JP2006210049A - Carbon nanotube electrode and its manufacturing method - Google Patents

Carbon nanotube electrode and its manufacturing method Download PDF

Info

Publication number
JP2006210049A
JP2006210049A JP2005018327A JP2005018327A JP2006210049A JP 2006210049 A JP2006210049 A JP 2006210049A JP 2005018327 A JP2005018327 A JP 2005018327A JP 2005018327 A JP2005018327 A JP 2005018327A JP 2006210049 A JP2006210049 A JP 2006210049A
Authority
JP
Japan
Prior art keywords
substrate
electrode
cnt
soft metal
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005018327A
Other languages
Japanese (ja)
Other versions
JP4517865B2 (en
Inventor
Makoto Doi
真 土居
Hitoshi Serizawa
仁 芹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2005018327A priority Critical patent/JP4517865B2/en
Publication of JP2006210049A publication Critical patent/JP2006210049A/en
Application granted granted Critical
Publication of JP4517865B2 publication Critical patent/JP4517865B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electron emitting electrode in which CNTs are not separated from a substrate and the electron discharge performance of the CNT will not be impaired, and to provide its simple manufacturing method. <P>SOLUTION: A CNT assembly film is pressurized on a substrate, formed with a soft metal thin film with high pressure within a range in which the substrate is not deformed, and in a state of the interface layer of the CNT assembly film being sunk into the soft metal with high ductility, the substrate and the CNT assembly film are adhered. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、カーボンナノチューブを用いた電子放出用電極とその製造方法に関する。特に、カーボンナノチューブと基板との接合方法に関する。   The present invention relates to an electron emission electrode using carbon nanotubes and a method for producing the same. In particular, the present invention relates to a method for bonding a carbon nanotube and a substrate.

カーボンナノチューブ(以下、CNTと称す)は、炭素六員環の連なったグラフェンシートが丸まり筒形になったものである。単層、2層から多層まであり、その直径は0.4〜数100nm、長さは1〜数10μm程度のものである。CNTは細く高いアスペクト比、高導電性から非常に高い電界電子放出特性を有しており、蛍光表示管、X線管、フィールドエミッションディスプレイ(FED)等の電界放出型冷陰極素子用材料として、期待されている。   A carbon nanotube (hereinafter referred to as CNT) is a graphene sheet in which carbon six-membered rings are connected and rounded into a cylindrical shape. There are single layers, two layers to multiple layers, the diameter is 0.4 to several hundred nm, and the length is about 1 to several tens of μm. CNT has a very high field electron emission characteristic due to its thin and high aspect ratio and high conductivity. As a material for field emission type cold cathode devices such as fluorescent display tubes, X-ray tubes, field emission displays (FED), etc. Expected.

技術的にはCNT集合体膜が基板から剥離しないようにすることが大きな課題であり、そのための方法として、電極基板上に基板材より低融点の金属(例えばAI)の膜を形成し、その上に電気泳動法にてCNTを付着させ、加熱処理してろう接する方法が提案されている(例えば、特許文献1参照)。   Technically, it is a big problem to prevent the CNT aggregate film from peeling off from the substrate. As a method for that purpose, a film of a metal (for example, AI) having a melting point lower than that of the substrate material is formed on the electrode substrate. There has been proposed a method in which CNTs are attached on top of each other by electrophoretic method and subjected to brazing by heat treatment (see, for example, Patent Document 1).

特開2003−59391号公報JP 2003-59391 A

しかしながら、基本性質としてカーボン材、特にCNTは金属とのぬれ性は良くないため、従来技術にあるように溶融金属が複数のCNTが密に絡み合った繊維状の集合体膜内に浸透させることはまず困難である。また、CNTの密度を疎にしたりして浸透させる状態にしても、今度はCNT全体が凝集し溶融金属に埋没した状態となる。さらにCNT膜内の状態を均質にすることはできないため、CNTの粗密や他のナノポリヘドロン、アモルファスカーボン等のカーボン系不純物の影響によりCNT膜内の一定高さまで溶融金属を浸透させることを制御することは不可能である。結果として、ほとんど浸透しない個所やCNT上面まで埋まった状態の個所が斑にできる不均一なろう接となる。   However, as a basic property, carbon materials, particularly CNTs, do not have good wettability with metals, and as in the prior art, it is not possible for molten metal to penetrate into a fibrous aggregate film in which a plurality of CNTs are intertwined closely. First is difficult. Moreover, even if the density of CNTs is reduced or infiltrated, the entire CNTs are aggregated and buried in the molten metal. In addition, since the state in the CNT film cannot be made uniform, control of the penetration of the molten metal to a certain height in the CNT film due to the influence of carbon-based impurities such as CNT density and other nanopolyhedron and amorphous carbon is controlled. It is impossible to do. As a result, non-uniform brazing where spots that hardly penetrate or spots that are buried up to the top surface of the CNTs become spots.

