JP2006210196A - Metal particle composite structure and its manufacturing method, and anisotropic conductive membrane using it - Google Patents

Metal particle composite structure and its manufacturing method, and anisotropic conductive membrane using it Download PDF

Info

Publication number
JP2006210196A
JP2006210196A JP2005022096A JP2005022096A JP2006210196A JP 2006210196 A JP2006210196 A JP 2006210196A JP 2005022096 A JP2005022096 A JP 2005022096A JP 2005022096 A JP2005022096 A JP 2005022096A JP 2006210196 A JP2006210196 A JP 2006210196A
Authority
JP
Japan
Prior art keywords
metal
base material
anisotropic conductive
particles
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005022096A
Other languages
Japanese (ja)
Other versions
JP4517290B2 (en
Inventor
Kazumasa Okada
一誠 岡田
Kohei Shimoda
浩平 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005022096A priority Critical patent/JP4517290B2/en
Publication of JP2006210196A publication Critical patent/JP2006210196A/en
Application granted granted Critical
Publication of JP4517290B2 publication Critical patent/JP4517290B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal particle composite structure by which an anisotropic conductive membranes or the like can be easily manufactured, and its effective manufacturing method, and the anisotropic conductive membranes which are manufactured by using the metal particle composite structure, which are homogeneous all over the whole face, and which have anisotropic conductive characteristics. <P>SOLUTION: The metal particle composite structure 1 has a shape in which liquid droplets are face-contacted with the surface of the base material 2, and the metal particles 3 in which the particle diameter in the surface direction is 0.1-20 μm are separately distributed on the surface of the base material 2 so that they are not connected to each other. In this manufacturing method, a coating film containing metal fine particles of the primary particle diameter 200 nm or less on the surface of the base material 2, and this is heat-treated at temperatures of 200 degrees or more and less than the melting point of the metal, and the metal fine particles are coagulated in liquid droplet state, and the metal particles 3 are formed. As for the anisotropic conductive membranes, the coating solution containing an insulating binder is applied on the base material 2 and solidified to form the film and distribution state on the base material 2 of numerous metal particles 3 is fixed in the film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば異方導電膜等として使用可能な金属粒子複合構造体と、その効率的な製造方法と、かかる金属粒子複合構造体を用いた異方導電膜とに関するものである。   The present invention relates to a metal particle composite structure that can be used as, for example, an anisotropic conductive film, an efficient manufacturing method thereof, and an anisotropic conductive film using the metal particle composite structure.

例えば、フレキシブルプリント配線板(FPC)等の導体回路に設けた、実装用の電極上に、半導体パッケージを、いわゆるフリップチップボンディングなどによって実装したり、あるいは、2つ以上のFPCの導体回路同士を、接続部分に設けた電極を介して接続したりするエレクトロニクス実装の分野においては、高密度実装化が進んでおり、隣接する電極間のピッチがますます狭くなる傾向にある。   For example, a semiconductor package is mounted on a mounting electrode provided in a conductor circuit such as a flexible printed circuit board (FPC) by so-called flip chip bonding, or two or more FPC conductor circuits are connected to each other. In the field of electronics mounting in which connections are made via electrodes provided in the connection portion, high-density mounting is progressing, and the pitch between adjacent electrodes tends to become narrower.

エレクトロニクス実装における実装方法の1つに、熱接着性を有するフィルム状の異方導電膜を用いる方法がある(例えば、特許文献1、2参照)。異方導電膜は、通常は、粉末状の導電成分を、個々の導電成分間を絶縁する絶縁性と、導電成分を保持して膜を形成する機能(成膜性)と、さらに必要に応じて、熱接着するための接着剤としての機能(接着性)とを兼ね備えた、熱可塑性樹脂や硬化性樹脂等のバインダからなる膜中(接着性は、上記膜に積層してもよい接着層によって機能分離することができる)に分散させた構造を有する。   As one of mounting methods in electronics mounting, there is a method using a film-like anisotropic conductive film having thermal adhesiveness (see, for example, Patent Documents 1 and 2). Anisotropic conductive film usually has a powdery conductive component, an insulating property that insulates between the individual conductive components, a function of forming a film while holding the conductive component (film forming property), and further if necessary In a film made of a binder such as a thermoplastic resin or a curable resin, which also has a function (adhesiveness) as an adhesive for thermal bonding (adhesive layer may be laminated on the film) Can be separated by function).

上記の構造を有する異方導電膜は、導電成分と固形のバインダとを、当該バインダを溶解する溶媒とともに所定の割合で配合して塗布液を形成し、この塗布液を、下地上に塗布して塗膜を形成すると共に、乾燥させて溶媒を除去することで固化させたのち、下地からはく離することで製造される。また、異方導電膜は、例えば、バインダとして液状の硬化性樹脂等を用いることで溶媒を省略した塗布液を、下地上に塗布した後、硬化性樹脂を半硬化させて固形化することでも製造できる。   The anisotropic conductive film having the above structure forms a coating solution by blending a conductive component and a solid binder together with a solvent that dissolves the binder in a predetermined ratio, and this coating solution is applied onto a base. In addition to forming a coating film, the film is dried and solidified by removing the solvent, and then peeled off from the base. Further, the anisotropic conductive film may be formed by, for example, applying a coating solution in which a solvent is omitted by using a liquid curable resin or the like as a binder on a base, and then solidifying the curable resin by semi-curing. Can be manufactured.

また、異方導電膜においては、熱接着した際に隣り合う電極間が短絡するのを防止するため、膜の面方向の導電抵抗(「絶縁抵抗」という)が高くなるように、導電成分の分布密度を調整しておく。そして、導電接続したいFPCと半導体パッケージの間や、あるいはFPC同士の間に異方導電膜を挟んだ状態で熱接着を行うと、異方導電膜が、熱接着時の加熱、加圧によって厚み方向に圧縮されることで、当該厚み方向の導電成分の分布密度が上昇して、導電成分同士が互いに近接もしくは接触して導電ネットワークを形成する結果、厚み方向の導電抵抗(「接続抵抗」という)が低くなる。   In an anisotropic conductive film, in order to prevent short-circuiting between adjacent electrodes when thermally bonded, the conductive component of the conductive component is increased so that the conductive resistance in the surface direction of the film (referred to as “insulation resistance”) is increased. Adjust the distribution density. When heat bonding is performed with the anisotropic conductive film sandwiched between the FPC and the semiconductor package to be conductively connected or between the FPCs, the anisotropic conductive film is heated and pressed during heat bonding. By compressing in the direction, the distribution density of the conductive component in the thickness direction increases, and the conductive components come close to or in contact with each other to form a conductive network. As a result, the conductive resistance in the thickness direction (referred to as “connection resistance”) ) Becomes lower.

しかし、この際、異方導電膜の、面方向における導電成分の分布密度は増加しない。つまり、面方向は、絶縁抵抗が高く導電率が低い初期の状態を維持する。そのため、異方導電膜の、面方向の絶縁抵抗によって、隣り合う電極間の絶縁を維持して短絡を防止しながら、厚み方向の接続抵抗によって、多数の電極−バンプ間、電極−電極間を一度に、そして、それぞれ独立して導電接続することができる。それとともに、FPCと半導体パッケージの間、あるいはFPC同士の間を、異方導電膜を介して、熱接着によって固定できるため、実装作業が容易である。   However, at this time, the distribution density of the conductive component in the plane direction of the anisotropic conductive film does not increase. That is, the surface direction maintains an initial state where the insulation resistance is high and the conductivity is low. Therefore, the insulation resistance in the surface direction of the anisotropic conductive film maintains the insulation between the adjacent electrodes to prevent short circuit, while the connection resistance in the thickness direction causes a large number of electrodes-bumps, and between the electrodes-electrodes. Conductive connections can be made at once and independently of each other. At the same time, since the FPC and the semiconductor package or between the FPCs can be fixed by thermal bonding via an anisotropic conductive film, the mounting operation is easy.

異方導電膜中に含まれる導電成分としては、例えば、その粒径が数μm〜数十μm程度で、かつ形状が、粒状、球状、薄片状(鱗片状、フレーク状)などであるNi粉末や、あるいは表面に金メッキを施した樹脂粉末などの、種々の金属粉末が実用化されている。しかし、従来の異方導電膜は、前記のように、導電成分を配合した塗布液を、下地上に塗布して乾燥、固化させるか、または半硬化させたのち、下地からはく離する等して製造されるため、異方導電膜の全面に亘って、均一で、かつ良好な異方導電特性を得るのが難しいという問題がある。   As the conductive component contained in the anisotropic conductive film, for example, Ni powder having a particle size of about several μm to several tens of μm, and the shape is granular, spherical, flaky (flaky, flaky), etc. In addition, various metal powders such as resin powders whose surfaces are gold-plated have been put into practical use. However, as described above, the conventional anisotropic conductive film is formed by applying a coating liquid containing a conductive component on a base and drying, solidifying, or semi-curing, and then peeling off from the base. Since it is manufactured, there is a problem that it is difficult to obtain uniform and good anisotropic conductive characteristics over the entire surface of the anisotropic conductive film.

すなわち、上記のように、粒径の小さい金属粉末等の導電成分を、通常は、バインダとして樹脂分を含むため、比較的、粘度の高い塗布液中に均一に分散させるのは容易でなく、導電成分の分散が不十分であると、製造した異方導電膜中に、導電成分の凝集塊を生じて、隣り合う電極間の絶縁を維持することができずに絶縁不良を生じたり、凝集塊以外の部分で導電成分の分布密度が不足して、電極−バンプ間、電極−電極間を確実に導電接続できなくなったりするおそれがある。   That is, as described above, a conductive component such as a metal powder having a small particle size usually contains a resin component as a binder, so it is not easy to uniformly disperse in a relatively high viscosity coating solution, If the dispersion of the conductive component is insufficient, an agglomeration of the conductive component occurs in the manufactured anisotropic conductive film, and insulation between adjacent electrodes cannot be maintained, resulting in poor insulation or aggregation. There is a possibility that the distribution density of the conductive component is insufficient in a portion other than the lump, and the conductive connection between the electrode and the bump and between the electrode and the electrode cannot be reliably established.

そこで、比表面積が大きいため塗布液中に均一に分散させやすい鎖状の金属粉末を、導電成分として用いて、異方導電膜を製造することが提案されている(特許文献3参照)。また、この特許文献3には、異方導電膜の異方導電特性をさらに向上するために、上記鎖状の金属粉末の少なくとも一部を、Ni等の磁性材料によって形成すると共に、下地面と交差する方向に磁場を印加した下地上に散布して、磁場の方向に配向させた状態で、バインダを含む塗布液を塗布し、固化させて、バインダからなる膜を形成することで、多数の金属粉末の、基材上での分布状態を、上記膜中に固定して異方導電膜を製造することも記載されている。   In view of this, it has been proposed to manufacture an anisotropic conductive film using a chain metal powder that has a large specific surface area and is easily dispersed uniformly in a coating solution as a conductive component (see Patent Document 3). Further, in Patent Document 3, in order to further improve the anisotropic conductive characteristics of the anisotropic conductive film, at least a part of the chain metal powder is formed of a magnetic material such as Ni, By spraying on the base to which the magnetic field is applied in the intersecting direction and orienting it in the direction of the magnetic field, a coating solution containing a binder is applied and solidified to form a film made of a binder. It also describes that an anisotropic conductive film is produced by fixing the distribution state of the metal powder on the substrate in the film.

上記の製造方法によれば、異方導電膜中に含まれる多数の、鎖状の金属粉末を、膜の厚み方向に配向させることができる。そのため、異方導電膜の異方導電特性を向上することができる。また、磁場を印加した下地上に散布された多数の金属粉末のうち、下地面と直接に接触する第1層目の、多数の金属粉末は、いずれも、同じ極性に磁化されるため、隣り合うもの同士の間の磁気的な斥力により、互いに、ほぼ等間隔を維持した状態で、下地上に分布する。   According to said manufacturing method, many chain-shaped metal powder contained in an anisotropic electrically conductive film can be orientated in the thickness direction of a film | membrane. Therefore, the anisotropic conductive characteristics of the anisotropic conductive film can be improved. In addition, among the many metal powders dispersed on the base to which a magnetic field is applied, the many metal powders in the first layer that are in direct contact with the base surface are all magnetized to the same polarity, so that they are adjacent to each other. Due to the magnetic repulsive force between the matching objects, they are distributed on the base in a state where they are maintained at approximately equal intervals.

そのため、この第1層目の金属粉末の上に、さらに金属粉末を散布することにより、第1層目の金属粉末の上側の端部からさらに上方に、磁場の方向に沿って、直鎖状または分岐鎖状に連なって形成される、複数の金属粉末による導電ネットワークを、下地の面方向に、分布の不均一や凝集塊等を生じることなく、ほぼ均一に分布させることができる。
特開平6−102523号公報(第0009欄、第0010欄、図2) 特開平8−115617号公報(第0003欄〜第0006欄、図1) 特開2003−331951号公報(請求項1、16、第0020欄、第0039欄〜第0040欄)
Therefore, by further spreading the metal powder on the metal powder of the first layer, a linear shape is formed along the direction of the magnetic field further upward from the upper end of the metal powder of the first layer. Alternatively, a conductive network made of a plurality of metal powders formed in a chained manner can be distributed almost uniformly in the surface direction of the base without causing non-uniform distribution or aggregates.
JP-A-6-102523 (column 0009, column 0010, FIG. 2) JP-A-8-115617 (Columns 0003 to 0006, FIG. 1) JP 2003-331951 A (Claims 1, 16, columns 0020, columns 0039 to 0040)

ところが、発明者が検討したところ、上記特許文献3に記載の方法で異方導電膜を製造するためには、下地面と交差する方向に磁場を印加することで、前記のように、鎖状の金属粉末を、下地面に、均一に分布させるために、磁石が必要である分、製造コストが高くつくという問題があることが明らかとなった。   However, as a result of investigation by the inventors, in order to manufacture the anisotropic conductive film by the method described in Patent Document 3, a magnetic field is applied in a direction intersecting the base surface, and as described above, a chain shape is formed. In order to uniformly distribute the metal powder on the base surface, it has become clear that there is a problem that the manufacturing cost is high because a magnet is required.

本発明の目的は、その全面に亘って、均一で、かつ良好な異方導電特性を有する異方導電膜等を、比較的、容易、かつ安価に製造することができる、新規な、金属粒子複合構造体と、その効率的な製造方法とを提供することにある。また、本発明の他の目的は、上記の金属粒子複合構造体を用いて製造され、その全面に亘って、均一で、かつ良好な異方導電特性を有する異方導電膜を提供することにある。   An object of the present invention is to provide a novel metal particle capable of manufacturing an anisotropic conductive film having uniform and good anisotropic conductive characteristics over the entire surface thereof relatively easily and inexpensively. An object of the present invention is to provide a composite structure and an efficient manufacturing method thereof. Another object of the present invention is to provide an anisotropic conductive film which is manufactured using the above metal particle composite structure and has uniform and good anisotropic conductive characteristics over the entire surface. is there.

請求項1記載の発明は、基材と、この基材の表面に、互いに接触しないように離間して分布される、多数の金属粒子とを備え、個々の金属粒子が、液滴を基材の表面に面接触させた形状を有すると共に、それぞれの金属粒子の、基材の表面方向の粒径が0.1〜20μmであることを特徴とする金属粒子複合構造体である。   The invention according to claim 1 includes a base material and a large number of metal particles distributed on the surface of the base material so as not to contact each other, and each of the metal particles includes a droplet. The metal particle composite structure is characterized in that each of the metal particles has a shape in surface contact with the surface of the substrate, and the particle size in the surface direction of the substrate is 0.1 to 20 μm.

請求項2記載の発明は、請求項1記載の金属粒子複合構造体を製造する方法であって、一次粒子径200nm以下の金属微粒子を含む分散液を、基材の表面に塗布し、乾燥させて塗膜を形成する工程と、形成した塗膜を、200℃以上で、かつ金属微粒子を形成する金属の融点未満の温度で熱処理して、塗膜中に分散する多数の金属微粒子を液滴状に凝集させることによって、基材の表面に、互いに接触しないように離間して分布した状態で、多数の金属粒子を生成させることを特徴とする金属粒子複合構造体の製造方法である。   The invention according to claim 2 is a method for producing the metal particle composite structure according to claim 1, wherein a dispersion containing fine metal particles having a primary particle diameter of 200 nm or less is applied to the surface of the substrate and dried. The step of forming a coating film and the formed coating film are heat-treated at a temperature of 200 ° C. or higher and lower than the melting point of the metal forming the metal fine particles, and a large number of metal fine particles dispersed in the coating film are dropped. The metal particle composite structure manufacturing method is characterized in that a large number of metal particles are generated on the surface of the base material by being agglomerated in a state of being separated and distributed so as not to contact each other.

請求項3記載の発明は、請求項1記載の金属粒子複合構造体の基材上に、絶縁性のバインダを含む塗布液を塗布し、固化させて、バインダからなる膜を形成することで、多数の金属粒子の、基材上での分布状態を、上記膜中に固定したことを特徴とする異方導電膜である。   The invention according to claim 3 is to apply a coating liquid containing an insulating binder on the base material of the metal particle composite structure according to claim 1 and solidify to form a film made of the binder. An anisotropic conductive film characterized in that a distribution state of a large number of metal particles on a substrate is fixed in the film.

請求項1記載の発明の金属粒子複合構造体においては、多数の金属粒子が、いずれも、基材の表面方向の粒径が0.1〜20μmという微細な、そして、液滴を基材の表面に面接触させた安定な形状に形成されていると共に、基材の表面に、あらかじめ、互いに接触しないように離間して、ほぼ均等に分布された状態で形成される。そのため、その全面に亘って、均一で、かつ良好な異方導電特性を有する異方導電膜を、磁石等を必要とせずに、容易、かつ安価に製造することが可能となる。   In the metal particle composite structure according to the first aspect of the present invention, many of the metal particles are all fine particles having a particle size of 0.1 to 20 μm in the surface direction of the substrate, and droplets are formed on the substrate. In addition to being formed in a stable shape in surface contact with the surface, it is formed on the surface of the base material so as not to contact each other in advance and in a substantially evenly distributed state. Therefore, an anisotropic conductive film having uniform and good anisotropic conductive characteristics over the entire surface can be easily and inexpensively manufactured without requiring a magnet or the like.

また、請求項2記載の発明によれば、上記金属粒子のもとになる、一次粒子径が200nm以下の微細な金属微粒子を含む分散液を、基材の表面に塗布して塗膜を形成した後、200℃以上で、かつ金属微粒子を形成する金属の融点未満の温度で熱処理して、塗膜中に分散する多数の金属微粒子を液滴状に凝集させるだけで、請求項1記載の発明の金属粒子複合構造体を、効率的に製造することができる。これは、上記温度範囲の熱処理をした際に、塗膜中の多数の金属微粒子が、いわゆる久保効果によって、液体のような挙動をして、複数個ずつ、液滴状に凝集する結果、液滴が基材の表面に付着した形状を有する金属粒子が形成されるという知見に基づくものである。   According to the invention described in claim 2, a coating liquid is formed by applying a dispersion containing fine metal fine particles having a primary particle diameter of 200 nm or less, which is the basis of the metal particles, to the surface of the substrate. Then, heat treatment is performed at a temperature of 200 ° C. or higher and lower than the melting point of the metal forming the metal fine particles, and a large number of metal fine particles dispersed in the coating film are simply aggregated in droplets. The metal particle composite structure of the invention can be produced efficiently. This is because when a heat treatment in the above temperature range is performed, a large number of fine metal particles in the coating film behave like a liquid due to the so-called Kubo effect and agglomerate into a plurality of droplets one by one. This is based on the knowledge that metal particles having a shape in which droplets adhere to the surface of the substrate are formed.

また、請求項2記載の発明によれば、出発原料としての金属微粒子の粒径、基材の種類や表面状態、熱処理の温度や時間等の条件を調整することで、生成する金属粒子の、基材の表面方向の粒径や、基材表面での、隣り合う金属粒子間の距離等を調整することができる。そのため、製造した金属粒子複合構造体を用いて形成する異方導電膜の異方導電特性等を、容易に調整できるという利点もある。   Moreover, according to the invention of claim 2, by adjusting conditions such as the particle size of the metal fine particles as the starting material, the type and surface state of the base material, the temperature and time of the heat treatment, The particle diameter in the surface direction of the substrate, the distance between adjacent metal particles on the substrate surface, and the like can be adjusted. Therefore, there also exists an advantage that the anisotropic conductive characteristic etc. of the anisotropic conductive film formed using the manufactured metal particle composite structure can be adjusted easily.

さらに、請求項3記載の発明の異方導電膜は、請求項1記載の発明の金属粒子複合構造体を用いて形成されるため、その全面に亘って、均一で、かつ良好な異方導電特性を有するものとなる。   Furthermore, since the anisotropic conductive film of the invention of claim 3 is formed using the metal particle composite structure of the invention of claim 1, it is uniform and good anisotropic conductive over the entire surface. It has characteristics.

〈金属粒子複合構造体とその製造方法〉
図1は、本発明の実施例1で製造した金属粒子複合構造体1の一部を拡大した走査型電子顕微鏡写真、図2は、上記実施例1の金属粒子複合構造体1の一部をさらに拡大した走査型電子顕微鏡写真、図3は、上記実施例1の金属粒子複合構造体1のうち、基材2上に形成された1つの金属粒子3を側面から見た状態を示す走査型電子顕微鏡写真である。
<Metal particle composite structure and manufacturing method thereof>
FIG. 1 is an enlarged scanning electron micrograph of a part of the metal particle composite structure 1 manufactured in Example 1 of the present invention, and FIG. 2 is a part of the metal particle composite structure 1 of Example 1 described above. Further enlarged scanning electron micrograph, FIG. 3 is a scanning type showing a state in which one metal particle 3 formed on the substrate 2 in the metal particle composite structure 1 of Example 1 is viewed from the side. It is an electron micrograph.

図1および図2を参照して、金属粒子複合構造体1は、基材2と、この基材2の表面に、互いに接触しないように離間して分布された、多数の金属粒子3とを備えている。また、図3を参照して、個々の金属粒子3は、それぞれ、液滴を基材2の表面20に面接触させた形状に形成されている。   1 and 2, a metal particle composite structure 1 includes a base material 2 and a large number of metal particles 3 distributed on the surface of the base material 2 so as not to contact each other. I have. Referring to FIG. 3, each metal particle 3 is formed in a shape in which a droplet is brought into surface contact with the surface 20 of the substrate 2.

上記金属粒子3の、基材2の表面方向の粒径は、0.1〜20μmの範囲に限定される。粒径が0.1μm未満である金属粒子3を、基材2の表面に均一に分布させた状態で形成することは、実質的に困難である。また、形成できたとしても、個々の金属粒子3が、物理的、あるいは化学的に不安定なものとなってしまう。特に、金属粒子3を形成する金属の融点未満の温度で変形したり、基材2上を移動したりしやすくなって、良好な分布状態を維持できないという問題を生じる(これも、先に述べた久保効果による)。   The particle size of the metal particles 3 in the surface direction of the substrate 2 is limited to a range of 0.1 to 20 μm. It is substantially difficult to form the metal particles 3 having a particle size of less than 0.1 μm in a state of being uniformly distributed on the surface of the substrate 2. Moreover, even if it can form, each metal particle 3 will become a thing physically or chemically unstable. In particular, the metal particles 3 are easily deformed at a temperature lower than the melting point of the metal or move on the base material 2 to cause a problem that a good distribution state cannot be maintained (also described above). Takubo effect).

一方、粒径が20μmを超える場合には、本発明の金属粒子複合構造体1を用いて異方導電膜を形成した際に、当該異方導電膜の面方向の絶縁抵抗が低くなって、隣り合う電極間の絶縁を維持することができずに絶縁不良を生じると言う問題がある。これらの問題が発生するのをより確実に防止して、良好な異方導電特性を有する異方導電膜等を形成すること等を考慮すると、金属粒子3の、基材2の表面方向の粒径は、上記の範囲内でも、特に、2〜10μmであるのが好ましい。   On the other hand, when the particle diameter exceeds 20 μm, when the anisotropic conductive film is formed using the metal particle composite structure 1 of the present invention, the insulation resistance in the surface direction of the anisotropic conductive film becomes low, There is a problem that insulation between adjacent electrodes cannot be maintained and insulation failure occurs. In consideration of more reliably preventing these problems from occurring and forming an anisotropic conductive film having good anisotropic conductive characteristics, etc., the particles of the metal particles 3 in the surface direction of the substrate 2 Even in the above range, the diameter is particularly preferably 2 to 10 μm.

なお、本発明では、金属粒子3の、基材2の表面方向の粒径を、下記の方法で求められる粒径の平均値でもって規定することとする。すなわち、基材2上の、任意の複数個所において、当該基材2の、金属粒子3が分布された表面の走査型電子顕微鏡写真を撮影し、撮影した写真の、実際の寸法が100×125μmである矩形状の領域内に写された全ての金属粒子3について、画像解析によって面積を求める。そして、求めた面積と一致する面積を有する仮想円の直径を算出して、個々の金属粒子3の、基材2の表面方向の粒径とし、そのようにして求めた全ての金属粒子3の粒径の平均値を算出して、その金属粒子複合構造体1における、金属粒子3の、基材2の表面方向の粒径とする。   In the present invention, the particle size of the metal particles 3 in the surface direction of the substrate 2 is defined by the average value of the particle sizes obtained by the following method. That is, a scanning electron micrograph of the surface of the base material 2 on which the metal particles 3 are distributed is taken at an arbitrary plurality of locations on the base material 2, and the actual size of the photograph taken is 100 × 125 μm. For all the metal particles 3 copied in the rectangular region, the area is obtained by image analysis. And the diameter of the virtual circle which has an area which corresponds to the calculated | required area is calculated, it is set as the particle size of the surface direction of the base material 2 of each metal particle 3, and it calculates | requires of all the metal particles 3 calculated | required in that way. The average value of the particle diameters is calculated to be the particle diameter in the surface direction of the base material 2 of the metal particles 3 in the metal particle composite structure 1.

金属粒子3を形成する金属としては、金属粒子複合構造体1の用途に応じて、その用途において、金属粒子3に求められる機能を満足する種々の金属が、いずれも使用可能である。例えば、本発明の金属粒子複合構造体1を用いて異方導電膜を形成する場合には、金属粒子3を、白金、金、銀、銅、パラジウム、ルテニウム、ロジウム、イリジウム、およびオスミウムからなる群より選ばれた少なくとも1種の金属またはその合金などの、導電性に優れた金属によって形成すればよい。   As the metal that forms the metal particles 3, various metals that satisfy the functions required of the metal particles 3 can be used depending on the use of the metal particle composite structure 1. For example, when forming an anisotropic conductive film using the metal particle composite structure 1 of the present invention, the metal particles 3 are made of platinum, gold, silver, copper, palladium, ruthenium, rhodium, iridium, and osmium. What is necessary is just to form with the metal excellent in electroconductivity, such as the at least 1 sort (s) of metal chosen from the group, or its alloy.

また、基材2は、やはり、金属粒子複合構造体1の用途に応じて、その用途において基材2に求められる機能を満足する種々の材料によって形成することができる。また、次に説明する本発明の製造方法によって金属粒子複合構造体1を製造する場合、基材2には、熱処理による多数の金属微粒子の凝集によって、所定の粒径と分布状態とを有する金属粒子3を形成できることも求められる。また、熱処理の温度に耐える耐熱性を有していることも求められる。基材2は、これらの条件の兼ね合い等を考慮して選択すべきである。   Moreover, the base material 2 can be formed of various materials that satisfy the functions required of the base material 2 in the usage depending on the usage of the metal particle composite structure 1. Further, when the metal particle composite structure 1 is manufactured by the manufacturing method of the present invention described below, the base material 2 has a metal having a predetermined particle size and distribution state by aggregation of a large number of metal fine particles by heat treatment. It is also required that the particles 3 can be formed. It is also required to have heat resistance that can withstand the heat treatment temperature. The substrate 2 should be selected in consideration of the balance of these conditions.

例えば、本発明の金属粒子複合構造体1を用いて異方導電膜を形成する場合、基材2は、最終的に、製品である異方導電膜からはく離されるため、異方導電膜の用途において基材2に求められる機能というものは存在しない。そのため、基材2には、専ら、熱処理による多数の金属微粒子の凝集によって、所定の粒径と分布状態とを有する金属粒子3を形成できる特性を有する上、熱処理の温度に耐える耐熱性を有することが求められる。つまり、熱処理によって変形したりしない上、熱処理時に液体のように挙動する金属微粒子に対する適度な親和性を有すること、具体的には、基材2を形成する材料や、基材2の表面状態等によって規定される、金属微粒子を形成する特定の金属に対する親和性が、高すぎたり低すぎたりしないことが求められる。   For example, when forming the anisotropic conductive film using the metal particle composite structure 1 of the present invention, the base material 2 is finally peeled off from the anisotropic conductive film as a product. There is no function required for the substrate 2 in use. Therefore, the base material 2 has characteristics that can form metal particles 3 having a predetermined particle size and distribution state exclusively by agglomeration of a large number of metal fine particles by heat treatment, and has heat resistance that can withstand the temperature of heat treatment. Is required. That is, it is not deformed by the heat treatment and has an appropriate affinity for the metal fine particles that behave like a liquid during the heat treatment, specifically, the material forming the base material 2, the surface state of the base material 2, etc. It is required that the affinity for the specific metal forming the metal fine particles defined by the above is not too high or too low.

基材2の、金属微粒子に対する親和性が高すぎる場合には、熱処理時に、金属微粒子が液滴状に凝集せず、基材2の表面に膜状に広がってしまって、金属粒子3が形成されないおそれがある。また、基材2の、金属微粒子に対する親和性が低すぎる場合には、形成される金属粒子3の、基材2の表面に対して面接触する接触面積が小さくなる。そのため、金属粒子3が、基材2の表面に塗布液を塗布する際に加わる流れの圧力によって下地上を移動しやすくなり、その分布に偏りを生じて、均一な異方導電特性を有する異方導電膜を形成で生きなくなる。前記例示の、導電性に優れた金属類と組み合わせて、均一で、かつ良好な異方導電特性を有する異方導電膜を形成できる基材2としては、例えば、青板ガラスガラス、無アルカリガラス等の各種ガラス類、アルミナ系、シリカ系等の各種セラミック類等が挙げられる。   When the affinity of the base material 2 to the metal fine particles is too high, the metal fine particles do not aggregate in the form of droplets during the heat treatment and spread on the surface of the base material 2 to form a metal particle 3. There is a risk that it will not be. Moreover, when the affinity of the base material 2 for the metal fine particles is too low, the contact area of the formed metal particles 3 that are in surface contact with the surface of the base material 2 is reduced. For this reason, the metal particles 3 easily move on the base due to the pressure of the flow applied when the coating liquid is applied to the surface of the substrate 2, and the distribution thereof is biased, so that the anisotropic anisotropic conductive characteristics are uniform. It becomes impossible to live by forming a conductive film. Examples of the base material 2 that can form an anisotropic conductive film having uniform and good anisotropic conductive characteristics in combination with the above-described metals having excellent electrical conductivity include, for example, blue plate glass glass and alkali-free glass. And various ceramics such as alumina and silica.

本発明の金属粒子複合構造体1は、先に説明したように、一次粒子径200nm以下の金属微粒子を含む分散液を、基材の表面に塗布し、乾燥させて塗膜を形成し、次いで、200℃以上で、かつ金属微粒子を形成する金属の融点未満の温度で熱処理して、塗膜中に分散する多数の金属微粒子を液滴状に凝集させることによって、基材の表面に、互いに接触しないように離間して分布した状態で、多数の金属粒子を生成させる、本発明の製造方法によって製造することができる。この製造方法によれば、本発明の金属粒子複合構造体1を、効率的に製造することができる。   In the metal particle composite structure 1 of the present invention, as described above, a dispersion containing metal fine particles having a primary particle diameter of 200 nm or less is applied to the surface of a substrate and dried to form a coating film, Heat treatment at a temperature of 200 ° C. or higher and lower than the melting point of the metal forming the metal fine particles, and agglomerate a large number of metal fine particles dispersed in the coating film in the form of droplets, whereby It can be manufactured by the manufacturing method of the present invention in which a large number of metal particles are generated in a state of being distributed apart so as not to contact. According to this manufacturing method, the metal particle composite structure 1 of the present invention can be efficiently manufactured.

金属粒子3のもとになる金属微粒子の一次粒子径が200nm以下に限定されるのは、200nmを超える粒径の大きな金属微粒子は、前記の温度範囲に加熱しても液体のような挙動をせず、液滴状に凝集させることができないためである。なお、金属微粒子の一次粒子径の、下限については、特に限定されないが、実用上は、1nm以上であるのが好ましい。また、多数の金属微粒子を、できるだけ良好に、液滴状に凝集させて、粒径や分布状態の揃った良好な金属粒子3を形成すること等を考慮すると、金属微粒子の一次粒子径は、上記の範囲内でも、特に、1〜50nmであるのが好ましい。金属微粒子の一次粒子径は、本発明では、レーザードップラー法を応用した粒度分布測定装置を用いて測定される粒度分布のピーク値でもって規定することとする。   The primary particle diameter of the metal fine particle that is the basis of the metal particle 3 is limited to 200 nm or less. The metal fine particle having a large particle diameter exceeding 200 nm behaves like a liquid even when heated to the above temperature range. This is because they cannot be aggregated into droplets. The lower limit of the primary particle diameter of the metal fine particles is not particularly limited, but is preferably 1 nm or more for practical use. Further, considering that a large number of metal fine particles are aggregated in the form of droplets as well as possible to form good metal particles 3 having a uniform particle size and distribution state, the primary particle size of the metal fine particles is Even within the above range, 1 to 50 nm is particularly preferable. In the present invention, the primary particle diameter of the metal fine particles is defined by the peak value of the particle size distribution measured using a particle size distribution measuring apparatus applying the laser Doppler method.

金属微粒子は、例えば、水中で、金属のイオンを還元して析出させることによって製造するのが好ましい。具体的には、例えば、水に、金属のイオンのもとになる水溶性の金属化合物と、必要に応じて分散剤とを溶解すると共に、還元剤を加えて、好ましくは、かく拌下、一定時間、金属のイオンを還元反応させることによって、金属微粒子が製造される。かかる液相還元法によって製造される金属微粒子は、形状が球状ないし粒状で揃っていると共に、粒度分布がシャープで、しかも、一次粒子径が小さいという特徴を有している。   The metal fine particles are preferably produced, for example, by reducing and precipitating metal ions in water. Specifically, for example, in water, a water-soluble metal compound that is a source of metal ions and, if necessary, a dispersant are dissolved, and a reducing agent is added, preferably under stirring, Metal fine particles are produced by a reduction reaction of metal ions for a certain period of time. The metal fine particles produced by such a liquid phase reduction method are characterized by having a spherical or granular shape, a sharp particle size distribution, and a small primary particle size.

金属のイオンのもとになる、水溶性の金属化合物としては、これに限定されないが、例えば、白金の場合は、ジニトロジアンミン白金(II)〔Pt(NO2)2(NH3)2〕や、ヘキサクロロ白金(IV)酸六水和物〔H2(PtCl6)・6H2O〕等が挙げられ、金の場合は、テトラクロロ金(III)酸四水和物〔HAuCl4・4H2O〕等が挙げられ、銀の場合は、硝酸銀(I)〔AgNO3〕やメタンスルホン酸銀〔CH3SO3Ag〕等が挙げられる。 The water-soluble metal compound that is a source of metal ions is not limited to this. For example, in the case of platinum, dinitrodiammine platinum (II) [Pt (NO 2 ) 2 (NH 3 ) 2 ] or Hexachloroplatinum (IV) acid hexahydrate [H 2 (PtCl 6 ) · 6H 2 O] and the like. In the case of gold, tetrachloroauric (III) acid tetrahydrate [HAuCl 4 · 4H 2 In the case of silver, silver nitrate (I) [AgNO 3 ], silver methanesulfonate [CH 3 SO 3 Ag] and the like can be mentioned.

また、銅の場合は、硝酸銅(II)〔Cu(NO3)2〕や硫酸銅(II)五水和物〔CuSO4・5H2O〕等が挙げられ、パラジウムの場合は、硝酸パラジウム(II)硝酸溶液〔Pd(NO2)2/H2O〕や塩化パラジウム(II)溶液〔PdCl2〕等が挙げられ、ルテニウムの場合は、硝酸ルテニウム(III)溶液〔Ru(NO3)3〕等が挙げられる。さらに、ロジウムの場合は、塩化ロジウム(III)溶液〔RhCl3・3H2O〕等が挙げられ、イリジウムの場合は、ヘキサクロロイリジウム(III)酸六水和物〔2(IrCl6)・6H2O〕等が挙げられ、オスミウムの場合は、ヘキサクロロオスミウム酸(IV)アンモニウム〔(NH4)2OsCl5〕等が挙げられる。 Examples of copper include copper nitrate (II) [Cu (NO 3 ) 2 ] and copper (II) sulfate pentahydrate [CuSO 4 .5H 2 O]. (II) Nitric acid solution [Pd (NO 2 ) 2 / H 2 O], palladium (II) chloride solution [PdCl 2 ] and the like. In the case of ruthenium, ruthenium (III) nitrate solution [Ru (NO 3 ) 3 ] and the like. Further, in the case of rhodium, rhodium (III) chloride solution [RhCl 3 .3H 2 O] and the like can be mentioned. In the case of iridium, hexachloroiridium (III) hexahydrate [2 (IrCl 6 ) · 6H 2 O] and the like, and in the case of osmium, hexachloroosmate (IV) ammonium [(NH 4 ) 2 OsCl 5 ] and the like.

還元剤としては、液相の反応系中で金属のイオンを還元することで、金属微粒子として析出させることができる種々の還元剤が、いずれも使用可能である。かかる還元剤としては、例えば、水素化ホウ素ナトリウム、次亜リン酸ナトリウム、ヒドラジン、遷移金属元素のイオン(三価のチタンイオン、二価のコバルトイオン等)が挙げられる。ただし、析出させる金属微粒子の一次粒子径をできるだけ小さくするためには、金属のイオンの還元、析出速度を遅くするのが有効であり、還元、析出速度を遅くするためには、できるだけ還元力の弱い還元剤を選択して使用することが好ましい。   As the reducing agent, any of various reducing agents that can be precipitated as metal fine particles by reducing metal ions in a liquid phase reaction system can be used. Examples of the reducing agent include sodium borohydride, sodium hypophosphite, hydrazine, and transition metal element ions (trivalent titanium ions, divalent cobalt ions, and the like). However, in order to reduce the primary particle size of the metal fine particles to be precipitated as much as possible, it is effective to reduce the reduction and precipitation rate of metal ions, and to reduce the reduction and precipitation rate, the reduction power is as low as possible. It is preferable to select and use a weak reducing agent.

還元力の弱い還元剤としては、例えば、メタノール、エタノール、イソプロピルアルコール等のアルコールや、あるいはアスコルビン酸等を挙げることができる他、エチレングリコール、グルタチオン、有機酸類(クエン酸、リンゴ酸、酒石酸等)、還元性糖類(グルコース、ガラクトース、マンノース、フルクトース、スクロース、マルトース、ラフィノース、スタキオース等)、および糖アルコール類(ソルビトール等)等を挙げることができ、中でも、還元性糖類や、その誘導体としての糖アルコール類が好ましい。   Examples of the reducing agent having a weak reducing power include alcohols such as methanol, ethanol and isopropyl alcohol, ascorbic acid, and the like, as well as ethylene glycol, glutathione, and organic acids (citric acid, malic acid, tartaric acid, etc.). , Reducing sugars (glucose, galactose, mannose, fructose, sucrose, maltose, raffinose, stachyose, etc.) and sugar alcohols (sorbitol, etc.). Among them, reducing sugars and sugars as derivatives thereof Alcohols are preferred.

分散剤としては、水に対して良好な溶解性を有する、種々の分散剤が、いずれも使用可能であるが、特に、分子量30000以下程度の高分子分散剤が、好適に使用される。また、分散剤としては、異方導電膜を用いて接続する電極やバンプ、これらの近傍に配置される電子部品等が劣化するのを防止することを考慮すると、硫黄、リン、ホウ素およびハロゲン原子を含まない有機化合物が好ましい。これらの条件を満足する、好適な分散剤としては、例えば、ポリエチレンイミン、ポリビニルピロリドン等のアミン系の高分子分散剤や、ポリアクリル酸、カルボキシメチルセルロース等の、分子中にカルボン酸基を有する炭化水素系の高分子分散剤、ポバール(ポリビニルアルコール)、あるいは、1分子中に、ポリエチレンイミン部分とポリエチレンオキサイド部分とを有する共重合体等の、高分子分散剤が挙げられる。   As the dispersant, any of various dispersants having good solubility in water can be used. In particular, a polymer dispersant having a molecular weight of about 30,000 or less is preferably used. In addition, as a dispersant, in consideration of preventing deterioration of electrodes and bumps connected using an anisotropic conductive film, electronic components arranged in the vicinity thereof, sulfur, phosphorus, boron and halogen atoms Organic compounds containing no are preferred. Suitable dispersants that satisfy these conditions include, for example, amine-based polymer dispersants such as polyethyleneimine and polyvinylpyrrolidone, carbonization having a carboxylic acid group in the molecule such as polyacrylic acid and carboxymethylcellulose. Examples thereof include a hydrogen-based polymer dispersant, poval (polyvinyl alcohol), and a polymer dispersant such as a copolymer having a polyethyleneimine moiety and a polyethylene oxide moiety in one molecule.

金属微粒子の一次粒子径を、前記の範囲に調整するには、金属化合物、分散剤、還元剤の種類と配合割合とを調整すると共に、金属化合物を還元反応させる際に、かく拌速度、温度、時間、pH等を調整すればよい。   In order to adjust the primary particle diameter of the metal fine particles to the above range, the metal compound, the dispersant, the kind of the reducing agent and the blending ratio are adjusted, and when the metal compound is subjected to a reduction reaction, the stirring speed and temperature are adjusted. The time, pH, etc. may be adjusted.

本発明の製造方法では、上記の、還元反応によって金属微粒子を析出させた後の反応溶液を、そのままで、基材2の表面に塗布して塗膜を形成するための分散液として使用することもできる。また、製造した金属微粒子を、適当な溶媒に分散させて新たな分散液を調製して、塗膜の形成に使用することもできる。新たな分散液を調製するための溶媒としては、水、または、水と水溶性有機溶媒との混合溶媒が挙げられる。   In the production method of the present invention, the reaction solution after depositing the metal fine particles by the reduction reaction is used as it is as a dispersion for coating the surface of the substrate 2 to form a coating film. You can also. Further, the produced metal fine particles can be dispersed in a suitable solvent to prepare a new dispersion, which can be used for forming a coating film. Examples of the solvent for preparing a new dispersion include water or a mixed solvent of water and a water-soluble organic solvent.

水溶性有機溶媒としては、例えば、メタノール、エタノール、n−プロパノール、2−プロパノール、2−エトキシエタノール、グリセリン、ジプロピレングリコール、エチレングリコール、ポリエチレングリコール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル類;2−ピロリドン、N−メチルピロリドン等の水溶性の含窒素有機化合物類;および酢酸エチル等が挙げられる。水溶性有機溶媒は、それぞれ1種単独で使用できる他、2種以上を併用することもできる。   Examples of the water-soluble organic solvent include alcohols such as methanol, ethanol, n-propanol, 2-propanol, 2-ethoxyethanol, glycerin, dipropylene glycol, ethylene glycol, and polyethylene glycol; ketones such as acetone and methyl ethyl ketone; Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene Glico Monoethyl ether, glycol ethers such as tripropylene glycol monomethyl ether; 2-pyrrolidone, water-soluble nitrogen-containing organic compounds such as N- methyl pyrrolidone; and ethyl acetate. The water-soluble organic solvent can be used alone or in combination of two or more.

本発明では、分散液を用いて塗膜を形成するための塗布方法に最適な物性を有するように、分散媒として、水や水溶性有機溶媒を用い、その配合割合や、水溶性有機溶媒の種類、あるいは、2種以上の水溶性有機溶媒を併用する場合は、その組み合わせ等が適宜、選択される。たとえば、スピンコート法やスプレー法による塗膜の形成においては、分散液が、できるだけ低粘度であることが求められ、逆に、ディップコート法による塗膜の形成においては、分散液が、適度な粘度を有していることが求められる。   In the present invention, water or a water-soluble organic solvent is used as a dispersion medium so as to have the optimum physical properties for a coating method for forming a coating film using the dispersion, and the blending ratio of the water-soluble organic solvent When using two or more types of water-soluble organic solvents in combination, the combination thereof is appropriately selected. For example, in the formation of a coating film by a spin coating method or a spray method, the dispersion liquid is required to have a viscosity as low as possible. Conversely, in the formation of a coating film by a dip coating method, the dispersion liquid is appropriate. It is required to have a viscosity.

そこで、これらの物性を満足するために、水と、水溶性有機溶媒との配合割合や、水溶性有機溶媒の種類、2種以上の水溶性有機溶媒を併用する場合の組み合わせ等が選択される。また、それとともに、金属微粒子の一次粒子径や配合割合、分散剤の分子量や配合割合、分散剤の種類等も、選択される。   Therefore, in order to satisfy these physical properties, the mixing ratio of water and the water-soluble organic solvent, the type of the water-soluble organic solvent, the combination in the case of using two or more water-soluble organic solvents in combination, and the like are selected. . At the same time, the primary particle size and blending ratio of the metal fine particles, the molecular weight and blending ratio of the dispersant, the type of the dispersant, and the like are also selected.

分散液は、従来同様に、金属微粒子を、ロ別、洗浄、乾燥、解砕等の各工程を経て粉末状とした後、必要に応じて追加の分散剤と共に、分散媒中に分散させて製造することができる。しかし、分散液は、前記のように水中で、金属のイオンを還元して金属微粒子を析出させた後の、液相の反応系から、析出させた金属微粒子を完全に分離する工程を経ることなしに、製造するのがより好ましい。   As in the conventional case, the dispersion liquid is made into a powder form through steps such as separation, washing, drying, and crushing, and then dispersed in a dispersion medium with an additional dispersant as necessary. Can be manufactured. However, the dispersion liquid undergoes a process of completely separating the precipitated metal fine particles from the liquid phase reaction system after reducing the metal ions and precipitating the metal fine particles in water as described above. It is more preferable to produce without.

具体的には、金属微粒子を析出させた後の、液相の反応系を遠心分離して、金属微粒子より軽い不純物を除去したり、水洗して水溶性の不純物を除去したりし、次いで、例えば、ロータリーエバポレータを用いたり、加熱したり、あるいは、再び遠心分離して上澄み液を除去したりすることで、所定の濃度に濃縮した後、所定量の水および/または水溶性有機溶媒を加えることによって分散液が製造される。この際、反応系中には、金属微粒子の製造に使用した分散剤が含まれているため、通常は必要ないが、場合によっては、前記と同様の分散剤を新たに追加してもよい。   Specifically, the liquid phase reaction system after depositing the metal fine particles is centrifuged to remove impurities lighter than the metal fine particles, or washed with water to remove water-soluble impurities, For example, use a rotary evaporator, heat, or centrifuge again to remove the supernatant liquid, concentrate to a predetermined concentration, and then add a predetermined amount of water and / or water-soluble organic solvent This produces a dispersion. At this time, since the dispersant used for the production of the metal fine particles is contained in the reaction system, it is usually not necessary, but in some cases, a dispersant similar to the above may be newly added.

上記の工程を経て製造される分散液は、金属微粒子の凝集による粗大で不定形な粒子の発生を防止して、液相還元法によって形成される金属微粒子の、形状が球状ないし粒状で揃っていると共に、粒度分布がシャープで、しかも、一次粒子径が小さいという特徴をそのまま維持することができる。したがって、上記の分散液を用いて塗膜を形成すれば、その後の熱処理によって、塗膜中の金属微粒子を均一に凝集させることができるため、基材2の表面に、粒径および形状の揃った金属粒子3を、均一に分布させることができる。   The dispersion produced through the above steps prevents the formation of coarse and irregular particles due to the aggregation of the metal fine particles, and the metal fine particles formed by the liquid phase reduction method have a spherical or granular shape. In addition, the characteristics that the particle size distribution is sharp and the primary particle size is small can be maintained as they are. Therefore, if the coating film is formed using the above dispersion liquid, the metal fine particles in the coating film can be uniformly aggregated by the subsequent heat treatment. The metal particles 3 can be uniformly distributed.

本発明の製造方法においては、基材2の表面に形成した塗膜を、前記のように、200℃以上で、かつ金属微粒子を形成する金属の融点未満の温度で熱処理することによって、塗膜中に分散する多数の金属微粒子を液滴状に凝集させて、基材の表面に、多数の金属粒子を生成させる。熱処理の温度が200℃以上に限定されるのは、200℃未満では、多数の金属微粒子を、基材の表面でスムースに移動させて、液滴状に凝集させることができず、基材の表面に、多数の金属微粒子がその場で軟化して一体化したような、不連続な膜が形成されてしまうためである。   In the production method of the present invention, the coating film formed on the surface of the substrate 2 is heat-treated at a temperature of 200 ° C. or higher and lower than the melting point of the metal forming the metal fine particles, as described above. A large number of fine metal particles dispersed therein are aggregated in the form of droplets, thereby generating a large number of metal particles on the surface of the substrate. The temperature of the heat treatment is limited to 200 ° C. or more. If the temperature is lower than 200 ° C., a large number of metal fine particles cannot be smoothly moved on the surface of the base material to be aggregated in droplets. This is because a discontinuous film in which a large number of metal fine particles are softened and integrated on the surface is formed on the surface.

また、熱処理の温度が、金属微粒子を形成する金属の融点未満に限定されるのは、融点以上の温度で熱処理した場合には、却って、多数の金属微粒子をスムースに凝集させることができず、基材2の表面に、きれいな液滴状を呈する金属粒子3を、均一に分布させることができないためである。なお、熱処理の温度を、上記の範囲内でも高くするほど、また、熱処理の時間を長くするほど、より多数の金属微粒子が、1つの金属粒子に凝集され、それに伴って、個々の金属粒子3の、基材2の表面方向の粒径が大きくなると共に、単位面積あたりに形成される金属粒子3の数が少なくなる傾向がある。そのため、製造する金属粒子複合構造体1に求められる金属粒子3の粒径や分布状態等に応じて、熱処理の温度を上記の範囲内で、また時間等を任意の範囲内で、適宜、調整するのが好ましい。   Further, the temperature of the heat treatment is limited to less than the melting point of the metal forming the metal fine particles, when the heat treatment is performed at a temperature equal to or higher than the melting point, a large number of metal fine particles cannot be smoothly aggregated, This is because the metal particles 3 in the form of clean droplets cannot be uniformly distributed on the surface of the substrate 2. As the heat treatment temperature is increased even within the above range and as the heat treatment time is increased, a larger number of metal fine particles are aggregated into one metal particle. As the particle size in the surface direction of the substrate 2 increases, the number of metal particles 3 formed per unit area tends to decrease. Therefore, according to the particle size and distribution state of the metal particles 3 required for the metal particle composite structure 1 to be manufactured, the temperature of the heat treatment is appropriately adjusted within the above range and the time within the arbitrary range. It is preferable to do this.

また、基材2の表面に形成する塗膜の厚み(すなわち金属微粒子の量)等を調整することによっても、金属粒子3の粒径や分布状態を調整することができる。また、塗膜の厚みを調整するためには、分散液中の金属微粒子の濃度を調整したり、分散剤の量や種類を変更して、分散液の粘度を調整したり、分散液の、基材表面への塗布方法を変更したりすればよい。   Moreover, the particle diameter and distribution state of the metal particles 3 can also be adjusted by adjusting the thickness of the coating film formed on the surface of the substrate 2 (that is, the amount of metal fine particles). Moreover, in order to adjust the thickness of the coating film, the concentration of the metal fine particles in the dispersion liquid is adjusted, the amount and type of the dispersing agent are changed, the viscosity of the dispersion liquid is adjusted, What is necessary is just to change the coating method to the base-material surface.

上記の製造方法によって製造される、本発明の金属粒子複合構造体1は、基材2の表面に、形状および粒径の揃った微細な金属粒子3が、互いに接触しないように離間して分布されるという、これまでにない特殊な構造を有することから、例えば、メンブランスイッチパネル用の面状接点基材等の、様々な用途展開が期待できる。その中でも、特に、次に述べる異方導電膜の出発原料として、金属粒子複合構造体1は、好適に使用可能である。   The metal particle composite structure 1 of the present invention manufactured by the above manufacturing method is distributed on the surface of the base material 2 so that the fine metal particles 3 having a uniform shape and particle size are not in contact with each other. Since it has an unprecedented special structure, it can be expected to develop various applications such as a planar contact substrate for membrane switch panels. Among these, in particular, the metal particle composite structure 1 can be suitably used as a starting material for the anisotropic conductive film described below.

〈異方導電膜〉
本発明の異方導電膜は、上記金属粒子複合構造体1の基材2上に、絶縁性のバインダを含む塗布液を塗布し、固化させて、バインダからなる膜を形成することで、多数の金属粒子3の、基材2上での分布状態を、上記膜中に固定した後、膜を、固定した多数の金属粒子3ごと、基材2からはく離して製造される。
<Anisotropic conductive film>
The anisotropic conductive film of the present invention is formed by applying a coating solution containing an insulating binder onto the base material 2 of the metal particle composite structure 1 and solidifying it to form a film made of the binder. After the distribution state of the metal particles 3 on the base material 2 is fixed in the film, the film is peeled off from the base material 2 together with the fixed many metal particles 3.

膜のもとになるバインダとしては、先に説明したように、個々の金属粒子3間を絶縁する絶縁性と、金属粒子3を保持して膜を形成する成膜性と、さらに必要に応じて、熱接着するための接着剤としての接着性とを兼ね備えた、熱可塑性樹脂や硬化性樹脂等が挙げられる。特に好ましくは、アクリル系樹脂、エポキシ系樹脂、フッ素系樹脂、フェノール系樹脂等が使用可能である。塗布液は、バインダが固形の熱可塑性樹脂や硬化性樹脂である場合には、当該バインダを、適当な溶媒に溶解して調製される。また、バインダが液状硬化性樹脂である場合は、当該液状硬化性樹脂を単独で使用して調製される。また、液状硬化性樹脂を、その粘度を調整するために、溶媒や反応性希釈剤等で希釈して塗布液を調製してもよい。   As described above, the binder that forms the film includes an insulating property that insulates between the individual metal particles 3, a film formability that forms the film while holding the metal particles 3, and further, if necessary. Examples thereof include thermoplastic resins and curable resins that also have adhesiveness as an adhesive for heat bonding. Particularly preferably, an acrylic resin, an epoxy resin, a fluorine resin, a phenol resin, or the like can be used. When the binder is a solid thermoplastic resin or curable resin, the coating solution is prepared by dissolving the binder in an appropriate solvent. When the binder is a liquid curable resin, the binder is prepared by using the liquid curable resin alone. In addition, in order to adjust the viscosity of the liquid curable resin, a coating solution may be prepared by diluting with a solvent or a reactive diluent.

上記の塗布液を、金属粒子複合構造体1の基材2上に塗布し、バインダが固形の熱可塑性樹脂や硬化性樹脂である場合は、溶媒を乾燥、除去して固化させ、また、バインダが液状の硬化性樹脂である場合は半硬化反応によって固化させて、前記のように、バインダからなる固形の膜を形成することで、多数の金属粒子3の、基材2上での分布状態を、上記膜中に固定した後、膜を、固定した多数の金属粒子3ごと、基材2からはく離して異方導電膜が製造される。固形の硬化性樹脂を、圧着時の熱によって硬化反応させるためには、塗布液中に、潜在性硬化剤を配合しておけばよい。   When the coating liquid is applied onto the base material 2 of the metal particle composite structure 1 and the binder is a solid thermoplastic resin or curable resin, the solvent is dried and removed to solidify, and the binder Is a liquid curable resin, it is solidified by a semi-curing reaction, and as described above, a solid film made of a binder is formed, so that a large number of metal particles 3 are distributed on the substrate 2. Is fixed in the film, and then the film is peeled off from the substrate 2 together with the fixed number of metal particles 3 to produce an anisotropic conductive film. In order to cause a solid curable resin to undergo a curing reaction by heat at the time of pressure bonding, a latent curing agent may be blended in the coating solution.

異方導電膜を形成するバインダの膜の厚みは、通常の、半導体パッケージ等の実装用の場合、圧着によって、半導体パッケージ等を、配線板に設けた電極上に確実に熱接着させることを考慮すると、5〜50μm程度であるのが好ましい。また、圧着によって両者を熱接着させた際に、膜中に固定された金属粒子3によって、電極−バンプ間等を良好に導電接続させることを考慮すると、金属粒子3は、上記膜の厚みの、およそ1〜50%の高さ(基材2の表面方向と直交する方向の高さ)を有しているのが好ましい。金属粒子3の高さは、理想的な液滴状の金属粒子3の場合には、その、基材2の表面方向の粒径に比例して増減させることができるので、あらかじめ、基材2上に形成する金属粒子の粒径を、その後に形成する膜の厚みに応じて適宜、調整しておけばよい。   The thickness of the binder film that forms the anisotropic conductive film is considered to ensure that the semiconductor package is thermally bonded to the electrode provided on the wiring board by crimping in the case of mounting a normal semiconductor package. Then, it is preferable that it is about 5-50 micrometers. In addition, when the two are thermally bonded by pressure bonding, considering that the metal particles 3 fixed in the film have a good conductive connection between the electrodes and the bumps, the metal particles 3 have the thickness of the film. It is preferable to have a height of approximately 1 to 50% (height in a direction orthogonal to the surface direction of the substrate 2). In the case of the ideal droplet-shaped metal particles 3, the height of the metal particles 3 can be increased or decreased in proportion to the particle size in the surface direction of the substrate 2, so that the substrate 2 in advance. What is necessary is just to adjust the particle size of the metal particle formed above suitably according to the thickness of the film | membrane formed after that.

〈金属粒子複合構造体の製造〉
実施例1:
一次粒子径が15nmである銀微粒子を含む分散液を、あらかじめ洗浄した無アルカリガラス基材の表面に、スピンコート法(回転数:2000rpm)によって塗布し、100℃で10分間、加熱して乾燥させて、厚み0.4μmの塗膜を形成した。なお、分散液中の銀微粒子の一次粒子径は、先に説明したように、レーザードップラー法を応用した粒度分布測定装置〔日機装(株)製のナノトラック(登録商標)粒度分布測定装置UPA−EX150〕を用いて測定される粒度分布のピーク値で表した。
<Manufacture of metal particle composite structure>
Example 1:
A dispersion containing silver fine particles having a primary particle diameter of 15 nm is applied to the surface of a previously washed alkali-free glass substrate by spin coating (rotation speed: 2000 rpm), dried by heating at 100 ° C. for 10 minutes. Thus, a coating film having a thickness of 0.4 μm was formed. The primary particle size of the silver fine particles in the dispersion is, as described above, a particle size distribution measuring device applying the laser Doppler method [Nanotrack (registered trademark) particle size measuring device UPA- manufactured by Nikkiso Co., Ltd. The peak value of the particle size distribution measured using EX150].

次に、上記塗膜が形成された無アルカリガラス基材を、あらかじめ400℃に加熱した電気炉に入れて30分間、熱処理した後、取り出して、室温に冷却して、その表面を、走査型電子顕微鏡を用いて観察したところ、図1および図2に示すように、基材2の表面に、塗膜中の銀微粒子が液滴状に凝集して生成した多数の銀粒子3が、互いに接触しないように離間して分布しているのが確認された。また、個々の銀粒子3は、図3に示すように、液滴を基材2の表面20に面接触させた形状を有することも確認された。さらに、先に説明した電子顕微鏡写真と画像解析とを利用した方法によって、基材2の表面に分布した銀粒子3の、基材2の表面方向の粒径を求めたところ、2μmであった。   Next, the alkali-free glass substrate on which the coating film has been formed is put in an electric furnace preheated to 400 ° C. and heat-treated for 30 minutes, then taken out, cooled to room temperature, and the surface thereof is scanned. When observed using an electron microscope, as shown in FIG. 1 and FIG. 2, a large number of silver particles 3 formed by agglomerating silver fine particles in the coating film into droplets on the surface of the substrate 2 are mutually connected. It was confirmed that they were distributed so as not to contact each other. Moreover, it was also confirmed that each silver particle 3 has a shape in which a droplet is brought into surface contact with the surface 20 of the substrate 2 as shown in FIG. Furthermore, when the particle size in the surface direction of the base material 2 of the silver particles 3 distributed on the surface of the base material 2 was determined by the method using the electron micrograph and the image analysis described above, it was 2 μm. .

実施例2:
電気炉の温度を450℃としたこと以外は実施例1と同様にして熱処理した後、取り出して、室温に冷却して、その表面を、走査型電子顕微鏡を用いて観察したところ、実施例1と同様に、基材2の表面に、塗膜中の銀微粒子が液滴状に凝集して生成した多数の銀粒子3が、互いに接触しないように離間して分布しているのが確認された。また、個々の銀粒子3は、液滴を基材2の表面20に面接触させた形状を有することも確認された。さらに、基材2の表面に分布した銀粒子3の、基材2の表面方向の粒径を求めたところ、3.5μmであった。そして、このことから、熱処理の条件を変更することで、形成される銀粒子の、基材2の表面方向の粒径を調製できることが確認された。
Example 2:
A heat treatment was carried out in the same manner as in Example 1 except that the temperature of the electric furnace was set to 450 ° C., then taken out, cooled to room temperature, and the surface thereof was observed with a scanning electron microscope. Similarly, it was confirmed that a large number of silver particles 3 formed by agglomerating silver fine particles in the coating film in the form of droplets were distributed on the surface of the substrate 2 so as not to contact each other. It was. It was also confirmed that each silver particle 3 had a shape in which a droplet was brought into surface contact with the surface 20 of the substrate 2. Furthermore, the particle size in the surface direction of the base material 2 of the silver particles 3 distributed on the surface of the base material 2 was determined to be 3.5 μm. And from this, it was confirmed that the particle diameter of the surface direction of the base material 2 of the silver particle formed can be adjusted by changing the conditions of heat processing.

比較例1:
基材として、あらかじめ洗浄した青板ガラスを使用すると共に、電気炉の温度を180℃としたこと以外は実施例1と同様にして熱処理した後、取り出して、室温に冷却して、その表面を、走査型電子顕微鏡を用いて観察したところ、基材2の表面に、不連続な銀の膜が形成されているのが確認された。そして、このことから、熱処理の温度は200℃以上である必要があることが確認された。
Comparative Example 1:
As the base material, a pre-washed soda glass was used, and after heat treatment in the same manner as in Example 1 except that the temperature of the electric furnace was 180 ° C., it was taken out and cooled to room temperature. When observed using a scanning electron microscope, it was confirmed that a discontinuous silver film was formed on the surface of the substrate 2. From this, it was confirmed that the temperature of the heat treatment needs to be 200 ° C. or higher.

実施例3:
一次粒子径が10nmである銀−パラジウム合金微粒子(パラジウム含量:5重量%)を含む分散液を使用すると共に、電気炉の温度を600℃としたこと以外は実施例1と同様にして熱処理した後、取り出して、室温に冷却して、その表面を、走査型電子顕微鏡を用いて観察したところ、実施例1と同様に、基材2の表面に、塗膜中の銀−パラジウム合金微粒子が液滴状に凝集して生成した多数の銀−パラジウム合金粒子3が、互いに接触しないように離間して分布しているのが確認された。また、個々の銀−パラジウム合金粒子3は、液滴を基材2の表面20に面接触させた形状を有することも確認された。さらに、基材2の表面に分布した銀−パラジウム合金粒子3の、基材2の表面方向の粒径を求めたところ、5μmであった。
Example 3:
A dispersion containing silver-palladium alloy fine particles (palladium content: 5% by weight) having a primary particle size of 10 nm was used, and heat treatment was performed in the same manner as in Example 1 except that the temperature of the electric furnace was 600 ° C. Then, when taken out and cooled to room temperature, the surface was observed using a scanning electron microscope. As in Example 1, the silver-palladium alloy fine particles in the coating film were formed on the surface of the substrate 2. It was confirmed that a large number of silver-palladium alloy particles 3 produced by aggregation in the form of droplets were distributed apart so as not to contact each other. It was also confirmed that each silver-palladium alloy particle 3 had a shape in which a droplet was brought into surface contact with the surface 20 of the substrate 2. Furthermore, when the particle diameter of the surface direction of the base material 2 of the silver-palladium alloy particles 3 distributed on the surface of the base material 2 was determined, it was 5 μm.

実施例4:
一次粒子径が25nmである銀−金合金微粒子(金含量:10重量%)を含む分散液を、あらかじめ洗浄したアルミナ(Al23)基材の表面に、ディップコート法によって塗布し、100℃で10分間、加熱して乾燥させて、厚み0.2μmの塗膜を形成した。
Example 4:
A dispersion containing silver-gold alloy fine particles (gold content: 10% by weight) having a primary particle size of 25 nm is applied to the surface of an alumina (Al 2 O 3 ) substrate that has been washed in advance by a dip coating method. The film was heated and dried at 0 ° C. for 10 minutes to form a coating film having a thickness of 0.2 μm.

次に、上記塗膜が形成されたアルミナ基材を、あらかじめ250℃に加熱した電気炉に入れて30分間、熱処理した後、取り出して、室温に冷却して、その表面を、走査型電子顕微鏡を用いて観察したところ、実施例1と同様に、基材2の表面に、塗膜中の銀−金合金微粒子が液滴状に凝集して生成した多数の銀−金合金粒子3が、互いに接触しないように離間して分布しているのが確認された。また、個々の銀−金合金粒子3は、液滴を基材2の表面20に面接触させた形状を有することも確認された。さらに、基材2の表面に分布した銀−金合金粒子3の、基材2の表面方向の粒径を求めたところ、1μmであった。   Next, the alumina base material on which the coating film is formed is placed in an electric furnace heated to 250 ° C. in advance and heat-treated for 30 minutes, then taken out, cooled to room temperature, and its surface is subjected to a scanning electron microscope. As in Example 1, a large number of silver-gold alloy particles 3 produced by agglomerating silver-gold alloy fine particles in the coating film into droplets on the surface of the substrate 2 as in Example 1, It was confirmed that they were distributed so as not to contact each other. It was also confirmed that each silver-gold alloy particle 3 had a shape in which a droplet was brought into surface contact with the surface 20 of the substrate 2. Furthermore, when the particle size in the surface direction of the base material 2 of the silver-gold alloy particles 3 distributed on the surface of the base material 2 was determined, it was 1 μm.

実施例5:
一次粒子径が2nmであるパラジウム微粒子を含む分散液を、あらかじめ洗浄したシリカ(SiO2)基材の表面に、スプレー法によって塗布し、100℃で10分間、加熱して乾燥させて、厚み0.05μmの塗膜を形成した。
Example 5:
A dispersion containing fine palladium particles having a primary particle diameter of 2 nm is applied to the surface of a silica (SiO 2 ) substrate that has been washed in advance by a spray method, and heated and dried at 100 ° C. for 10 minutes to obtain a thickness of 0 A coating film of 0.05 μm was formed.

次に、上記塗膜が形成されたシリカ基材を、あらかじめ800℃に加熱した電気炉に入れて30分間、熱処理した後、取り出して、室温に冷却して、その表面を、走査型電子顕微鏡を用いて観察したところ、実施例1と同様に、基材2の表面に、塗膜中のパラジウム微粒子が液滴状に凝集して生成した多数のパラジウム粒子3が、互いに接触しないように離間して分布しているのが確認された。また、個々のパラジウム粒子3は、液滴を基材2の表面20に面接触させた形状を有することも確認された。さらに、基材2の表面に分布したパラジウム粒子3の、基材2の表面方向の粒径を求めたところ、1μmであった。   Next, the silica base material on which the coating film is formed is put in an electric furnace preheated to 800 ° C., heat-treated for 30 minutes, then taken out, cooled to room temperature, and the surface thereof is subjected to a scanning electron microscope. As in Example 1, a large number of palladium particles 3 produced by agglomeration of palladium fine particles in the coating film in the form of droplets were separated from the surface of the substrate 2 so as not to contact each other. It was confirmed that they were distributed. It was also confirmed that each palladium particle 3 had a shape in which a droplet was brought into surface contact with the surface 20 of the substrate 2. Furthermore, when the particle diameter of the palladium particles 3 distributed on the surface of the base material 2 in the surface direction of the base material 2 was determined, it was 1 μm.

実施例6:
一次粒子径が50nmである金微粒子を含む分散液を、あらかじめ洗浄したアルミナ基材の表面に、ディップコート法によって塗布し、100℃で10分間、加熱して乾燥させて、厚み3μmの塗膜を形成した。
Example 6:
A dispersion containing gold fine particles having a primary particle diameter of 50 nm is applied to the surface of an alumina substrate that has been washed in advance by a dip coating method, and is heated and dried at 100 ° C. for 10 minutes to form a coating film having a thickness of 3 μm. Formed.

次に、上記塗膜が形成されたアルミナ基材を、あらかじめ600℃に加熱した電気炉に入れて30分間、熱処理した後、取り出して、室温に冷却して、その表面を、走査型電子顕微鏡を用いて観察したところ、実施例1と同様に、基材2の表面に、塗膜中の金微粒子が液滴状に凝集して生成した多数の金粒子3が、互いに接触しないように離間して分布しているのが確認された。また、個々の金粒子3は、液滴を基材2の表面20に面接触させた形状を有することも確認された。さらに、基材2の表面に分布した金粒子3の、基材2の表面方向の粒径を求めたところ、10μmであった。   Next, the alumina base material on which the coating film is formed is put in an electric furnace preheated to 600 ° C., heat-treated for 30 minutes, then taken out, cooled to room temperature, and the surface thereof is scanned with a scanning electron microscope. As in Example 1, a large number of gold particles 3 produced by agglomeration of gold fine particles in the coating film in the form of droplets were separated from the surface of the substrate 2 so as not to contact each other. It was confirmed that they were distributed. It was also confirmed that each gold particle 3 had a shape in which a droplet was brought into surface contact with the surface 20 of the substrate 2. Furthermore, when the particle size of the gold particles 3 distributed on the surface of the substrate 2 in the surface direction of the substrate 2 was determined, it was 10 μm.

〈異方導電膜の製造〉
実施例7:
(異方導電膜用の塗布液の調製)
固形エポキシ樹脂〔旭化成ケミカルズ(株)製の品番6099〕28重量部、固形エポキシ樹脂〔旭化成ケミカルズ(株)製の品番6144〕12重量部、マイクロカプセル型潜在性硬化剤〔旭化成ケミカルズ(株)製の品番HX3721〕16重量部、酢酸ブチル45重量部、およびメチルイソブチルケトン15重量部を混合して異方導電膜用の塗布液を調製した。
<Manufacture of anisotropic conductive film>
Example 7:
(Preparation of coating solution for anisotropic conductive film)
Solid epoxy resin [Asahi Kasei Chemicals Co., Ltd. product number 6099] 28 parts by weight, Solid epoxy resin [Asahi Kasei Chemicals Co., Ltd. product number 6144] 12 parts by weight, microcapsule type latent curing agent [Asahi Kasei Chemicals Co., Ltd. No. HX3721] 16 parts by weight, 45 parts by weight of butyl acetate, and 15 parts by weight of methyl isobutyl ketone were mixed to prepare a coating solution for an anisotropic conductive film.

(異方導電膜の製造)
実施例1で製造した、無アルカリガラス基材の表面に、当該基材の表面方向の粒径が2μmである多数の銀粒子が分布した銀粒子複合構造体の、銀粒子が分布した表面に、上記の塗布液を塗布し、室温(23℃)で乾燥して固化させて、膜を形成することで、多数の銀粒子の、基材上での分布状態を、上記膜中に固定した。そして、膜を、固定した多数の金属粒子ごと基材からはく離して、厚み10μmの異方導電膜を製造した。
(Manufacture of anisotropic conductive film)
The surface of the non-alkali glass substrate produced in Example 1 and the surface of the silver particle composite structure in which a large number of silver particles having a particle size in the surface direction of the substrate of 2 μm are distributed are distributed on the surface of the silver particles. The above coating solution is applied, dried at room temperature (23 ° C.) and solidified to form a film, thereby fixing the distribution state of a large number of silver particles on the substrate in the film. . Then, the film was peeled off from the base material together with a large number of fixed metal particles to produce an anisotropic conductive film having a thickness of 10 μm.

(接続抵抗の測定)
幅15μm、長さ50μm、厚み2μmの金電極が15μm間隔で配列された電極パターンを有するFPCの、上記電極パターン上に、上記で製造した異方導電膜を貼り付け、80℃に加熱しながら、0.1N/mm2の圧力で加圧して仮接着した。次に、この異方導電膜上に、片面にアルミニウム膜を蒸着したガラス基板を、アルミニウム膜が異方導電膜と接するように重ねた状態で、200℃に加熱しながら、3N/mm2の圧力で加圧して本接着した。そして、異方導電膜とアルミニウム膜とを介して導電接続された隣り合う2つの金電極間の抵抗値を測定し、この測定値を1/2にして、異方導電膜の厚み方向の接続抵抗としたところ、0.1Ωであって、厚み方向の導電性は極めて良好であることが判った。
(Measurement of connection resistance)
An FPC having an electrode pattern in which gold electrodes having a width of 15 μm, a length of 50 μm, and a thickness of 2 μm are arranged at intervals of 15 μm is pasted on the electrode pattern, and the anisotropic conductive film manufactured as described above is pasted and heated to 80 ° C. Then, pressure was applied at a pressure of 0.1 N / mm 2 for temporary adhesion. Next, on this anisotropic conductive film, a glass substrate having an aluminum film deposited on one side is overlaid so that the aluminum film is in contact with the anisotropic conductive film, while heating to 200 ° C., 3 N / mm 2 The main adhesion was made by pressurizing with pressure. Then, the resistance value between two adjacent gold electrodes conductively connected via the anisotropic conductive film and the aluminum film is measured, and the measured value is halved to connect the anisotropic conductive film in the thickness direction. The resistance was 0.1Ω, and the conductivity in the thickness direction was found to be very good.

(絶縁抵抗の測定)
幅15μm、長さ50μm、厚み2μmの金電極が15μm間隔で配列された電極パターンを有するFPCの、上記電極パターン上に、上記で製造した異方導電膜を貼り付け、80℃に加熱しながら、0.1N/mm2の圧力で加圧して仮接着した。次に、この異方導電膜上に、アルミニウム膜を蒸着していないガラス基板を重ねた状態で、200℃に加熱しながら、3N/mm2の圧力で加圧して本接着した。そして、隣り合う2つの金電極間の抵抗値を測定して、異方導電膜の面方向の絶縁抵抗としたところ、1000GΩであって、面方向の絶縁性も極めて良好であることが判った。
(Measurement of insulation resistance)
An FPC having an electrode pattern in which gold electrodes having a width of 15 μm, a length of 50 μm, and a thickness of 2 μm are arranged at intervals of 15 μm is pasted on the electrode pattern, and the anisotropic conductive film manufactured as described above is pasted and heated to 80 ° C. Then, pressure was applied at a pressure of 0.1 N / mm 2 for temporary adhesion. Next, on this anisotropic conductive film, a glass substrate on which an aluminum film was not deposited was stacked, and this was pressure bonded at a pressure of 3 N / mm 2 while being heated to 200 ° C., and finally bonded. And when the resistance value between two adjacent gold electrodes was measured to obtain the insulation resistance in the surface direction of the anisotropic conductive film, it was found to be 1000 GΩ, and the insulation in the surface direction was very good. .

本発明の実施例1で製造した金属粒子複合構造体の一部を拡大した走査型電子顕微鏡写真である。It is the scanning electron micrograph which expanded a part of metal particle composite structure manufactured in Example 1 of this invention. 上記実施例1の金属粒子複合構造体の一部をさらに拡大した走査型電子顕微鏡写真である。It is the scanning electron micrograph which expanded a part of metal particle composite structure of the said Example 1 further. 上記実施例1の金属粒子複合構造体のうち、基材上に形成された1つの金属粒子を側面から見た状態を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the state which looked at one metal particle formed on the base material from the side among the metal particle composite structure of the said Example 1. FIG.

符号の説明Explanation of symbols

1 金属粒子複合構造体
2 基材
3 金属粒子
1 Metal Particle Composite Structure 2 Base Material 3 Metal Particle

Claims (3)

基材と、この基材の表面に、互いに接触しないように離間して分布される、多数の金属粒子とを備え、個々の金属粒子が、液滴を基材の表面に面接触させた形状を有すると共に、それぞれの金属粒子の、基材の表面方向の粒径が0.1〜20μmであることを特徴とする金属粒子複合構造体。   A shape having a base material and a large number of metal particles distributed on the surface of the base material so as not to contact each other, each metal particle having a droplet in surface contact with the surface of the base material A metal particle composite structure, wherein each metal particle has a particle size in the surface direction of the substrate of 0.1 to 20 μm. 請求項1記載の金属粒子複合構造体を製造する方法であって、一次粒子径200nm以下の金属微粒子を含む分散液を、基材の表面に塗布し、乾燥させて塗膜を形成する工程と、形成した塗膜を、200℃以上で、かつ金属微粒子を形成する金属の融点未満の温度で熱処理して、塗膜中に分散する多数の金属微粒子を液滴状に凝集させることによって、基材の表面に、互いに接触しないように離間して分布した状態で、多数の金属粒子を生成させることを特徴とする金属粒子複合構造体の製造方法。   A method for producing a metal particle composite structure according to claim 1, wherein a dispersion containing metal fine particles having a primary particle diameter of 200 nm or less is applied to the surface of a substrate and dried to form a coating film; The coating film thus formed is heat-treated at a temperature of 200 ° C. or higher and less than the melting point of the metal forming the metal fine particles, and a large number of metal fine particles dispersed in the coating film are aggregated in droplets to form a base. A method for producing a metal particle composite structure, characterized in that a large number of metal particles are generated on a surface of a material in a state of being distributed so as not to contact each other. 請求項1記載の金属粒子複合構造体の基材上に、絶縁性のバインダを含む塗布液を塗布し、固化させて、バインダからなる膜を形成することで、多数の金属粒子の、基材上での分布状態を、上記膜中に固定したことを特徴とする異方導電膜。

A coating liquid containing an insulating binder is applied onto the base material of the metal particle composite structure according to claim 1 and solidified to form a film made of the binder, thereby forming a base material of a large number of metal particles. An anisotropic conductive film characterized in that the above distribution state is fixed in the film.

JP2005022096A 2005-01-28 2005-01-28 Metal particle composite structure, method for producing the same, and anisotropic conductive film using the same Expired - Fee Related JP4517290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005022096A JP4517290B2 (en) 2005-01-28 2005-01-28 Metal particle composite structure, method for producing the same, and anisotropic conductive film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005022096A JP4517290B2 (en) 2005-01-28 2005-01-28 Metal particle composite structure, method for producing the same, and anisotropic conductive film using the same

Publications (2)

Publication Number Publication Date
JP2006210196A true JP2006210196A (en) 2006-08-10
JP4517290B2 JP4517290B2 (en) 2010-08-04

Family

ID=36966788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005022096A Expired - Fee Related JP4517290B2 (en) 2005-01-28 2005-01-28 Metal particle composite structure, method for producing the same, and anisotropic conductive film using the same

Country Status (1)

Country Link
JP (1) JP4517290B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302926A (en) * 1997-04-25 1998-11-13 Hitachi Chem Co Ltd Manufacture of anisotropic conductive adhesive film
JPH10317022A (en) * 1997-05-22 1998-12-02 Daiken Kagaku Kogyo Kk Production of metallic particulate powder
JP2004165659A (en) * 2003-11-07 2004-06-10 Hitachi Chem Co Ltd Method of connecting electrodes and connecting structure of electrodes obtained by the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302926A (en) * 1997-04-25 1998-11-13 Hitachi Chem Co Ltd Manufacture of anisotropic conductive adhesive film
JPH10317022A (en) * 1997-05-22 1998-12-02 Daiken Kagaku Kogyo Kk Production of metallic particulate powder
JP2004165659A (en) * 2003-11-07 2004-06-10 Hitachi Chem Co Ltd Method of connecting electrodes and connecting structure of electrodes obtained by the same

Also Published As

Publication number Publication date
JP4517290B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP4496216B2 (en) Conductive metal paste
JP4431543B2 (en) Wiring board manufacturing method using Ag-Pd alloy nanoparticles
US20070190349A1 (en) Electroconductive fine particle and anisotropically electroconductive material
JP3991218B2 (en) Conductive adhesive and method for producing the same
EP2990142B1 (en) Metal nanoparticle dispersion, process for producing metal nanoparticle dispersion, and bonding method
JP2005507452A (en) Inkjet ink containing metal nanoparticles
JP2002299833A (en) Multilayered wiring board and its forming method
TWI530963B (en) Sheet-like silver microparticles and methods for producing the same, and a paste using the same and a paste
JP2005507452A5 (en)
JP2005537386A (en) Low viscosity precursor composition and method for depositing conductive electronic features
JP2006339057A (en) Resin metal composite conductive material, its manufacturing method, and electronic device using it
WO2007037440A1 (en) Conductive powder and process for producing the same, conductive powder paste, and process for producing the conductive powder paste
CA2602586A1 (en) Ink composition and metallic material
KR101151366B1 (en) Conductive particles and method for preparing the same
JP2012119611A (en) Manufacturing method of through hole electrode substrate
JP2004111254A (en) Metal contained composition for electrical connection of electronic device
JP5622127B2 (en) Reduction precipitation type spherical NiP fine particles and method for producing the same
JP4614101B2 (en) Silver powder, method for producing the same, and conductive paste containing the silver powder
Daniel Lu et al. Recent advances in nano-conductive adhesives
JP2005281781A (en) Method for producing copper nanoparticle
JP2004111253A (en) Conductive composition for electrical connection of electronic device, and electron device
JP3802367B2 (en) Method for forming inter-substrate conduction using anisotropic conductive material
KR101310479B1 (en) Paste composition of conductive metals and method for preparing the same
JP2004311265A (en) Conductive ink and its manufacturing method
WO2016125355A1 (en) Electroconductive microparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090924

A521 Written amendment

Effective date: 20091118

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100505

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees