JP2006210641A - Apparatus for manufacturing semiconductor, heat treatment apparatus, method of manufacturing semiconductor, and heat treatment method - Google Patents

Apparatus for manufacturing semiconductor, heat treatment apparatus, method of manufacturing semiconductor, and heat treatment method Download PDF

Info

Publication number
JP2006210641A
JP2006210641A JP2005020659A JP2005020659A JP2006210641A JP 2006210641 A JP2006210641 A JP 2006210641A JP 2005020659 A JP2005020659 A JP 2005020659A JP 2005020659 A JP2005020659 A JP 2005020659A JP 2006210641 A JP2006210641 A JP 2006210641A
Authority
JP
Japan
Prior art keywords
space
semiconductor manufacturing
cooling
heat
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005020659A
Other languages
Japanese (ja)
Inventor
Toshiki Nakajima
俊貴 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005020659A priority Critical patent/JP2006210641A/en
Publication of JP2006210641A publication Critical patent/JP2006210641A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for manufacturing a semiconductor and a heat treatment apparatus capable of shortening treatment time, by improving the efficiency of temperature rise and temperature fall while miniaturizing the apparatuses. <P>SOLUTION: The apparatus for manufacturing the semiconductor comprises a process tube 10 having conductive properties and storing a semiconductor; a cylindrical heat insulation/cooling structure 20 for forming a space 23 for covering an outer circumference of the process tube 10 for heat insulation and cooling of the tube 10; an induction heating coil 30 disposed on an outer circumference of the heat insulation/cooling structure 20; an induction heating control circuit 40 for driving the induction heating coil 30; and a fluid introduction passage 71 to the space 23 of the heat insulation/cooling structure 20, and fluid discharge passages 72, 73 from the space 23. The space 23 is switchable to a vacuum state and to a passage state of a cooling medium. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ウェハの酸化や拡散といった半導体の熱処理に関連する処理をなす半導体製造装置、その他の素材の熱処理を行うための熱処理装置、並びにそれらの装置を利用した半導体製造方法及び熱処理方法に関する。   The present invention relates to a semiconductor manufacturing apparatus that performs processing related to heat treatment of a semiconductor such as oxidation and diffusion of a wafer, a heat treatment apparatus for performing heat treatment of other materials, and a semiconductor manufacturing method and a heat treatment method using these apparatuses.

従来の拡散炉、あるいはCVD炉等の熱処理装置では、100枚ものウェハが同時処理できる大型の装置が主流である。それらの従来装置は、大量のウェハを同時処理するためスループットは大きいが、その熱容量が圧倒的に大きいため、昇降温に時間がかかり、安定した温度領域に達するまでには一般的に数十分から1時間以上の時間がかかる。
また、昇温時のエネルギー効率を上げるため反応チューブの断熱を行うと、降温時間が長くなり、また断熱を行わず降温時間を短くした場合は、昇温時および定温時の熱放出が大きく、エネルギー効率が悪くなる上に、クリーンルームへの熱負荷も大きくなるといった問題があった。
このような課題を解決するため、断熱層と風道をそれぞれ設けて空冷を可能とし、それらの外側から誘導加熱を用いて加熱を行う熱処理装置が提案されている(例えば、特許文献1)。
特開2003−174262号公報
In a conventional heat treatment apparatus such as a diffusion furnace or a CVD furnace, a large apparatus that can simultaneously process 100 wafers is the mainstream. These conventional devices process large quantities of wafers at the same time and have high throughput, but their heat capacity is overwhelmingly large, so it takes time to raise and lower the temperature, and generally several tens of minutes to reach a stable temperature range. Takes more than an hour.
In addition, if the heat insulation of the reaction tube is performed to increase the energy efficiency at the time of temperature increase, the temperature decrease time becomes long, and if the temperature decrease time is shortened without performing heat insulation, the heat release at the time of temperature increase and constant temperature is large, In addition to poor energy efficiency, there was a problem that the heat load on the clean room also increased.
In order to solve such a problem, a heat treatment apparatus has been proposed in which a heat insulating layer and an air passage are provided to enable air cooling, and heating is performed from the outside using induction heating (for example, Patent Document 1).
JP 2003-174262 A

しかしながら、断熱層と風道とをそれぞれ設けた構成は、断熱層と空冷層との二重構造となり、誘導コイルとの距離が長くなって加熱効率が悪化し、また装置が大型化するといった新たな問題を生じさせる。
従って、本発明は、装置の小型化を図りつつ、昇温及び降温の効率を向上させて処理時間を短縮することができる、半導体製造装置、熱処理装置、半導体製造方法及び熱処理方法を提供することを目的とするものである。
However, the structure in which the heat insulation layer and the air passage are provided respectively is a double structure of the heat insulation layer and the air cooling layer, the distance from the induction coil becomes long, the heating efficiency is deteriorated, and the apparatus is enlarged. Cause serious problems.
Accordingly, the present invention provides a semiconductor manufacturing apparatus, a heat treatment apparatus, a semiconductor manufacturing method, and a heat treatment method capable of reducing the processing time by improving the temperature raising and lowering efficiency while reducing the size of the apparatus. It is intended.

