JP2006206852A - Method for crosslinking water-based resin - Google Patents

Method for crosslinking water-based resin Download PDF

Info

Publication number
JP2006206852A
JP2006206852A JP2005049667A JP2005049667A JP2006206852A JP 2006206852 A JP2006206852 A JP 2006206852A JP 2005049667 A JP2005049667 A JP 2005049667A JP 2005049667 A JP2005049667 A JP 2005049667A JP 2006206852 A JP2006206852 A JP 2006206852A
Authority
JP
Japan
Prior art keywords
crosslinking
water
titanium
oxycarboxylic acid
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005049667A
Other languages
Japanese (ja)
Other versions
JP4827225B2 (en
Inventor
Tsutomu Omashoda
勉 大豆生田
Yoshiteru Kobayashi
芳照 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Seiyaku Kogyo KK
Original Assignee
Matsumoto Seiyaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Seiyaku Kogyo KK filed Critical Matsumoto Seiyaku Kogyo KK
Priority to JP2005049667A priority Critical patent/JP4827225B2/en
Publication of JP2006206852A publication Critical patent/JP2006206852A/en
Application granted granted Critical
Publication of JP4827225B2 publication Critical patent/JP4827225B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for crosslinking a water-based resin, by which a hydroxy group-containing water-based resin is stably preserved in a mixed state with a crosslinking agent and a crosslinking temperature is arbitrarily set. <P>SOLUTION: The crosslinking method comprises contacting and mixing a titanium alkoxide with one or more components selected from a hydroxycarboxylic acid, an aliphatic amine and a glycol. Consequently, the crosslinking reaction of a water-based resin containing a hydroxy group starts at 80-200°C in the presence of a water-based titanium composition and the insolubilization ratio of the resin is increased by ≥50% at a temperature difference within 50°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水系チタン組成物による水系樹脂の架橋方法に関するものであり、特に低温では水系樹脂の架橋を抑え、より高温で架橋させる方法に関するものである。これを使用し、水系樹脂の架橋剤として塗料、インキ、接着剤、バリヤーコート剤などに利用できる。  The present invention relates to a method for crosslinking an aqueous resin with an aqueous titanium composition, and particularly to a method for suppressing crosslinking of an aqueous resin at low temperatures and crosslinking at higher temperatures. By using this, it can be used as a crosslinking agent for water-based resins in paints, inks, adhesives, barrier coating agents and the like.

チタンアルコキシドは、架橋剤として分子中に水酸基、カルボキシル基などを有する化合物と反応するため、接着改良剤、塗料の架橋剤、塗料の耐熱向上剤などに利用されている。さらにゾルゲル法により酸化チタンの薄膜製造や、エステル化の触媒として工業的に幅広く使用されている。しかし、チタンアルコキシドは非常に高い加水分解性を有しているため、空気中の水分によっても作業中や保存中に不溶物を生じやすい。また、チタンアルコキシドを使用する際には有機溶媒を多量に使用する必要があり、環境負荷が極めて高くなる。このため、環境負荷が低く耐加水分解性を有するチタン成分として、水溶性または水系のチタン組成物が検討されてきた。現在市販されている水溶性または水系のチタン化合物の技術はチタンアルコキシドにキレート化剤を反応させる方法がとられており、ヒドロキシカルボン酸である乳酸とチタンアルコキシドとを反応させたチタンラクテート、アルカノールアミンであるトリエタノールアミンとチタンアルコキシドを反応させたチタントリエタノールアミネート、ジカルボン酸であるシュウ酸とチタンアルコキシドとを反応させたシュウ酸チタンなどがある。これについては、たとえば、(特許文献1)や、(非特許文献1)に記載されている。しかし、これらのうちヒドロキシカルボン酸である乳酸とチタンアルコキシドとを反応させたチタンラクテートは保存中に白色沈殿を生じやすい。またアルカノールアミンであるトリエタノールアミンとチタンアルコキシドを反応させたチタントリエタノールアミネートも初期は水溶液を形成するが、水と1対1で混合し40℃で保存すると、一ヶ月後には濁りを生じて流動性がなくなり、茶色のゲル状態となる。(特許文献2)には脂肪族アミンを使用してチタン含有水溶液の製造方法が記載されているが、水溶液を作るのに長時間を要し、少量の水の添加では配合物が白色固体となり、均一で透明な液体を得る事ができない。さらに、水酸基を有する水系樹脂にチタンラクテートを混合した場合には、混合直後室温下では液状であるものの、40℃で保管あるいは室温下で長期保存すると、ゲル状態となり、作業性が非常に悪い。また、同様にチタントリエタノールアミネートを混合した場合、即座にゲル状態となる問題があった。Titanium alkoxide reacts with a compound having a hydroxyl group, a carboxyl group or the like in the molecule as a crosslinking agent, and is therefore used as an adhesion improving agent, a coating crosslinking agent, a coating heat resistance improving agent, and the like. Further, it is widely used industrially as a catalyst for titanium oxide thin film production and esterification by the sol-gel method. However, since titanium alkoxide has very high hydrolyzability, insoluble matter is likely to be generated during operation and storage even by moisture in the air. Moreover, when using titanium alkoxide, it is necessary to use a large amount of an organic solvent, and the environmental load becomes extremely high. For this reason, a water-soluble or water-based titanium composition has been studied as a titanium component having low environmental load and resistance to hydrolysis. The water-soluble or water-based titanium compound technology currently on the market is a method in which a chelating agent is reacted with titanium alkoxide, and titanium lactate or alkanolamine obtained by reacting lactic acid, which is a hydroxycarboxylic acid, with titanium alkoxide. There are titanium triethanolaminate obtained by reacting triethanolamine and titanium alkoxide, and titanium oxalate obtained by reacting oxalic acid that is dicarboxylic acid and titanium alkoxide. This is described in, for example, (Patent Document 1) and (Non-Patent Document 1). However, titanium lactate obtained by reacting lactic acid, which is a hydroxycarboxylic acid, and titanium alkoxide, tends to cause white precipitation during storage. In addition, titanium triethanolaminate obtained by reacting alkanolamine triethanolamine and titanium alkoxide initially forms an aqueous solution. However, when mixed at 1 to 1 with water and stored at 40 ° C., it becomes turbid after one month. The fluidity is lost and a brown gel state is obtained. (Patent Document 2) describes a method for producing a titanium-containing aqueous solution using an aliphatic amine, but it takes a long time to make the aqueous solution, and when a small amount of water is added, the composition becomes a white solid. It is impossible to obtain a uniform and transparent liquid. Furthermore, when titanium lactate is mixed with a water-based resin having a hydroxyl group, it is liquid at room temperature immediately after mixing, but when stored at 40 ° C. or stored at room temperature for a long time, it becomes a gel state and the workability is very poor. Similarly, when titanium triethanolamate was mixed, there was a problem that it immediately became a gel state.

特開昭53−98393JP 53-98393 A 特開2001−322815JP 2001-322815 A 杉山岩吉、「含有金属有機化合物とその利用」、M.R.機能性物質シリーズNo.5、日本、シーエムアイ株式会社、昭和58年3月18日、p.73−74Sugiyama Iwayoshi, “Contained Metal Organic Compounds and Their Use”, M.M. R. Functional substance series No. 5, Japan, CMI Co., Ltd., March 18, 1983, p. 73-74

本発明は、水系チタン組成物の共存下で水酸基を有する水系樹脂の架橋反応が80℃〜200℃で始まり、50℃以内の温度差において、実施例1で定義した不溶化率を50%以上増加させることを特徴とする水酸基を有する水系樹脂の架橋方法を提供することを目的とする。従来の水系チタン化合物を用いた架橋方法では、低温でも架橋反応が起きてしまうため、水系樹脂に架橋剤を混合した状態で安定に保存することができず、さらに、架橋温度を任意に設定することができない問題があった。本発明は、水酸基を有する水系樹脂に架橋剤を混合した状態で安定に保存することができ、さらに架橋温度を任意に設定することができる水系樹脂の架橋方法を提供することを課題とする。  In the present invention, the crosslinking reaction of a water-based resin having a hydroxyl group in the coexistence of a water-based titanium composition starts at 80 ° C. to 200 ° C., and the insolubilization rate defined in Example 1 is increased by 50% or more at a temperature difference within 50 ° C. An object of the present invention is to provide a method for crosslinking a water-based resin having a hydroxyl group, characterized in that In the conventional crosslinking method using an aqueous titanium compound, since a crosslinking reaction occurs even at a low temperature, it cannot be stably stored in a state where a crosslinking agent is mixed with an aqueous resin, and the crosslinking temperature is arbitrarily set. There was a problem that could not be done. An object of the present invention is to provide a method for crosslinking an aqueous resin that can be stably stored in a state in which a crosslinking agent is mixed with an aqueous resin having a hydroxyl group, and further, the crosslinking temperature can be arbitrarily set.

本発明者等は、水酸基を有する水系樹脂に水系チタン組成物を混合した状態で長期にわたり安定に保存することができる方法を鋭意検討してきた。その結果、チタンアルコキシドと、オキシカルボン酸と、脂肪族アミンおよびグリコールから選ばれる1以上の成分を接触、混合する事により、水系チタン組成物の共存下で水酸基を有する水系樹脂の架橋反応が80℃〜200℃で始まり、50℃以内の温度差において、不溶化率を50%以上増加させることができる架橋方法を見出すに至った。  The present inventors have intensively studied a method that can be stably stored for a long time in a state where an aqueous titanium composition is mixed with an aqueous resin having a hydroxyl group. As a result, when a titanium alkoxide, an oxycarboxylic acid, and one or more components selected from aliphatic amines and glycols are contacted and mixed, the crosslinking reaction of the aqueous resin having a hydroxyl group in the presence of the aqueous titanium composition is 80. The inventors have found a crosslinking method that can start at a temperature of from 200 ° C. to 200 ° C. and increase the insolubilization rate by 50% or more at a temperature difference within 50 ° C.