CNT先端での電界集中が必要な電子放出用CNT電極においては、CNTが起毛した状態でCNT同士に空間が必要であり、CNTが寝た状態や金属に埋もれたような状態では特性が得られない。   In an electron emission CNT electrode that requires electric field concentration at the tip of the CNT, a space is required between the CNTs with the CNTs raised, and characteristics are obtained when the CNTs are lying down or buried in a metal. Absent.

本発明はこのような課題を解決するためになされたものであり、CNT集合体膜全体が起毛された状態で基板との高い接着力を有するCNT電極を提供することを目的とする。   The present invention has been made to solve such problems, and an object of the present invention is to provide a CNT electrode having a high adhesive force with a substrate in a state where the entire CNT aggregate film is raised.

本発明者らは、上記の課題を解決すべく鋭意研究を行った結果、接着での加熱処理が不要であり、基板との接触抵抗が低く、かつ基板との高い接着力を有するCNT電極を提供することが可能となった。   As a result of intensive studies to solve the above problems, the present inventors have found a CNT electrode that does not require heat treatment for bonding, has low contact resistance with the substrate, and has high adhesion to the substrate. It became possible to provide.

また、軟質な金属が薄膜で圧縮されるため、高い寸法精度を有する電極を得ることができ、非常に軟質かつ低融点による影響が抑制されているため、耐久性かつ信頼性に優れたCNT電極を提供することが可能となった。   In addition, since a soft metal is compressed by a thin film, an electrode having high dimensional accuracy can be obtained, and the influence of the soft and low melting point is suppressed, so that the CNT electrode has excellent durability and reliability. It became possible to provide.

すなわち、本発明は以下のような特徴を有している。   That is, the present invention has the following features.

(1)複数のカーボンナノチューブからなるカーボンナノチューブ集合体膜と基板との間にモース硬度2以下の軟質金属または合金の薄膜が設けられ、カーボンナノチューブが該薄膜にめり込み固着されていることを特徴とするカーボンナノチューブ電極。   (1) A thin film of a soft metal or alloy having a Mohs hardness of 2 or less is provided between a carbon nanotube aggregate film composed of a plurality of carbon nanotubes and a substrate, and the carbon nanotubes are embedded in and fixed to the thin film. Carbon nanotube electrode.

(2)上記(1)において、前記軟質金属または合金がインジウムを主成分とすることを特徴とするカーボンナノチューブ電極。   (2) The carbon nanotube electrode according to (1), wherein the soft metal or alloy contains indium as a main component.

(3)複数のカーボンナノチューブからなるカーボンナノチューブ集合体膜と基板との間にモース硬度2以下の軟質金属または合金の薄膜を配置した状態で加圧することにより、カーボンナノチューブと基板を接着することを特徴とするカーボンナノチューブ電極の製造方法。   (3) Adhering the carbon nanotube and the substrate by applying pressure in a state where a soft metal or alloy thin film having a Mohs hardness of 2 or less is disposed between the carbon nanotube aggregate film composed of a plurality of carbon nanotubes and the substrate. A method for producing a carbon nanotube electrode characterized by the above.

(4)上記(3)において、前記軟質金属または合金がインジウムを主成分とすることを特徴とするカーボンナノチューブ電極の製造方法。   (4) The method for producing a carbon nanotube electrode according to (3), wherein the soft metal or alloy contains indium as a main component.

本発明によれば、接着での加熱処理が不要なため、例えばろう接時の加熱処理による金属の付着、反応などのCNTへの影響や変質がない。また、高い接着強度によりCNTが剥離することなく、基板との接触抵抗も低い。さらに軟質な金属が薄膜で圧縮されるため、電極は高い寸法精度のものが得られ、非常に軟質かつ低融点による影響が抑制されているため、耐久性かつ信頼性に優れた電極を得ることができる。   According to the present invention, since heat treatment by bonding is unnecessary, for example, there is no influence or alteration on the CNT such as metal adhesion or reaction due to heat treatment during brazing. Further, the contact resistance with the substrate is low without CNT peeling due to high adhesive strength. In addition, since soft metal is compressed by a thin film, the electrode has high dimensional accuracy, and the influence of extremely soft and low melting point is suppressed, so that an electrode having excellent durability and reliability can be obtained. Can do.