本発明の半導体製造装置は、半導体を収納する導電性を有したプロセスチューブと、前記プロセスチューブの外周を覆い該チューブの断熱及び冷却に供する空間を形成している断熱兼冷却構造体と、前記断熱兼冷却構造体の外周に配置された誘導加熱コイルと、前記誘導加熱コイルの駆動手段と、前記空間への流体導入路と前記空間からの流体排出路とを備え、前記空間を真空状態と冷却媒体の通過状態とに切り換え可能としているものである。冷却媒体には空気、水又は気化により熱を奪う作用を果たす媒体等が利用できる。
これによれば、昇温時は前記断熱兼冷却構造体の空間を真空状態として断熱性を持たせ、降温時は前記空間に冷却媒体を流すようすることで冷却速度を速めることができるため、プロセスチューブ内の半導体の熱処理における昇温及び降温の時間が短縮される。また、その場合の断熱と冷却に共通の構造体空間が利用される構成のため、半導体製造装置の小型化が可能となる。
The semiconductor manufacturing apparatus of the present invention includes a process tube having conductivity for housing a semiconductor, a heat insulating and cooling structure that covers an outer periphery of the process tube and forms a space for heat insulation and cooling of the tube, An induction heating coil disposed on the outer periphery of the heat insulating and cooling structure; a drive means for the induction heating coil; a fluid introduction path to the space; and a fluid discharge path from the space; It can be switched to the passing state of the cooling medium. As the cooling medium, air, water, or a medium that functions to take heat away by vaporization can be used.
According to this, when the temperature is raised, the space of the heat insulating and cooling structure is in a vacuum state to have heat insulation, and when the temperature is lowered, the cooling rate can be increased by flowing the cooling medium in the space. The time for heating and cooling in the heat treatment of the semiconductor in the process tube is shortened. In addition, since a common structure space is used for heat insulation and cooling in that case, the semiconductor manufacturing apparatus can be downsized.

前記断熱兼冷却構造体は、前記プロセスチューブの外周に嵌合された内側壁と該内側壁に対向する外側壁とを有してなる筒状体から構成できる。
その場合、前記空間に該空間を通過する流体の流れを散乱させる複数のフィンが配置されていることが好ましい。こうすることで、空間内を流れる冷却媒体が空間内において拡散されるため、冷却効率が向上する。
また、前記フィンは前記断熱兼冷却構造体の前記内側壁から突出していることが好ましい。こうすることで、プロセスチューブの冷却時、そのフィンが放熱フィンとしても作用し、冷却効率が向上する。
なお、前記断熱兼冷却構造体は、前記プロセスチューブの外周に巻き回された管材から構成しても良い。
上記装置において、前記流体導入流路に該流路を開閉するバルブを備えるとともに、前記流体排出路を真空ポンプに連通可能としていることが好ましい。これにより、断熱兼冷却構造体の空間を容易に真空状態にしたり、空間に容易に冷却媒体を通すことができる。
また、前記流体導入流路と前記流体排出路は、前記プロセスチューブの先端側と後端側とに隔離された位置において前記空間に連通していることが好ましい。これにより、冷却媒体が断熱兼冷却構造体の空間の全体に行き渡り易くなるので、冷却効率が向上する。
The heat insulating and cooling structure can be constituted by a cylindrical body having an inner wall fitted to the outer periphery of the process tube and an outer wall facing the inner wall.
In that case, it is preferable that a plurality of fins that scatter a flow of fluid passing through the space is arranged in the space. By doing so, the cooling medium flowing in the space is diffused in the space, so that the cooling efficiency is improved.
Moreover, it is preferable that the said fin protrudes from the said inner wall of the said heat insulation and cooling structure. By doing so, when the process tube is cooled, the fin also acts as a heat radiating fin, and the cooling efficiency is improved.
In addition, you may comprise the said heat insulation and cooling structure from the pipe material wound around the outer periphery of the said process tube.
In the above apparatus, it is preferable that the fluid introduction channel includes a valve that opens and closes the channel, and that the fluid discharge channel can communicate with a vacuum pump. Thereby, the space of the heat insulating and cooling structure can be easily evacuated or the cooling medium can be easily passed through the space.
Further, it is preferable that the fluid introduction channel and the fluid discharge channel communicate with the space at a position separated from a front end side and a rear end side of the process tube. As a result, the cooling medium easily spreads over the entire space of the heat insulating and cooling structure, so that the cooling efficiency is improved.

また、前記プロセスチューブは石英チューブの周囲に導電体が被覆されてなるもの、あるいはチューブ全体を導電体から構成してなるもののいずれでも良い。前者は導電体と被熱処理物が隔離されるため、導電体からの金属などによる汚染の影響を少なくでき、後者は熱容量が小さく、昇温、降温の効率が良いという利点を有する。   Further, the process tube may be either a tube in which a conductor is coated around a quartz tube or a tube in which the entire tube is made of a conductor. In the former, since the conductor and the object to be heat-treated are isolated, the influence of contamination by metal or the like from the conductor can be reduced, and the latter has the advantage that the heat capacity is small and the efficiency of temperature rise and fall is good.

本発明の半導体製造方法は、上記の半導体製造装置を利用し、昇温時は前記断熱兼冷却構造体の空間を真空状態とし、降温時は前記空間に冷却媒体を流すようするものである。   The semiconductor manufacturing method of the present invention uses the semiconductor manufacturing apparatus described above, and the space of the heat insulating and cooling structure is evacuated when the temperature is raised, and the cooling medium is allowed to flow through the space when the temperature is lowered.

本発明の熱処理装置は、被熱処理物を収納する導電性を有したプロセスチューブと、前記プロセスチューブの外周を覆い該チューブの断熱及び冷却に供する空間を形成している断熱兼冷却構造体と、前記断熱兼冷却構造体の外周に配置された誘導加熱コイルと、前記誘導加熱コイルの駆動手段と、前記空間への流体導入路と前記空間からの流体排出路とを備え、前記空間を真空状態と冷却媒体の通過状態とに切り換え可能としたものである。
これによれば、プロセスチューブに対して、昇温時は前記断熱兼冷却構造体の空間を真空状態として断熱性を持たせ、降温時は前記空間に冷却媒体を流すようすることで冷却速度を速めることができるため、プロセスチューブ内の被処理物に対する昇温及び降温の時間が短縮される。また、その場合の断熱と冷却に共通の構造体空間が利用される構成のため、熱処理装置の小型化が可能となる。
The heat treatment apparatus of the present invention is a process tube having conductivity for housing the object to be heat treated, a heat insulating and cooling structure that covers the outer periphery of the process tube and forms a space for heat insulation and cooling of the tube, An induction heating coil disposed on the outer periphery of the heat insulating and cooling structure; a drive means for the induction heating coil; a fluid introduction path to the space; and a fluid discharge path from the space; And switching between the cooling medium passing state.
According to this, for the process tube, when the temperature is raised, the space of the heat insulating and cooling structure is in a vacuum state so as to have heat insulation properties, and when the temperature is lowered, the cooling medium is allowed to flow in the space so that the cooling rate is increased. Since it can speed up, the time of temperature rising / falling with respect to the to-be-processed object in a process tube is shortened. In addition, since the structure space common to the heat insulation and cooling in that case is used, the heat treatment apparatus can be downsized.

本発明の熱処理方法は、上記の熱処理装置を用い、昇温時は前記断熱兼冷却構造体の空間を真空状態とし、降温時は前記空間に冷却媒体を流すようするものである。   The heat treatment method of the present invention uses the heat treatment apparatus described above, wherein the space of the heat insulating and cooling structure is evacuated when the temperature is raised, and the cooling medium is allowed to flow through the space when the temperature is lowered.

以下、本発明の実施形態を図を参照しながら詳細に説明する。図1は本発明の実施形態に係る半導体製造装置の全体構成を示す模式図、図2は図1の半導体製造装置のプロセスチューブ部分の径方向に沿う断面を示す模式図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing an overall configuration of a semiconductor manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic diagram showing a cross section along a radial direction of a process tube portion of the semiconductor manufacturing apparatus of FIG.

この半導体製造装置1は、半導体ウェハ又は他の被熱処理物が収納される筒状のプロセスチューブ10、プロセスチューブ10の外周を覆う断熱兼冷却構造体20、断熱兼冷却構造体20の外周の長手方向に沿って巻き回された誘導加熱コイル30、誘導加熱コイル30への電力供給を制御する誘導加熱コイル駆動手段としての誘導加熱制御回路40、被熱処理物をプロセスチューブ10に保持する支持台50を備えてなる。   The semiconductor manufacturing apparatus 1 includes a cylindrical process tube 10 in which a semiconductor wafer or other object to be heat-treated is accommodated, a heat insulating and cooling structure 20 that covers the outer periphery of the process tube 10, and a longitudinal length of the outer periphery of the heat insulating and cooling structure 20. An induction heating coil 30 wound in the direction, an induction heating control circuit 40 as an induction heating coil driving means for controlling power supply to the induction heating coil 30, and a support base 50 for holding the object to be heat treated in the process tube 10. It is equipped with.

プロセスチューブ10は、通常、チューブ本体は1000℃程度の温度にも耐えうる耐熱性部材、ここでは石英11から構成され、その石英チューブ10の外側面に、誘導加熱コイル30で加熱される比較的抵抗の高い導電体12が被膜等されて密着するように取り付けられている。これらの導電体としては、タングステン、モリブデン、タンタル、ニッケル、鉄・クロム合金類、ニッケル・クロム合金類、炭化珪素、黒鉛等が挙げられる。なお、プロセスチューブ10の全体を上記のような導電体から構成しても良い。   In the process tube 10, the tube body is usually made of a heat-resistant member that can withstand a temperature of about 1000 ° C., here, quartz 11, and the outer surface of the quartz tube 10 is heated by an induction heating coil 30. A conductor 12 having high resistance is attached so as to be in close contact with a film or the like. These conductors include tungsten, molybdenum, tantalum, nickel, iron / chromium alloys, nickel / chromium alloys, silicon carbide, graphite and the like. In addition, you may comprise the whole process tube 10 from the above conductors.

断熱兼冷却構造体20は、図2から分かるように、プロセスチューブ10の外周に嵌合された内側壁21と該内側壁21に対向する外側壁22とを有してなる筒状体からなる。そしてそれら内側壁21と外側壁22との間が空間23として形成された構造となっている。この断熱兼冷却構造体20は、その内側壁がプロセスチューブ10の長手方向外周に密着して取り付けられており、その空間23がプロセスチューブ10に対する断熱又は冷却空間として利用される。従って、この断熱兼冷却構造体20は耐熱性に優れた、アルミナ(Al23)、炭化珪素(SiC)等から作られるのが好ましい。
また、空間23には、断熱兼冷却構造体20の内側壁21から複数のフィン24を突起させて、そのフィン24に空間23内を流れる流体を散乱させる作用、及び降温時にプロセスチューブ10から伝わる熱を放熱する作用を持たせるようにするのが好ましい。
As can be seen from FIG. 2, the heat insulating and cooling structure 20 is formed of a cylindrical body having an inner wall 21 fitted to the outer periphery of the process tube 10 and an outer wall 22 facing the inner wall 21. . A space 23 is formed between the inner wall 21 and the outer wall 22. The inner wall of the heat insulating and cooling structure 20 is attached in close contact with the outer periphery in the longitudinal direction of the process tube 10, and the space 23 is used as heat insulating or cooling space for the process tube 10. Therefore, it is preferable that the heat insulating and cooling structure 20 is made of alumina (Al 2 O 3 ), silicon carbide (SiC) or the like having excellent heat resistance.
In addition, a plurality of fins 24 are projected from the inner wall 21 of the heat insulating and cooling structure 20 in the space 23, and the fin 24 is scattered from the fluid flowing in the space 23 and transmitted from the process tube 10 when the temperature is lowered. It is preferable to have a function of radiating heat.

誘導加熱コイル30は、誘導加熱制御回路40により駆動制御されて交流電流が供給されることにより、プロセスチューブ10の導電体12を利用してプロセスチューブ10に発熱を生じさせる作用を果たしている。従って、発熱効率の観点からは、プロセスチューブ10の全体が導電体から構成されているのが好ましい。   The induction heating coil 30 is driven and controlled by the induction heating control circuit 40 and is supplied with an alternating current, so that the process tube 10 generates heat using the conductor 12 of the process tube 10. Therefore, from the viewpoint of heat generation efficiency, it is preferable that the entire process tube 10 is made of a conductor.

誘導加熱制御回路40は、商用電源から交流電力を取り込んでそれを高周波の交流電流に変換し、その高周波交流電流を、必要な時に必要な量だけ誘導加熱コイル30に供給できる機能を備えた回路である。この誘導加熱制御回路40は任意の構成として良いが、例えば、この回路40のON/OFFを行う素子、整流回路、高周波インバータ回路等により構成される。また、先に先行資料として紹介した特許文献1に開示された加熱ユニットの電源部回路することもできる。   The induction heating control circuit 40 is a circuit having a function of taking AC power from a commercial power source and converting it into a high-frequency AC current and supplying the high-frequency AC current to the induction heating coil 30 in a necessary amount when necessary. It is. The induction heating control circuit 40 may have an arbitrary configuration. For example, the induction heating control circuit 40 includes an element for turning on / off the circuit 40, a rectifier circuit, a high-frequency inverter circuit, and the like. In addition, the power supply circuit of the heating unit disclosed in Patent Document 1 introduced as a prior document can be used.

被熱処理物の支持台50は、半導体ウェハなどの被熱処理物が複数保持できるように構成されており、その被熱処理物保持部分がプロセスチューブ10内に自由に挿脱できるようにされている。   The support base 50 for the object to be heat-treated is configured to hold a plurality of objects to be heat-treated such as semiconductor wafers, and the heat-treated object holding part can be freely inserted into and removed from the process tube 10.

プロセスチューブ10には、その一端にプロセスチューブ10の内部にプロセスガスを投入するためのプロセスガス投入管61が、そしてその他端にはプロセスガスを排出するためのプロセスガス排出管62がそれぞれ設けられている。   The process tube 10 is provided with a process gas input pipe 61 for supplying process gas into the process tube 10 at one end, and a process gas discharge pipe 62 for discharging process gas at the other end. ing.

断熱兼冷却構造体20には、その空間23に連通する流体導入路71と流体排出路72、73とが備えられている。流体導入流路71と流体排出路72,73は、前記プロセスチューブ10の先端側と後端側とに隔離された位置において空間23に連通しているようにするのが好ましい。それは、流体導入流路71から導入されて流体排出路72,73から排出される冷却媒体が、空間23の全体によく行き渡るようになるからである。   The heat insulating and cooling structure 20 is provided with a fluid introduction path 71 and fluid discharge paths 72 and 73 communicating with the space 23. The fluid introduction channel 71 and the fluid discharge channels 72 and 73 are preferably communicated with the space 23 at positions separated from the front end side and the rear end side of the process tube 10. This is because the cooling medium introduced from the fluid introduction passage 71 and discharged from the fluid discharge passages 72 and 73 spreads throughout the space 23 well.

流体導入路71には第1バルブ81が設けられ、その流路を開閉可能にしている。また、流体排出路72は真空ポンプ90と接続されており、その流体排出路72には真空ポンプ90に対する連通を開閉する第2バルブ82が設けられている。流体排出路73は流体排出路72から分岐されたもので、熱排気用又は冷却媒体回収用に利用される。流体排出路73にもその流路を開閉する第3バルブ83が設けられている。   A first valve 81 is provided in the fluid introduction path 71 so that the flow path can be opened and closed. The fluid discharge path 72 is connected to the vacuum pump 90, and the fluid discharge path 72 is provided with a second valve 82 that opens and closes communication with the vacuum pump 90. The fluid discharge path 73 is branched from the fluid discharge path 72 and is used for heat exhaust or cooling medium recovery. The fluid discharge path 73 is also provided with a third valve 83 that opens and closes the flow path.

次に、上記半導体製造装置1の使用例を図3の熱処理の一例を示すフローチャートに従って説明する。まず、被熱処理物、例えば半導体ウェハを保持した支持台50を、プロセスチューブ10に挿入して固定する(S1)。続いて、第1バルブ81及び第3バルブ83を閉じ、第2バルブ82を開き、真空ポンプ90を利用して断熱兼冷却構造体20の空間23を大気圧より低い真空状態にする(S2)。続いて、誘導加熱制御回路40を利用して誘導加熱コイル30に電流を供給し、導電体12を発熱させてプロセスチューブ10内の温度を必要な温度まで上昇させて必要な時間その温度を保持する(S3)。なおこのステップS3中、プロセスチューブ10内の温度が熱処理に応じた所定の温度になったところで処理内容に応じたプロセスガスがプロセスガス投入管61からプロセスチューブ10内へ必要量投入される。なお、このプロセスガスはプロセス時間終了後、プロセスガス排出管62から排出される。   Next, a usage example of the semiconductor manufacturing apparatus 1 will be described with reference to a flowchart showing an example of the heat treatment in FIG. First, a support base 50 holding an object to be heat treated, for example, a semiconductor wafer, is inserted into the process tube 10 and fixed (S1). Subsequently, the first valve 81 and the third valve 83 are closed, the second valve 82 is opened, and the space 23 of the heat insulating and cooling structure 20 is brought into a vacuum state lower than the atmospheric pressure by using the vacuum pump 90 (S2). . Subsequently, an electric current is supplied to the induction heating coil 30 using the induction heating control circuit 40, the conductor 12 is heated, the temperature in the process tube 10 is raised to a required temperature, and the temperature is maintained for a required time. (S3). In step S3, when the temperature in the process tube 10 reaches a predetermined temperature corresponding to the heat treatment, a required amount of process gas corresponding to the processing content is charged into the process tube 10 from the process gas charging pipe 61. The process gas is discharged from the process gas discharge pipe 62 after the process time is over.

そして、半導体ウェハに対する高温処理の所定時間が経過した時点で誘導加熱コイル30への電流供給を停止する。その後、第2バルブ82を閉じ、第1バルブ81及び第3バルブ83を開いて空間23の真空状態を解除して、空間23の真空断熱を解除する(S4)。続いて、流体導入路71から空気、水又はその他の冷却媒体を断熱兼冷却構造体20の空間23内に導入し、その空間23の全体を貫いて流体排出路72,73から排出させる(S5)。なお、その排出された冷却媒体は再度冷却されて再利用に供されるようにするのがよい。そして、プロセスチューブ10内の温度が予め定めた温度にまで下がったら、プロセスチューブ10から支持台50を取り出すことで、半導体ウェハの熱処理が完了する(S6)。   Then, the current supply to the induction heating coil 30 is stopped when a predetermined time of the high temperature processing for the semiconductor wafer has elapsed. Thereafter, the second valve 82 is closed, the first valve 81 and the third valve 83 are opened to release the vacuum state of the space 23, and the vacuum insulation of the space 23 is released (S4). Subsequently, air, water or other cooling medium is introduced from the fluid introduction path 71 into the space 23 of the heat insulating and cooling structure 20, and is discharged from the fluid discharge paths 72 and 73 through the entire space 23 (S5). ). It is preferable that the discharged cooling medium is cooled again and reused. And when the temperature in the process tube 10 falls to a predetermined temperature, the heat treatment of the semiconductor wafer is completed by removing the support base 50 from the process tube 10 (S6).

なお、上記におけるプロセスガスとしては、その処理に応じて例えば次のようなものが挙げられる。シリコン熱酸化膜形成処理にあっては酸素又は水素+酸素を反応させた水蒸気、CVDシリコン酸化膜形成処理にあってはテトラエトキシシラン(TEOS)+酸素、CVDシリコン窒化膜形成処理にあってはジクロルシラン(SiH2Cl2)+アンモニア(NH3)、CVDポリシリコン膜形成処理にあってはモノシラン(SiH4)。なお、CVD成膜時は、プロセスチューブ10の内部は減圧されていることが多い。
また、上記における冷却媒体としては、空気、水の他に、気化により熱を奪う作用を果たす媒体、例えば代替フロン(HFCs、HCFCs)等が利用できる。
In addition, as a process gas in the above, the following are mentioned according to the process, for example. In the silicon thermal oxide film formation process, oxygen or hydrogen + oxygen-reacted water vapor, in the CVD silicon oxide film formation process, tetraethoxysilane (TEOS) + oxygen, in the CVD silicon nitride film formation process Dichlorosilane (SiH 2 Cl 2 ) + ammonia (NH 3 ), monosilane (SiH 4 ) in the CVD polysilicon film formation process. During the CVD film formation, the inside of the process tube 10 is often decompressed.
In addition to air and water, the cooling medium in the above can use a medium that acts to remove heat by vaporization, such as alternative CFCs (HFCs, HCFCs).

上記の半導体製造装置を用い、被熱処理物の昇温〜高温維持時には断熱兼冷却構造体20の空間23を真空断熱とすることにより熱効率が向上し、被熱処理物の降温時には断熱兼冷却構造体20の空間23に冷却媒体を流すことにより冷却速度が向上して、プロセスタイムの削減が図れる。また、エネルギー効率が良くなるため、クリーンルームへの熱負荷も少なくて済む。加えて、本装置は、これらの断熱と冷却の異なる機能を1つの断熱兼冷却構造体20を利用して行う構造であるため、装置の小型化が可能となっている。   The above-described semiconductor manufacturing apparatus is used to increase the thermal efficiency by making the space 23 of the heat insulation / cooling structure 20 a vacuum insulation when the temperature of the object to be heat-treated is maintained at a high temperature to a high temperature. By flowing the cooling medium through the 20 spaces 23, the cooling rate is improved and the process time can be reduced. Further, since energy efficiency is improved, the heat load on the clean room can be reduced. In addition, since the present apparatus has a structure in which these functions of heat insulation and cooling are performed using one heat insulating and cooling structure 20, the apparatus can be reduced in size.

ところで、図1では内側壁と外側壁を有した筒状体の断熱兼冷却構造体20を用いた例を示したが、図4に示すような管材の断熱兼冷却構造体20Aとすることもできる。この断熱兼冷却構造体20Aは、プロセスチューブ10の外周の長手方向に沿って複数回巻き回されたチューブなどの管材から構成される。この場合、チューブなどの管材の内側空間が断熱と冷却に供される。したがって、プロセスチューブ10の断熱及び冷却の効率を高める観点からは、この管材をプロセスチューブ10の長手方向において、できるだけ密着させるように巻き付けて断熱兼冷却構造体20Aを構成するのが好ましい。そして、この場合でも、巻き回された管材の一端は流体導入路71に連通させ、管材の他端は流体排出路72,73に連通させる。この管材の断熱兼冷却構造体20Aを用いて図3に示したような動作を行わしめても、筒状体の断熱兼冷却構造体20を用いた場合と略同様の断熱、冷却効果を得ることができる。   By the way, although the example using the cylindrical heat insulation and cooling structure 20 having the inner wall and the outer wall is shown in FIG. 1, it may be a heat insulation and cooling structure 20A of the pipe as shown in FIG. it can. The heat insulating and cooling structure 20A is composed of a tube material such as a tube wound a plurality of times along the longitudinal direction of the outer periphery of the process tube 10. In this case, the inner space of the tube material such as a tube is used for heat insulation and cooling. Therefore, from the viewpoint of improving the heat insulation and cooling efficiency of the process tube 10, it is preferable to form the heat insulation and cooling structure 20 </ b> A by winding the tube material so as to be as close as possible in the longitudinal direction of the process tube 10. Even in this case, one end of the wound pipe is communicated with the fluid introduction path 71, and the other end of the tubing is communicated with the fluid discharge paths 72 and 73. Even if the operation as shown in FIG. 3 is performed using the heat insulating and cooling structure 20A of the tubular material, the heat insulating and cooling effects substantially the same as those when the tubular heat insulating and cooling structure 20 is used can be obtained. Can do.

本発明の装置における熱処理炉に相当する部分は、プロセスチューブと、プロセスチューブの外周を覆い該チューブの断熱及び冷却に供する空間を形成している断熱兼冷却構造体と、断熱兼冷却構造体の外周に配置された誘導加熱コイルとを備えてなる構成であれば良い。従って、図4で用いた管材をプロセスチューブに巻き付けるのではなく、その種の管材を複数本用意し、それらをプロセスチューブの管軸方向と平行に並べて、プロセスチューブの軸方向に沿う外周全体を覆い、それらの管材の内部空間を利用してプロセスチューブの断熱と冷却を行うことができる。このようにすると、冷却媒体の流れが特に良好になるため、冷却効率を一層向上させることができる。   The portion corresponding to the heat treatment furnace in the apparatus of the present invention includes a process tube, a heat insulating and cooling structure that covers the outer periphery of the process tube and forms a space for heat insulation and cooling of the tube, and a heat insulating and cooling structure. What is necessary is just a structure provided with the induction heating coil arrange | positioned on the outer periphery. Therefore, rather than wrapping the tube material used in FIG. 4 around the process tube, prepare a plurality of such tube materials, arrange them in parallel with the tube axis direction of the process tube, and set the entire outer periphery along the axial direction of the process tube. It is possible to cover and insulate and cool the process tube using the internal space of these pipes. In this way, the flow of the cooling medium becomes particularly good, so that the cooling efficiency can be further improved.

上記実施形態で説明した半導体の製造装置及び製造方法は、半導体以外の被熱処理物を対象とした熱処理装置及び熱処理方法にも適用が可能である。
また、本発明の装置の利用対象としては、半導体を含む被熱処理物のアニール、拡散、熱酸化、熱CVD等が挙げられる。
The semiconductor manufacturing apparatus and manufacturing method described in the above embodiment can also be applied to a heat processing apparatus and a heat processing method for an object to be heat processed other than a semiconductor.
Further, the application target of the apparatus of the present invention includes annealing, diffusion, thermal oxidation, thermal CVD and the like of a heat-treated object including a semiconductor.

本発明の実施形態に係る半導体製造装置の全体構成を示す模式図。The schematic diagram which shows the whole structure of the semiconductor manufacturing apparatus which concerns on embodiment of this invention. 図1の装置のプロセスチューブ部分の径方向に沿う断面を示す模式図。The schematic diagram which shows the cross section along the radial direction of the process tube part of the apparatus of FIG. 図1の装置を利用した熱処理の一例を示すフローチャート。The flowchart which shows an example of the heat processing using the apparatus of FIG. 本発明の別の実施形態に係る半導体製造装置の構成を示す模式図。The schematic diagram which shows the structure of the semiconductor manufacturing apparatus which concerns on another embodiment of this invention.

符号の説明Explanation of symbols

1…半導体製造装置(熱処理装置)、10…プロセスチューブ、11…石英、12…導電体、20…筒状体の断熱兼冷却構造体、20A…管材の断熱兼冷却構造体、21…内側壁、22…外側壁、23…空間、24…フィン、30…誘導加熱コイル、40…誘導加熱制御回路、50…支持台、61…プロセスガス投入管、62…プロセスガス排出管、71…流体導入路、72,73…流体排出路、81…第1バルブ、82…第2バルブ、83…第3バルブ、90…真空ポンプ。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor manufacturing apparatus (heat processing apparatus), 10 ... Process tube, 11 ... Quartz, 12 ... Conductor, 20 ... Heat insulation and cooling structure of cylindrical body, 20A ... Heat insulation and cooling structure of pipe material, 21 ... Inner wall , 22 ... outer wall, 23 ... space, 24 ... fin, 30 ... induction heating coil, 40 ... induction heating control circuit, 50 ... support base, 61 ... process gas input pipe, 62 ... process gas discharge pipe, 71 ... fluid introduction Path, 72, 73 ... fluid discharge path, 81 ... first valve, 82 ... second valve, 83 ... third valve, 90 ... vacuum pump.

Claims (14)

半導体を収納する導電性を有したプロセスチューブと、前記プロセスチューブの外周を覆い該チューブの断熱及び冷却に供する空間を形成している断熱兼冷却構造体と、前記断熱兼冷却構造体の外周に配置された誘導加熱コイルと、前記誘導加熱コイルの駆動手段と、前記空間への流体導入路と前記空間からの流体排出路とを備え、
前記空間を真空状態と冷却媒体の通過状態とに切り換え可能としていることを特徴とする半導体製造装置。
A conductive process tube for housing a semiconductor, a heat insulating and cooling structure covering the outer periphery of the process tube to form a space for heat insulation and cooling of the tube, and an outer periphery of the heat insulating and cooling structure; An induction heating coil disposed; drive means for the induction heating coil; a fluid introduction path to the space; and a fluid discharge path from the space;
A semiconductor manufacturing apparatus, wherein the space can be switched between a vacuum state and a cooling medium passage state.
前記断熱兼冷却構造体が、前記プロセスチューブの外周に嵌合された内側壁と該内側壁に対向する外側壁とを有してなる筒状体からなることを特徴とする請求項1記載の半導体製造装置。   The said heat insulation and cooling structure consists of a cylindrical body which has an inner wall fitted to the outer periphery of the said process tube, and an outer wall facing this inner wall. Semiconductor manufacturing equipment. 前記空間に該空間を通過する流体の流れを散乱させる複数のフィンが配置されていることを特徴とする請求項2記載の半導体製造装置。   The semiconductor manufacturing apparatus according to claim 2, wherein a plurality of fins that scatter a flow of fluid passing through the space are arranged in the space. 前記フィンは前記断熱兼冷却構造体の前記内側壁から突出していることを特徴とする請求項3記載の半導体製造装置。   The semiconductor manufacturing apparatus according to claim 3, wherein the fin protrudes from the inner wall of the heat insulating and cooling structure. 前記断熱兼冷却構造体が、前記プロセスチューブの外周に巻き回された管材からなることを特徴とする請求項1記載の半導体製造装置。   The semiconductor manufacturing apparatus according to claim 1, wherein the heat insulating and cooling structure is made of a tube material wound around an outer periphery of the process tube. 前記流体導入流路に該流路を開閉するバルブを備えるとともに、前記流体排出路を真空ポンプに連通可能としていることを特徴とする請求項1ないし5のいずれかに記載の半導体製造装置。   6. The semiconductor manufacturing apparatus according to claim 1, wherein a valve for opening and closing the flow path is provided in the fluid introduction flow path, and the fluid discharge path is capable of communicating with a vacuum pump. 前記流体導入流路と前記流体排出路は、前記プロセスチューブの先端側と後端側とに隔離された位置において前記空間に連通していることを特徴とする請求項6記載の半導体製造装置。   The semiconductor manufacturing apparatus according to claim 6, wherein the fluid introduction channel and the fluid discharge channel communicate with the space at a position separated from a front end side and a rear end side of the process tube. 前記プロセスチューブは石英チューブの周囲に導電体が被覆されてなるものであることを特徴とする請求項1ないし7のいずれかに記載の半導体製造装置。   8. The semiconductor manufacturing apparatus according to claim 1, wherein the process tube is formed by coating a conductor around a quartz tube. 前記プロセスチューブのチューブ全体が導電体からなることを特徴とする請求項1ないし7のいずれかに記載の半導体製造装置。   The semiconductor manufacturing apparatus according to claim 1, wherein the entire tube of the process tube is made of a conductor. 前記冷却媒体が空気又水のいずれかであることを特徴とする請求項1ないし9のいずれかに記載の半導体製造装置。   The semiconductor manufacturing apparatus according to claim 1, wherein the cooling medium is either air or water. 前記冷却媒体が気化により熱を奪う作用を果たす媒体であることを特徴とする請求項1ないし9のいずれかに記載の半導体製造装置。   The semiconductor manufacturing apparatus according to claim 1, wherein the cooling medium is a medium that has a function of removing heat by vaporization. 請求項1ないし11のいずれかに記載の半導体製造装置を用い、昇温時は前記断熱兼冷却構造体の空間を真空状態とし、降温時は前記空間に冷却媒体を流すことを特徴とする半導体製造方法。   12. A semiconductor using the semiconductor manufacturing apparatus according to claim 1, wherein the space of the heat insulating and cooling structure is in a vacuum state when the temperature is raised, and a cooling medium is allowed to flow in the space when the temperature is lowered. Production method. 被熱処理物を収納する導電性を有したプロセスチューブと、前記プロセスチューブの外周を覆い該チューブの断熱及び冷却に供する空間を形成している断熱兼冷却構造体と、前記断熱兼冷却構造体の外周に配置された誘導加熱コイルと、前記誘導加熱コイルの駆動手段と、前記空間への流体導入路と前記空間からの流体排出路とを備え、
前記空間を真空状態と冷却媒体の通過状態とに切り換え可能としていることを特徴とする熱処理装置。
An electrically conductive process tube for housing an object to be heat-treated, an insulation and cooling structure that covers an outer periphery of the process tube and forms a space for heat insulation and cooling of the tube; and An induction heating coil disposed on the outer periphery, driving means for the induction heating coil, a fluid introduction path to the space, and a fluid discharge path from the space,
A heat treatment apparatus characterized in that the space can be switched between a vacuum state and a cooling medium passage state.
請求項13に記載の熱処理装置を用い、昇温時は前記断熱兼冷却構造体の空間を真空状態とし、降温時は前記空間に冷却媒体を流すことを特徴とする熱処理方法。
A heat treatment method using the heat treatment apparatus according to claim 13, wherein the space of the heat insulating and cooling structure is in a vacuum state when the temperature is raised, and a cooling medium is flowed into the space when the temperature is lowered.
JP2005020659A 2005-01-28 2005-01-28 Apparatus for manufacturing semiconductor, heat treatment apparatus, method of manufacturing semiconductor, and heat treatment method Withdrawn JP2006210641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005020659A JP2006210641A (en) 2005-01-28 2005-01-28 Apparatus for manufacturing semiconductor, heat treatment apparatus, method of manufacturing semiconductor, and heat treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005020659A JP2006210641A (en) 2005-01-28 2005-01-28 Apparatus for manufacturing semiconductor, heat treatment apparatus, method of manufacturing semiconductor, and heat treatment method

Publications (1)

Publication Number Publication Date
JP2006210641A true JP2006210641A (en) 2006-08-10

Family

ID=36967141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005020659A Withdrawn JP2006210641A (en) 2005-01-28 2005-01-28 Apparatus for manufacturing semiconductor, heat treatment apparatus, method of manufacturing semiconductor, and heat treatment method

Country Status (1)

Country Link
JP (1) JP2006210641A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225691A (en) * 2011-04-15 2012-11-15 Toshiba Corp Oxidation treatment apparatus and oxidation treatment method
CN116666321A (en) * 2023-07-25 2023-08-29 天津中科晶禾电子科技有限责任公司 Temperature maintaining device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225691A (en) * 2011-04-15 2012-11-15 Toshiba Corp Oxidation treatment apparatus and oxidation treatment method
CN116666321A (en) * 2023-07-25 2023-08-29 天津中科晶禾电子科技有限责任公司 Temperature maintaining device
CN116666321B (en) * 2023-07-25 2023-10-27 天津中科晶禾电子科技有限责任公司 Temperature maintaining device

Similar Documents

Publication Publication Date Title
CN102468208B (en) Chuck and semiconductor processing device
CN104106128A (en) Methods and apparatus for selective oxidation of a substrate
KR20160105470A (en) Pecvd ceramic heater with wide range of operating temperatures
TW200845211A (en) Oxide etch with NH3-NF3 chemistry
KR20030093439A (en) Gas heating apparatus for chemical vapor deposition process and semiconductor device fabrication method using the same
TWI722238B (en) Steam oxidation initiation for high aspect ratio conformal radical oxidation
JP2013021382A (en) Coaxial cable
JP5096047B2 (en) Microwave plasma processing apparatus and microwave transmission plate
TW201234934A (en) Plasma processing apparatus with reduced effects of process chamber asymmetry
KR102603029B1 (en) Heat treatment method and heat treatment apparatus
JP2006210641A (en) Apparatus for manufacturing semiconductor, heat treatment apparatus, method of manufacturing semiconductor, and heat treatment method
JP4669465B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, heating apparatus, and heat insulating material
KR101254531B1 (en) In-line heater unit for heating a fluid for manufacturing the semiconductor
KR101212575B1 (en) In-line heater unit for heating a fluid for manufacturing the semiconductor
TWI716441B (en) Method for fabricating nanowires for horizontal gate all around devices for semiconductor applications
JP4180424B2 (en) Substrate processing apparatus, substrate processing method, and IC manufacturing method
WO2011110369A1 (en) Apparatus for thermally treating semiconductor substrates
KR20220108111A (en) Dual plasma pre-clean for selective gap filling
JP5686467B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
TW201117300A (en) Heating device, substrate processing apparatus, and method of manufacturing semiconductor device
JP2004071596A (en) Heat treatment apparatus
JP2011103469A (en) Substrate processing apparatus, method of manufacturing semiconductor device, heating device, and heat insulating material
US785535A (en) Electric furnace.
JPH08195351A (en) Semiconductor reaction oven
JP2004006654A (en) Processing apparatus and processing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080401