔及び該絞り部各々の角度α、βが樹脂吐出方向に向かって連続的に小さくなる、請求項1記載の混合紡糸用口金。   The angle α formed between the hole wall surface and the central axis in the introduction hole portion that continuously decreases in diameter is 0 ° to 30 °, and in the restriction portion where the introduction hole portion and the capillary are connected, The angle β formed with the shaft is 10 to 60 degrees, and the Lc / Dc (capillary length / capillary diameter) of the capillary is 0.1 to 10, and the angles α and β of the introduction hole and the throttle part, respectively. The spinneret for mixed spinning according to claim 1, wherein becomes smaller continuously in the resin discharge direction. 海成分と島成分とを有する海島型混合紡糸繊維を製造し、該海島型混合紡糸繊維から海成分を除去して島成分を極細繊維として得る方法であって、
軟化点が50℃〜350℃である熱可塑性樹脂を海成分として用い、該海成分に対して互いに非相溶であり該海成分の軟化点よりも50℃〜200℃高い軟化点を持つピッチ、ポリアクリロニトリル、ポリカルボジイミド、ポリイミド、ポリベンゾアゾールおよびアラミド類よりなる群から選ばれる少なくとも1種の熱可塑性炭素前駆体を島成分として容量分率(Vf)0.5%〜150%の範囲で添加した後に溶融混練し、導入孔部、絞り部及びキャピラリの順に組み合わせられて、樹脂吐出方向に連続的に小径化した流路を備える口金より吐出、固化させて海島型混合紡糸繊維を得て、次いで該海島型混合紡糸繊維の海成分を除去し島成分を極細繊維として得る、極細繊維の製造方法。
A method for producing a sea-island type mixed spinning fiber having a sea component and an island component, and removing the sea component from the sea-island type mixed spinning fiber to obtain the island component as an ultrafine fiber,
A pitch having a softening point of 50 ° C to 200 ° C higher than the softening point of the sea component, using a thermoplastic resin having a softening point of 50 ° C to 350 ° C as the sea component, which is incompatible with the sea component. And at least one thermoplastic carbon precursor selected from the group consisting of polyacrylonitrile, polycarbodiimide, polyimide, polybenzoazole, and aramids as an island component in a volume fraction (Vf) of 0.5% to 150%. After the addition, it is melt-kneaded, and is combined in the order of the introduction hole part, the throttle part and the capillary, and discharged and solidified from a die having a flow path continuously reduced in the resin discharge direction to obtain a sea-island type mixed spinning fiber. Then, the sea component of the sea-island type mixed spun fiber is removed to obtain the island component as an ultrafine fiber.
連続的に小径化する導入孔部において孔壁面と中心軸との間になす角度αが0度〜30度、該導入孔部とキャピラリとの接続箇所である絞り部において、絞り部壁面と中心軸との間になす角度βが10度〜60度、キャピラリのLc/Dc(キャピラリ長/キャピラリ径)が0.1〜10であって、該導入孔及び該絞り部各々の角度α、βが樹脂吐出方向に向かって連続的に小さくなる、請求項3記載の混合紡糸用口金。   The angle α formed between the hole wall surface and the central axis in the introduction hole portion that continuously decreases in diameter is 0 ° to 30 °, and in the restriction portion where the introduction hole portion and the capillary are connected, The angle β formed with the shaft is 10 to 60 degrees, and the Lc / Dc (capillary length / capillary diameter) of the capillary is 0.1 to 10, and the angles α and β of the introduction hole and the throttle part, respectively. The spinneret for mixed spinning according to claim 3, wherein becomes smaller continuously in the resin discharge direction. 海成分の除去を、島成分は形状を保持する条件で焼成処理を施すことにより行う、請求項3記載の製造方法。   The production method according to claim 3, wherein the sea component is removed by subjecting the island component to a firing process under a condition that maintains the shape. 海成分の除去を、島成分は形状を保持する条件で海成分の溶解能を有する溶液と接触させることにより行う、請求項3記載の製造方法。   The method according to claim 3, wherein the sea component is removed by contacting the island component with a solution capable of dissolving the sea component under the condition that the shape of the island component is maintained. 混合紡糸繊維中の島成分のアスペクト比(=島相繊維長(l)/島相繊維径(d))が1より大きく100万未満である、請求項3記載の製造方法。   The production method according to claim 3, wherein the aspect ratio (= island phase fiber length (l) / island phase fiber diameter (d)) of the island component in the mixed spun fiber is greater than 1 and less than 1 million. 海成分がポリエチレン、ポリ−4−メチルペンテン−1及び/又はその共重合体である、請求項3記載の製造方法。   The production method according to claim 3, wherein the sea component is polyethylene, poly-4-methylpentene-1 and / or a copolymer thereof.
JP2005027675A 2005-02-03 2005-02-03 Spinneret for melt blend spinning and method for producing ultrafine fiber using the same Pending JP2006214033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005027675A JP2006214033A (en) 2005-02-03 2005-02-03 Spinneret for melt blend spinning and method for producing ultrafine fiber using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005027675A JP2006214033A (en) 2005-02-03 2005-02-03 Spinneret for melt blend spinning and method for producing ultrafine fiber using the same

Publications (1)

Publication Number Publication Date
JP2006214033A true JP2006214033A (en) 2006-08-17

Family

ID=36977489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005027675A Pending JP2006214033A (en) 2005-02-03 2005-02-03 Spinneret for melt blend spinning and method for producing ultrafine fiber using the same

Country Status (1)

Country Link
JP (1) JP2006214033A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018914A (en) * 2008-07-11 2010-01-28 Mitsubishi Rayon Co Ltd Spinneret for conjugate spinning and method for producing conjugate fiber using the spinneret unit
KR20200096833A (en) * 2018-01-24 2020-08-13 미쓰이 가가쿠 가부시키가이샤 Spunbond nonwoven fabric, sanitary material, and manufacturing method of spunbond nonwoven fabric

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089917A (en) * 2001-09-19 2003-03-28 Toray Ind Inc Method for producing thermoplastic synthetic fiber
WO2004031461A1 (en) * 2002-09-30 2004-04-15 Teijin Limited Process and composition for the production of carbon fiber and mats

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089917A (en) * 2001-09-19 2003-03-28 Toray Ind Inc Method for producing thermoplastic synthetic fiber
WO2004031461A1 (en) * 2002-09-30 2004-04-15 Teijin Limited Process and composition for the production of carbon fiber and mats

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018914A (en) * 2008-07-11 2010-01-28 Mitsubishi Rayon Co Ltd Spinneret for conjugate spinning and method for producing conjugate fiber using the spinneret unit
KR20200096833A (en) * 2018-01-24 2020-08-13 미쓰이 가가쿠 가부시키가이샤 Spunbond nonwoven fabric, sanitary material, and manufacturing method of spunbond nonwoven fabric
KR102398859B1 (en) 2018-01-24 2022-05-17 미쓰이 가가쿠 가부시키가이샤 Spunbond Nonwovens, Sanitary Materials, and Methods of Making Spunbond Nonwovens

Similar Documents

Publication Publication Date Title
JP5808333B2 (en) Method for producing hyperbranched hollow fiber
RU2625306C2 (en) Method of manufacture of lignin-containing prediminary fiber, and also of carbon fibers
EP1961846B1 (en) Electrically conductive filaments, fabrics made of these filaments and their use
AU707988B2 (en) Apparatus and method for spinning hollow polymeric fibres
KR102556948B1 (en) Carbon nanotube nanocomposite conducting multifiber and manufacturing method the same
KR20140002991A (en) Process for manufacturing cellulose-based carbone fibers
CN1256474C (en) Manufacturing method of poly p phenylene diamine terephthalamide fiber
JP2006214033A (en) Spinneret for melt blend spinning and method for producing ultrafine fiber using the same
JP7500972B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
Zhang et al. Novel fibers prepared from cellulose in NaOH/thiourea/urea aqueous solution
KR101031924B1 (en) Process Of Producing Nano Size Meta-Aramid Fibrils
CN103305940A (en) Spinneret plate and method for preparing mesophase pitch-based hollow carbon fibers
JP4342998B2 (en) Mixed spun fiber and method for producing the same
JP2007321294A (en) Sheath-core type polymer alloy fiber and hollow fiber and method for producing them
WO2017194103A1 (en) Method for producing a multifilament yarn and multifilament yarn
JP2006322131A (en) Split type conjugate fiber and method for producing the same
JP2009242984A (en) Method for producing carbon fiber precursor
JPH01192812A (en) High-tenacity fiber excellent in heat and chemical resistance and production thereof
JP2019094589A (en) Production method of precursor fiber for carbon fiber
JP2006265788A (en) Method for producing conjugated fiber
KR102653447B1 (en) Composite hollow fiber membrane with improved durability and usable life-time and method for manufacturing the same
KR101148554B1 (en) A device for washing coagulated fiber of polyacrylonitrile-based precusor for carbon fiber and the method thereof
JP7122770B2 (en) Electrical parameter assisted wet spinning method
JPH03130411A (en) Ultrafine fiber and its production
JP2004176205A (en) Recycled polyester fiber for use as industrial material

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070801

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20091117

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Effective date: 20100330

Free format text: JAPANESE INTERMEDIATE CODE: A02