すなわち、本発明は、チタンアルコキシド(A)と、オキシカルボン酸(B)と、脂肪族アミン(C)と、一般式(I)

Figure 2006206852
(式中、R、R、R、Rはそれぞれ水素、アルキル基、ヒドロキシアルキル基のいずれかである)で表されるグリコール(D)から選ばれる1以上の成分を接触してなり、チタンアルコキシドに対しオキシカルボン酸のモル比が0.1以上である組成物の共存下で、水酸基を有する水系樹脂の架橋反応が80℃〜200℃で始まり、80℃以下における当該樹脂の不溶化率が40%以下であり、50℃以内の温度差において、不溶化率を50%以上増加させることを特徴とする水系樹脂の架橋方法である。That is, the present invention relates to titanium alkoxide (A), oxycarboxylic acid (B), aliphatic amine (C), and general formula (I).
Figure 2006206852
(Wherein R 1 , R 2 , R 3 , and R 4 are each hydrogen, an alkyl group, or a hydroxyalkyl group) one or more components selected from glycol (D) represented by In the presence of a composition having a molar ratio of oxycarboxylic acid to titanium alkoxide of 0.1 or more, the crosslinking reaction of the aqueous resin having a hydroxyl group starts at 80 ° C. to 200 ° C. A water-based resin crosslinking method characterized in that the insolubilization rate is 40% or less and the insolubilization rate is increased by 50% or more at a temperature difference within 50 ° C.

さらに本発明は、オキシカルボン酸(B)を水系樹脂に配合させた後に請求項1の架橋剤を添加することを特徴とする水系樹脂の架橋方法である。  Furthermore, the present invention is a method for crosslinking an aqueous resin, characterized in that the crosslinking agent according to claim 1 is added after the oxycarboxylic acid (B) is blended with the aqueous resin.

さらに本発明は、チタンアルコキシド(A)とオキシカルボン酸(B)を必須成分とし、更にオキシカルボン酸(B)、脂肪族アミン(C)と、一般式(I)

Figure 2006206852
(式中、R、R、R、Rはそれぞれ水素、アルキル基、ヒドロキシアルキル基のいずれかである)で表されるグリコール(D)から選ばれる1以上の成分を接触してなり、チタンアルコキシドに対しオキシカルボン酸のモル比が0.1以上である組成物が水溶液である請求項1および2の水系樹脂の架橋方法である。Furthermore, the present invention comprises titanium alkoxide (A) and oxycarboxylic acid (B) as essential components, and further comprises oxycarboxylic acid (B), aliphatic amine (C), and general formula (I).
Figure 2006206852
(Wherein R 1 , R 2 , R 3 , and R 4 are each hydrogen, an alkyl group, or a hydroxyalkyl group) one or more components selected from glycol (D) represented by The method according to claim 1 or 2, wherein the composition having a molar ratio of oxycarboxylic acid to titanium alkoxide of 0.1 or more is an aqueous solution.

さらに本発明は、水系樹脂がポリビニルアルコール、またはビニルアルコール単位を含む樹脂である請求項1、2および請求項3に記載の水系樹脂の架橋方法である。  Furthermore, the present invention is the method for crosslinking an aqueous resin according to claims 1, 2 and 3, wherein the aqueous resin is polyvinyl alcohol or a resin containing a vinyl alcohol unit.

本発明は、水系チタン組成物の共存下で水酸基を有する水系樹脂の架橋反応が80℃〜200℃で始まり、80℃以下における当該樹脂の不溶化率が40%以下であり、50℃以内の温度差において、不溶化率を50%以上増加させることを特徴とする水酸基を有する水系樹脂の架橋方法を提供するものである。この水系チタン組成物共存下で水酸基を有する水系樹脂の架橋方法は、従来の水系チタン化合物を用いた架橋方法と比べ、80℃以下における架橋反応を抑えることが出来るため、水酸基を有する水系樹脂に架橋剤を混合した状態で安定に保存することができ、さらには、チタンアルコキシド(A)と、オキシカルボン酸(B)と、脂肪族アミン(C)と、グリコール(D)の組み合わせを選べば、水酸基を有する水系樹脂の架橋温度を任意に設定することができる。しかも、50℃以内の温度差において急激に水系樹脂の架橋を引き起こすことができ、まさに温度をトリガーとした架橋反応を引き起こすことができる。従って、2種類の反応を同一系内で温度を変えることにより段階的に発現させることが可能である。  In the present invention, the crosslinking reaction of the aqueous resin having a hydroxyl group in the coexistence of the aqueous titanium composition starts at 80 ° C. to 200 ° C., the insolubilization rate of the resin at 80 ° C. or lower is 40% or lower, and the temperature is within 50 ° C. In the difference, the present invention provides a method for crosslinking a water-based resin having a hydroxyl group, wherein the insolubilization rate is increased by 50% or more. The crosslinking method of the aqueous resin having a hydroxyl group in the presence of this aqueous titanium composition can suppress the crosslinking reaction at 80 ° C. or lower compared to the conventional crosslinking method using an aqueous titanium compound. It can be stably stored in a state where a crosslinking agent is mixed. Furthermore, if a combination of titanium alkoxide (A), oxycarboxylic acid (B), aliphatic amine (C), and glycol (D) is selected. The crosslinking temperature of the aqueous resin having a hydroxyl group can be arbitrarily set. In addition, it is possible to rapidly cause crosslinking of the aqueous resin at a temperature difference of 50 ° C. or less, and it is possible to cause a crosslinking reaction triggered by temperature. Therefore, it is possible to express two types of reactions stepwise by changing the temperature in the same system.

以下に本発明についてさらに詳細に説明する。本発明の水系チタン組成物は下記に示すチタンアルコキシド(A)とオキシカルボン酸(B)を必須成分とし、更にオキシカルボン酸(B)、脂肪族アミン(C)とグリコール(D)から選ばれる1以上の成分からなる。  The present invention is described in further detail below. The aqueous titanium composition of the present invention comprises the following titanium alkoxide (A) and oxycarboxylic acid (B) as essential components, and is further selected from oxycarboxylic acid (B), aliphatic amine (C) and glycol (D). It consists of one or more components.

チタンアルコキシド(A)は下記一般式(II)で表される。

Figure 2006206852
The titanium alkoxide (A) is represented by the following general formula (II).
Figure 2006206852

、R、R、Rはそれぞれアルキル基を表し、同一でも異なっていても良い。好ましいアルキル基の炭素数は1〜8の整数であり、nは1〜10の整数である。さらに具体的には、例えばテトライソプロピルチタネート、テトラn−プロピルチタネート、テトラn−ブチルチタネート、テトラt−ブチルチタネート、テトライソブチルチタネート、テトラエチルチタネート、テトライソオクチルチタネート、混合アルキルチタネートであるジイソプロピルジイソオクチルチタネート、イソプロピルトリイソオクチルチタネート、テトラアルキルチタネート単量体を縮合したテトラn−ブチルチタネート2量体、テトラn−ブチルチタネート4量体などである。無論ここに例示したものに限らないが、これらのチタンアルコキシドを単独または2種類以上混合して用いる事ができる。R 5 , R 6 , R 7 and R 8 each represents an alkyl group and may be the same or different. Carbon number of a preferable alkyl group is an integer of 1-8, and n is an integer of 1-10. More specifically, for example, tetraisopropyl titanate, tetra n-propyl titanate, tetra n-butyl titanate, tetra t-butyl titanate, tetraisobutyl titanate, tetraethyl titanate, tetraisooctyl titanate, mixed alkyl titanate, diisopropyl diisooctyl. Examples thereof include titanate, isopropyl triisooctyl titanate, tetra n-butyl titanate dimer condensed with tetraalkyl titanate monomer, and tetra n-butyl titanate tetramer. Of course, although not limited to those exemplified here, these titanium alkoxides may be used alone or in combination of two or more.

オキシカルボン酸(B)は、分子内に水酸基とカルボキシル基を有する有機化合物であり、乳酸、クエン酸、グリコール酸、リンゴ酸、酒石酸、グリセリン酸、オキシプロピオン酸、オキシ酪酸、オキシイソ酪酸、マンデル酸、トロバ酸、グルコン酸などがあげられる。無論ここに例示したものに限らないが、これらのオキシカルボン酸を単独または2種類以上混合して用いる事ができる。この中で特にクエン酸、リンゴ酸、酒石酸がより好ましい結果を提供する。  Oxycarboxylic acid (B) is an organic compound having a hydroxyl group and a carboxyl group in the molecule, and is lactic acid, citric acid, glycolic acid, malic acid, tartaric acid, glyceric acid, oxypropionic acid, oxybutyric acid, oxyisobutyric acid, mandelic acid. , Trobasic acid, gluconic acid and the like. Of course, although not limited to those exemplified here, these oxycarboxylic acids can be used alone or in admixture of two or more. Of these, citric acid, malic acid, and tartaric acid provide particularly preferable results.

オキシカルボン酸の添加量はチタンアルコキシド1モルに対しに対して、0.1モル以上が必要である。オキシカルボン酸の添加は水系チタン組成物を水系樹脂に混合させた際に、混合液を安定化させ、急激な反応を押さえて安定した作業性を与える。またオキシカルボン酸の添加量を多くすると、水系チタン組成物中のチタン含有量が低下するため、より好ましくは20モル以下の比率で添加する。  The amount of oxycarboxylic acid added is required to be 0.1 mol or more per 1 mol of titanium alkoxide. The addition of the oxycarboxylic acid stabilizes the mixed solution when the aqueous titanium composition is mixed with the aqueous resin, and suppresses an abrupt reaction to give stable workability. Moreover, since the titanium content in an aqueous titanium composition will fall when the addition amount of oxycarboxylic acid is increased, it adds more preferably in the ratio of 20 mol or less.

脂肪族アミン(C)としては、次のようなものがあげられる。例えば、アルキルアミンではメチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、sec−ブチルアミン,t−ブチルアミン、n−アミルアミン、sec−アミルアミン、ジメチルアミン、ジエチルアミン、ジn−プロピルアミン、ジイソプロピルアミン、ジn−ブチルアミン、トリメチルアミン、トリエチルアミン、トリn−プロピルアミン、トリn−ブチルアミン、3−(ジエチルアミノ)プロピルアミン、3−(ジn−ブチルアミノ)プロピルアミンなどがあり、脂肪族環状アミンではピペリジン、ピロリジンなどがあり、アルコキシアルキルアミンとしては、3−メトキシプロピルアミン、3−エトキシプロピルアミンなどがあり、ヒドロキシアルキルアミンではN,N−ジメチルエタノールアミン、N,N−ジエチルエタノールアミン、N,N−ジn−ブチルエタノールアミン、モノエタノールアミン、トリエタノールアミン、トリイソプロパノールアミンなどがあり、第四級アンモニウム水酸化物としては、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラn−プロピルアンモニウムヒドロキシド、テトラn−ブチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、2−ヒドロキシエチルトリメチルアンモニウムヒドロキシドなどがある。無論ここに例示したものに限らないが、これら脂肪族アミンを単独または2種類以上混合して用いる事ができる。  Examples of the aliphatic amine (C) include the following. For example, in alkylamine, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, t-butylamine, n-amylamine, sec-amylamine, dimethylamine, diethylamine, di-n-propyl There are amine, diisopropylamine, di-n-butylamine, trimethylamine, triethylamine, tri-n-propylamine, tri-n-butylamine, 3- (diethylamino) propylamine, 3- (di-n-butylamino) propylamine, aliphatic Examples of cyclic amines include piperidine and pyrrolidine. Examples of alkoxyalkylamines include 3-methoxypropylamine and 3-ethoxypropylamine. Hydroxyalkylamines include N, N. Examples include dimethylethanolamine, N, N-diethylethanolamine, N, N-di-n-butylethanolamine, monoethanolamine, triethanolamine, and triisopropanolamine. Tetramethyl is used as the quaternary ammonium hydroxide. Examples include ammonium hydroxide, tetraethylammonium hydroxide, tetra-n-propylammonium hydroxide, tetra-n-butylammonium hydroxide, trimethylbenzylammonium hydroxide, 2-hydroxyethyltrimethylammonium hydroxide. Of course, although not limited to those exemplified here, these aliphatic amines may be used alone or in admixture of two or more.

脂肪族アミンの添加量はチタンアルコキシド1モルに対しに対して、0.3モル以上が必要であるが、脂肪族アミンの添加量を多くすると、水系チタン組成物中のチタン含有量が低下するため、より好ましくは4モル以下の比率で添加する。  The addition amount of the aliphatic amine is required to be 0.3 mol or more with respect to 1 mol of the titanium alkoxide. However, when the addition amount of the aliphatic amine is increased, the titanium content in the aqueous titanium composition is lowered. Therefore, it is more preferably added at a ratio of 4 mol or less.

グリコール(D)としては、次のようなものがあげられる。たとえば、1,2−エタンジオール、1,2−プロパンジオール、1,2−ブタンジオール、1,2−ペンタンジオール、2,3−ブタンジオール、2,3−ペンタンジオール、グリセリンなどがある。無論ここに例示したものに限らないが、これらグリコールを単独または2種類以上混合して用いる事ができる。  Examples of glycol (D) include the following. For example, there are 1,2-ethanediol, 1,2-propanediol, 1,2-butanediol, 1,2-pentanediol, 2,3-butanediol, 2,3-pentanediol, glycerin and the like. Of course, although not limited to those exemplified here, these glycols may be used alone or in combination of two or more.

グリコールの添加量は、チタンアルコキシド1モルに対し1.0モル以上である。1.0モル以上であれば特に限定はないが、添加量を多くすると、水系チタン組成物中のチタン含有量が低下するため、より好ましくは6.0モル以下の比率で添加する。  The addition amount of glycol is 1.0 mol or more per 1 mol of titanium alkoxide. Although it will not specifically limit if it is 1.0 mol or more, However, Since titanium content in an aqueous titanium composition will fall if an additional amount is increased, More preferably, it adds at a ratio of 6.0 mol or less.

チタンアルコキシド、脂肪族アミン、グリコールの混合順序については特に限定はない。例えば、チタンアルコキシドに脂肪族アミンを加え、次にグリコールを加える方法、チタンアルコキシドにグリコールを加え、次に脂肪族アミンを加える方法などがある。これらの方法で製造した組成物に水を添加すれば、チタンを含んだ水溶液を作る事が出来る。  There is no particular limitation on the mixing order of the titanium alkoxide, aliphatic amine, and glycol. For example, there are a method of adding an aliphatic amine to titanium alkoxide and then adding glycol, a method of adding glycol to titanium alkoxide and then adding an aliphatic amine. If water is added to the composition produced by these methods, an aqueous solution containing titanium can be produced.

オキシカルボン酸の混合順序については特に限定はない。例えば、オキシカルボン酸を直接水系チタン組成物に添加する方法、オキシカルボン酸をあらかじめ他の水溶液に添加しておき、これと水系チタン組成物を混合する方法などがある。  There is no particular limitation on the order of mixing the oxycarboxylic acids. For example, there are a method in which oxycarboxylic acid is directly added to the aqueous titanium composition, a method in which oxycarboxylic acid is previously added to another aqueous solution, and this is mixed with the aqueous titanium composition.

以下に本発明を実施例によりさらに詳しく説明するが、これに限定されるものではない。  The present invention will be described in more detail with reference to the following examples, but is not limited thereto.

架橋剤Aの調製
100mlの四つ口フラスコにテトライソプロピルチタネートを28.4g(0.1モル)仕込み、攪拌しながらトリエタノールアミン 29.8g(0.2モル)を30分かけて加えた。添加終了後、85℃にて30分間還流し、冷却した。さらに水を加え、チタン含有量を1.5%としたものを架橋剤Aとした。
Preparation of Crosslinker A 28.4 g (0.1 mol) of tetraisopropyl titanate was charged into a 100 ml four-necked flask, and 29.8 g (0.2 mol) of triethanolamine was added over 30 minutes while stirring. After completion of addition, the mixture was refluxed at 85 ° C. for 30 minutes and cooled. Further, water was added to make the titanium content 1.5%, and the crosslinking agent A was used.

架橋剤Bの調製
トリエタノールアミンを乳酸18.0g(0.2モル)に代えた以外は架橋剤Bと同様な操作を行った。この溶液を架橋剤Bとした。
Preparation of cross-linking agent B The same operation as cross-linking agent B was carried out except that triethanolamine was replaced with 18.0 g (0.2 mol) of lactic acid. This solution was designated as a crosslinking agent B.

架橋剤Cの調製
200mlの四つ口フラスコにテトライソプロピルチタネートを28.4g(0.1モル)を仕込み、1,2−プロパンジオール30.4g(0.4モル)、25%のテトラメチルアンモニウムヒドロキシド水溶液を36.4g(テトラエチルアンモニウムヒドロキシドとして0.1モル)、を加えて透明な液体を得た。さらに水を加え、チタン含有量を1.5%としたものを架橋剤Cとした。
Preparation of cross-linking agent C In a 200 ml four-necked flask, 28.4 g (0.1 mol) of tetraisopropyl titanate was charged, 30.4 g (0.4 mol) of 1,2-propanediol, 25% tetramethylammonium. 36.4 g (0.1 mol as tetraethylammonium hydroxide) of an aqueous hydroxide solution was added to obtain a transparent liquid. Further, water was added to make the titanium content 1.5%, and the crosslinking agent C was used.

以下の方法でポリビニルアルコールの水溶液を調製し、水系チタン組成物による架橋性能を調べるために不溶化率を測定した。
不溶化率は高いほど架橋度が高いことを示している。
(1)ポリビニルアルコール水溶液の調整
ポリビニルアルコールとして「ゴーセノール」N−300(日本合成化学工業(株)社製)を用い、水を加え5%水溶液とした。
(2)製膜方法
5%ポリビニルアルコール水溶液100gに対しリンゴ酸0.7gを混合した後、架橋剤A5.5gを添加して混合した。これをポリプロピレンのカップに約5g秤取り、40℃で16時間乾燥し、均一な膜を得た。
(3)架橋方法
製膜した膜をそれぞれ40℃から200℃まで加熱を行った。加熱時間は30分とした。
(4)不溶化率の定義及びその測定方法
100mlのビーカーに架橋した膜と約50mlの水を入れ、1時間煮沸し、室温において濾紙を使用し不溶分を濾過した。その後、105℃にて2時間乾燥し、濾紙と不溶分の質量を測定し、以下の計算により算出した数値を不溶化率とした。
不溶化率(%)=[(c−b)/a]×100
ここで、a=試験前の膜の質量(g)
b=濾紙の質量(g)
c=濾紙+不溶分の質量(g)
An aqueous solution of polyvinyl alcohol was prepared by the following method, and the insolubilization rate was measured in order to examine the crosslinking performance of the aqueous titanium composition.
A higher insolubilization rate indicates a higher degree of crosslinking.
(1) Preparation of aqueous polyvinyl alcohol solution “GOHSENOL” N-300 (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) was used as polyvinyl alcohol, and water was added to make a 5% aqueous solution.
(2) Film forming method After 0.7 g of malic acid was mixed with 100 g of 5% polyvinyl alcohol aqueous solution, 5.5 g of the crosslinking agent A was added and mixed. About 5 g of this was weighed in a polypropylene cup and dried at 40 ° C. for 16 hours to obtain a uniform film.
(3) Crosslinking method Each formed film was heated from 40 ° C to 200 ° C. The heating time was 30 minutes.
(4) Definition of insolubilization rate and measurement method The cross-linked membrane and about 50 ml of water were placed in a 100 ml beaker, boiled for 1 hour, and the insoluble matter was filtered using filter paper at room temperature. Then, it dried at 105 degreeC for 2 hours, the mass of filter paper and insoluble matter was measured, and the numerical value computed by the following calculation was made into the insolubilization rate.
Insolubilization rate (%) = [(c−b) / a] × 100
Where a = mass of the film before the test (g)
b = mass of filter paper (g)
c = mass of filter paper + insoluble matter (g)

不溶化率を測定した結果、120℃までは不溶化率が17%であったが、160℃では不溶化率が82%となり、温度差40℃で不溶化率を65%増加した。  As a result of measuring the insolubilization rate, the insolubilization rate was 17% up to 120 ° C., but at 160 ° C., the insolubilization rate was 82%, and the insolubilization rate increased by 65% at a temperature difference of 40 ° C.

比較例1Comparative Example 1

5%ポリビニルアルコール水溶液100gに対しリンゴ酸を混合していない以外は実施例1と同様の操作を行った。  The same operation as in Example 1 was performed except that malic acid was not mixed with 100 g of a 5% polyvinyl alcohol aqueous solution.

不溶化率を測定した結果、40℃で不溶化率が67%と低温で架橋しており、かつ200℃でも不溶化率が91%と不溶化率を24%程度しか増加していない。  As a result of measuring the insolubilization rate, the insolubilization rate was 67% at 40 ° C. and crosslinking at a low temperature, and even at 200 ° C., the insolubilization rate was 91% and the insolubilization rate increased only by about 24%.

架橋剤Aを架橋剤Bに代えた以外は実施例1と同様の操作を行った。評価結果を表1に示す。  The same operation as in Example 1 was performed except that the crosslinking agent A was replaced with the crosslinking agent B. The evaluation results are shown in Table 1.

リンゴ酸をクエン酸1.0gに代えた以外は実施例2と同様の操作を行った。評価結果を表1に示す。  The same operation as in Example 2 was performed except that malic acid was replaced with 1.0 g of citric acid. The evaluation results are shown in Table 1.

架橋剤Bを架橋剤Cに代えた以外は実施例3と同様の操作を行った。評価結果を表1に示す。  The same operation as in Example 3 was performed except that the crosslinking agent B was replaced with the crosslinking agent C. The evaluation results are shown in Table 1.

クエン酸を酒石酸0.8gに代えた以外は実施例4と同様の操作を行った。評価結果を表1に示す。  The same operation as in Example 4 was performed except that citric acid was changed to 0.8 g of tartaric acid. The evaluation results are shown in Table 1.

Figure 2006206852
Figure 2006206852

5%ポリビニルアルコール水溶液100gに、あらかじめリンゴ酸0.7gと架橋剤A5.5gとを混合したものを添加した。これ以外の操作については実施例1と同様の操作を行った。実施例1と比較して配合の順序が異なるものの、実施例1と同様に120℃までは不溶化率が21%であったが、160℃では不溶化率が80%となり、温度差40℃で不溶化率を59%増加した。  A mixture of 0.7 g of malic acid and 5.5 g of the crosslinking agent A was added to 100 g of 5% aqueous polyvinyl alcohol solution. About operation other than this, operation similar to Example 1 was performed. Although the blending order is different from that in Example 1, the insolubilization rate was 21% up to 120 ° C. as in Example 1, but the insolubilization rate was 80% at 160 ° C. and insolubilization at a temperature difference of 40 ° C. The rate increased by 59%.

本発明の水系チタン組成物の共存下で水酸基を有する水系樹脂の架橋方法は、優れた長期安定性、作業性を有し、さらに架橋温度を任意に設定することができる水系樹脂の架橋方法として有用である。  The method for crosslinking a water-based resin having a hydroxyl group in the coexistence of the water-based titanium composition of the present invention has excellent long-term stability and workability, and further can be used to arbitrarily set the cross-linking temperature. Useful.

Claims (4)

チタンアルコキシド(A)とオキシカルボン酸(B)を必須成分とし、更にオキシカルボン酸(B)、脂肪族アミン(C)と、一般式(I)
Figure 2006206852
(式中、R、R、R、Rはそれぞれ水素、アルキル基、ヒドロキシアルキル基のいずれかである)で表されるグリコール(D)から選ばれる1以上の成分を接触してなり、チタンアルコキシドに対しオキシカルボン酸のモル比が0.1以上である組成物の共存下で、水酸基を有する水系樹脂の架橋反応が80℃〜200℃で始まり、80℃以下における当該樹脂の不溶化率が40%以下であり、50℃以内の温度差において、不溶化率を50%以上増加させることを特徴とする水系樹脂の架橋方法。
Titanium alkoxide (A) and oxycarboxylic acid (B) as essential components, oxycarboxylic acid (B), aliphatic amine (C), and general formula (I)
Figure 2006206852
(Wherein R 1 , R 2 , R 3 , and R 4 are each hydrogen, an alkyl group, or a hydroxyalkyl group) one or more components selected from glycol (D) represented by In the presence of a composition having a molar ratio of oxycarboxylic acid to titanium alkoxide of 0.1 or more, the crosslinking reaction of the aqueous resin having a hydroxyl group starts at 80 ° C. to 200 ° C. A water-based resin crosslinking method, wherein the insolubilization rate is 40% or less and the insolubilization rate is increased by 50% or more at a temperature difference within 50 ° C.
オキシカルボン酸(B)を水系樹脂に配合させた後に請求項1の架橋剤を添加することを特徴とする水系樹脂の架橋方法。  A method for crosslinking a water-based resin comprising adding the cross-linking agent according to claim 1 after the oxycarboxylic acid (B) is blended in a water-based resin. チタンアルコキシド(A)とオキシカルボン酸(B)を必須成分とし、更にオキシカルボン酸(B)、脂肪族アミン(C)と、一般式(I)
Figure 2006206852
(式中、R、R、R、Rはそれぞれ水素、アルキル基、ヒドロキシアルキル基のいずれかである)で表されるグリコール(D)から選ばれる1以上の成分を接触してなり、チタンアルコキシドに対しオキシカルボン酸のモル比が0.1以上である組成物が水溶液である請求項1および2の水系樹脂の架橋方法。
Titanium alkoxide (A) and oxycarboxylic acid (B) as essential components, oxycarboxylic acid (B), aliphatic amine (C), and general formula (I)
Figure 2006206852
(Wherein R 1 , R 2 , R 3 , and R 4 are each hydrogen, an alkyl group, or a hydroxyalkyl group) one or more components selected from glycol (D) represented by The method according to claim 1 or 2, wherein the composition having a molar ratio of oxycarboxylic acid to titanium alkoxide of 0.1 or more is an aqueous solution.
水系樹脂がポリビニルアルコール、またはビニルアルコール単位を含む樹脂である請求項1、2および請求項3に記載の水系樹脂の架橋方法。  The method for crosslinking an aqueous resin according to claim 1, 2 or 3, wherein the aqueous resin is polyvinyl alcohol or a resin containing a vinyl alcohol unit.
JP2005049667A 2005-01-28 2005-01-28 Crosslinking method of water-based resin Expired - Fee Related JP4827225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005049667A JP4827225B2 (en) 2005-01-28 2005-01-28 Crosslinking method of water-based resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005049667A JP4827225B2 (en) 2005-01-28 2005-01-28 Crosslinking method of water-based resin

Publications (2)

Publication Number Publication Date
JP2006206852A true JP2006206852A (en) 2006-08-10
JP4827225B2 JP4827225B2 (en) 2011-11-30

Family

ID=36964040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049667A Expired - Fee Related JP4827225B2 (en) 2005-01-28 2005-01-28 Crosslinking method of water-based resin

Country Status (1)

Country Link
JP (1) JP4827225B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277360A (en) * 2006-04-04 2007-10-25 Kao Corp Resin composition
JP2009098636A (en) * 2007-09-27 2009-05-07 Fujifilm Corp Optical film, polarizer, and liquid crystal display

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111518A (en) * 1976-03-13 1977-09-19 Tioxide Group Ltd Titanium chelate and process for its preparation
JP2004182960A (en) * 2002-12-05 2004-07-02 Matsumoto Seiyaku Kogyo Kk Water-soluble mixture
JP2006057068A (en) * 2004-08-19 2006-03-02 Matsumoto Seiyaku Kogyo Kk Crosslinking agent for water-based resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111518A (en) * 1976-03-13 1977-09-19 Tioxide Group Ltd Titanium chelate and process for its preparation
JP2004182960A (en) * 2002-12-05 2004-07-02 Matsumoto Seiyaku Kogyo Kk Water-soluble mixture
JP2006057068A (en) * 2004-08-19 2006-03-02 Matsumoto Seiyaku Kogyo Kk Crosslinking agent for water-based resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277360A (en) * 2006-04-04 2007-10-25 Kao Corp Resin composition
JP2009098636A (en) * 2007-09-27 2009-05-07 Fujifilm Corp Optical film, polarizer, and liquid crystal display

Also Published As

Publication number Publication date
JP4827225B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP5149602B2 (en) Water-soluble titanium oligomer composition
JP4860720B2 (en) Electrolytic solution for aluminum electrolytic capacitor and method for producing solute thereof
EP2764036A1 (en) A crosslinkable composition comprising a latent base catalyst and latent base catalyst compositions
JP2007084545A (en) Method for preparing organic molybdenum compound
WO2016166334A1 (en) Process for the manufacture of a crosslinkable composition
CN102010437A (en) Polyethylene glycol-modified glycosyl group-containing tetrasiloxane and synthesizing method thereof
JP4827225B2 (en) Crosslinking method of water-based resin
JP2901187B2 (en) Titanium chelate and its manufacturing method
JP4550368B2 (en) Aqueous titanium composition
JP6577953B2 (en) Method for producing siloxane resin
JP2006056866A (en) Aqueous titanium composition
JP3429558B2 (en) Dispersant and method for producing the same
KR102579270B1 (en) Method for producing polyester polyol
JPS6081190A (en) Titanic chelate, solution and manufacture of solution
JP4487104B2 (en) Cross-linking agent for water-based resin
JPS6254145B2 (en)
JP2007031464A (en) Manufacturing process of alkyl silicate condensation product
EP1360250A2 (en) Single component room temperature curable low voc epoxy coatings
JPS6081191A (en) Water-soluble triethanol amine titanate complex and manufacture
JPH0574596B2 (en)
JP6176557B2 (en) Method for producing monolithic porous body made of titania
US20130102797A1 (en) Co-Crystal Compound, Method for Preparing the Same and Oxidant of Gas Generator Propellant
JPS62112604A (en) Production of hydrogel
JP2010007032A (en) Water-soluble silicon compound and process of manufacturing water-soluble silicon compound
JP4614764B2 (en) Water-soluble resin crosslinking agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4827225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees