JP2006212676A - Two-electrode large heat input submerged arc welding method - Google Patents

Two-electrode large heat input submerged arc welding method Download PDF

Info

Publication number
JP2006212676A
JP2006212676A JP2005029020A JP2005029020A JP2006212676A JP 2006212676 A JP2006212676 A JP 2006212676A JP 2005029020 A JP2005029020 A JP 2005029020A JP 2005029020 A JP2005029020 A JP 2005029020A JP 2006212676 A JP2006212676 A JP 2006212676A
Authority
JP
Japan
Prior art keywords
weld metal
toughness
wire
heat input
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005029020A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakazawa
博志 中澤
Shigeo Oyama
繁男 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2005029020A priority Critical patent/JP2006212676A/en
Publication of JP2006212676A publication Critical patent/JP2006212676A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two-electrode large heat input submerged arc welding method capable of obtaining excellent and consistent weld metal toughness, and obtaining a sound penetration shape and bead appearance free from defective weld even when a high-tensile steel of 490-570 MPa class is subjected to the large heat input submerged arc welding of the welding heat input of ≥500 kJ/cm. <P>SOLUTION: In the two-electrode large heat input submerged arc welding method, welding is performed by using a wire having a composition consisting of, by mass, 0.02-0.18% C, 0.02-0.5% Si, 1.15-2.2% Mn, 0.1-1.0% Mo, 0.1-1.5% Ni, 0.005-0.05% Ti, ≤0.006% P, ≤0.003% S, and the balance Fe with inevitable impurities, and a flux having a composition consisting of 13-25% SiO<SB>2</SB>, 8-20% MgO, 5-13% CaO, 1-7% CaF<SB>2</SB>, 9-23% Al<SB>2</SB>O<SB>3</SB>, 3-11% TiO<SB>2</SB>, 11-25% Fe, 0.1-0.6% B<SB>2</SB>O<SB>3</SB>, 1-4.3% Mo, and 1-4.5% Ni. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高張力鋼板の大入熱サブマージアーク溶接方法に係り、特に、建築、造船、橋梁、海洋構造物などの各種溶接鋼構造物を建造する際に、溶接欠陥の無い健全な溶接金属を形成させ、さらに良好で安定した靭性を有する溶接金属を得ることができる2電極大入熱サブマージアーク溶接方法に関するものである。   The present invention relates to a high heat input submerged arc welding method for high-strength steel plates, and in particular, when welding various types of welded steel structures such as buildings, shipbuilding, bridges, marine structures, etc. The present invention relates to a two-electrode large heat input submerged arc welding method capable of obtaining a weld metal having better and stable toughness.

建築構造物は、地震時の構造物の脆性破壊を防止する観点から、特に溶接金属の高靭性化の社会的要請が極めて大きい。一方、建築構造物の大型化に伴い、板厚の厚いボックス柱が製造されているが、大入熱の1パス溶接による施工法が能率面から優位であり、大入熱1パス溶接における溶接金属の高靱性化が求められている。ボックス柱角継手の大入熱サブマージアーク溶接は、板厚50mmを超える1パス溶接の場合、溶接入熱が400kJ/cm以上と大きいため溶接金属の冷却速度が遅く、冷却過程でオーステナイト(γ)粒界から粗大な初析フェライト(α)が生成しやすく、十分な溶接金属の靭性が得られ難い。   From the viewpoint of preventing brittle fracture of a structure during an earthquake, there is an extremely great social demand for a toughened weld metal. On the other hand, box columns with thicker plates are being manufactured with the increase in the size of building structures, but the construction method using one-pass welding with large heat input is superior in terms of efficiency, and welding in one-pass welding with large heat input. There is a demand for high toughness of metals. Large heat input submerged arc welding of box column corner joints has a large welding heat input of 400 kJ / cm or more in the case of 1-pass welding with a plate thickness exceeding 50 mm, so the cooling rate of the weld metal is slow and austenite (γ) during the cooling process. Coarse pro-eutectoid ferrite (α) is easily generated from the grain boundaries, and it is difficult to obtain sufficient weld metal toughness.

ボックス柱角継手の大入熱サブマージアーク溶接の高靱性化については、溶接材料の成分組成を規定した技術として、例えば、特開平11−170085号公報(特許文献1)にあるが、溶接金属の組織粒径、粒内組織および粒界組織を積極的にコントロールするものではなく、十分な溶接金属の靭性を得るのは難しい。この他の方法として、溶接金属にTiを添加することによりTi酸化物を生成させ、これを核として微細なアシキュラーフェライトを生成させることで溶接金属を高靭化させる方法が知られている。   As for the toughness of the high heat input submerged arc welding of the box column corner joint, there is a technique for defining the component composition of the welding material, for example, in JP-A-11-170085 (Patent Document 1). It does not actively control the grain size, intragranular structure and grain boundary structure, and it is difficult to obtain sufficient weld metal toughness. As another method, a method is known in which a Ti oxide is generated by adding Ti to the weld metal, and fine acicular ferrite is generated using this as a nucleus to make the weld metal tough.

しかしながら、大入熱サブマージアーク溶接では、一般のアーク溶接に比べて、溶融プールが長時間維持されるので、溶接金属中にTiを相当量添加しても、Ti酸化物はスラグ浴中に移行して溶融金属と分離してしまう部分が多く、アシキュラーフェライトの有効な核生成サイトとして十分に機能せず、この方法のみでは溶接金属の充分な靭性を確保することが困難である。   However, in high heat input submerged arc welding, the molten pool is maintained for a longer time than in general arc welding, so even if a considerable amount of Ti is added to the weld metal, Ti oxide migrates into the slag bath. As a result, there are many portions that are separated from the molten metal, and it does not function sufficiently as an effective nucleation site of acicular ferrite, and it is difficult to ensure sufficient toughness of the weld metal only by this method.

特開2002−283095号公報(特許文献2)には、溶接金属の靭性を向上させるために、サブマージアーク溶接用ワイヤに多量の合金元素を添加している。これではワイヤの引張強度および硬さが過剰に高くなり、溶接時にワイヤ送給性が劣化し、健全な溶込み形状および良好なビード外観が得られない。   In JP 2002-283095 A (Patent Document 2), in order to improve the toughness of the weld metal, a large amount of alloy element is added to the wire for submerged arc welding. As a result, the tensile strength and hardness of the wire become excessively high, the wire feedability deteriorates during welding, and a sound penetration shape and a good bead appearance cannot be obtained.

特開2000−84672号公報(特許文献3)には、板厚60mm程度の鋼板を1パスでサブマージアーク溶接を行う際に、鋼板の開先底部の間隔を広げ、開先内に鉄または鉄合金の粉末を散布して溶接する技術の開示がある。しかし、本技術では鋼板の組立において開先精度が重要となるため、施工に時間がかかり、また開先精度が劣っている場合や開先内に散布する鉄または鉄合金の散布量が均一でなければ、安定した溶込み形状が得られず、健全な溶接金属は得られない。   In Japanese Patent Laid-Open No. 2000-84672 (Patent Document 3), when submerged arc welding is performed on a steel sheet having a thickness of about 60 mm in one pass, the gap between the groove bottoms of the steel sheet is widened, and iron or iron is formed in the groove. There is a disclosure of a technique of spraying and welding alloy powder. However, with this technology, groove accuracy is important in assembling steel sheets, so it takes time to construct, and when the groove accuracy is inferior or the amount of iron or iron alloy sprayed in the groove is uniform. Otherwise, a stable penetration shape cannot be obtained, and a sound weld metal cannot be obtained.

また、特許第2947731号公報(特許文献4)には、板厚50mm以上の鋼板を大入熱サブマージアーク溶接する際に、健全な溶込み形状を得るために先行極(1電極目)のワイヤ径を調整し、改善を図る技術の開示がある。しかし、この溶接方法によれば溶込み形状については改善が図られているが、一般的な成分を有するサブマージアーク溶接用フラックスおよび溶接ワイヤを用いているため、板厚50mmを超える鋼板では、1パス大入熱サブマージアーク溶接においては溶接入熱が400kJ/cm以上と大きくなるため、溶接金属の焼入れ性が足りなくなり、粗大な初析フェライトが生成し、溶接金属靭性を著しく劣化させるという問題がある。   Japanese Patent No. 2947731 (Patent Document 4) discloses a lead electrode (first electrode) wire for obtaining a sound penetration shape when a steel plate having a thickness of 50 mm or more is subjected to submerged arc welding with high heat input. There is a disclosure of technology for adjusting the diameter and improving it. However, according to this welding method, although the penetration shape has been improved, since a flux and welding wire for submerged arc welding having general components are used, a steel sheet having a thickness of 50 mm or more is 1 In pass large heat input submerged arc welding, the welding heat input becomes as large as 400 kJ / cm or more, so the hardenability of the weld metal becomes insufficient, coarse proeutectoid ferrite is generated, and the weld metal toughness is significantly deteriorated. is there.

特開平11−170085号公報Japanese Patent Laid-Open No. 11-170085 特開2002−283095号公報JP 2002-283095 A 特開2000−84672号公報JP 2000-84672 A 特許第2947731号公報Japanese Patent No. 2947731

本発明は、上記の問題点に鑑みて、490〜570MPa級の高張力鋼を、溶接入熱500kJ/cm以上の大入熱サブマージアーク溶接した場合においても良好で安定した溶接金属靭性が得られ、溶接欠陥の無い健全な溶込み形状とビード外観が得られる2電極大入熱サブマージアーク溶接方法を提供することを目的とする。   In view of the above-mentioned problems, the present invention provides good and stable weld metal toughness even when high-tensile steel of 490 to 570 MPa class is subjected to high heat input submerged arc welding with a heat input of 500 kJ / cm or more. An object of the present invention is to provide a two-electrode large heat input submerged arc welding method capable of obtaining a sound penetration shape and a bead appearance without welding defects.

本発明は、上記の課題を解決するものであり、その発明の要旨とするところは、以下の通りである。
(1)質量%で、C:0.02〜0.18%、Si:0.02〜0.5%、Mn:1.15〜2.2%、Mo:0.1〜1.0%、Ni:0.1〜1.5%、Ti:0.005〜0.05%を含有し、P:0.006%以下、S:0.003%以下で、残部がFeおよび不可避不純物からなるワイヤと、SiO2 :13〜25%、MgO:8〜20%、CaO:5〜13%、CaF2 :1〜7%、Al2 3 :9〜23%、TiO2 :3〜11%、Fe:11〜25%、B2 3 :0.1〜0.6%、Mo:1〜4.3%、Ni:1〜4.5%からなるフラックスを用いて溶接することを特徴とする2電極大入熱サブマージアーク溶接方法。
The present invention solves the above-mentioned problems, and the gist of the invention is as follows.
(1) By mass%, C: 0.02 to 0.18%, Si: 0.02 to 0.5%, Mn: 1.15 to 2.2%, Mo: 0.1 to 1.0% Ni: 0.1 to 1.5%, Ti: 0.005 to 0.05%, P: 0.006% or less, S: 0.003% or less, the balance being Fe and inevitable impurities a wire made, SiO 2: 13~25%, MgO : 8~20%, CaO: 5~13%, CaF 2: 1~7%, Al 2 O 3: 9~23%, TiO 2: 3~11 %, Fe: 11 to 25%, B 2 O 3 : 0.1 to 0.6%, Mo: 1 to 4.3%, Ni: 1 to 4.5% 2 electrode large heat input submerged arc welding method characterized.

(2)ワイヤに、Cr:0.3%以下、Nb:0.1%以下およびV:0.1%以下の1種または2種以上をCr+3Nb+3Vで0.10〜0.70%含有することを特徴とする前記(1)記載の2電極大入熱サブマージアーク溶接方法にある。 (2) One or more of Cr: 0.3% or less, Nb: 0.1% or less, and V: 0.1% or less are contained in the wire at 0.10 to 0.70% in Cr + 3Nb + 3V. The two-electrode large heat input submerged arc welding method according to (1) above.

本発明の2電極大入熱サブマージアーク溶接方法によれば、溶接入熱500kJ/cm以上の大入熱サブマージアーク溶接においても、溶接金属機械性能が優れるとともに、良好な溶接作業性が得られ、建築構造物の安全性を著しく高めることができると同時に溶接効率を著しく高めることができる。   According to the two-electrode large heat input submerged arc welding method of the present invention, even in large heat input submerged arc welding with a welding heat input of 500 kJ / cm or more, the weld metal mechanical performance is excellent, and good welding workability is obtained. The safety of the building structure can be significantly increased, and at the same time the welding efficiency can be significantly increased.

まず、本発明の技術思想について、溶接金属組織の点から説明する。
図1に従来技術における溶接金属組織(a)、(b)と本発明における溶接金属組織(c)、(d)を模式的に示す。一般に溶接金属の組織は、溶接(溶融)、凝固後の冷却過程でδフェライト相からオーステナイト相へ変態し、その後、αフェライト相へ変態して最終組織が形成される。従来、400kJ/cm以上の大入熱サブマージアーク溶接においては、凝固後の高い温度域でδフェライト相からオーステナイト相へ変態するため、図1の(a)、(b)に示すようにオーステナイト粒界2の成長によりその粒径が粗大化していた。さらにオーステナイト相からαフェライト相への変態過程で、オーステナイト粒界2の周囲に靱性に有害な粗大な初析(粒界)フェライト1の生成や、オーステナイト粒内に有害な粗大で硬くて脆い粗粒なセメンタイト6が生成し、これらにより溶接金属の靭性低下が顕著であった。
First, the technical idea of the present invention will be described in terms of the weld metal structure.
FIG. 1 schematically shows weld metal structures (a) and (b) in the prior art and weld metal structures (c) and (d) in the present invention. In general, the structure of a weld metal transforms from a δ ferrite phase to an austenite phase in the cooling process after welding (melting) and solidification, and then transforms to an α ferrite phase to form a final structure. Conventionally, in high heat input submerged arc welding of 400 kJ / cm or more, since it transforms from a δ ferrite phase to an austenite phase in a high temperature range after solidification, as shown in FIGS. 1 (a) and 1 (b), austenite grains The grain size was coarsened by the growth of the boundary 2. Furthermore, in the transformation process from the austenite phase to the α ferrite phase, coarse proeutectoid (grain boundary) ferrite 1 harmful to toughness is formed around the austenite grain boundary 2, and coarse, hard, brittle coarse that is harmful to the austenite grain. Grainous cementite 6 was formed, and these significantly reduced the toughness of the weld metal.

そこで、本発明者らは、上記の問題を改善するための溶接金属成分組成について溶接実験等により鋭意検討を行った。
その結果、溶接(溶融)、凝固後のδフェライト相を低温領域まで熱力学的に安定させる元素としてSi、Mo、Cr、NbおよびVが有効であり、これらの元素を溶接金属に含有させると同時にオーステナイトを安定化させる元素(C、Mn、Ni)を低減させることにより、溶接金属凝固後、比較的低温の領域までδフェライト相を維持し、オーステナイト相への変態を低温領域で行わせることにより、大入熱のサブマージアーク溶接における溶接金属中のオーステナイト粒の粗大化を抑制でき、溶接金属組織を微細化できることを見出した。
Therefore, the present inventors have conducted intensive studies on welding metal component compositions for improving the above problems by welding experiments and the like.
As a result, Si, Mo, Cr, Nb, and V are effective as elements that thermodynamically stabilize the δ ferrite phase after welding (melting) and solidification to a low temperature region. When these elements are contained in the weld metal, At the same time, by reducing the elements (C, Mn, Ni) that stabilize austenite, after solidification of the weld metal, the δ ferrite phase is maintained up to a relatively low temperature region, and the transformation to the austenite phase is performed in the low temperature region. Thus, it was found that coarsening of austenite grains in the weld metal in submerged arc welding with high heat input can be suppressed, and the weld metal structure can be refined.

また、オーステナイト相からαフェライト相への変態過程で、図1の(c)、(d)に示すようにオーステナイト粒内に細粒なベイナイト8またはアシキュラーフェライト5を生成させ、それらの組織で覆い尽くせば、脆性亀裂の発生起点となるセメンタイトを粒内に細粒なセメンタイト10として微細分散され、上記の結晶粒の微細化による脆性亀裂進展時における破面単位の細分化の効果と併せて、溶接金属の靭性を大幅に向上できることを知見した。このようにオーステナイト粒内に細粒なベイナイト8またはアシキュラーフェライト5を生成させるためには、Si、Mo、Cr、NbおよびVの適正量の添加による焼入性向上が有効であることを見出した。   Further, in the transformation process from the austenite phase to the α ferrite phase, fine bainite 8 or acicular ferrite 5 is formed in the austenite grains as shown in FIGS. When covered, cementite, which is the starting point of the occurrence of brittle cracks, is finely dispersed as fine cementite 10 in the grains, and in addition to the effect of fragmentation of fracture surface units during the progress of brittle cracks due to the above-mentioned refinement of crystal grains. It has been found that the toughness of the weld metal can be greatly improved. Thus, in order to produce fine bainite 8 or acicular ferrite 5 in the austenite grains, it has been found that improvement in hardenability by adding appropriate amounts of Si, Mo, Cr, Nb and V is effective. It was.

また、上記の結晶粒の微細化および粒内組織の細粒なベイナイト8またはアシキュラーフェライト5組織の生成を利用した細粒なセメンタイト10の微細分散化がもたらす靱性向上効果をより顕著にするために、Bのオーステナイト粒界2への偏析作用を利用し、オーステナイト粒の微細化に伴ってオーステナイト粒界2での粗大な初析(粒界)フェライト1の生成を抑制する方法が有効であることが判った。   Further, in order to make the toughness improving effect brought about by the fine dispersion of fine cementite 10 utilizing the above-described refinement of crystal grains and the formation of fine bainite 8 or acicular ferrite 5 structure of the intragranular structure to be more remarkable. In addition, a method of suppressing the formation of coarse proeutectoid (grain boundary) ferrite 1 at the austenite grain boundary 2 with the refinement of the austenite grain using the segregation action of B to the austenite grain boundary 2 is effective. I found out.

さらに、上記の手段に加えて、溶接金属に添加するCを抑制したり、粗粒なセメンタイト6の生成を抑制する作用を有するSiを適量添加することによりオーステナイト相から各種フェライト相への変態過程あるいは変態終了後に、粒内に生成する靱性に有害な粗大で硬くて脆い粗粒なセメンタイト6の生成を低減し、溶接金属の靱性をより向上させることができることを明らかにした。なお、本発明によれば、図1の(c)、(d)に示すように溶接金属組織の結晶粒が微細であり、粒内組織が細粒なベイナイト8またはアシキュラーフェライト5主体組織で細粒なセメンタイト10が微細分散されているとともに、初析(粒界)フェライト1が少なく靱性に優れた組織が得られる。   Further, in addition to the above means, the transformation process from the austenite phase to various ferrite phases by suppressing the amount of C added to the weld metal or adding an appropriate amount of Si having the effect of suppressing the formation of coarse cementite 6. Alternatively, it was clarified that, after completion of the transformation, the formation of coarse cementite 6 which is coarse, hard and brittle, which is harmful to the toughness generated in the grains, can be reduced, and the toughness of the weld metal can be further improved. In addition, according to the present invention, as shown in FIGS. 1C and 1D, the bainite 8 or acicular ferrite 5 main structure in which the crystal grain of the weld metal structure is fine and the grain structure is fine is shown. A fine cementite 10 is finely dispersed, and a structure with less proeutectoid (grain boundary) ferrite 1 and excellent toughness is obtained.

本発明は、以上の知見からなさせたものであり、大入熱サブマージアーク溶接によって得られた溶接金属のδフェライト相を安定させるとともに焼入性を向上させる元素であるSi、Mo、さらにCr、NbおよびVを所定量含有し、かつオーステナイト粒界2での粗大な初析(粒界)フェライト1の生成を抑制する効果のあるBを所定量含有して溶接金属の靱性を向上することができる。さらに、結晶粒内の靱性を害する粗粒なセメンタイト6の生成を抑制するために、溶接ワイヤ中のCの含有量を抑制し、Siを増加させることにより、溶接金属の靱性を向上できるものである。   The present invention has been made based on the above knowledge. Si, Mo, and further Cr, which are elements that stabilize the δ ferrite phase of the weld metal obtained by high heat input submerged arc welding and improve the hardenability. To improve the toughness of the weld metal by containing a predetermined amount of B containing Nb and V in a predetermined amount and having an effect of suppressing the formation of coarse proeutectoid (grain boundary) ferrite 1 at the austenite grain boundary 2 Can do. Further, in order to suppress the formation of coarse cementite 6 that impairs the toughness in the crystal grains, the toughness of the weld metal can be improved by suppressing the C content in the welding wire and increasing Si. is there.

しかし、上記溶接金属組織形態にすれば、靭性が向上することは確認できたが、板厚が厚くなるに従い、溶接金属表面部とルート部で靭性値が異なる傾向が認められた。これは、板厚が厚くなると溶接入熱が高くなるため、母材の希釈率が増えることや、サブマージアーク溶接の場合、母材の開先断面積はルート部から表面に向かって大きくなるため、溶材消費量がルート部に比べ表面部の方が多くなり、焼入れ性効果が異なることが原因であると確認された。   However, it was confirmed that the toughness was improved if the above weld metal structure was adopted. However, as the plate thickness increased, a tendency that the toughness values differed between the weld metal surface portion and the root portion was recognized. This is because, as the plate thickness increases, the welding heat input increases, so the dilution rate of the base material increases, and in the case of submerged arc welding, the groove cross-sectional area of the base material increases from the root to the surface. It was confirmed that the consumption of the molten material was larger on the surface portion than on the root portion, and the hardenability effect was different.

そこで、溶接金属の表面部とルート部の靱性および溶接作業性について改善検討を行った。溶接金属の表面部とルート部で靭性値が異なるのは、溶材消費量が異なるからであり、表面部とルート部が均一に安定した溶接金属靭性を得るためには、サブマージアーク溶接用フラックスとワイヤの組合せにおけるバランスが重要であると考えた。通常、板厚が厚いボックス柱の溶接には、2電極サブマージアーク溶接が多用される。そこで、溶接金属の表面部とルート部の靭性が均一で良好な値を得るためには、溶接金属の表面部とルート部の焼入れ性効果を同等にする必要があると考えた。   Then, improvement examination was carried out about the toughness and welding workability of the surface part and the root part of the weld metal. The reason why the toughness value is different between the surface portion and the root portion of the weld metal is because the consumption of the molten metal is different, and in order to obtain the weld metal toughness where the surface portion and the root portion are uniformly stable, the flux for submerged arc welding is used. The balance in wire combination was considered important. Usually, two-electrode submerged arc welding is frequently used for welding a box column having a large plate thickness. Accordingly, in order to obtain a uniform and good toughness between the surface portion of the weld metal and the root portion, it was considered that the hardenability effect of the surface portion of the weld metal and the root portion must be equal.

まず、フラックス組成を変えて試みたが、やはり表面部とルート部ではフラックス消費量が異なるため、焼入れ性効果が異なり、靭性値にばらつきが生じた。次に1電極目と2電極目の成分の異なるワイヤの組合せを検討した結果、溶接金属の表面部とルート部の靭性を均一で良好にすることを可能とした。すなわち、2電極サブマージアーク溶接において、1電極目のワイヤにルート部の焼入れ性を高めるのに必要な合金元素を添加し、2電極目のワイヤには表面部の焼入れ性を高めるのに必要な合金元素を添加することによって、溶接金属の表面部とルート部の焼入れ性効果を同等にできることを見出した。   First, an attempt was made by changing the flux composition. However, since the flux consumption was different between the surface portion and the root portion, the hardenability effect was different and the toughness value varied. Next, as a result of examining combinations of wires having different components for the first electrode and the second electrode, the toughness of the surface portion and the root portion of the weld metal can be made uniform and favorable. That is, in the two-electrode submerged arc welding, an alloy element necessary for improving the hardenability of the root portion is added to the first electrode wire, and the second electrode wire is required to improve the hardenability of the surface portion. It has been found that the hardenability effect of the surface portion and the root portion of the weld metal can be made equal by adding the alloy element.

しかし、1電極目と2電極目に化学成分の異なるワイヤを使用することは、ワイヤセッティングミスによるトラブルや作業効率の低下が懸念される。通常2電極溶接の場合、1電極目は2電極目に比べ溶接電流が高いことが主流のため、1電極目と2電極目ではワイヤ消費量が異なる。化学成分の異なるワイヤを使用する場合、1電極目と2電極目はワイヤ消費量が異なるため、別々に在庫管理をしなくてはならなくなる。よって、1電極目と2電極目に化学成分の異なるワイヤを組合せることは、表面部とルート部の焼入れ性効果を同等にし、靭性を改善することは可能であっても、実際の現場ではワイヤセッティングミスによるトラブルや作業効率の低下が懸念されるため、適用は難しいと考えた。   However, the use of wires having different chemical components for the first electrode and the second electrode may cause troubles due to wire setting mistakes and a reduction in work efficiency. Usually, in the case of two-electrode welding, since the main current is that the welding current of the first electrode is higher than that of the second electrode, the wire consumption is different between the first electrode and the second electrode. When wires with different chemical components are used, wire consumption is different between the first electrode and the second electrode, so inventory management must be performed separately. Therefore, combining wires with different chemical components in the first electrode and the second electrode can equalize the hardenability effect of the surface portion and the root portion and improve toughness, We thought that it was difficult to apply because there were concerns about troubles due to wire setting mistakes and a decrease in work efficiency.

そこで更に、作業効率が良好で、優れた溶接金属靭性と溶接作業性を得るための改善検討を行った結果、ワイヤ中のP、S成分を下げることが溶接金属靭性に極めて有効であることを見出した。これはワイヤ中のP、S成分を下げることによって、溶接金属中の偏析や介在物を低減し、更にフェライトマトリックスの靭性を向上させることが可能となるからである。よって、1電極目と2電極目に化学成分の異なるワイヤを使用しなくても、ワイヤ中のP、S成分を下げることによって、溶接金属表面部とルート部の焼入れ性を調整したものと同等以上に良好な靭性が得られ、またワイヤセッティングミスによるトラブルや作業効率の低下はなくなる。   Therefore, the work efficiency is good, and as a result of study for improvement to obtain excellent weld metal toughness and weld workability, it is confirmed that lowering the P and S components in the wire is extremely effective for weld metal toughness. I found it. This is because it is possible to reduce segregation and inclusions in the weld metal and further improve the toughness of the ferrite matrix by lowering the P and S components in the wire. Therefore, even if wires with different chemical components are not used for the first and second electrodes, it is equivalent to adjusting the hardenability of the weld metal surface and root by reducing the P and S components in the wire. Good toughness can be obtained as described above, and troubles due to wire setting mistakes and work efficiency are not lost.

溶接金属の化学成分設計において、安定した合金元素の歩留を考慮すると、ワイヤに合金元素を添加することが多い。しかし、合金元素を過剰添加するとワイヤの引張強度、硬さが過剰に高くなり、溶接時にワイヤの屈曲性が劣って、ワイヤ送給性を劣化させ、アークが不安定になり、ビード外観および溶け込み不足など、溶接金属形状が悪くなる。よって、ワイヤには、溶接作業性に支障を来さない量の合金元素を添加し、溶接金属の靭性向上に不足な合金元素についてはフラックス中に添加することによって補い、溶接作業性と溶接金属靭性向上の両立を可能とした。   In designing the chemical composition of the weld metal, in consideration of the yield of stable alloy elements, alloy elements are often added to wires. However, excessive addition of alloying elements results in excessively high tensile strength and hardness of the wire, poor wire flexibility during welding, deteriorated wire feedability, unstable arc, bead appearance and penetration The weld metal shape becomes worse, such as lack. Therefore, the wire is supplemented by adding alloy elements in an amount that does not hinder welding workability, and alloy elements that are insufficient for improving the toughness of the weld metal are added to the flux. It was possible to improve both toughness.

以下に本発明におけるフラックスおよび溶接ワイヤの限定理由について説明する。
なお、以下の%は、質量%を示す。フラックスのSiO2 は、大入熱サブマージアーク溶接において、良好な溶接ビードを形成するために最も重要な成分であるが、過多になると溶接金属中の酸素量やSiが増加し、靭性が劣化する。すなわち、13%未満ではビード趾端部のなじみが悪くなり、スラグ剥離性が劣化し、またアンダーカットも生じる。一方、25%を超えると溶接金属の酸素量が増加して靭性が劣化するため、その含有量を13〜25%とする。
The reasons for limiting the flux and welding wire in the present invention will be described below.
In addition, the following% shows the mass%. The flux SiO 2 is the most important component for forming a good weld bead in high heat input submerged arc welding. However, if it is excessive, the amount of oxygen and Si in the weld metal will increase and the toughness will deteriorate. . That is, if it is less than 13%, the familiarity of the end portion of the bead heel becomes worse, the slag peelability is deteriorated, and undercutting occurs. On the other hand, if it exceeds 25%, the oxygen content of the weld metal increases and the toughness deteriorates, so the content is made 13 to 25%.

フラックスのMgOは、スラグの耐火性を向上させる。大入熱サブマージアーク溶接ではスラグの耐火性を高くする必要があり、8%未満ではビード形状が不良となる。一方、20%を超えるとビード表面に突起物が発生し、スラグ剥離性およびビード外観が不良となる。したがって、MgOの含有量を8〜20%とする。
フラックスのCaOは、スラグの融点および流動性を調整するために重要な成分である。5%未満ではビード趾端部のなじみが悪く、ビード外観が不良となり、アンダーカットも生じる。一方、13%を超えるとスラグ流動性が不良となり、ビード高さが不均一でスラグ剥離性も不良になるため、その含有量を5〜13%とする。
The flux MgO improves the fire resistance of the slag. In the high heat input submerged arc welding, it is necessary to increase the fire resistance of the slag, and if it is less than 8%, the bead shape becomes poor. On the other hand, if it exceeds 20%, protrusions are generated on the bead surface, and the slag removability and the bead appearance become poor. Therefore, the content of MgO is 8 to 20%.
The flux CaO is an important component for adjusting the melting point and fluidity of the slag. If it is less than 5%, the fit of the end of the bead collar is poor, the bead appearance is poor, and undercutting occurs. On the other hand, if it exceeds 13%, the slag fluidity becomes poor, the bead height is uneven, and the slag peelability is also poor, so the content is made 5 to 13%.

フラックスのCaF2 は、靭性改善に効果があるが、融点が低いため過多になるとビードの平滑性が損なわれる。1%未満では靭性改善の効果がなく、7%を超えるとビードが不良となるため、その含有量を1〜7%とする。
フラックスのAl2 3 は、スラグ剥離性を良好にする効果がある。その含有量が9%未満ではスラグ剥離性が劣化するとともにアンダーカットも生じる。一方、23%を超えると凸ビードとなりスラグ剥離性も不良になるため、その含有量を9〜23%とする。
The CaF 2 flux is effective in improving toughness, but since the melting point is low, if it is excessive, the smoothness of the beads is impaired. If it is less than 1%, there is no effect of improving toughness, and if it exceeds 7%, the bead becomes defective, so its content is made 1 to 7%.
The flux Al 2 O 3 has the effect of improving the slag peelability. If the content is less than 9%, the slag peelability deteriorates and undercutting occurs. On the other hand, if it exceeds 23%, it becomes a convex bead and the slag peelability becomes poor, so the content is made 9 to 23%.

フラックスのTiO2 は、ビード表面の平滑性を得るのに効果があり、かつ、靭性向上にも有効である。その含有量が3%未満ではビード表面の平滑性および靭性の向上の効果がなく、11%を超えるとビード趾端部の立ち上がり角度が大きくなり、ビード外観およびスラグ剥離性が不良になるため、その含有量を3〜11%とする。
フラックスのFeは、溶着効率の向上および溶接入熱量の低減に効果がある。その含有量が11%未満では溶着効率の向上および溶接入熱量の低減に効果が得られず、25%を超えるとビード表面に突起物が発生してスラグ剥離性が不良になるため、その含有量を11〜25%とする。
The flux TiO 2 is effective in obtaining the smoothness of the bead surface and is also effective in improving toughness. If the content is less than 3%, there is no effect of improving the smoothness and toughness of the bead surface, and if it exceeds 11%, the rising angle of the bead end becomes large, and the bead appearance and slag peelability become poor. The content is 3 to 11%.
The flux Fe is effective in improving the welding efficiency and reducing the heat input of welding. If its content is less than 11%, no effect can be obtained in improving the welding efficiency and reducing the heat input of welding, and if it exceeds 25%, protrusions are generated on the bead surface, resulting in poor slag releasability. The amount is 11-25%.

フラックスのB2 3 は、靭性向上に効果がある。その含有量が0.1%未満では靭性向上の効果が得られず、0.6%を超えると溶接金属が硬化し、かえって靭性が劣化するため、その含有量を0.1〜0.6%とする。
フラックスのMoは、溶接金属の焼入れ性増大元素として重要な成分である。その含有量が1%未満では溶接金属の靭性向上に効果がなく、4.3%を超えると溶接金属の焼入れ性が過大となり、硬さが過剰となって靭性が劣化するため、その含有量を1〜4.3%とする。
The flux B 2 O 3 is effective in improving toughness. If the content is less than 0.1%, the effect of improving toughness cannot be obtained. If the content exceeds 0.6%, the weld metal is hardened and the toughness is deteriorated. %.
Mo in the flux is an important component as an element for increasing the hardenability of the weld metal. If its content is less than 1%, there is no effect in improving the toughness of the weld metal. If it exceeds 4.3%, the hardenability of the weld metal becomes excessive, and the hardness becomes excessive and the toughness deteriorates. Is 1 to 4.3%.

フラックスのNiは、溶接金属中のフェライトマトリックスの靭性を向上させるために必要な元素である。その含有量が1%未満では溶接金属の靭性向上に効果がなく、4.5%を超えるとオーステナイト安定化元素でもあるため、オーステナイト粒径を粗大化させ靭性が劣化する。よってオーステナイト粒径の微細化のためにNiの含有量を1〜4.5%とする。   Ni in the flux is an element necessary for improving the toughness of the ferrite matrix in the weld metal. If its content is less than 1%, there is no effect in improving the toughness of the weld metal. If it exceeds 4.5%, it is also an austenite stabilizing element, so the austenite grain size is coarsened and toughness deteriorates. Therefore, the Ni content is set to 1 to 4.5% in order to refine the austenite grain size.

ワイヤのCは、良好な溶接金属靭性を得るための重要な成分であり、良好な靭性を得るためにはその含有量を0.02%〜0.18%にする必要がある。その含有量が0.02%未満であると脱酸不足となり、靭性が劣化する。0.18%を超えると硬さが過剰となって靭性が劣化する。また、溶接金属にCを過剰に含有するとオーステナイト粒内に靭性に有害な粗大セメンタイト(Fe3 C)が多く生成するため、Cの含有量の上限を0.14%とすることが、より靭性を向上させるために好ましい。 C of the wire is an important component for obtaining good weld metal toughness, and its content needs to be 0.02% to 0.18% in order to obtain good toughness. If the content is less than 0.02%, deoxidation is insufficient and toughness deteriorates. If it exceeds 0.18%, the hardness becomes excessive and the toughness deteriorates. In addition, when C is excessively contained in the weld metal, a large amount of coarse cementite (Fe 3 C) harmful to toughness is generated in the austenite grains. Therefore, the upper limit of the C content is set to 0.14%. It is preferable for improving.

ワイヤのSiは、脱酸元素であり、溶接金属の酸素量を低減する。その含有量が0.02%未満では脱酸効果が得られず、靭性が劣化する。0.5%を超えると溶接金属の硬さが過剰となって靭性が劣化する。またSiは、δフェライトの安定化元素としてオーステナイトの粗大化を抑制し、オーステナイト粒径を微細化するために有効な元素としてワイヤ中に含有させているが、このオーステナイト粒径を微細化する効果に加えて、オーステナイト粒内に生成する靭性に有害な粗大セメンタイト(Fe3 C)の生成を抑制する効果があり、その効果を得るためには、Siの含有量の下限を0.15%にすることが好ましい。 The Si in the wire is a deoxidizing element and reduces the amount of oxygen in the weld metal. If the content is less than 0.02%, the deoxidation effect cannot be obtained, and the toughness deteriorates. If it exceeds 0.5%, the hardness of the weld metal becomes excessive and the toughness deteriorates. Si is contained in the wire as an effective element to suppress austenite coarsening as a stabilizing element of δ ferrite and to refine the austenite grain size, but the effect of miniaturizing the austenite grain size In addition to the above, there is an effect of suppressing the formation of coarse cementite (Fe 3 C) harmful to toughness generated in the austenite grains, and in order to obtain the effect, the lower limit of the Si content is set to 0.15% It is preferable to do.

ワイヤのMnは、溶接金属の強度の向上および脱酸効果元素として重要な成分である。その含有量が1.15%未満では溶接金属の十分な強度が得られず、また、溶接金属の酸素量が高くなり靭性が劣化する。2.2%を超えると溶接金属の硬さが過剰となって靭性が劣化するため、その含有量を1.15〜2.2%とする。   Mn of the wire is an important component for improving the strength of the weld metal and as a deoxidizing effect element. If the content is less than 1.15%, sufficient strength of the weld metal cannot be obtained, and the oxygen content of the weld metal increases and the toughness deteriorates. If it exceeds 2.2%, the hardness of the weld metal becomes excessive and the toughness deteriorates, so the content is made 1.15 to 2.2%.

ワイヤのMoは、溶接金属の焼入れ性増大元素として重要な成分である。その含有量が0.1%未満では溶接金属の靭性向上に効果がなく、1.0%を超えるとワイヤの引張強度、硬さが過剰に高くなり、溶接時のワイヤ送給性が劣化してアークが不安定となり、ビード外観および溶込み形状が不良となるなど溶接作業性が悪くなる。また、溶接金属の焼入れ性が過大となり、硬さが過剰となって靭性が劣化する。   Mo of the wire is an important component as an element for increasing the hardenability of the weld metal. If its content is less than 0.1%, there is no effect in improving the toughness of the weld metal, and if it exceeds 1.0%, the tensile strength and hardness of the wire become excessively high, and the wire feedability during welding deteriorates. As a result, the arc becomes unstable and the bead appearance and penetration shape become poor, resulting in poor welding workability. Moreover, the hardenability of the weld metal becomes excessive, the hardness becomes excessive, and the toughness deteriorates.

ワイヤのNiは、溶接金属のフェライトマトリックスの靭性を向上させる重要な元素である。よって、その含有量が0.1%未満では溶接金属の靭性向上に効果がなく、1.5%を超えるとワイヤの引張強度、硬さを著しく向上させるため、溶接時のワイヤ送給性が劣化してアークが不安定となり、ビード外観および溶込み形状が不良となるなど溶接作業性が悪くなる。また、オーステナイトの安定化元素でもあり、過剰に含有されるとオーステナイト粒径を粗大化させるため、靭性が劣化する。よってオーステナイト粒径の微細化および溶接作業性向上のためにNiの含有量を0.1〜1.5%とする。   Ni in the wire is an important element that improves the toughness of the ferrite matrix of the weld metal. Therefore, if the content is less than 0.1%, there is no effect in improving the toughness of the weld metal, and if it exceeds 1.5%, the tensile strength and hardness of the wire are remarkably improved. Degradation makes the arc unstable, resulting in poor welding workability such as poor bead appearance and penetration shape. Further, it is also an austenite stabilizing element, and if contained excessively, the austenite grain size is coarsened, so that toughness deteriorates. Therefore, the Ni content is set to 0.1 to 1.5% in order to refine the austenite grain size and improve the welding workability.

ワイヤのTiは、溶接金属で微量でもTi酸化物等を生成して、強度および靭性の向上に有効な微細な結晶粒のアシキュラーフェライトを生成するための核生成サイトとなり、その十分な効果を得るためにワイヤ中の含有量の下限を0.005%とした。しかしながら、0.05%を超えてワイヤ中に含有されると、酸化物あるいは窒化物として固定されなかったTiがフェライトマトリックス中に固溶し、靭性を劣化させるので、その含有量の上限を0.05%とした。   The Ti of the wire forms a nucleation site for generating fine grained acicular ferrite that is effective in improving strength and toughness by producing Ti oxides and the like even in a trace amount with a weld metal. In order to obtain it, the lower limit of the content in the wire was made 0.005%. However, if it exceeds 0.05% and contained in the wire, Ti that has not been fixed as an oxide or nitride will dissolve in the ferrite matrix and deteriorate the toughness, so the upper limit of the content is 0. .05%.

ワイヤのPは、溶接金属靭性に有害な成分であり、含有量が増えると偏析作用やフェライトマトリックスの靭性低下によって、著しく溶接金属靭性を劣化させる。よってPの含有量を極めて低くすることが有効であり、その含有量を0.006%以下とする。
ワイヤのSは、溶接金属靭性に有害な成分であり、偏析作用の傾向が大きく、また硫化物を生成し易い。Sの含有量が増えると著しく溶接金属靭性を劣化させるため、含有量を極めて低くすることが有効である。よって優れた溶接金属靭性を得るためには、その含有量を0.003%以下とする。
P in the wire is a component harmful to weld metal toughness. When the content is increased, the weld metal toughness is remarkably deteriorated due to segregation and a decrease in toughness of the ferrite matrix. Therefore, it is effective to make the content of P extremely low, and the content is made 0.006% or less.
S in the wire is a component harmful to weld metal toughness, has a large tendency to segregate, and easily generates sulfides. If the S content increases, the weld metal toughness deteriorates remarkably, so it is effective to make the content extremely low. Therefore, to obtain excellent weld metal toughness, the content is made 0.003% or less.

本発明に用いるワイヤの成分として、さらにCrを0.3%以下、Nbを0.1%以下およびVを0.1%以下の1種または2種以上をCr+3Nb+3Vで0.10〜0.70%含むことにより、溶接金属の焼入れ性を増大して靱性を向上させることができる。Cr+3Nb+3Vが0.10%未満であると溶接金属の靭性向上に効果がない。また、Cr+3Nb+3Vが0.70%超、Crが0.3%超、Nbが0.1%超およびVが0.1%を超えると溶接金属の焼入れ性が過大となり、硬さが過剰となって靭性が劣化する。   As a component of the wire used in the present invention, one or more of Cr is 0.3% or less, Nb is 0.1% or less, and V is 0.1% or less, and Cr + 3Nb + 3V is 0.10 to 0.70. By containing%, the hardenability of the weld metal can be increased and the toughness can be improved. If Cr + 3Nb + 3V is less than 0.10%, there is no effect in improving the toughness of the weld metal. Also, if Cr + 3Nb + 3V exceeds 0.70%, Cr exceeds 0.3%, Nb exceeds 0.1% and V exceeds 0.1%, the hardenability of the weld metal becomes excessive and the hardness becomes excessive. And toughness deteriorates.

以下、実施例により本発明の効果を詳細に説明する。
表1に示す化学組成の板厚60mmの鋼板を用い、図2に示す角継手開先とし、表2に示す成分のワイヤ、表3に示す成分組成の焼成型フラックス(粒度12×100メッシュ)を各種組合せて、表4に示す溶接条件で2電極サブマージアーク溶接による1パス盛りの角継手溶接を行った。
Hereinafter, the effects of the present invention will be described in detail by way of examples.
A steel plate having a thickness of 60 mm having the chemical composition shown in Table 1 is used, and the corner joint groove shown in FIG. 2 is used. Various combinations of these were performed, and one-pass square joint welding by two-electrode submerged arc welding was performed under the welding conditions shown in Table 4.

Figure 2006212676
Figure 2006212676

Figure 2006212676
Figure 2006212676

Figure 2006212676
Figure 2006212676

Figure 2006212676
Figure 2006212676

図3に示す溶接金属部から鋼板表面下7mm(以下、表層部という。)、鋼板中央部30mm(以下、中央部という。)、鋼板下面部上7mm(以下、ルート部という。)を中心としてシャルピー衝撃試験片(JIS Z2242 4号)および鋼板表面下10mmを中心として引張試験片(JIS Z2201 A1号)を採取して、それぞれ機械試験を実施した。靭性の評価は0℃におけるシャルピー衝撃試験により行い、各々繰返し数3本の平均により評価した。なお、引張強度は490MPa以上、シャルピー吸収エネルギーは、表層部、中央部、ルート部すべての場所において100J以上であれば良好とした。溶接作業性の評価は、アーク安定性、スラグ剥離性、ビード外観、溶接欠陥の有無、溶込み形状を調査した。アーク安定性については、電流および電圧の変動がなく、安定したワイヤ送給であれば良好とし○、不安定であれば×とした。   From the weld metal part shown in FIG. 3, 7 mm below the surface of the steel sheet (hereinafter referred to as the surface layer part), 30 mm of the steel sheet center part (hereinafter referred to as the central part), and 7 mm above the steel sheet lower surface part (hereinafter referred to as the root part). A Charpy impact test piece (JIS Z22424 No. 4) and a tensile test piece (JIS Z2201 A1 No.) centered on 10 mm below the steel sheet surface were collected and subjected to mechanical tests. The toughness was evaluated by a Charpy impact test at 0 ° C., and the average of three repetitions was evaluated. The tensile strength was 490 MPa or higher, and the Charpy absorbed energy was 100 J or higher in all locations of the surface layer portion, the central portion, and the root portion. Welding workability was evaluated by examining arc stability, slag peelability, bead appearance, weld defects, and penetration shape. Regarding the arc stability, there was no fluctuation in current and voltage, and it was judged as good if it was a stable wire feed, and marked as bad if it was unstable.

スラグ剥離性については、ハンマーまたはタガネを用いてスラグを軽打して簡単にスラグが剥離すれば良好とし○、軽打でスラグが剥離しなければ劣るとし×とした。ビード外観については、ビード表面の波目が細かく、均一で美しいビード形状であれば良好とし○、1つでも劣るものについては×とした。溶接欠陥評価については、アンダカットやブローホールなどの溶接欠陥が全くなければ良好とし○、1つでも欠陥がある場合は劣るとし×とした。溶込み形状評価については、開先内部に溶込み不足、融合不良がなく、健全な溶込み形状であれば良好とし○、溶込み不足または融合不良がある場合は劣るとし×とした。表5にこれらの試験結果をまとめて示す。   The slag peelability was evaluated as “good” if the slag was easily peeled off with a hammer or a chisel to easily peel off the slag, and poor if the slag did not peel off with a light hit. The bead appearance was good if the bead surface had fine waviness, a uniform and beautiful bead shape, and the case where even one was inferior was rated as x. Regarding the weld defect evaluation, it was judged as good if there were no weld defects such as undercuts and blowholes. Regarding the penetration shape evaluation, there was no poor penetration or poor fusion inside the groove, and it was good if it was a healthy penetration shape, and x was poor if there was a poor penetration or poor fusion. Table 5 summarizes the results of these tests.

Figure 2006212676
Figure 2006212676

表5から明らかなように、本発明例である試験記号W1〜W10は、組合せたフラックスF1、F2、F3,F4およびワイヤa、b、c、r、u、vが本発明の構成要件を満足するので、溶接金属の引張強さおよび表層部、中央部、ルート部すべての場所においてシャルピー吸収エネルギーは良好な値が得られた。また、アーク安定性およびスラグ剥離性が優れ、アンダカットなどの溶接欠陥のない美しいビード外観と健全な溶込み形状を得ることができ、極めて満足な結果であった。なお、試験記号W8は、ワイヤrのCrがやや高いので、若干焼入れ性が過剰となり、溶接金属のシャルピー吸収エネルギーは100Jと目標値ぎりぎりであった。また、試験記号W9は、ワイヤuのCr+3Nb+3Vがやや低いので、若干焼入れ性が劣り、溶接金属のシャルピー吸収エネルギーは100Jと目標値ぎりぎりであった。また、試験記号W10は、ワイヤvのCr+3Nb+3Vがやや高いので、若干焼入れ性が過剰となり、溶接金属のシャルピー吸収エネルギーは100Jと目標値ぎりぎりであった。   As apparent from Table 5, the test symbols W1 to W10, which are examples of the present invention, indicate that the combined fluxes F1, F2, F3, and F4 and the wires a, b, c, r, u, and v satisfy the constituent requirements of the present invention. Since it was satisfied, good values were obtained for the tensile strength of the weld metal and the Charpy absorbed energy at all locations in the surface layer portion, the central portion, and the root portion. In addition, the arc stability and slag peelability were excellent, and a beautiful bead appearance and a sound penetration shape without welding defects such as undercut could be obtained. In addition, since the Cr of the wire r was slightly high, the test symbol W8 was slightly hardened, and the Charpy absorbed energy of the weld metal was 100 J, which was just below the target value. Moreover, since the Cr + 3Nb + 3V of the wire u was slightly low, the test symbol W9 was slightly inferior in hardenability, and the Charpy absorbed energy of the weld metal was 100 J, which was just below the target value. In addition, the test symbol W10 was slightly higher in Cr + 3Nb + 3V of the wire v, so that the hardenability was slightly excessive, and the Charpy absorbed energy of the weld metal was 100 J, which was just below the target value.

これに対し、比較例である試験記号W11は、ワイヤdのCが低いため、脱酸不足となり、溶接金属の酸素量が増加してシャルピー吸収エネルギーが低くなった。また、組合せたフラックスF5のSiO2 が低いため、ビード趾端部のなじみが悪くなり、スラグ剥離性が劣化し、またアンダカットが発生した。試験記号W12は、ワイヤeのCが高いため、溶接金属の硬さが過剰となってシャルピー吸収エネルギーが低くなった。また、組合せたフラックスF8のMgOが高いため、ビード表面に突起物が発生し、スラグ剥離性およびビード外観が劣化した。 On the other hand, the test symbol W11 which is a comparative example was low in deoxidation because C of the wire d was low, and the amount of oxygen in the weld metal increased and the Charpy absorbed energy was low. Further, since the SiO 2 of the combined flux F5 was low, the familiarity of the end portion of the bead became worse, the slag peelability was deteriorated, and undercut occurred. In the test symbol W12, since the C of the wire e was high, the hardness of the weld metal was excessive and the Charpy absorbed energy was low. Moreover, since MgO of the combined flux F8 was high, protrusions were generated on the bead surface, and the slag peelability and the bead appearance deteriorated.

試験記号W13は、ワイヤfのSiが低いため、脱酸不足となり、溶接金属の酸素量が増加してシャルピー吸収エネルギーが低くなった。また、組合せたフラックスF10のCaOが高いため、スラグ流動性が不良となり、ビード高さが不均一となり、ビード外観およびスラグ剥離性が劣化した。
試験記号W14は、ワイヤgのSiが高いため、溶接金属の硬さが過剰となってシャルピー吸収エネルギーが低くなった。また、組合せたフラックスF9のCaOが低いため、ビード趾端部のなじみが悪くなり、ビード外観が劣化し、アンダカットも発生した。
In test symbol W13, since Si of wire f was low, deoxidation was insufficient, the amount of oxygen in the weld metal was increased, and Charpy absorbed energy was reduced. Moreover, since CaO of the combined flux F10 was high, the slag fluidity was poor, the bead height was non-uniform, and the bead appearance and slag peelability were deteriorated.
In the test symbol W14, since the Si of the wire g is high, the hardness of the weld metal is excessive and the Charpy absorbed energy is low. In addition, since the CaO of the combined flux F9 was low, the familiarity of the bead edge became worse, the bead appearance deteriorated, and an undercut occurred.

試験記号W15は、ワイヤhのMnが低いため、溶接金属は十分な強度が得られず、また脱酸不足となり、酸素量が増加してシャルピー吸収エネルギーが低くなった。また、組合せたフラックスF16のTiO2 が高いため、ビード趾端部の立ち上がり角度が大きくなり、スラグ剥離性も劣化した。
試験記号W16は、ワイヤiのMnが高いため、溶接金属の硬さが過剰となってシャルピー吸収エネルギーが低くなった。また、組合せたフラックスF13のAl2 3 が低いため、スラグ剥離性が劣化し、またアンダカットが発生した。
In the test symbol W15, since the Mn of the wire h was low, the weld metal could not obtain sufficient strength, and deoxidation was insufficient, the amount of oxygen increased, and the Charpy absorbed energy decreased. Moreover, since TiO 2 of the combined flux F16 is high, the rising angle of the bead end portion is increased, and the slag peelability is also deteriorated.
In the test symbol W16, since the Mn of the wire i is high, the hardness of the weld metal is excessive and the Charpy absorbed energy is low. Further, since the Al 2 O 3 of the combined flux F13 was low, the slag peelability deteriorated and undercut occurred.

試験記号W17は、ワイヤjのPが高いため、偏析やフェライトマトリックスの靭性低下によって、溶接金属のシャルピー吸収エネルギーが低くなった。また、組合せたフラックスF7のMgOが低いため、ビード形状が不均一になった。
試験記号W18は、ワイヤkのSが高いため、偏析や硫化物の生成によって溶接金属のシャルピー吸収エネルギーが低くなった。また、組合せたフラックスF12のCaF2 が高いため、ビードの平滑性が損なわれてビード外観が劣化した。
In the test symbol W17, since the P value of the wire j is high, the Charpy absorbed energy of the weld metal is reduced due to segregation and a decrease in the toughness of the ferrite matrix. Moreover, since MgO of the combined flux F7 was low, the bead shape became non-uniform.
In the test symbol W18, since the S of the wire k is high, the Charpy absorbed energy of the weld metal is low due to segregation and the generation of sulfide. Further, since high CaF 2 of the combined flux F12, smoothness of the bead is impaired by bead appearance deteriorated.

試験記号W19は、ワイヤlのMoが低いため、溶接金属の焼入れ性が劣り、シャルピー吸収エネルギーが低くなった。また、組合せたフラックスF17のFeが低いため、溶着量が不足した。
試験記号W20は、ワイヤmのMoが高いため、ワイヤの引張強度、硬さが過剰に高くなり、溶接時のワイヤ送給性が劣化してアークが不安定になり、ビード外観および溶け込み形状も不良となった。同時に、溶接金属の焼入れ性が過大となり、硬さが過剰となってシャルピー吸収エネルギーが低くなった。
In the test symbol W19, since the Mo of the wire l is low, the hardenability of the weld metal is inferior and the Charpy absorbed energy is low. Moreover, since the Fe of the combined flux F17 was low, the amount of welding was insufficient.
In test symbol W20, the wire m has a high Mo, so the tensile strength and hardness of the wire are excessively high, the wire feedability during welding deteriorates, the arc becomes unstable, and the bead appearance and penetration shape also It became defective. At the same time, the hardenability of the weld metal became excessive, the hardness became excessive, and the Charpy absorbed energy was lowered.

試験記号W21は、ワイヤnのNiが低いため、溶接金属の焼入れ性が劣り、シャルピー吸収エネルギーが低くなった。また、組合せたフラックスF18のFeが高いため、ビード表面に突起物が発生してスラグ剥離性も劣化した。
試験記号W22は、ワイヤoのNiが高いため、ワイヤの引張強度、硬さが過剰に高くなり、溶接時のワイヤ送給性が劣化してアークが不安定になり、ビード外観および溶け込み形状も不良となった。同時に、オーステナイト粒径の粗大化によって溶接金属のシャルピー吸収エネルギーが低くなった。
In the test symbol W21, since the Ni of the wire n is low, the hardenability of the weld metal is inferior and the Charpy absorbed energy is low. Further, since the Fe of the combined flux F18 was high, protrusions were generated on the bead surface and the slag peelability was also deteriorated.
In the test symbol W22, since the Ni of the wire o is high, the tensile strength and hardness of the wire are excessively high, the wire feeding property during welding is deteriorated, the arc becomes unstable, and the bead appearance and the penetration shape are also obtained. It became defective. At the same time, the Charpy absorbed energy of the weld metal decreased due to the coarsening of the austenite grain size.

試験記号W23は、ワイヤpのTiが低いため、溶接金属の靭性向上に有効な微細なアシキュラーフェライトを生成するための核生成サイトを形成できず、シャルピー吸収エネルギーが低くなった。
試験記号W24は、ワイヤqのTiが高いため、溶接金属の酸化物あるいは窒化物として固定されなかったTiがフェライトマトリックス中に固溶し、シャルピー吸収エネルギーが低くなった。
In the test symbol W23, Ti of the wire p was low, so that a nucleation site for generating fine acicular ferrite effective for improving the toughness of the weld metal could not be formed, and Charpy absorbed energy was low.
In the test symbol W24, since Ti of the wire q was high, Ti that was not fixed as an oxide or nitride of the weld metal was dissolved in the ferrite matrix, and Charpy absorbed energy was low.

試験記号W25は、ワイヤsのNbがやや高いため、溶接金属の焼入れ性が若干高くなり、硬さが過剰となってシャルピー吸収エネルギーは100Jと目標値ぎりぎりであった。また、組合せたフラックスF14のAl2 3 が高いため、凸ビードとなってスラグ剥離性も劣化した。
試験記号W26は、組合せたフラックスF24のNiが高いため、溶接金属の焼入れ性が過大となり、硬さが過剰となってシャルピー吸収エネルギーが低くなった。
In the test symbol W25, since the Nb of the wire s was slightly high, the hardenability of the weld metal was slightly increased, the hardness was excessive, and the Charpy absorbed energy was 100 J, which was just below the target value. Moreover, because of the high Al 2 O 3 of the combined flux F14, were also degraded slag removability becomes convex bead.
In the test symbol W26, since the Ni of the combined flux F24 is high, the hardenability of the weld metal is excessive, the hardness is excessive, and the Charpy absorbed energy is low.

試験記号W27は、組合せたフラックスF15のTiO2 が低いため、シャルピー吸収エネルギーが低く、またビード表面の平滑性が劣化した。
試験記号W28は、組合せたフラックスF6のSiO2 が高いため、溶接金属の酸素量が多くなって、シャルピー吸収エネルギーが低くなった。
試験記号W29は、組合せたフラックスF19がB2 3 を含有していないため、溶接金属のシャルピー吸収エネルギーが低くなった。
Test symbol W27 has low Charpy absorbed energy due to the low TiO 2 of the combined flux F15, and the smoothness of the bead surface deteriorated.
In the test symbol W28, the SiO 2 of the combined flux F6 is high, so that the amount of oxygen in the weld metal increases and the Charpy absorbed energy decreases.
In the test symbol W29, since the combined flux F19 does not contain B 2 O 3 , the Charpy absorbed energy of the weld metal is low.

試験記号W30は、組合せたフラックスF20のB2 3 が高いため、硬さが過剰となって溶接金属のシャルピー吸収エネルギーが低くなった。
試験記号W31は、組合せたフラックスF21のMoが低いため、溶接金属のシャルピー吸収エネルギーが低くなった。
試験記号W32は、組合せたフラックスF11のCaF2 が添加されていないため、溶接金属のシャルピー吸収エネルギーが低くなった。
In the test symbol W30, since the B 2 O 3 of the combined flux F20 was high, the hardness was excessive and the Charpy absorbed energy of the weld metal was low.
In the test symbol W31, since the Mo of the combined flux F21 is low, the Charpy absorbed energy of the weld metal is low.
In the test symbol W32, since the CaF 2 of the combined flux F11 was not added, the Charpy absorbed energy of the weld metal was low.

試験記号W33は、組合せたフラックスF23のNiが低いため、溶接金属のシャルピー吸収エネルギーが低くなった。
試験記号W34は、組合せたフラックスF22のMoが高いため、溶接金属の焼入れ性が過大となり、硬さが過剰となってシャルピー吸収エネルギーが低くなった。
試験記号W35は、ワイヤtのVがやや高いため、溶接金属の焼入れ性が若干高くなり、硬さが過剰となってシャルピー吸収エネルギーは100Jと目標値ぎりぎりであった。また、組合せたフラックスF8のMgOが高いため、ビード表面に突起物が発生し、スラグ剥離性およびビード外観が劣化した。
In the test symbol W33, since the Ni of the combined flux F23 is low, the Charpy absorbed energy of the weld metal is low.
In the test symbol W34, since the Mo of the combined flux F22 is high, the hardenability of the weld metal is excessive, the hardness is excessive, and the Charpy absorbed energy is low.
In the test symbol W35, since the V of the wire t is slightly high, the hardenability of the weld metal is slightly increased, the hardness is excessive, and the Charpy absorbed energy is 100 J, which is just below the target value. Moreover, since MgO of the combined flux F8 was high, protrusions were generated on the bead surface, and the slag peelability and the bead appearance deteriorated.

溶接金属組織の概念図である。It is a conceptual diagram of a weld metal structure. 本発明の実施例に用いた溶接開先形状を示す図である。It is a figure which shows the welding groove shape used for the Example of this invention. 本発明の実施例に用いた溶接金属機械性能試験片採取位置を示す図である。It is a figure which shows the weld metal mechanical performance test piece collection position used for the Example of this invention.

符号の説明Explanation of symbols

1 初析(粒界)フェライト
2 オーステナイト粒界
3 粗大なベイナイト或いはアシキュラーフェライト
4 粗粒なベイナイト
5 アシキュラーフェライト
6 粗粒なセメンタイト
7 細粒なベイナイト或いはアシキュラーフェライト
8 細粒なベイナイト
9 酸化物
10 細粒なセメンタイト
11 フランジ板
12 ウェブ板
13 裏板
14 溶接金属
15 シャルピー衝撃試験片
16 引張試験片


特許出願人 日鐵住金溶接工業株式会社
代理人 弁理士 椎 名 彊 他1


DESCRIPTION OF SYMBOLS 1 Pre-deposition (grain boundary) ferrite 2 Austenite grain boundary 3 Coarse bainite or acicular ferrite 4 Coarse bainite 5 Acicular ferrite 6 Coarse cementite 7 Fine bainite or acicular ferrite 8 Fine bainite 9 Oxidation Product 10 Fine cementite 11 Flange plate 12 Web plate 13 Back plate 14 Weld metal 15 Charpy impact test piece 16 Tensile test piece


Patent Applicant Nippon Steel & Sumikin Welding Industry Co., Ltd.
Attorney Attorney Shiina and others 1


Claims (2)

質量%で、
C:0.02〜0.18%、
Si:0.02〜0.5%、
Mn:1.15〜2.2%、
Mo:0.1〜1.0%、
Ni:0.1〜1.5%、
Ti:0.005〜0.05%
を含有し、
P:0.006%以下、
S:0.003%以下で、
残部がFeおよび不可避不純物からなるワイヤと、SiO2 :13〜25%、MgO:8〜20%、CaO:5〜13%、CaF2 :1〜7%、Al2 3 :9〜23%、TiO2 :3〜11%、Fe:11〜25%、B2 3 :0.1〜0.6%、Mo:1〜4.3%、Ni:1〜4.5%からなるフラックスを用いて溶接することを特徴とする2電極大入熱サブマージアーク溶接方法。
% By mass
C: 0.02 to 0.18%,
Si: 0.02 to 0.5%,
Mn: 1.15 to 2.2%,
Mo: 0.1 to 1.0%,
Ni: 0.1 to 1.5%,
Ti: 0.005 to 0.05%
Containing
P: 0.006% or less,
S: 0.003% or less,
A wire the balance being Fe and inevitable impurities, SiO 2: 13~25%, MgO : 8~20%, CaO: 5~13%, CaF 2: 1~7%, Al 2 O 3: 9~23% , TiO 2 : 3 to 11%, Fe: 11 to 25%, B 2 O 3 : 0.1 to 0.6%, Mo: 1 to 4.3%, Ni: 1 to 4.5% A two-electrode large heat input submerged arc welding method characterized in that welding is used.
ワイヤに、Cr:0.3%以下、Nb:0.1%以下およびV:0.1%以下の1種または2種以上をCr+3Nb+3Vで0.10〜0.70%含有することを特徴とする請求項1記載の2電極大入熱サブマージアーク溶接方法。 One or more of Cr: 0.3% or less, Nb: 0.1% or less, and V: 0.1% or less are contained in the wire, and Cr + 3Nb + 3V contains 0.10 to 0.70%. The two-electrode large heat input submerged arc welding method according to claim 1.
JP2005029020A 2005-02-04 2005-02-04 Two-electrode large heat input submerged arc welding method Pending JP2006212676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005029020A JP2006212676A (en) 2005-02-04 2005-02-04 Two-electrode large heat input submerged arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005029020A JP2006212676A (en) 2005-02-04 2005-02-04 Two-electrode large heat input submerged arc welding method

Publications (1)

Publication Number Publication Date
JP2006212676A true JP2006212676A (en) 2006-08-17

Family

ID=36976311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005029020A Pending JP2006212676A (en) 2005-02-04 2005-02-04 Two-electrode large heat input submerged arc welding method

Country Status (1)

Country Link
JP (1) JP2006212676A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225682A (en) * 1996-02-22 1997-09-02 Nippon Steel Corp Submerged arc welding for fire resistant steel
JP2002283095A (en) * 2000-10-06 2002-10-02 Kawasaki Steel Corp Steel wire for large heat input submerged arc welding and method of manufacturing submerged arc welded joint as well as submerged arc welded joint
JP2003001486A (en) * 2001-04-11 2003-01-08 Kawasaki Steel Corp Flux for submerged arc welding and method for producing submerged arc welded joint
JP2004001028A (en) * 2002-05-31 2004-01-08 Nippon Steel Corp Method for high heat input submerged-arc welding
JP2004195529A (en) * 2002-12-20 2004-07-15 Nippon Steel & Sumikin Welding Co Ltd Large heat input submerged-arc welding method
JP2005271045A (en) * 2004-03-25 2005-10-06 Nippon Steel & Sumikin Welding Co Ltd Two electrode type heavy heat input submerged arc welding method
JP2006051515A (en) * 2004-08-10 2006-02-23 Nippon Steel Corp High heat input submerged-arc welding method excellent in toughness of weld metal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225682A (en) * 1996-02-22 1997-09-02 Nippon Steel Corp Submerged arc welding for fire resistant steel
JP2002283095A (en) * 2000-10-06 2002-10-02 Kawasaki Steel Corp Steel wire for large heat input submerged arc welding and method of manufacturing submerged arc welded joint as well as submerged arc welded joint
JP2003001486A (en) * 2001-04-11 2003-01-08 Kawasaki Steel Corp Flux for submerged arc welding and method for producing submerged arc welded joint
JP2004001028A (en) * 2002-05-31 2004-01-08 Nippon Steel Corp Method for high heat input submerged-arc welding
JP2004195529A (en) * 2002-12-20 2004-07-15 Nippon Steel & Sumikin Welding Co Ltd Large heat input submerged-arc welding method
JP2005271045A (en) * 2004-03-25 2005-10-06 Nippon Steel & Sumikin Welding Co Ltd Two electrode type heavy heat input submerged arc welding method
JP2006051515A (en) * 2004-08-10 2006-02-23 Nippon Steel Corp High heat input submerged-arc welding method excellent in toughness of weld metal

Similar Documents

Publication Publication Date Title
JP4537310B2 (en) Low temperature steel single-sided submerged arc welding method and weld metal
JP4857015B2 (en) Gas shielded arc welding flux cored wire and welding method
KR101003249B1 (en) Flux-cored wire for electrogas arc welding
KR100896374B1 (en) Solid wire
JP2006289404A (en) Flux cored wire for gas shielded arc welding
JP2008290116A (en) Fillet welded joint and fillet welding method
JP4427416B2 (en) Large heat input submerged arc welding method with excellent weld metal toughness.
JP2018126755A (en) Method for pulse mag welding of thin steel plate
JP4125688B2 (en) Two-electrode large heat input submerged arc welding method
JP5104037B2 (en) Fillet welding method and fillet welded joint
KR20020027238A (en) Large heat input submerged arc welding joint, method for producing the joint, steel wire for the submerged arc welding joint, and flux for the submerged arc welding joint
JP2007083292A (en) Two-electrode one-side one-pass high heat input submerged-arc welding method for obtaining weld metal with excellent toughness
CN112621016B (en) Welding material, weld metal, and electroslag welding method
JP3759474B2 (en) Large heat input submerged arc welding method
JP2538815B2 (en) Highly efficient fillet welding method for thick steel plate
JP2005230906A (en) Gas shielded arc welding method
JP3713016B2 (en) Large heat input submerged arc welding method
JP3114958B2 (en) High efficiency fillet welding method for thick steel plate
KR102150974B1 (en) Tandem gas shielded arc welding wire having good low temperature toughness
JP2005329460A (en) Electrogas arc welding method excellent in brittle fracture initiation resistance characteristics of weld zone
JP3765761B2 (en) Bond flux for submerged arc welding
JP2006212676A (en) Two-electrode large heat input submerged arc welding method
KR102051960B1 (en) Tandem gas shielded arc welding wire
JPH10180488A (en) Flux cored wire for electro gas arc welding
JP4529482B2 (en) Fillet welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100222

A131 Notification of reasons for refusal

Effective date: 20100330

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100803

Free format text: JAPANESE INTERMEDIATE CODE: A02