JP2006212505A - Wastewater treatment apparatus and wastewater treatment system using it - Google Patents

Wastewater treatment apparatus and wastewater treatment system using it Download PDF

Info

Publication number
JP2006212505A
JP2006212505A JP2005026078A JP2005026078A JP2006212505A JP 2006212505 A JP2006212505 A JP 2006212505A JP 2005026078 A JP2005026078 A JP 2005026078A JP 2005026078 A JP2005026078 A JP 2005026078A JP 2006212505 A JP2006212505 A JP 2006212505A
Authority
JP
Japan
Prior art keywords
separation membrane
treatment apparatus
bed
wastewater treatment
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005026078A
Other languages
Japanese (ja)
Inventor
Toshihiko Fujita
俊彦 藤田
Shinichiro Fuchigami
真一郎 淵上
Takashi Sakakibara
隆司 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005026078A priority Critical patent/JP2006212505A/en
Publication of JP2006212505A publication Critical patent/JP2006212505A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the treatment capacity of wastewater in a wastewater treatment apparatus and a wastewater treatment system using it. <P>SOLUTION: The wastewater treatment apparatus is equipped with a treatment tank 6 having a wastewater inflow port 3 and an outflow port 4, the separation membrane 7 provided in the treatment tank 6, the air diffusion pipe 11 provided under the separation membrane 7, the shaking bed 9 formed by oxygen-containing bubbles discharged to the upper separation membrane 7 from the air diffusion pipe 11 and provided on the downstream side of the separation membrane 7 and a reflux means for refluxing the water after passing through the shaking bed 9 to the upstream region of the separation membrane 7. The shaking bed 9 has hydrophilic branches 13 shaken at least at their leading ends by a water stream. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機物を含んだ排水の排水処理装置とそれを用いた排水処理システムに関する。   The present invention relates to a wastewater treatment apparatus for wastewater containing organic matter and a wastewater treatment system using the same.

従来、排水中の有機物を微生物により分解する排水処理装置の処理性能を向上させる手段として、分離膜により処理槽内部の微生物、すなわち活性汚泥、の濃度を高めることにより処理槽の単位体積あたりの有機物分解性能を向上せしめる方法である、膜分離活性汚泥法が知られている。   Conventionally, as a means to improve the treatment performance of wastewater treatment equipment that decomposes organic matter in wastewater with microorganisms, organic matter per unit volume of the treatment tank is increased by increasing the concentration of microorganisms inside the treatment tank, that is, activated sludge, with a separation membrane. A membrane separation activated sludge method, which is a method for improving the decomposition performance, is known.

この膜分離活性汚泥法として、例えば、特開平2−86893号公報(特許文献1)に記載された装置がある。この装置は図6に示すように、処理槽106内に分離膜107と分離膜107の下方に散気管111が設けられており、分離膜107はろ過ポンプ105と接続され、散気管111はブロア110に接続されている。ここで流入口103から処理槽106に入った有機物を含んだ排水は活性汚泥により酸化・分解される。処理された排水は分離膜107を通過し、ろ過ポンプ105により吸引され流出口104より系外へ排出される。一方、処理槽106内の活性汚泥は分離膜107により分離されるので、系外への流出が防止されるとともに、処理槽106内の活性汚泥が高濃度に保持される。   As this membrane separation activated sludge method, for example, there is an apparatus described in JP-A-2-86893 (Patent Document 1). As shown in FIG. 6, this apparatus is provided with a separation membrane 107 and a diffusion pipe 111 provided below the separation membrane 107 in a treatment tank 106, the separation membrane 107 is connected to a filtration pump 105, and the diffusion pipe 111 is a blower. 110. Here, the wastewater containing the organic matter entering the treatment tank 106 from the inlet 103 is oxidized and decomposed by the activated sludge. The treated wastewater passes through the separation membrane 107, is sucked by the filtration pump 105, and is discharged out of the system from the outlet 104. On the other hand, since the activated sludge in the treatment tank 106 is separated by the separation membrane 107, the activated sludge in the treatment tank 106 is kept at a high concentration while being prevented from flowing out of the system.

また、ブロア110により散気管111を通じて送出された有酸素気泡は、処理槽106内へ活性汚泥が消費する酸素を供給するとともに、分離膜107平面を上昇して付着した活性汚泥を剥離し分離膜107の閉塞を防止する。   In addition, the aerobic bubbles sent out through the air diffuser 111 by the blower 110 supply oxygen consumed by the activated sludge into the treatment tank 106 and lift the adsorbed sludge adhering to the separation membrane 107 by raising the plane of the separation membrane 107. 107 blockage is prevented.

また、分離膜107が硝化菌の流出を阻止するため、この硝化菌の働きにより分解する有機物中の窒素成分が酸化されて硝酸になり、処理槽内のpHが著しく低下し排水基準値以下になったり、有機物分解性能が低下してしまう。   In addition, since the separation membrane 107 prevents the nitrifying bacteria from flowing out, the nitrogen component in the organic matter decomposed by the action of the nitrifying bacteria is oxidized into nitric acid, and the pH in the treatment tank is remarkably lowered to below the drainage standard value. Or degradation of organic matter degradation.

この現象を防ぐため、一般に膜分離活性汚泥法では一定時間曝気を停止する。すなわち間欠曝気を行うか、曝気を行わない嫌気槽を別途設置し活性汚泥を嫌気状態にすることにより、嫌気性の脱窒細菌を働かせ硝酸を窒素に還元して脱窒を行いpHの上昇を防ぐ処理を施している。   In order to prevent this phenomenon, aeration is generally stopped for a certain period of time in the membrane separation activated sludge method. In other words, an intermittent anaerobic tank or an anaerobic tank that does not perform aeration is installed separately and the activated sludge is put in an anaerobic state, so that anaerobic denitrifying bacteria work to reduce nitric acid to nitrogen to increase the pH. Preventive treatment is applied.

このような膜分離活性汚泥法を用いることにより、標準活性汚泥法の活性汚泥濃度が2,000mg/L程度に対して15,000mg/L〜20,000mg/L程度まで濃度を高めることができ、排水処理性能が向上する。   By using such a membrane separation activated sludge method, the activated sludge concentration of the standard activated sludge method can be increased to about 15,000 mg / L to 20,000 mg / L with respect to about 2,000 mg / L. The wastewater treatment performance is improved.

また、このような従来の膜分離活性汚泥法に対し、さらにその処理性能を向上せしめようとする手段としては、例えば、特開平7−32329号公報(特許文献2)に記載されたものがある。   Further, as a means for further improving the treatment performance of such a conventional membrane separation activated sludge method, there is, for example, one described in JP-A-7-32329 (Patent Document 2). .

ここに記載された排水処理装置は図7に示すように、分離膜112と生物担体113を組み合わせることにより、さらに活性汚泥濃度を高めようと試みたものであり、処理槽114内に仕切板115を設け、その仕切板115の左右に分離膜112と生物担体113を併設させ、分離膜112だけでなく生物担体113の下方にも散気管116を設け、この散気管116からの有酸素気泡を生物担体113に供給することで、生物担体113に高濃度に付着した微生物により有機物の酸化・分解性能を高めていた。   As shown in FIG. 7, the waste water treatment apparatus described here is an attempt to further increase the activated sludge concentration by combining the separation membrane 112 and the biological carrier 113, and the partition plate 115 is disposed in the treatment tank 114. The separation membrane 112 and the biological carrier 113 are provided on the left and right sides of the partition plate 115, and the diffusion tube 116 is provided below the biological carrier 113 as well as the separation membrane 112, and the aerobic bubbles from the diffusion tube 116 are removed. By supplying to the biological carrier 113, the oxidation / decomposition performance of the organic matter was enhanced by the microorganisms attached to the biological carrier 113 at a high concentration.

また、有酸素気泡により処理槽114内において生物担体113を通過後に分離膜112上方へと向かう水流を作り、この流れにより分離膜112は、生物担体113により処理された水だけをろ過し排出するようにしていた。   Further, a water flow is generated by the aerobic bubbles in the treatment tank 114 after passing through the biological carrier 113 and then upwards on the separation membrane 112, and this separation causes the separation membrane 112 to filter and discharge only the water treated by the biological carrier 113. It was like that.

また、分離膜112が目詰まりを起こすのを防止するために、この分離膜112の下方にも散気管117を設け、この散気管117から断続的に有酸素気泡を供給するようにしていた。
特開平2−86893号公報 特開平7−32329号公報
Further, in order to prevent the separation membrane 112 from being clogged, an aeration tube 117 is provided below the separation membrane 112, and aerobic bubbles are supplied intermittently from the diffusion tube 117.
JP-A-2-86893 Japanese Patent Laid-Open No. 7-32329

しかしながら、上記特許文献2のような従来の排水処理装置においては、分離膜の下方の散気管から流出した有酸素気泡により生じた水流は、生物担体の下方の散気管から有酸素気泡により生じた生物担体から分離膜への水流を止めてしまうことになり、つまり、この間は分離膜から処理された水を系外へ取り出すことができなくなってしまう。この結果として処理性能が低下するという課題があった。   However, in the conventional wastewater treatment apparatus such as Patent Document 2, the water flow generated by the aerobic bubbles flowing out from the diffuser pipe below the separation membrane is generated by the aerobic bubbles from the diffuser pipe below the biological carrier. The water flow from the biological carrier to the separation membrane is stopped, that is, during this time, the treated water cannot be taken out from the system. As a result, there is a problem that the processing performance is lowered.

また、膜分離活性汚泥法を用いた上記特許文献1のような従来の排水処理装置において、さらに処理性能を向上せしめようとして活性汚泥の濃度をさらに上げると、分離膜の表面に付着した活性汚泥が水流や有酸素気泡では除去しきれなくなり、分離膜が閉塞し処理性能が急激に低下するという課題があった。   Further, in the conventional wastewater treatment apparatus such as Patent Document 1 using the membrane separation activated sludge method, when the concentration of activated sludge is further increased in order to further improve the treatment performance, the activated sludge adhered to the surface of the separation membrane. However, there is a problem in that it cannot be completely removed by water flow or aerobic bubbles, the separation membrane is blocked, and the processing performance is rapidly reduced.

さらに、脱窒用の嫌気状態を作るために曝気を停止すると、分離膜表面の洗浄が行えなくなり、この間は分離膜から処理水を系外へ取り出せなくなり処理性能が低下するという課題があった。   Furthermore, when aeration is stopped to create an anaerobic state for denitrification, the surface of the separation membrane cannot be cleaned, and during this time, the treated water cannot be taken out from the separation membrane, resulting in a reduction in processing performance.

そこで本発明は、このような従来の排水処理装置における処理性能を高めることを目的とするものである。   Then, this invention aims at improving the processing performance in such a conventional waste water treatment equipment.

本発明の排水処理装置は上記目的を達成するために、排水の流入口と流出口を有する処理槽と、この処理槽内に設けられた分離膜と、この分離膜の下方に設けられた散気管と、この散気管から上方の分離膜に向けて放出される有酸素気泡によって形成される水流の前記分離膜より下流域に設けられた生物担体と、この生物担体を通過後の水流を前記分離膜の上流域へと還流させる還流手段とを備え、前記生物担体が揺動床であるとしたものである。   In order to achieve the above object, the wastewater treatment apparatus of the present invention has a treatment tank having a drainage inlet and an outlet, a separation membrane provided in the treatment tank, and a scattering membrane provided below the separation membrane. A trachea, a biological carrier provided downstream from the separation membrane of the water flow formed by the aerobic bubbles released from the diffuser toward the upper separation membrane, and the water flow after passing through the biological carrier The biological carrier is a rocking bed provided with a reflux means for refluxing to the upstream region of the separation membrane.

また、他の手段は、還流手段として分離膜の外方に仕切板を設け、仕切板を介して分離膜の反対側に揺動床を配置したものである。   Another means is that a partition plate is provided outside the separation membrane as a reflux means, and a swing bed is arranged on the opposite side of the separation membrane via the partition plate.

また、他の手段は、揺動床は、少なくともその先端側が水流によって揺動する親水枝を有するものである。   Another means is that the rocking bed has a hydrophilic branch that rocks at least at the tip side by a water flow.

また、他の手段は、仕切板の下端を散気管よりも下方に配置し、散気管と仕切板で形成される流路における揺動床より下流で散気管の上流域に脱窒床を設けたものである。   Another means is that the lower end of the partition plate is disposed below the diffuser pipe, and a denitrification bed is provided in the upstream area of the diffuser pipe downstream from the swing bed in the flow path formed by the diffuser pipe and the partition plate. It is a thing.

また、他の手段は、仕切板の下端より下方に脱窒床を設けたものである。   Another means is to provide a denitrification floor below the lower end of the partition plate.

また、他の手段は、仕切板の下部で仕切板を介して散気管とは反対側に脱窒床を設けたものである。   Another means is that a denitrification bed is provided on the opposite side of the diffuser pipe through the partition plate at the lower part of the partition plate.

また、他の手段は、脱窒床における水流断面積は、揺動床における水流断面積よりも大きくしたものである。   Another means is that the water flow cross-sectional area in the denitrification bed is larger than the water flow cross-sectional area in the rocking bed.

また、他の手段は、脱窒床は、少なくともその先端側が水流によって揺動する親水枝を有するものである。   Another means is that the denitrification bed has a hydrophilic branch that swings at least on the tip side by a water flow.

また、他の手段は、脱窒床における親水枝の密度は、揺動床における親水枝の密度よりも高くしたものである。   Another means is that the density of hydrophilic branches in the denitrification bed is higher than the density of hydrophilic branches in the rocking bed.

また、他の手段は、揺動床は、仕切板の上端から下端に向けて設けた幹と、この幹に複数設けた親水枝とを備え、前記幹に幹を振動させる振動体を設けたものである。   Further, as another means, the swing floor includes a trunk provided from the upper end to the lower end of the partition plate and a plurality of hydrophilic branches provided on the trunk, and a vibrating body that vibrates the stem is provided on the trunk. Is.

また、他の手段は、振動体は、処理槽内の水流の変動を受け幹を振動させるものである。   Another means is that the vibrating body vibrates the trunk in response to fluctuations in the water flow in the treatment tank.

また、他の手段は、振動体は、幹の下端を固定し上端に浮子を設けたものである。   As another means, the vibrating body is such that the lower end of the trunk is fixed and a float is provided at the upper end.

また、他の手段は、処理水が流入する調整部と、この調整部に本発明の排水処理装置における処理槽の流入口とを接続したものである。   In addition, the other means is an adjustment unit into which treated water flows, and an inlet of the treatment tank in the waste water treatment apparatus of the present invention is connected to the adjustment unit.

さらに他の手段は、処理水が流入する調整部と、この調整部の下流に設けた曝気部と、この曝気部の下流に設けた沈殿部と、この沈殿部の下流に設けた汚泥貯留部とを備え、前記沈殿部または前記汚泥貯留部と本発明の排水処理装置の処理槽における流入口とを接続したとしたものである。   Still other means include an adjustment unit into which treated water flows, an aeration unit provided downstream of the adjustment unit, a precipitation unit provided downstream of the aeration unit, and a sludge storage unit provided downstream of the precipitation unit. The sedimentation part or the sludge storage part is connected to the inflow port in the treatment tank of the wastewater treatment apparatus of the present invention.

以上のような構成とすることにより、分離膜が閉塞することなく処理槽内の活性汚泥濃度を高めて有機物の分解性能を向上できる排水処理装置が実現できる。   By setting it as the above structures, the waste-water-treatment apparatus which can raise the activated sludge density | concentration in a processing tank, and can improve the decomposition | disassembly performance of organic substance, without clogging a separation membrane is realizable.

また、間欠曝気や専用嫌気槽を設けることなく1槽で、連続曝気で脱窒できるようになり、小型・高効率な排水処理装置を実現できる。   Further, denitrification can be performed by continuous aeration in one tank without providing intermittent aeration or a dedicated anaerobic tank, and a small and highly efficient wastewater treatment apparatus can be realized.

以下、本発明による実施の形態について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は、排水処理システムと排水処理装置の構成を示している。本実施の形態の排水処理システムは排水を溜める調整部1と、有機物を活性汚泥によって酸化・分解する排水処理装置2とで構成されている。排水処理装置2は流入口3と流出口4を有し、流入口3は調整部1と接続され流出口4はろ過ポンプ5と接続されている。
(Embodiment 1)
FIG. 1 shows the configuration of a wastewater treatment system and a wastewater treatment apparatus. The wastewater treatment system of the present embodiment includes an adjustment unit 1 that accumulates wastewater and a wastewater treatment device 2 that oxidizes and decomposes organic matter using activated sludge. The waste water treatment apparatus 2 has an inflow port 3 and an outflow port 4, the inflow port 3 is connected to the adjustment unit 1, and the outflow port 4 is connected to the filtration pump 5.

次に、排水処理装置2について詳細に説明する。排水処理装置2は容器状の処理槽6と、この処理槽6の内部中央部分に複数枚、所定間隔をおいて縦方向に並べて配置した分離膜7と、これらの分離膜7群の外方に設けた還流手段としての仕切板8と、この仕切板8を介して分離膜7とは反対側に生物担体として設けた揺動床9を備えている。また、分離膜7の下方にはブロア10に接続した散気管11が設けられており、前記仕切板8の下端は、この散気管11よりも下方にまで延長された状態となっている。   Next, the waste water treatment apparatus 2 will be described in detail. The waste water treatment apparatus 2 includes a container-like treatment tank 6, a plurality of separation membranes 7 arranged in the central portion of the treatment tank 6 and arranged in a vertical direction at predetermined intervals, and an outer side of these separation membranes 7 group. And a swing bed 9 provided as a biological carrier on the opposite side of the separation membrane 7 via the partition plate 8. Further, an air diffuser 11 connected to the blower 10 is provided below the separation membrane 7, and the lower end of the partition plate 8 is extended below the air diffuser 11.

また、分離膜7は2枚の平膜をスペーサーを介して張り合わせた構造となっており、その中空部分がろ過ポンプ5と接続されている。   Further, the separation membrane 7 has a structure in which two flat membranes are bonded together via a spacer, and the hollow portion is connected to the filtration pump 5.

揺動床9は幹12に親水性の繊維で成型された複数の親水枝13を、水流に対して垂直に、幹12から円周方向に放射状に配置した構成としている。また、幹12は、処理槽6内に固定された揺動床支持部14により支持されている。親水枝13は活性汚泥が付着しやすいよう親水性となっており、ある程度の太さは有しているものの柔軟性があり、その後端側は幹12に取り付けられ、先端側が自由端となっているので水流により揺動する。   The swing floor 9 has a configuration in which a plurality of hydrophilic branches 13 formed of hydrophilic fibers on the trunk 12 are arranged radially from the trunk 12 in the circumferential direction perpendicular to the water flow. Further, the trunk 12 is supported by a swing floor support portion 14 fixed in the processing tank 6. The hydrophilic branch 13 is hydrophilic so that activated sludge can easily adhere to it. Although it has a certain thickness, it has flexibility, the rear end side is attached to the trunk 12, and the front end side is a free end. Because it is, it swings by the water flow.

また、処理槽6の底部で散気管および仕切り板の下方には脱窒床15が配置されている。脱窒床15は揺動床9と同様に、水平に設けた幹16と、この幹16にその後端側を固定し先端側を自由端とした親水枝17を設けた構成としている。また、脱窒床15は揺動床9より親水枝17の密度を高くすることにより、その脱窒効果を高めることができる。   Further, a denitrification floor 15 is disposed at the bottom of the treatment tank 6 and below the diffuser pipe and the partition plate. Similar to the rocking floor 9, the denitrification floor 15 has a horizontally provided trunk 16 and a hydrophilic branch 17 having a rear end side fixed to the trunk 16 and a distal end side being a free end. Further, the denitrification bed 15 can enhance its denitrification effect by making the density of the hydrophilic branches 17 higher than that of the rocking bed 9.

まず、有機物を含んだ生活排水などは、調整部1へと供給され、ここで一旦滞留し一定量が連続的に流入口3から処理槽6に供給される。   First, domestic wastewater containing organic substances is supplied to the adjusting unit 1, where it temporarily stays and a certain amount is continuously supplied from the inlet 3 to the treatment tank 6.

ここで、散気管11にはブロア10から空気が供給され、散気管11に複数個設けた開口部18から上方の分離膜7へと勢い良く流出され、この結果として有酸素気泡が複数枚設けた分離膜7それぞれの外表面を撫でるように上昇していくとともに分離膜7群間を上昇する水流を生じる。   Here, air is supplied from the blower 10 to the air diffuser tube 11 and flows out vigorously from the openings 18 provided in the air diffuser tube 11 to the upper separation membrane 7. As a result, a plurality of aerobic bubbles are provided. As a result, the outer surface of each separation membrane 7 rises so as to stroke, and a water flow rises between the separation membrane 7 groups.

仕切板8の上端は処理槽6内における水面19よりも下方に位置しており、有酸素気泡により分離膜7上方へと導かれた水流は仕切板8の上端から側方へ転流し、やがては揺動床9の上部へと向かい、下降流となって揺動床9を通過する。このように水流を処理槽6内で還流することにより、水流がまず分離膜7を通過し、その後揺動床9を通過して散気管11に戻ることになるため散気管が1箇所となり、揺動床9から分離膜7への水流を止めることなく排水処理を連続的に行うことができる。   The upper end of the partition plate 8 is located below the water surface 19 in the treatment tank 6, and the water flow guided to the upper side of the separation membrane 7 by the aerobic bubbles is commutated from the upper end of the partition plate 8 to the side. Goes to the upper part of the swing bed 9 and passes through the swing bed 9 as a downward flow. By recirculating the water flow in the treatment tank 6 in this way, the water flow first passes through the separation membrane 7, then passes through the swing bed 9 and returns to the diffusion tube 11, so that the diffusion tube becomes one place, The waste water treatment can be continuously performed without stopping the water flow from the swing bed 9 to the separation membrane 7.

一方、散気管11から流出された有酸素気泡が水面19まで上昇する間に水中には酸素が溶解し、活性汚泥内部の微生物に酸素を供給する。流入口3より供給された有機物は処理槽6内を水流に乗って循環しながら活性汚泥により酸化・分解される。また、処理槽6内の水はろ過ポンプ5により分離膜7を介して吸引ろ過され、分離膜7を透過した清浄な処理水は流出口4を通って排出される。この時、水とともに浮遊している活性汚泥も吸引され分離膜7表面に付着し堆積するが、有酸素気泡と分離膜7の表面を流れる水流によるせん断力によって剥離される。   On the other hand, oxygen is dissolved in the water while the aerobic bubbles flowing out from the air diffuser 11 rise to the water surface 19, and oxygen is supplied to the microorganisms inside the activated sludge. The organic matter supplied from the inlet 3 is oxidized and decomposed by the activated sludge while circulating in the treatment tank 6 in a water stream. The water in the treatment tank 6 is suction filtered by the filtration pump 5 through the separation membrane 7, and the clean treated water that has permeated the separation membrane 7 is discharged through the outlet 4. At this time, the activated sludge floating together with water is also sucked and adheres to and deposits on the surface of the separation membrane 7, but is peeled off by the shearing force of the aerobic bubbles and the water flow flowing on the surface of the separation membrane 7.

また、循環流に乗って浮遊している活性汚泥は揺動床9の親水枝13に付着し堆積して固定されていくことになり、分離膜7による分離濃縮とともに処理槽6内の汚泥濃度を高く保持する。処理槽6内の有機物は浮遊している活性汚泥だけでなく、親水枝13に付着した活性汚泥にも高効率に接触し酸化・分解が促進される。   Further, the activated sludge floating on the circulating flow adheres to the hydrophilic branch 13 of the rocking bed 9 and accumulates and is fixed, and the concentration of the sludge in the treatment tank 6 together with the separation and concentration by the separation membrane 7. Keep it high. The organic matter in the treatment tank 6 contacts not only the activated sludge floating, but also the activated sludge adhering to the hydrophilic branch 13, and the oxidation and decomposition are promoted.

ところで、親水枝13に堆積した活性汚泥中ではその足場が安定なことにより細菌類だけでなく、上位捕食者である原生動物や原虫、ワムシ、ミミズなどの食物連鎖が発生しており、特に原生動物は粘着性の代謝物を多量に生産する特性があり、この代謝物によって親水枝13に付着した活性汚泥は互いに強固に固着して保持される。   By the way, in the activated sludge deposited on the hydrophilic branch 13, not only bacteria but also food chains such as protozoa, protozoa, rotifer and earthworm, which are higher predators, are generated due to the stability of the scaffold. The animal has a characteristic of producing a large amount of sticky metabolites, and the activated sludge adhering to the hydrophilic branch 13 is firmly fixed and held by the metabolites.

また、親水枝13に付着した活性汚泥はある程度の大きさになると水流による揺動により、親水枝先端の活性汚泥が剥離して再び水流中に放出されるので、活性汚泥の過剰付着による閉塞や一斉脱落が防止される。さらに剥離した活性汚泥は粘着性の代謝物により付着前より硬く大きい粒子となる。   Further, when the activated sludge adhering to the hydrophilic branch 13 becomes a certain size, the activated sludge at the tip of the hydrophilic branch is peeled off and released again into the water flow due to the swinging of the water flow. Simultaneous dropout is prevented. Further, the peeled activated sludge becomes harder and larger particles than before adhering due to the sticky metabolite.

このようにして処理槽6内では当初微細だった活性汚泥が親水枝13への付着、剥離を繰り返し粗大化していき、その粒径は最終的に分離膜7の孔径より大きいものが支配的となる。水処理の分離膜7としては一般に限外濾過膜や精密ろ過膜が用いられるが、排水処理の分離膜7としては孔径が0.1〜0.4μmの精密ろ過膜がよく用いられている。孔径より小さい粒子は膜を透過していき、大きい粒子は阻止されるわけであるが、閉塞に対して最も影響するのは孔径に近い粒径の粒子であり、このような粒径の粒子は分離膜7の細孔内部に嵌って停滞し閉塞を生じさせる。   In this way, the activated sludge, which was initially fine in the treatment tank 6, is repeatedly coarsened by repeatedly adhering to and peeling from the hydrophilic branch 13, and the particle size is finally larger than the pore size of the separation membrane 7. Become. Although an ultrafiltration membrane or a microfiltration membrane is generally used as the separation membrane 7 for water treatment, a microfiltration membrane having a pore diameter of 0.1 to 0.4 μm is often used as the separation membrane 7 for wastewater treatment. Particles smaller than the pore size permeate the membrane and large particles are blocked, but the most effective influence on the blockage is the particle size close to the pore size. It fits inside the pores of the separation membrane 7 and stagnates to cause clogging.

ここで、本発明の処理槽6内を浮遊する活性汚泥は親水枝13から剥離した大径の粒子であり、分離膜7の孔径よりはるかに大きいため細孔内部にまで吸引され停滞することなく、分離膜7表面を通過することになるため、分離膜7の閉塞を生じさせることなく処理槽6内の活性汚泥濃度を高めて処理性能を向上させることができる。   Here, the activated sludge floating in the treatment tank 6 of the present invention is a large-sized particle separated from the hydrophilic branch 13, and is much larger than the pore diameter of the separation membrane 7, so that it is sucked into the pores and does not stagnate. Since it passes through the surface of the separation membrane 7, it is possible to increase the activated sludge concentration in the treatment tank 6 and improve the treatment performance without causing the separation membrane 7 to be blocked.

ところで、分離膜7を通過した時点で有酸素気泡により水中に多量に溶存していた酸素は揺動床9の上方から下方にかけて通過するに従い、活性汚泥中の微生物による有機物の酸化分解に積極的に活用され、揺動床9の下方部分においては低酸素状態となり、仕切板8の下端側部分ではもはや溶存酸素は殆ど存在しない状態となっている。この低酸素領域に配置された脱窒床15では、密に配置した親水枝17に活性汚泥が揺動床9より厚く付着堆積しており、活性汚泥の表面の微生物が残存した酸素を殆ど消費してしまうため、親水枝17の内深部は表面から遠く嫌気性の脱窒菌が優勢種となっている。   By the way, as oxygen that has been dissolved in a large amount in the water due to the aerobic bubbles when passing through the separation membrane 7 passes from the upper side to the lower side of the rocking bed 9, it actively participates in the oxidative decomposition of organic matter by microorganisms in the activated sludge. Therefore, the lower portion of the swing bed 9 is in a low oxygen state, and the dissolved oxygen is no longer present in the lower end portion of the partition plate 8. In the denitrification bed 15 arranged in the low oxygen region, activated sludge is deposited and deposited thicker than the rocking bed 9 on the densely arranged hydrophilic branches 17, and most of the oxygen remaining on the surface of the activated sludge is consumed. For this reason, the inner deep part of the hydrophilic branch 17 is far from the surface and anaerobic denitrifying bacteria are the dominant species.

ここで、処理槽6上部の揺動床では、下記の反応のように硝化菌による生物分解によって生じたアンモニアが酸化されて硝酸や亜硝酸を生じる。   Here, in the swing bed above the treatment tank 6, ammonia generated by biodegradation by nitrifying bacteria is oxidized as in the following reaction to produce nitric acid and nitrous acid.

NH4 ++3/2O2→NO2 -+H2O+2H+
NO2 -+1/2O2→NO3 -
生じた硝酸や亜硝酸は水流により脱窒床15まで運ばれ、脱窒床15で内部の脱窒菌により下記の反応で還元されて窒素となり親水枝13表面から窒素気泡となって系外へ排出される。
NH 4 + + 3 / 2O 2 → NO 2 + H 2 O + 2H +
NO 2 - + 1 / 2O 2 → NO 3 -
The generated nitric acid or nitrous acid is transported to the denitrification bed 15 by a water flow, and is reduced by the following reaction by the denitrifying bacteria in the denitrification bed 15 to become nitrogen and discharged from the surface of the hydrophilic branch 13 as nitrogen bubbles to the outside. Is done.

2NO2 -+3(H2)→N2↑+2OH-+2H2
2NO3 -+5(H2)→N2↑+2OH-+4H2
このようにして一槽で連続曝気しながら有機物の分解と同時に脱窒を行うことができるようになり、膜分離活性汚泥法の課題であった間欠曝気や嫌気槽が不要となり装置が小型化でき、処理性能が大幅に向上する。
2NO 2 +3 (H 2 ) → N 2 ↑ + 2OH + 2H 2 O
2NO 3 +5 (H 2 ) → N 2 ↑ + 2OH + 4H 2 O
In this way, denitrification can be performed simultaneously with the decomposition of organic substances while continuous aeration in one tank, eliminating the need for intermittent aeration and anaerobic tanks, which was a problem of the membrane separation activated sludge method, and reducing the size of the apparatus. , Processing performance is greatly improved.

尚、一般に嫌気細菌による脱窒にはアルコール等の水素源(H2)が必要であるが、本実施形態の場合、有機物除去と脱窒の1槽同時処理であり、水素源となる有機物が処理槽6内に豊富に存在するので別途水素源を投入する必要はない。 In general, denitrification by anaerobic bacteria requires a hydrogen source (H 2 ) such as alcohol. However, in this embodiment, the organic substance removal and denitrification are performed simultaneously in one tank, and the organic substance serving as the hydrogen source Since it exists abundantly in the treatment tank 6, it is not necessary to input a hydrogen source separately.

尚、本実施の形態では、揺動床9は幹12から放射状に伸びた親水枝13で説明したが、活性汚泥を付着し揺動により剥離させ一定量保持できる機能を持った他の揺動床、例えば格子状ケージ内にスポンジ状の担体を入れた揺動床を用いても同様の効果が期待できる。   In the present embodiment, the swing bed 9 has been described with the hydrophilic branch 13 extending radially from the trunk 12, but other swings having a function of attaching activated sludge and peeling it off by swinging so as to hold a certain amount. The same effect can be expected by using a floor, for example, a swing bed in which a sponge-like carrier is placed in a lattice cage.

(実施の形態2)
図2は本発明の他の実施形態を示している。なお、実施の形態1と同様の構成を有するものについては、同一符号を付しその説明を省略する。
(Embodiment 2)
FIG. 2 shows another embodiment of the present invention. In addition, about the thing which has the structure similar to Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図2においては図1における仕切板8に替え仕切板8aを設けてある。ここで、仕切板8aは図2に示すようにその上端側が外方へと開口した状態となっている。また、この仕切板8aの開口した上方に円錐または三角柱形状の整流子18を頂点を下に向け設けたものである。   In FIG. 2, a partition plate 8a is provided in place of the partition plate 8 in FIG. Here, the upper end side of the partition plate 8a is opened outward as shown in FIG. Further, a commutator 18 having a conical or triangular prism shape is provided above the opening of the partition plate 8a with the apex facing downward.

また、仕切板8aに合わせ処理槽6の壁面も水流に対して断面積が均一になるよう中心部を絞った形状となっており、さらに、仕切板8aを介して散気管11とは反対側の揺動床9の下部に脱窒床15aが配置されており、この部分の水流断面積は上部の揺動床9の断面積より大きくなっている。   In addition, the wall surface of the treatment tank 6 is also shaped so as to have a uniform cross-sectional area with respect to the water flow in accordance with the partition plate 8a, and further, on the side opposite to the diffuser tube 11 through the partition plate 8a. A denitrification floor 15 a is arranged at the lower part of the swing bed 9, and the cross-sectional area of the water flow in this portion is larger than the cross-sectional area of the upper swing bed 9.

ところで、親水枝13の振動は定常流中における円柱の後流に発生するカルマン渦により生じると仮定すると、その振動周波数は次式により定義される。   By the way, assuming that the vibration of the hydrophilic branch 13 is caused by Karman vortices generated in the wake of a cylinder in a steady flow, the vibration frequency is defined by the following equation.

Figure 2006212505
Figure 2006212505

ストローハル数とは、無次元数であり、広いレイノルズ数の範囲でほぼ一定の値をとる。   The Strouhal number is a dimensionless number and takes a substantially constant value within a wide Reynolds number range.

(数1)式によれば、流速が小さいと親水枝13の振動、すなわち揺動が小さくなり、活性汚泥が過剰に堆積して閉塞や脱落を生じる恐れがあるため、揺動床9に流れる水流は一定以上の流速を流す必要がある。   According to the equation (1), if the flow rate is low, the vibration of the hydrophilic branch 13, that is, the swing is reduced, and the activated sludge may accumulate excessively and cause clogging or dropping. The water flow needs to flow at a certain speed or higher.

ここで実施の形態1の例では、分離膜7前後で流れの剥離が生じ圧力損失が大きくなり、揺動床9に流れる流速を十分確保できない場合がある。一方、水面19付近の水流が転回する付近では流れが大きく乱れ、この近くの親水枝13は逆に揺動が大きすぎて十分に活性汚泥が付着しない状態となる場合がある。   Here, in the example of the first embodiment, separation of the flow occurs before and after the separation membrane 7 and the pressure loss becomes large, and there is a case where the flow velocity flowing through the rocking bed 9 cannot be sufficiently secured. On the other hand, in the vicinity where the water flow near the water surface 19 turns, the flow is greatly disturbed. On the contrary, the hydrophilic branch 13 in the vicinity of the water surface 19 may be in a state where the activated sludge is not sufficiently adhered due to the excessive oscillation.

ここで本実施の形態では仕切板8aを外方に開口させることにより分離膜7前後の流れを整え、さらに整流子20によっても揺動床9側へ向かう流れを整えることにより、処理水が揺動床9側にスムーズに流れるようになり、揺動床9の上下端部付近では活性汚泥の剥離を低減し、揺動床9の中央部付近では圧力損失低減により流速が増して親水枝13の揺動が促進され、活性汚泥が揺動床全体に均一に付着することになり処理性能をさらに向上することができる。   Here, in this embodiment, by opening the partition plate 8a outward, the flow before and after the separation membrane 7 is adjusted, and further, the flow toward the oscillating bed 9 is also adjusted by the commutator 20, so that the treated water is shaken. Flowing smoothly toward the moving bed 9, the activated sludge is reduced in the vicinity of the upper and lower ends of the rocking bed 9, and the flow velocity is increased near the center of the rocking bed 9 due to the pressure loss reduction, thereby increasing the hydrophilic branch 13. The activated sludge is uniformly adhered to the entire rocking bed, and the treatment performance can be further improved.

また、本実施の形態の脱窒床15aは、仕切板8aを介して散気管11の反対側に設けた例を示したものである。この構成であれば1直線上に揺動床9と脱窒床15aを配置できるようになり、構造が簡単になり製造コストが削減できる。   Moreover, the denitrification floor 15a of this Embodiment shows the example provided in the other side of the diffuser pipe 11 via the partition plate 8a. If it is this structure, it will become possible to arrange | position the rocking | swiveling floor 9 and the denitrification floor | bed 15a on 1 straight line, a structure will become simple and manufacturing cost can be reduced.

また、ここで脱窒床15aを設けた部分の水流断面積を広げた理由は、この部分における流速を遅くして親水枝17の揺動を抑制し、活性汚泥の付着量を促進して活性汚泥内部の嫌気領域を増加させ脱窒効果を高めるためである。   The reason why the cross-sectional area of the water flow in the portion where the denitrification bed 15a is provided is increased is that the flow velocity in this portion is slowed to suppress the swinging of the hydrophilic branch 17, and the amount of activated sludge is increased and activated. This is to increase the anaerobic region inside the sludge and enhance the denitrification effect.

尚、脱窒床15は揺動床9を通過した水流が散気管11に至るまでの溶存酸素が少ない領域であれば他の配置であっても同様の効果が期待できる。   Note that the denitrification bed 15 can be expected to have the same effect even in other arrangements as long as the water flow that has passed through the rocking bed 9 has a small amount of dissolved oxygen until the diffuser pipe 11 is reached.

(実施の形態3)
図3、図4もそれぞれ本発明の他の実施形態を示している。なお、実施の形態1と同様の構成を有するものについては、同一符号を付しその説明を省略する。
(Embodiment 3)
3 and 4 also show other embodiments of the present invention. In addition, about the thing which has the structure similar to Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図3では、本発明の排水処理装置の揺動床9の幹12に対し、水流によって幹12の振動を促進させるための振動体21を設けたものである。揺動床9には一定速度の流水を通し親水枝13を揺動させる必要があるが、十分な流水速度が得られない場合、振動体21を別途設置して親水枝13の揺動を促進する。ここで、振動体21は複数枚の羽状平板が水流に対し垂直に幹12に固定されている。揺動床9を流れる水流の変化によって振動体21が振動し、これにより幹12を振動させることにより親水枝13の揺動効果が高まり、流速が十分得られない場合でも付着汚泥の剥離を促進することができる。   In FIG. 3, a vibrating body 21 for accelerating the vibration of the trunk 12 by a water flow is provided on the trunk 12 of the swing floor 9 of the waste water treatment apparatus of the present invention. It is necessary to pass the water at a constant speed through the swinging floor 9 to swing the hydrophilic branch 13. However, when a sufficient flow speed cannot be obtained, a vibrating body 21 is separately installed to promote the swinging of the hydrophilic branch 13. To do. Here, the vibrating body 21 has a plurality of wing-like flat plates fixed to the trunk 12 perpendicular to the water flow. The vibrating body 21 vibrates due to the change of the water flow flowing through the rocking floor 9, and thereby the trunk 12 is vibrated to increase the rocking effect of the hydrophilic branch 13, and promote the peeling of the attached sludge even when the flow velocity is not sufficient. can do.

図4はさらに幹12の下端を固定し上端に浮子22を設けたものである。この浮子22は中空の樹脂かスポンジ等により形成され水面19上を浮力により浮いているものであり、浮子22は水面が処理槽6内の曝気や水流により波立つのに合わせて上下左右に振動して幹12を振動させ、これにより親水枝13の揺動を促進することができる。   FIG. 4 further shows that the lower end of the trunk 12 is fixed and a float 22 is provided at the upper end. The float 22 is formed of a hollow resin or sponge, and floats on the water surface 19 by buoyancy. The float 22 vibrates vertically and horizontally as the water surface swells due to aeration and water flow in the treatment tank 6. Thus, the trunk 12 is vibrated, and thereby the swinging of the hydrophilic branch 13 can be promoted.

(実施の形態4)
図5は、本発明の排水処理システムの他の実施形態を示している。図5に示すように、本実施の形態の排水処理システムは排水を溜める調整部1と、有機物を活性汚泥によって処理する曝気部23と曝気部23で処理した排水を重力によって活性汚泥と処理水とに分離する沈殿部24と沈殿部24で分離させた活性汚泥を貯留する汚泥貯留部25と汚泥貯留部25の活性汚泥を分解処理する本発明の排水処理装置2から構成されている。
(Embodiment 4)
FIG. 5 shows another embodiment of the wastewater treatment system of the present invention. As shown in FIG. 5, the wastewater treatment system of the present embodiment includes an adjustment unit 1 that collects wastewater, an aeration unit 23 that treats organic matter with activated sludge, and activated sludge and treated water that are treated by gravity with wastewater treated with the aeration unit 23. And the wastewater treatment apparatus 2 of the present invention for decomposing the activated sludge in the sludge storage unit 25.

曝気部23には排水中に有酸素気泡を供給する曝気ブロア27が曝気管28を通じて接続されている。また、排水処理装置2は、汚泥貯留部25と汚泥供給ポンプ26に接続した流入口3を有し、流出口4にはろ過ポンプ5が接続され、このろ過ポンプ5の吐出側は曝気部23の上流側へと接続されている。   An aeration blower 27 for supplying aerobic bubbles into the waste water is connected to the aeration unit 23 through an aeration pipe 28. Further, the waste water treatment apparatus 2 has an inflow port 3 connected to a sludge storage unit 25 and a sludge supply pump 26, and a filtration pump 5 is connected to the outflow port 4. The discharge side of the filtration pump 5 is an aeration unit 23. Connected to the upstream side.

まず、有機物を含んだ生活排水などは、調整部1へと供給され、ここで一旦滞留し一定量が曝気部23に流入する。曝気部23の内部は活性汚泥が多く存在する状態となっており、ここで曝気ブロア27から曝気管28を通して水中に酸素を供給し、微生物による有機物の酸化・分解が行われ、その後、活性汚泥を含んだ処理水は沈殿部24へと供給される。沈殿部24では、流れを緩やかにすることにより、排水の中の活性汚泥を自然沈降により、上方の上澄みと下方の沈殿物とに固液分離し、この上澄みが河川または下水に放流水として排出される。   First, domestic wastewater containing organic matter is supplied to the adjustment unit 1, where it temporarily stays and a certain amount flows into the aeration unit 23. The inside of the aeration unit 23 is in a state in which a large amount of activated sludge is present. Here, oxygen is supplied from the aeration blower 27 through the aeration pipe 28 to the water to oxidize and decompose organic matter by microorganisms, and then the activated sludge. The treated water containing is supplied to the sedimentation unit 24. In the sedimentation section 24, by slowing the flow, the activated sludge in the waste water is solid-liquid separated into the upper supernatant and the lower sediment by natural sedimentation, and this supernatant is discharged into the river or sewage as discharge water. Is done.

一方、沈殿物の一部は返送汚泥として曝気部23の上流側に戻され、再び生物処理に利用される。また、残りの沈殿物は余剰汚泥として汚泥貯留部25で一時的に貯留される。汚泥貯留部25に貯留された余剰汚泥は汚泥供給ポンプ26により、排水処理装置2の流入口3へと供給される。排水処理装置2では流入した余剰汚泥をさらに酸化分解し、残った処理水はろ過ポンプ5を介して曝気部23へと戻される。   On the other hand, a part of the sediment is returned to the upstream side of the aeration unit 23 as return sludge and is used again for biological treatment. The remaining sediment is temporarily stored in the sludge storage unit 25 as excess sludge. Excess sludge stored in the sludge storage unit 25 is supplied to the inlet 3 of the wastewater treatment apparatus 2 by the sludge supply pump 26. In the wastewater treatment device 2, the surplus sludge that has flowed in is further oxidized and decomposed, and the remaining treated water is returned to the aeration unit 23 via the filtration pump 5.

なお、上記のようなシステムで余剰汚泥を処理する場合には、排水処理装置2に流入した余剰汚泥は余剰汚泥自体の濃度を上げることにより、汚泥の自己消化により流入汚泥と消化汚泥をバランスさせ新たに余剰汚泥が発生しないようにして発生汚泥量を削減する方法もあるが、流入する余剰汚泥を微生物が餌として処理しやすいように分解する可溶化手段(図示せず)を別途設けることが望ましい。   When surplus sludge is treated by the system as described above, surplus sludge that has flowed into the wastewater treatment device 2 increases the concentration of surplus sludge itself, thereby balancing inflow sludge and digested sludge by self-digestion of sludge. There is also a method of reducing the amount of generated sludge so that no excess sludge is generated. However, a solubilizing means (not shown) may be separately provided to decompose the inflowing excess sludge so that microorganisms can be easily treated as food. desirable.

可溶化手段としては、物理的方法や化学的方法、生物的方法が知られており、物理的方法としては、超音波処理、高速噴流処理、ミル破砕処理等があり、化学的方法として、オゾン酸化処理、熱アルカリ処理、電解処理、水熱処理(高温高圧処理)等が、生物的方法としては好熱細菌処理等があり、これらを組み合わせた方法もあり、いずれの方法を用いてもよい。   As the solubilization means, physical methods, chemical methods, and biological methods are known. As physical methods, there are ultrasonic treatment, high-speed jet treatment, mill crushing treatment, and the like. Biological methods such as oxidation treatment, thermal alkali treatment, electrolytic treatment, hydrothermal treatment (high temperature and high pressure treatment) include thermophilic bacteria treatment, and there is a method combining these, and any method may be used.

また、可溶化処理は余剰汚泥を一旦処理槽6に供給し、処理槽6から吸引して可溶化処理を行い処理槽6に戻す方法で行う。尚、可溶化処理する汚泥の量は処理槽中の余剰汚泥の一部であるため、分解に必要な活性汚泥まで可溶化されることはない。   Further, the solubilization treatment is performed by supplying surplus sludge to the treatment tank 6 once, sucking it from the treatment tank 6, performing the solubilization treatment, and returning it to the treatment tank 6. In addition, since the quantity of the sludge to solubilize is a part of the excess sludge in a processing tank, even the activated sludge required for decomposition | disassembly is not solubilized.

ところで、一般に標準活性汚泥法など生物処理を用いた排水処理システムにおける余剰汚泥は系外に排出され濃縮・脱水の後、焼却や埋立て処分されている。近年この処理には多大な費用がかかるうえ埋立て処分地の不足が深刻な問題となっている。   By the way, in general, surplus sludge in a wastewater treatment system using biological treatment such as the standard activated sludge method is discharged out of the system, and after concentration and dehydration, it is incinerated or disposed of in landfill. In recent years, this treatment is very expensive and the shortage of landfill sites has become a serious problem.

したがって処理費用を根本的に軽減するためには、排水処理系において余剰汚泥の発生量を削減することが求められている。   Therefore, in order to fundamentally reduce treatment costs, it is required to reduce the amount of excess sludge generated in the wastewater treatment system.

しかし、現在一般に用いられている汚泥削減システムは可溶化した余剰汚泥をそのまま曝気部23へと戻して分解処理するため、その削減能力は曝気部の処理性能に依存し、曝気部23の能力に余裕がないと処理水質が悪化するため適用できる処理場が限定されるという課題があった。   However, the sludge reduction system that is currently used generally returns the solubilized surplus sludge to the aeration unit 23 as it is for decomposition, and its reduction capability depends on the processing performance of the aeration unit, and is dependent on the capability of the aeration unit 23. If there is no room, the quality of the treated water deteriorates, so that there is a problem that the applicable treatment plants are limited.

上記課題に対し、本実施の形態の排水処理システムで余剰汚泥を処理することにより、曝気部23の能力によらず、既存の排水処理システムを流用しつつ広く汚泥削減を適用でき、余剰汚泥の処理コストを大幅に低減することができる。   By treating the excess sludge with the wastewater treatment system of the present embodiment, the sludge reduction can be widely applied while diverting the existing wastewater treatment system regardless of the capability of the aeration unit 23. Processing costs can be greatly reduced.

以上のように本発明における排水処理装置とそれを用いた排水処理システムは高い処理性能を有するため、今後の環境事業に大きく貢献するものとなる。   As described above, since the wastewater treatment apparatus and the wastewater treatment system using the wastewater treatment apparatus according to the present invention have high treatment performance, they will greatly contribute to future environmental business.

本発明の排水処理装置の構成と排水処理システムを示すブロック図The block diagram which shows the structure and waste water treatment system of the waste water treatment equipment of this invention 本発明の他の実施形態を示す構成図The block diagram which shows other embodiment of this invention 更に他の実施形態を示す構成図The block diagram which shows other embodiment 更に他の実施形態を示す構成図The block diagram which shows other embodiment 本発明の排水処理システムの他の実施形態を示すブロック図The block diagram which shows other embodiment of the waste water treatment system of this invention. 従来の排水処理装置の一例を示す図The figure which shows an example of the conventional waste water treatment equipment 従来の排水処理装置の一例を示す図The figure which shows an example of the conventional waste water treatment equipment

符号の説明Explanation of symbols

1 調整部
2 排水処理装置
3 流入口
4 流出口
6 処理槽
7 分離膜
8 仕切板
9 揺動床
11 散気管
12、16 幹
13、17 親水枝
15 脱窒床
21 振動体
22 浮子
23 曝気部
24 沈殿部
25 汚泥貯留部
DESCRIPTION OF SYMBOLS 1 Adjustment part 2 Waste water treatment device 3 Inlet 4 Outlet 6 Treatment tank 7 Separation membrane 8 Partition plate 9 Oscillating floor 11 Diffusing pipe 12, 16 Trunk 13, 17 Hydrophilic branch 15 Denitrification bed 21 Vibrator 22 Float 23 Aeration part 24 Sedimentation section 25 Sludge storage section

Claims (14)

排水の流入口と流出口を有する処理槽と、この処理槽内に設けられた分離膜と、この分離膜の下方に設けられた散気管と、この散気管から上方の分離膜に向けて放出される有酸素気泡によって形成される水流の前記分離膜より下流域に設けられた生物担体と、この生物担体を通過後の水流を前記分離膜の上流域へと還流させる還流手段とを備え、前記生物担体が揺動床である排水処理装置。 A treatment tank having an inlet and an outlet for drainage, a separation membrane provided in the treatment tank, an air diffuser provided below the separation membrane, and a discharge from the air diffuser toward the upper separation membrane A biological carrier provided downstream from the separation membrane of the water flow formed by the aerobic bubbles, and a reflux means for refluxing the water flow after passing through the biological carrier to the upstream region of the separation membrane, A wastewater treatment apparatus, wherein the biological carrier is a rocking floor. 還流手段として分離膜の外方に仕切板を設け、この仕切板を介して前記分離膜の反対側に揺動床を配置した請求項1に記載の排水処理装置。 The wastewater treatment apparatus according to claim 1, wherein a partition plate is provided outside the separation membrane as a reflux means, and a swing bed is disposed on the opposite side of the separation membrane via the partition plate. 揺動床は、少なくともその先端側が水流によって揺動する親水枝を有する請求項2記載の排水処理装置。 The wastewater treatment apparatus according to claim 2, wherein the swing floor has a hydrophilic branch that swings at least at a tip end side thereof by a water flow. 仕切板の下端を散気管よりも下方に配置し、散気管と仕切板で形成される流路における揺動床の下流で散気管の上流域に脱窒床を設けた請求項3に記載の排水処理装置。 The lower end of the partition plate is disposed below the diffuser pipe, and a denitrification bed is provided in the upstream area of the diffuser pipe downstream of the rocking bed in the flow path formed by the diffuser pipe and the partition plate. Wastewater treatment equipment. 仕切板の下端より下方に脱窒床を設けた請求項4に記載の排水処理装置。 The waste water treatment apparatus according to claim 4, wherein a denitrification floor is provided below the lower end of the partition plate. 仕切板の下部で仕切板を介して散気管とは反対側に脱窒床を設けた請求項4に記載の排水処理装置。 The waste water treatment apparatus according to claim 4, wherein a denitrification floor is provided at a lower portion of the partition plate through the partition plate on the side opposite to the diffuser pipe. 脱窒床における水流断面積は、揺動床における水流断面積よりも大きくした請求項6に記載の排水処理装置。 The waste water treatment apparatus according to claim 6, wherein the water flow cross-sectional area in the denitrification bed is larger than the water flow cross-sectional area in the rocking bed. 脱窒床は、少なくともその先端側が水流によって揺動する親水枝を有する請求項4に記載の排水処理装置。 The waste water treatment apparatus according to claim 4, wherein the denitrification bed has a hydrophilic branch at least at a tip side thereof that is swung by a water flow. 脱窒床における親水枝の密度は、揺動床における親水枝の密度よりも高くした請求項8に記載の排水処理装置。 The waste water treatment apparatus according to claim 8, wherein the density of the hydrophilic branches in the denitrification bed is higher than the density of the hydrophilic branches in the rocking bed. 揺動床は、仕切板の上端から下端に向けて設けた幹と、この幹に複数設けた親水枝とを備え、前記幹に幹を振動させる振動体を設けた請求項3から9のいずれか一つに記載の排水処理装置。 The swing bed comprises a trunk provided from the upper end to the lower end of the partition plate and a plurality of hydrophilic branches provided on the trunk, and a vibrating body for vibrating the stem is provided on the trunk. The waste water treatment apparatus as described in one. 振動体は、処理槽内の水流の変動を受け幹を振動させる請求項10に記載の排水処理装置。 The wastewater treatment apparatus according to claim 10, wherein the vibrating body vibrates the trunk in response to fluctuations in the water flow in the treatment tank. 振動体は、幹の下端を固定し上端に浮子を設けた請求項10に記載の排水処理装置。 The wastewater treatment apparatus according to claim 10, wherein the vibrator has a lower end of the trunk fixed and a float is provided at the upper end. 処理水が流入する調整部と、この調整部に請求項1から12のいずれか一つに記載の排水処理装置における処理槽の流入口とを接続した排水処理システム。 The waste water treatment system which connected the adjustment part into which a treated water flows in, and the inlet of the processing tank in the waste water treatment apparatus as described in any one of Claim 1 to 12 to this adjustment part. 処理水が流入する調整部と、この調整部の下流に設けた曝気部と、この曝気部の下流に設けた沈殿部と、この沈殿部の下流に設けた汚泥貯留部とを備え、前記沈殿部または前記汚泥貯留部と請求項1から12のいずれか一つに記載の排水処理装置における処理槽の流入口とを接続した排水処理システム。 An adjustment unit into which treated water flows, an aeration unit provided downstream of the adjustment unit, a precipitation unit provided downstream of the aeration unit, and a sludge storage unit provided downstream of the precipitation unit, The wastewater treatment system which connected the part or the said sludge storage part, and the inflow port of the processing tank in the wastewater treatment apparatus as described in any one of Claims 1-12.
JP2005026078A 2005-02-02 2005-02-02 Wastewater treatment apparatus and wastewater treatment system using it Pending JP2006212505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005026078A JP2006212505A (en) 2005-02-02 2005-02-02 Wastewater treatment apparatus and wastewater treatment system using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005026078A JP2006212505A (en) 2005-02-02 2005-02-02 Wastewater treatment apparatus and wastewater treatment system using it

Publications (1)

Publication Number Publication Date
JP2006212505A true JP2006212505A (en) 2006-08-17

Family

ID=36976151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005026078A Pending JP2006212505A (en) 2005-02-02 2005-02-02 Wastewater treatment apparatus and wastewater treatment system using it

Country Status (1)

Country Link
JP (1) JP2006212505A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190485A (en) * 2006-01-19 2007-08-02 Matsushita Electric Ind Co Ltd Wastewater treatment apparatus
JP2013240794A (en) * 2008-11-11 2013-12-05 Kobelco Eco-Solutions Co Ltd Membrane separation activated sludge treatment apparatus, and membrane separation activated sludge treatment method
CN105060465A (en) * 2015-09-11 2015-11-18 江苏兆盛环保集团有限公司 Synchronous carbon and nitrogen removing reactor
JP2020075224A (en) * 2018-11-09 2020-05-21 前澤工業株式会社 Sewage treatment device and method of sewage treatment
CN116282784A (en) * 2023-03-28 2023-06-23 中国电建集团昆明勘测设计研究院有限公司 Black and odorous water body bottom mud harmless treatment device based on aeration fan
WO2023124203A1 (en) * 2021-12-30 2023-07-06 哈尔滨工业大学 Inverted a2/o-gdmbr integrated village and town sewage treatment apparatus with external electric field, and sewage treatment method thereof
GB2619123A (en) * 2022-09-07 2023-11-29 Harbin Inst Technology Integrated inverted A2/O-GDMBR based on external electric field for village sewage treatment device and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190485A (en) * 2006-01-19 2007-08-02 Matsushita Electric Ind Co Ltd Wastewater treatment apparatus
JP2013240794A (en) * 2008-11-11 2013-12-05 Kobelco Eco-Solutions Co Ltd Membrane separation activated sludge treatment apparatus, and membrane separation activated sludge treatment method
CN105060465A (en) * 2015-09-11 2015-11-18 江苏兆盛环保集团有限公司 Synchronous carbon and nitrogen removing reactor
JP2020075224A (en) * 2018-11-09 2020-05-21 前澤工業株式会社 Sewage treatment device and method of sewage treatment
JP7132682B2 (en) 2018-11-09 2022-09-07 前澤工業株式会社 Sewage treatment equipment and sewage treatment method
WO2023124203A1 (en) * 2021-12-30 2023-07-06 哈尔滨工业大学 Inverted a2/o-gdmbr integrated village and town sewage treatment apparatus with external electric field, and sewage treatment method thereof
GB2619123A (en) * 2022-09-07 2023-11-29 Harbin Inst Technology Integrated inverted A2/O-GDMBR based on external electric field for village sewage treatment device and method
CN116282784A (en) * 2023-03-28 2023-06-23 中国电建集团昆明勘测设计研究院有限公司 Black and odorous water body bottom mud harmless treatment device based on aeration fan

Similar Documents

Publication Publication Date Title
JP5665307B2 (en) Organic waste water treatment apparatus and organic waste water treatment method
JP2006212505A (en) Wastewater treatment apparatus and wastewater treatment system using it
JP5366402B2 (en) Water treatment method
JP5581578B2 (en) Membrane cleaning device, membrane separation device, and wastewater treatment device
JPH07155758A (en) Waste water treating device
JP4361432B2 (en) Water treatment equipment
WO2001072643A1 (en) Method and apparatus for treating waste water
JP2014503349A (en) Method, apparatus and membrane bioreactor for wastewater treatment
JP6072254B2 (en) Water treatment equipment
JP5853342B2 (en) Solid-liquid separation module and solid-liquid separation method
JP2014233686A (en) Effluent treatment apparatus
JP2006205155A (en) Anaerobic tank and waste water treatment system including the same
JP2010110718A (en) Method and apparatus for treating organic drainage
JP5448287B2 (en) Membrane separation activated sludge treatment equipment
JP2004322084A (en) Biological filtration system
WO2010101152A1 (en) Device for membrane separation type activated-sludge treatment and method therefor
JP2006167551A (en) Biological treatment apparatus
WO2018051630A1 (en) Membrane-separation activated sludge treatment system
JP2007152282A (en) Membrane separation active sludge treatment method
JPH09103791A (en) Septic tank
JP2007268415A (en) Immersion type membrane separation apparatus and water producing method
JP2007209947A (en) Membrane separation activated sludge process
JP2001062480A (en) Treatment of sewage
JP2006035138A (en) Activated sludge processing equipment
JP2018140388A (en) Wastewater treatment apparatus