したがって、CNTが具備する特性を損なうことなく、また特別の装置を必要とすることなく簡単で安価に電子放出用電極を製造することができる。   Therefore, the electron emission electrode can be manufactured easily and inexpensively without deteriorating the characteristics of the CNT and without requiring a special device.

本発明のカーボンナノチューブ電極に使用されるカーボンナノチューブはアーク放電法やCVD法等純度、種類等によらず公知の方法で合成されたものをそのまま使用することができる。一例として特開2004−316051号公報に記載されている方法により合成したCNTテープ状物質を好ましく用いることができる。   The carbon nanotubes used in the carbon nanotube electrode of the present invention can be used as they are synthesized by known methods regardless of the purity and type such as arc discharge method and CVD method. As an example, a CNT tape-like material synthesized by the method described in JP-A-2004-316051 can be preferably used.

軟質金属材料としては、まず金、アルミニウム、銅などの適用が考えられるが、CNT集合体膜を圧着してもその付着性は弱い。高い変形能を有しCNTとの付着性もよいのは、モース硬度2以下のもの、例えばインジウム、すず、鉛などやその合金である。特に、インジウムが最も付着性、化学反応に対する安定性、環境の面から良い。これら金属は非常に変形能が高く軟質であり、融点も低いため単体にて電極用基板には用いることができないが、高強度基板上の薄膜とすることにより、CNTと基板との高い接着性を有しながら、電極として寸法精度、周囲環境に対する安定性や信頼性などの高いものを得ることができる。この軟質金属または合金の薄膜の厚みは0.1〜5μm程度である。   As the soft metal material, gold, aluminum, copper, etc. can be applied first, but even if the CNT aggregate film is pressure-bonded, its adhesion is weak. Those having high deformability and good adhesion to CNTs are those having a Mohs hardness of 2 or less, such as indium, tin, lead, and alloys thereof. In particular, indium is most preferable in terms of adhesion, stability against chemical reaction, and environment. These metals are very deformable and soft, and have a low melting point, so they cannot be used alone for an electrode substrate. However, by forming a thin film on a high-strength substrate, high adhesion between the CNT and the substrate. As a result, it is possible to obtain an electrode having high dimensional accuracy, stability and reliability with respect to the surrounding environment. The thickness of the soft metal or alloy thin film is about 0.1 to 5 μm.

本発明のCNT電極の製造方法は、まず、電極用基板上に基板より変形能の高い軟質金属の薄膜を成膜あるいは配置する。   In the method for producing a CNT electrode of the present invention, first, a soft metal thin film having a higher deformability than a substrate is formed or disposed on an electrode substrate.

電極基板の材質は問わないが、通常はステンレススチールである。その上に軟質金属または合金の薄膜を成膜する手段は問わないが、例えば真空蒸着法、スパッタリング法、イオンプレーティング法などを利用できる。膜厚が比較的厚いものは圧延など公知の方法で製造すればよい。その上にCNT集合体膜を形成し、軟質な金属より硬質な基板にて挟みつけ加圧する。   The material of the electrode substrate is not limited, but is usually stainless steel. There is no limitation on the means for forming a thin film of a soft metal or alloy thereon, but for example, a vacuum deposition method, a sputtering method, an ion plating method or the like can be used. A relatively thick film may be produced by a known method such as rolling. A CNT aggregate film is formed thereon, and is sandwiched and pressed by a substrate harder than a soft metal.

軟質金属は非常に弱い力で簡単に変形するが、CNTと基板との接合力を高めるため、加圧する力は、基板が変形しない範囲で高い圧力が良い。例えばSUS304基板の場合には面圧力は20〜60kgf/mmである。またCNTの機械的強度および柔軟性はSUS304等の金属より高く、この程度の圧力では損傷など何ら影響を受けることはない。 A soft metal is easily deformed with a very weak force. However, in order to increase the bonding force between the CNT and the substrate, a high pressure is preferable for the pressure to be applied as long as the substrate is not deformed. For example, in the case of a SUS304 substrate, the surface pressure is 20 to 60 kgf / mm 2 . In addition, the mechanical strength and flexibility of CNTs are higher than that of metals such as SUS304, and at such a pressure, damage and the like are not affected at all.

加圧の結果、CNT集合体膜が軟質金属に接している界面層は変形能の高い軟質金属にめり込んだ状態となり電極基板とCNT集合体膜を付着させる。CNT集合体膜は加圧前に、加圧用の基板上にあっても良い。   As a result of the pressurization, the interfacial layer in which the CNT aggregate film is in contact with the soft metal is in a state of being sunk into the soft metal having high deformability, and the electrode substrate and the CNT aggregate film are adhered. The CNT aggregate film may be on the substrate for pressurization before pressurization.

加圧によってCNT集合体膜が電極基板と加圧用基板の両方に接着した場合にはこれを引き剥すことによって起毛させることができる。電極基板の方にのみ接着した場合には、加圧後起毛状態にないのでこれを起毛処理する。この起毛処理は、粘着テープを押し付けて引き剥すとか、表面をスクラッチするとか、レーザ照射を行うなどの一般的処理を適用すればよい。   When the CNT aggregate film is adhered to both the electrode substrate and the pressure substrate by pressurization, it can be raised by peeling it off. When it adheres only to the electrode substrate, it is not in a raised state after pressurization, and is thus raised. For the raising treatment, a general treatment such as pressing and peeling the adhesive tape, scratching the surface, or performing laser irradiation may be applied.

カーボンナノチューブ電極に形成されたカーボンナノチューブ集合体膜は、厚さは2μm〜100μm程度のもので、カーボンナノチューブは先端が軟質金属または合金の薄膜にめり込み固着され、全体として起毛状態になっている。この集合体膜はアモルファスカーボン等の不純物を含んでいてもよい。   The carbon nanotube aggregate film formed on the carbon nanotube electrode has a thickness of about 2 μm to 100 μm, and the carbon nanotube has a tip which is fixed by being stuck into a thin film of a soft metal or alloy, and is in a raised state as a whole. This aggregate film may contain impurities such as amorphous carbon.

図1は、本発明に係るCNT電極の製造方法に関する実施の形態1を説明する模式図である。図1において、10はCNTテープ状物質(以下、テープ状物質と称す)、21は電極用基板である。22は軟質金属薄膜、23は加圧用基板である。このCNTテープ状物質は、特開2004−316051号公報に記載されている方法により合成したものである。   FIG. 1 is a schematic diagram for explaining Embodiment 1 relating to a method for producing a CNT electrode according to the present invention. In FIG. 1, 10 is a CNT tape-like material (hereinafter referred to as a tape-like material), and 21 is an electrode substrate. 22 is a soft metal thin film, and 23 is a substrate for pressurization. This CNT tape-like substance is synthesized by the method described in JP-A-2004-316051.

電極用基板21は、真空用非磁性材として最も一般的なSUS304である。この基板上にまず真空蒸着法、スパッタリング法、イオンプレーティング法などの成膜方法により軟質金属薄膜22を成膜する(図1の(a))。膜厚は0.1〜5μm程度のものである。一方で膜厚10〜100μm程度のテープ状物質10を加圧用基板上に配置し、その上から前記軟質金属薄膜を蒸着した電極基板でテープ状物質10を挟み込み加圧する。加圧により軟質金属が十分変形して、CNTがめり込み固着するとともに基板と軟質金属もさらに強固に接着する。   The electrode substrate 21 is SUS304, which is most commonly used as a nonmagnetic material for vacuum. First, a soft metal thin film 22 is formed on the substrate by a film forming method such as vacuum deposition, sputtering, or ion plating (FIG. 1A). The film thickness is about 0.1 to 5 μm. On the other hand, a tape-like substance 10 having a thickness of about 10 to 100 μm is placed on a pressurizing substrate, and the tape-like substance 10 is sandwiched and pressed by an electrode substrate on which the soft metal thin film is deposited. The soft metal is sufficiently deformed by the pressurization, and the CNTs are squeezed and fixed, and the substrate and the soft metal are more firmly bonded.

その後、基板21および23を引き離す(図1の(b))ことにより、テープ状物質10は厚さ方向で2枚に引き剥がされ、基板21および23には、それぞれ引き剥がされたテープ状物質11および12(以下、テープ状剥離物質と称す)が付着している。この両側に引き剥がされることにより一旦加圧により圧縮され押し潰されたCNTテープ状物質10は、軟質金属との界面層のものはめり込んで固着したまま、内側は複数に絡み合っていたCNT同士が解きほぐされ基板面に垂直方向へ配向する。図2(a)に本実施例にて、SUS304基板上に2μm厚インジウムを真空蒸着したものにCNTテープ状物質を圧着した電極の電子顕微鏡写真を示すが、CNTが起毛していることがわかる。   Thereafter, the substrates 21 and 23 are separated (FIG. 1B), whereby the tape-like material 10 is peeled off into two sheets in the thickness direction, and the substrates 21 and 23 are separated from the tape-like material, respectively. 11 and 12 (hereinafter referred to as a tape-like release substance) are adhered. The CNT tape-like material 10 once compressed and crushed by being peeled off on both sides of the interface layer with the soft metal is stuck and fixed, while the CNTs entangled with each other are intertwined. It is unraveled and oriented in the direction perpendicular to the substrate surface. FIG. 2A shows an electron micrograph of an electrode obtained by vacuum-depositing 2 μm-thick indium on a SUS304 substrate in this example, and shows that the CNTs are raised. .

このCNT電極の電子放出特性は、電界強度約2V/μmで電流密度10mA/cmの高い特性が得られている。また、図2(a)の電極のCNTと基板との接着性を、メタノール中の3分間超音波洗浄において調べた。図2(b)は洗浄後の電極表面を示す電子顕微鏡写真である。メタノールによりCNTは凝集しているものの、CNTは剥離することなく高い接着性が得られている。比較としてインジウムを蒸着しないSUS304基板上に図1に示す方法で電極を製造した。図2(c)はこの電極を同じメタノール中の超音波洗浄した後の電極表面の電子顕微鏡写真である。CNTはほとんどすべて剥離してなくなっていることがわかる。 The electron emission characteristics of the CNT electrode are as high as 10 mA / cm 2 with a current density of about 2 V / μm and a current density of 10 mA / cm 2 . In addition, the adhesion between the CNT of the electrode of FIG. 2A and the substrate was examined by ultrasonic cleaning in methanol for 3 minutes. FIG. 2B is an electron micrograph showing the electrode surface after cleaning. Although the CNTs are aggregated by methanol, high adhesion is obtained without peeling off the CNTs. For comparison, an electrode was manufactured by the method shown in FIG. 1 on a SUS304 substrate on which no indium was deposited. FIG. 2 (c) is an electron micrograph of the electrode surface after ultrasonic cleaning of this electrode in the same methanol. It can be seen that almost all of the CNTs are removed.

図3は、本発明に係るCNT電極の製造方法に関する実施の形態2を説明する模式図である。図3(a)の軟質金属薄膜22が成膜された状態の電極用基板21上に、アルコール中にCNTを数〜10重量%濃度で分散させた懸濁液をスプレーで散布して数〜10μm程度の厚さでCNT集合体膜31を成膜する。成膜する方法は特許文献1に記載されているような電気泳動法を用いても良い。この電極を加圧用基板23に配置し、CNT集合体膜31を挟み込む形で加圧する(図3の(a))。加圧により軟質金属が十分変形して、CNT集合体膜がめり込み固着するとともに基板と軟質金属も強固に接着する。   FIG. 3 is a schematic diagram for explaining a second embodiment relating to a method for producing a CNT electrode according to the present invention. On the electrode substrate 21 in the state where the soft metal thin film 22 of FIG. A CNT aggregate film 31 is formed with a thickness of about 10 μm. As a film forming method, an electrophoresis method as described in Patent Document 1 may be used. This electrode is placed on the pressurizing substrate 23 and pressed in such a manner as to sandwich the CNT aggregate film 31 ((a) of FIG. 3). The soft metal is sufficiently deformed by the pressurization, the CNT aggregate film is sunk and fixed, and the substrate and the soft metal are firmly bonded.

その後、基板21および23を引き離す(図3の(b))ことにより、CNT集合体膜31は電極用基板21側へ全体が平坦に圧縮された状態で付着している(図4の(a))。しかしながら、CNTの端部が軟質金属にめり込んで固着しているものの、他の部分は単にCNTが複雑に絡み合っている状態であるため、粘着テープ、スクラッチやレーザ照射等の一般的な処理により簡単に起毛処理が可能である(図4の(b))。   Thereafter, by separating the substrates 21 and 23 ((b) in FIG. 3), the CNT aggregate film 31 is adhered to the electrode substrate 21 side in a state of being compressed in a flat manner ((a in FIG. 4). )). However, although the end of the CNT is indented and fixed to the soft metal, the other parts are simply intricately intertwined with the CNT, so it is easy to perform by general processing such as adhesive tape, scratching or laser irradiation. Can be brushed (Fig. 4 (b)).

このCNT電極の電子放出特性は実施例1と同様、電界強度約2V/μmで電流密度10mA/cmの高い特性が得られている。また、本実施例の電極のCNTと基板との接合性を、メタノール中の超音波洗浄において調べた。図4(c)は洗浄後の電極表面を示す電子顕微鏡写真である。CNTは剥離することなく高い接着性が得られている。 The electron emission characteristics of the CNT electrode are the same as in Example 1, and a high current density of 10 mA / cm 2 is obtained with an electric field strength of about 2 V / μm. In addition, the bonding property between the CNT of the electrode of this example and the substrate was examined by ultrasonic cleaning in methanol. FIG. 4C is an electron micrograph showing the electrode surface after cleaning. CNT has high adhesiveness without peeling.

図5は、本発明に係るCNT電極の製造方法に関する実施の形態3を説明する模式図である。図3(a)の軟質金属薄膜22上にCNTが成膜された状態の電極用基板21と軟質金属薄膜22が成膜された状態の加工用基板23で、CNT集合体膜31を挟み込む形で加圧する(図5の(a))。加圧により軟質金属が十分変形して、CNT集合体膜がめり込み固着するとともに基板と軟質金属も強固に接着する。   FIG. 5 is a schematic diagram for explaining Embodiment 3 relating to the method for producing a CNT electrode according to the present invention. A shape in which the CNT aggregate film 31 is sandwiched between the electrode substrate 21 in which the CNT is formed on the soft metal thin film 22 and the processing substrate 23 in which the soft metal thin film 22 is formed on the soft metal thin film 22 in FIG. (Fig. 5 (a)). The soft metal is sufficiently deformed by the pressurization, the CNT aggregate film is sunk and fixed, and the substrate and the soft metal are firmly bonded.

その後、基板21および23を引き離す(図5の(b))ことにより、CNT集合体膜31は両方の基板21および23へ実施例1と同じように厚さ方向で2枚に引き剥がされ起毛した状態で固着している。   Thereafter, the substrates 21 and 23 are separated (FIG. 5 (b)), and the CNT aggregate film 31 is peeled off into two in the thickness direction on both the substrates 21 and 23 in the same manner as in the first embodiment. It is stuck in the state.

このCNT電極の電子放出特性は実施例1および2と同様、電界強度約2V/μmで電流密度10mA/cmの高い特性が得られている。また、CNTと基板との接合性は、メタノール中の超音波洗浄においても剥離することなく高い接着性が得られている。 As in Examples 1 and 2, the electron emission characteristics of this CNT electrode are such that a high current density of 10 mA / cm 2 is obtained at an electric field strength of about 2 V / μm. Further, the bonding property between the CNT and the substrate is high without being peeled even in ultrasonic cleaning in methanol.

本発明のカーボンナノチューブ電極は、CNTの電極基板への接着性に優れているだけではなく、電子放出特性にも優れており、蛍光表示管、X線管、フィールドエミッションディスプレイ等の電極として広く利用できる。   The carbon nanotube electrode of the present invention not only has excellent adhesion of CNTs to the electrode substrate, but also has excellent electron emission characteristics, and is widely used as an electrode for fluorescent display tubes, X-ray tubes, field emission displays, etc. it can.

本発明に係るCNT電極の製造方法に関する実施例1を説明する模式図である。It is a schematic diagram explaining Example 1 regarding the manufacturing method of the CNT electrode which concerns on this invention. 図2(a)は、図1に示す製造方法により得られた電極の電子顕微鏡写真、図2(b)は、図2(a)に示す電極を超音波洗浄した後の電子顕微鏡写真、そして、図2(c)は、軟質金属なしで図1に示す方法で製造した電極を超音波洗浄した後の電子顕微鏡写真である。2 (a) is an electron micrograph of the electrode obtained by the manufacturing method shown in FIG. 1, FIG. 2 (b) is an electron micrograph after ultrasonic cleaning of the electrode shown in FIG. 2 (a), and FIG. 2 (c) is an electron micrograph after ultrasonic cleaning of the electrode produced by the method shown in FIG. 1 without a soft metal. 本発明に係るCNT電極の製造方法に関する実施例2を説明する模式図である。It is a schematic diagram explaining Example 2 regarding the manufacturing method of the CNT electrode which concerns on this invention. 図4(a)は、図3に示す製造方法により得られた電極の電子顕微鏡写真、図4(b)は、図4(a)の電極を起毛処理した後の電子顕微鏡写真、そして、図4(c)は、図4(b)の電極を超音波洗浄した後の電子顕微鏡写真である。4 (a) is an electron micrograph of the electrode obtained by the manufacturing method shown in FIG. 3, FIG. 4 (b) is an electron micrograph after raising the electrode of FIG. 4 (a), and FIG. 4 (c) is an electron micrograph after ultrasonic cleaning of the electrode of FIG. 4 (b). 本発明に係るCNT電極の製造方法に関する実施例3を説明する模式図である。It is a schematic diagram explaining Example 3 regarding the manufacturing method of the CNT electrode which concerns on this invention.

符号の説明Explanation of symbols

10 テープ状物質
11 テープ状剥離物質
12 テープ状剥離物質
21 電極用基板
22 軟質金属薄膜
23 加圧用基板
31 CNT集合体膜
32 CNT集合体剥離膜
DESCRIPTION OF SYMBOLS 10 Tape-like substance 11 Tape-like release substance 12 Tape-like release substance 21 Substrate for electrode 22 Soft metal thin film 23 Substrate for pressurization 31 CNT aggregate film 32 CNT aggregate release film

Claims (4)

複数のカーボンナノチューブからなるカーボンナノチューブ集合体膜と基板との間にモース硬度2以下の軟質金属または合金の薄膜が設けられ、カーボンナノチューブが該薄膜にめり込み固着されていることを特徴とするカーボンナノチューブ電極   A carbon nanotube characterized in that a thin film of a soft metal or alloy having a Mohs hardness of 2 or less is provided between a carbon nanotube aggregate film composed of a plurality of carbon nanotubes and a substrate, and the carbon nanotube is embedded in and fixed to the thin film. electrode 前記軟質金属または合金がインジウムを主成分とすることを特徴とする請求項1に記載のカーボンナノチューブ電極   The carbon nanotube electrode according to claim 1, wherein the soft metal or alloy contains indium as a main component. 複数のカーボンナノチューブからなるカーボンナノチューブ集合体膜と基板との間にモース硬度2以下の軟質金属または合金の薄膜を配置した状態で加圧することにより、カーボンナノチューブと基板を接着することを特徴とするカーボンナノチューブ電極の製造方法   The carbon nanotube and the substrate are bonded together by applying pressure in a state where a thin film of a soft metal or alloy having a Mohs hardness of 2 or less is disposed between the carbon nanotube aggregate film composed of a plurality of carbon nanotubes and the substrate. Method for producing carbon nanotube electrode 前記軟質金属または合金がインジウムを主成分とすることを特徴とする請求項3に記載のカーボンナノチューブ電極の製造方法   4. The method for producing a carbon nanotube electrode according to claim 3, wherein the soft metal or alloy contains indium as a main component.
JP2005018327A 2005-01-26 2005-01-26 Method for producing carbon nanotube electrode Expired - Fee Related JP4517865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005018327A JP4517865B2 (en) 2005-01-26 2005-01-26 Method for producing carbon nanotube electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005018327A JP4517865B2 (en) 2005-01-26 2005-01-26 Method for producing carbon nanotube electrode

Publications (2)

Publication Number Publication Date
JP2006210049A true JP2006210049A (en) 2006-08-10
JP4517865B2 JP4517865B2 (en) 2010-08-04

Family

ID=36966662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005018327A Expired - Fee Related JP4517865B2 (en) 2005-01-26 2005-01-26 Method for producing carbon nanotube electrode

Country Status (1)

Country Link
JP (1) JP4517865B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100990231B1 (en) 2008-12-05 2010-10-29 고려대학교 산학협력단 fabrication method the electron emission source
KR101013604B1 (en) 2008-12-05 2011-02-14 고려대학교 산학협력단 fabrication method of electron emission source source
JP2013016504A (en) * 2006-12-06 2013-01-24 Ishihara Sangyo Kaisha Ltd Cold cathode electron source and manufacturing method therefor and light-emitting device using the same
KR101233965B1 (en) 2011-06-10 2013-02-18 고려대학교 산학협력단 Method for manufacturing carbon nanotube based flexible sensor using mechanical transfer
TWI421918B (en) * 2007-02-21 2014-01-01 Nantero Inc Method of forming a carbon nanotube-based contact to semiconductor
KR101399793B1 (en) 2007-09-28 2014-05-26 재단법인서울대학교산학협력재단 THE FREE-STANDING METALLIC MICROMECHANICAL STRUCTURE WITH METAL THIN FILM FORMED ON CNTnt AND RESONATOR STRUCTURE USING THEREOF

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223004A (en) * 1999-01-25 2000-08-11 Lucent Technol Inc Device including carbon nano-tube, device including field emission structure, and its manufacture
JP2004055157A (en) * 2002-07-16 2004-02-19 Hitachi Zosen Corp Electrode material for electron emission element using carbon nanotube and its manufacturing method
JP2004259667A (en) * 2003-02-27 2004-09-16 Umk Technology Kk Vertical alignment method of carbon nanotube electrode and fed cathode equipped with vertically arranged carbon nanotube
JP2004265665A (en) * 2003-02-28 2004-09-24 Jfe Engineering Kk Field emission type electrode, its manufacturing method, and equipment using field emission type electrode
JP2005190721A (en) * 2003-12-24 2005-07-14 Jfe Engineering Kk Carbon nanotube installation base

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223004A (en) * 1999-01-25 2000-08-11 Lucent Technol Inc Device including carbon nano-tube, device including field emission structure, and its manufacture
JP2004055157A (en) * 2002-07-16 2004-02-19 Hitachi Zosen Corp Electrode material for electron emission element using carbon nanotube and its manufacturing method
JP2004259667A (en) * 2003-02-27 2004-09-16 Umk Technology Kk Vertical alignment method of carbon nanotube electrode and fed cathode equipped with vertically arranged carbon nanotube
JP2004265665A (en) * 2003-02-28 2004-09-24 Jfe Engineering Kk Field emission type electrode, its manufacturing method, and equipment using field emission type electrode
JP2005190721A (en) * 2003-12-24 2005-07-14 Jfe Engineering Kk Carbon nanotube installation base

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016504A (en) * 2006-12-06 2013-01-24 Ishihara Sangyo Kaisha Ltd Cold cathode electron source and manufacturing method therefor and light-emitting device using the same
TWI421918B (en) * 2007-02-21 2014-01-01 Nantero Inc Method of forming a carbon nanotube-based contact to semiconductor
KR101399793B1 (en) 2007-09-28 2014-05-26 재단법인서울대학교산학협력재단 THE FREE-STANDING METALLIC MICROMECHANICAL STRUCTURE WITH METAL THIN FILM FORMED ON CNTnt AND RESONATOR STRUCTURE USING THEREOF
KR100990231B1 (en) 2008-12-05 2010-10-29 고려대학교 산학협력단 fabrication method the electron emission source
KR101013604B1 (en) 2008-12-05 2011-02-14 고려대학교 산학협력단 fabrication method of electron emission source source
KR101233965B1 (en) 2011-06-10 2013-02-18 고려대학교 산학협력단 Method for manufacturing carbon nanotube based flexible sensor using mechanical transfer

Also Published As

Publication number Publication date
JP4517865B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP4517865B2 (en) Method for producing carbon nanotube electrode
JP5051243B2 (en) Manufacturing method of semiconductor device
US7781950B2 (en) Field emission element having carbon nanotube and manufacturing method thereof
JP2004079223A5 (en)
JP5474188B2 (en) Circuit board and electronic device using the same
JP4482010B2 (en) Electron emitting device using carbon nanotube and method for manufacturing the same
US20090246507A1 (en) Systems and methods for fabrication and transfer of carbon nanotubes
JP2001153738A (en) Tactile sensor including nanowire and its production method
TWI711578B (en) Method for making field emitter
ES2806931T3 (en) Procedure for establishing a connection of graphite and support metal, as well as composite element
JP2009212495A (en) Heat sink component for semiconductor package and method of manufacturing the same
JP4370903B2 (en) Carbon nanotube substrate
EP2487934A1 (en) Piezoelectric film ultrasonic sensor electrode
JP2011222746A (en) Electronic device manufacturing method
WO2016133214A1 (en) Graphite film, laminated film, methods for manufacturing same, and electrode material
JP2008155489A (en) Carbon fiber bonded body and article using the same
JP2013008591A (en) Anisotropic conductive connector and method for manufacturing anisotropic conductive connector
JP4333285B2 (en) Method of brazing carbon nanotube to substrate
US8119504B2 (en) Method for transferring a nano material from a substrate to another substrate
Liu et al. Enhanced electron field emission characteristics of single-walled carbon nanotube films by ultrasonic bonding
CN105448623B (en) The preparation method of field emission body
JP2001023554A (en) Anode for x-ray tube and its manufacture
JP3797299B2 (en) High voltage cathode and bonding method thereof
TWI748230B (en) Carbon nanotube field emitter and making method thereof
JP2007066532A (en) Carbon nanotube electron emitting substrate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4517865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees