JP2006206776A - Pressurized coal gasification oven and coal gasification combined power plant - Google Patents

Pressurized coal gasification oven and coal gasification combined power plant Download PDF

Info

Publication number
JP2006206776A
JP2006206776A JP2005021739A JP2005021739A JP2006206776A JP 2006206776 A JP2006206776 A JP 2006206776A JP 2005021739 A JP2005021739 A JP 2005021739A JP 2005021739 A JP2005021739 A JP 2005021739A JP 2006206776 A JP2006206776 A JP 2006206776A
Authority
JP
Japan
Prior art keywords
water
coal gasification
gasification furnace
slag
pressurized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005021739A
Other languages
Japanese (ja)
Other versions
JP4533764B2 (en
Inventor
Ken Tamura
憲 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005021739A priority Critical patent/JP4533764B2/en
Publication of JP2006206776A publication Critical patent/JP2006206776A/en
Application granted granted Critical
Publication of JP4533764B2 publication Critical patent/JP4533764B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressurized coal gasification oven which enables the adoption of a general low lift pump, prevents the abrasive damage of control valves and pumps by flushing, and can lower maintenance cost and apparatus cost, and to provide a coal gasification combined power plant for effectively using a gas produced from the pressurized coal gasification oven to generate the electric power. <P>SOLUTION: This pressurized coal gasification oven in which a water tank (4) for granulating slag with water is disposed in the bottom portion of a gasification oven (3) for thermally gasifying coal of raw material in a pressurized state is characterized by making the other ends of the water pipe (5) and drainage pipe (6) of the water tank (4) communicate with each other to form a closed circulation route (7), and disposing a circulated water-cooling apparatus (8) and a circulation pump (9) in the circulation route (7). <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、加圧型石炭ガス化炉および石炭ガス化複合発電設備に関する。   The present invention relates to a pressurized coal gasification furnace and a coal gasification combined power generation facility.

石炭などの固体炭素原料を高温、加圧雰囲気下のガス化炉内に投入して、前記原料の可燃分をガス化して熱回収すると共に、前記原料の灰分であるスラグをガス化炉底部の冷却水溜りに投入して、スラグを水砕して排出する石炭ガス化装置が知られている(特許文献1参照方)。また、スラグを水砕するための水槽には、画像監視するカメラやスラグの落下音を収集する落下音収集器など、画像や音響信号によりスラグの流下状況を検知する監視装置が設置されている(特許文献2参照方)。この監視装置の冷却保護および、スラグ排出時のスラグ水のフラッシング防止を目的として、水槽にスラグ水の循環冷却系を設置している。   A solid carbon raw material such as coal is put into a gasification furnace at a high temperature under a pressurized atmosphere, and the combustible component of the raw material is gasified and heat recovered, and the slag, which is the ash content of the raw material, is added to the bottom of the gasification furnace. There is known a coal gasifier that is put into a cooling water reservoir and slag is crushed and discharged (refer to Patent Document 1). In addition, monitoring tanks that detect the flow of slag using images and acoustic signals, such as a camera that monitors images and a falling sound collector that collects falling sounds of slag, are installed in water tanks for slag breaking. (Reference to Patent Document 2). A circulation cooling system for slag water is installed in the water tank for the purpose of cooling protection of this monitoring device and prevention of flushing of slag water during slag discharge.

例えば、出願人がこれまで提案している加圧型石炭ガス化炉として図7に示すものがある。この加圧型石炭ガス化炉の水槽4のスラグ水循環流路は、水槽4から排出されるスラグ水を大気圧下のスラグ沈殿槽Eに導き、スラグ水に混入しているスラグを沈殿除去し、給水槽Fよりの水をブースターポンプAにより汲み上げ、フィルタB、冷却器C、スラグ給水ポンプD、循環水流量計F1、循環水流量制御弁CV1を経てガス化炉3の水槽4に循環供給するものであり、冷却器Cにより冷却された水を水槽4に供給することで、水槽4内の水を冷却していた。
また、図7中、5は給水管、6は排水管、T1はスラグホッパ水出口温度計、T2は冷却器出口温度計、L1は水位計、CV2は水レベル制御弁、11はロックホッパ、12および13は開閉弁、ア矢印は溶解スラグを示す。
For example, there is one shown in FIG. 7 as a pressurized coal gasifier that the applicant has proposed so far. The slag water circulation channel of the water tank 4 of this pressurized coal gasification furnace guides the slag water discharged from the water tank 4 to the slag settling tank E under atmospheric pressure, and precipitates and removes the slag mixed in the slag water, Water from the water tank F is pumped up by the booster pump A, and is circulated and supplied to the water tank 4 of the gasifier 3 through the filter B, the cooler C, the slag water pump D, the circulating water flow meter F1, and the circulating water flow rate control valve CV1. The water in the water tank 4 was cooled by supplying the water cooled by the cooler C to the water tank 4.
7, 5 is a water supply pipe, 6 is a drain pipe, T1 is a slag hopper water outlet thermometer, T2 is a cooler outlet thermometer, L1 is a water level gauge, CV2 is a water level control valve, 11 is a lock hopper, 12 Reference numerals 13 and 13 indicate open / close valves, and arrows a indicate melting slag.

しかし、このようなスラグ水循環流路を流通するスラグ水には当然ながらスラグが含まれており、また、フィルタBろ過後の水にも若干のスラグ成分が残存しており、高圧のガス化炉3から大気圧下への排水時や、大気圧下からガス化炉3への送水時に、制御弁の下流側やポンプに、フラッシングによる摩耗破損が生じ、長期間、連続しての稼動が行い得ない課題があった。
また、炉内は1ないし10MPaであり、同圧に見合うように給水圧を昇圧する必要があり、そのためのスラグ給水ポンプDは、高耐摩耗機能の大容量高揚程ポンプやポンプを直列多段に設置したものを採用する必要があり、高コスト化を招いていた。
However, the slag water flowing through such a slag water circulation passage naturally contains slag, and some slag components remain in the water after the filtration of the filter B. When draining from 3 to atmospheric pressure or when supplying water to the gasification furnace 3 from atmospheric pressure, the downstream side of the control valve and the pump are worn and damaged due to flushing, and they are operated continuously for a long time. There was a problem that could not be obtained.
Moreover, the inside of the furnace is 1 to 10 MPa, and it is necessary to increase the feed water pressure so as to meet the same pressure. The slag feed pump D for this purpose is composed of a high-capacity high-capacity high-lift pump and a pump in multiple stages in series. It was necessary to use what was installed, leading to higher costs.

特開平7−109471号公報(図1)Japanese Patent Laid-Open No. 7-109471 (FIG. 1) 特開2004−91571号公報(図1)Japanese Patent Laying-Open No. 2004-91571 (FIG. 1)

本発明は、上述の課題に鑑み、汎用の低揚程ポンプの採用を可能とし、フラッシングによる制御弁やポンプの摩耗破損を防ぎ、メンテナンスコストや装置コストの低減が図れる加圧型石炭ガス化炉を提供すること、および、同加圧型石炭ガス化炉よりの発生ガスを有効活用して発電を行う石炭ガス化複合発電設備を提供することを目的とする。   In view of the above-mentioned problems, the present invention provides a pressurized coal gasification furnace that enables the adoption of a general-purpose low-lift pump, prevents control valves and pumps from being damaged due to flushing, and reduces maintenance costs and equipment costs. An object of the present invention is to provide a combined coal gasification combined power generation facility that performs power generation by effectively using gas generated from the pressurized coal gasification furnace.

本発明は、上記の課題を解決するために、以下(1)〜(7)の手段を提案する。
(1)第1の手段は、石炭原料を加圧下で熱処理してガス化するガス化炉の底部に、スラグを水砕するための水槽が設置された加圧型石炭ガス化炉において、前記水槽に設けられている給水管と排水管との他端部相互を連通して、閉鎖系の循環流路とすると共に、前記循環流路に循環水の冷却器および循環ポンプを設けたことを特徴とする。
In order to solve the above problems, the present invention proposes the following means (1) to (7).
(1) The first means is a pressurized coal gasification furnace in which a water tank for water granulating slag is installed at the bottom of a gasification furnace that heats and gasifies coal raw material under pressure. The other end portions of the water supply pipe and the drain pipe provided in the pipe are connected to each other to form a closed circulation channel, and a circulating water cooler and a circulation pump are provided in the circulation channel. And

(2)第2の手段は、第1の手段に係る加圧型石炭ガス化炉において、前記水槽または循環流路に水温検知装置を設け、前記水温検知装置よりの温度信号により、前記水槽内の水温を所定の設定温度に調節するための温度調整手段を制御することを特徴とする。
なお、前記所定の設定温度に調節するとは、水槽内の水を大気圧における沸点温度以下に調節するものである。
前記温度調整手段としては、水槽への循環水流量を増減することや、冷却器の冷却能力を可変するものでよい。
(2) The second means is a pressurized coal gasification furnace according to the first means, wherein a water temperature detection device is provided in the water tank or the circulation flow path, and a temperature signal from the water temperature detection device is used. It is characterized by controlling temperature adjusting means for adjusting the water temperature to a predetermined set temperature.
In addition, adjusting to the said predetermined preset temperature adjusts the water in a water tank below to the boiling point temperature in atmospheric pressure.
As the temperature adjusting means, the circulating water flow rate to the water tank may be increased or decreased, or the cooling capacity of the cooler may be varied.

(3)第3の手段は、第2の手段に係る加圧型石炭ガス化炉において、前記循環流路に循環水流量制御弁を設け、前記水温検知装置よりの温度信号により、前記循環水流量制御弁を開閉制御することを特徴とする。 (3) The third means is a pressurized coal gasification furnace according to the second means, wherein a circulating water flow rate control valve is provided in the circulation flow path, and the circulating water flow rate is determined by a temperature signal from the water temperature detector. The control valve is controlled to open and close.

(4)第4の手段は、第2の手段に係る加圧型石炭ガス化炉において、前記水温検知装置よりの温度信号により、前記循環ポンプの吐出容量を増減制御することを特徴とする。 (4) The fourth means is characterized in that, in the pressurized coal gasifier according to the second means, the discharge capacity of the circulation pump is increased or decreased by a temperature signal from the water temperature detection device.

(5)第5の手段は、第2の手段に係る加圧型石炭ガス化炉において、前記水温検知装置よりの温度信号により、前記冷却器の冷媒流量を増減制御することを特徴とする。 (5) The fifth means is characterized in that, in the pressurized coal gasifier according to the second means, the refrigerant flow rate of the cooler is controlled to increase or decrease by a temperature signal from the water temperature detection device.

(6)第6の手段は、第1の手段ないし第5の手段の何れかに係る加圧型石炭ガス化炉において、前記循環流路にオンラインで洗浄可能なフィルタ装置を設置することを特徴とする。 (6) A sixth means is characterized in that, in the pressurized coal gasification furnace according to any one of the first means to the fifth means, a filter device capable of being washed online is installed in the circulation flow path. To do.

(7)第7の手段に係る石炭ガス化複合発電設備は、前記(1)ないし(6)の何れかに記載の加圧型石炭ガス化炉と、前記加圧型石炭ガス化炉のガス排出流路に設ける熱交換器と、前記ガス中の塵を除塵する除塵装置と、前記除塵装置よりのガスにより駆動されるガスタービンと、同ガスタービンの排出ガスにより蒸気を発生させる排熱回収ボイラと、前記熱交換器及び排熱回収ボイラからの発生蒸気により駆動される蒸気タービンとを具え、前記ガスタービンおよび蒸気タービンの駆動力により発電することを特徴とする。 (7) The coal gasification combined cycle power generation facility according to the seventh means includes the pressurized coal gasification furnace according to any one of (1) to (6), and a gas discharge flow of the pressurized coal gasification furnace A heat exchanger provided in the passage, a dust removing device for removing dust in the gas, a gas turbine driven by the gas from the dust removing device, and an exhaust heat recovery boiler for generating steam by the exhaust gas of the gas turbine; And a steam turbine driven by steam generated from the heat exchanger and the exhaust heat recovery boiler, and generating electric power by the driving force of the gas turbine and the steam turbine.

第1の手段よりなる請求項1に記載の加圧型石炭ガス化炉は、閉鎖系の循環流路としたので、開放系の循環流路であった従来のものに比べ、ポンプ出入り口間の差圧が小さくなり、従来のような大容量高揚程ポンプは不要となり、低揚程の循環ポンプを用いることができ、低コスト化が達成できる。また、高圧のガス化炉から大気圧下へのスラグ水排出量が従来に比べ少なくなるため、循環流路の配管やポンプが本質的に摩耗しにくくなり、ガス化炉の長期連続稼動が可能となる。
また、冷却器による循環水の冷却および循環ポンプによる連続循環給水により、ガス化炉の水槽中の水温を、常に低温に維持できるので、スラグ監視装置などを保全できると共に、スラグ水のフラッシングを防止できるので、ポンプや配管のメンテナンス費用低減が図れる。また、スラグ水を循環して使用するので、使用水量が少なくてすみ、廃水処理設備の負担を低減することができる。
The pressurized coal gasification furnace according to claim 1 comprising the first means is a closed circulation channel, so that the difference between the pump inlet and outlet is different from the conventional one that was an open circulation channel. The pressure is reduced, a conventional large-capacity high-lift pump is not required, a low-lift circulation pump can be used, and cost reduction can be achieved. In addition, since the amount of slag water discharged from the high-pressure gasifier to atmospheric pressure is less than before, the piping and pumps in the circulation channel are essentially less likely to wear, enabling the gasifier to operate continuously for a long time. It becomes.
Cooling of circulating water using a cooler and continuous circulating water supply using a circulating pump keeps the water temperature in the gasification furnace tank low, so that slag monitoring equipment can be maintained and slag water flushing is prevented. As a result, maintenance costs for pumps and piping can be reduced. Moreover, since slag water is circulated and used, the amount of water used can be reduced, and the burden on the wastewater treatment facility can be reduced.

第2の手段よりなる請求項2に記載の加圧型石炭ガス化炉は、第1の手段に係る作用効果を有すると共に、ガス化炉の負荷や稼動状況が変動しても、水槽中の水温を、常に適正の設定温度に維持でき、水槽内の水温の正確な温度制御が可能となり、ガス化炉の安定制御稼動が行い得、ひいては、メンテナンスコストの低減が図れる。   The pressurized coal gasification furnace according to claim 2, comprising the second means, has the effects of the first means, and the water temperature in the water tank even if the load and operating conditions of the gasification furnace fluctuate. Can always be maintained at an appropriate set temperature, the temperature of the water in the water tank can be accurately controlled, the gasifier can be stably controlled, and the maintenance cost can be reduced.

第3の手段よりなる請求項3に記載の加圧型石炭ガス化炉は、第2の手段に係る作用効果を有すると共に、循環水流量制御弁を開閉制御することにより、ガス化炉の水槽に供給する水量を増減させることができ、水槽中の水温を設定温度に維持調整でき、ガス化炉の安定制御稼動が行い得る。また、循環水流量制御弁を絞り制御した場合には循環ポンプ動力低減が図れる。   The pressurized coal gasifier according to claim 3, comprising the third means, has the effect of the second means, and controls the opening and closing of the circulating water flow rate control valve so that the water tank of the gasification furnace is provided. The amount of water to be supplied can be increased or decreased, the water temperature in the water tank can be maintained and adjusted to the set temperature, and stable control operation of the gasifier can be performed. Further, when the circulating water flow rate control valve is throttled, the circulation pump power can be reduced.

第4の手段よりなる請求項4に記載の加圧型石炭ガス化炉は、第2の手段に係る作用効果を有すると共に、循環ポンプの吐出容量を増減制御することにより、ガス化炉の水槽に供給する水量を増減させることができ、水槽中の水温を設定温度に維持調整でき、ガス化炉の安定制御稼動が行い得る。   The pressurized coal gasification furnace according to claim 4, comprising the fourth means, has the effect of the second means, and controls the increase or decrease of the discharge capacity of the circulation pump, thereby allowing the water tank of the gasification furnace. The amount of water to be supplied can be increased or decreased, the water temperature in the water tank can be maintained and adjusted to the set temperature, and stable control operation of the gasifier can be performed.

第5の手段よりなる請求項5に記載の加圧型石炭ガス化炉は、第2の手段に係る作用効果を有すると共に、冷却器の冷媒流量を増減制御することにより、ガス化炉の水槽に供給する水の温度を調節することができ、水槽中の水温を設定温度に維持調整でき、ガス化炉の安定制御稼動が行い得る。   The pressurized coal gasification furnace according to claim 5, comprising the fifth means, has the effect of the second means, and controls the refrigerant flow rate of the cooler to increase or decrease, thereby allowing the water tank of the gasification furnace to The temperature of the supplied water can be adjusted, the water temperature in the water tank can be maintained and adjusted to the set temperature, and the gasifier can be stably controlled.

第6の手段よりなる請求項6に記載の加圧型石炭ガス化炉は、第1ないし第5の何れかの手段に係る作用効果を有すると共に、オンライン、つまり、石炭ガス化炉の稼動中にフィルタ洗浄を行うことで、スラグ水のろ過が効率よく行われ、循環ポンプの摩耗や冷却器の詰まりが防げ、石炭ガス化炉を長期間、連続的に稼動することができる。   The pressurized coal gasifier according to claim 6 comprising the sixth means has the effects of any one of the first to fifth means and is online, that is, during operation of the coal gasifier. By performing the filter cleaning, the slag water can be filtered efficiently, the wear of the circulation pump and the clogging of the cooler can be prevented, and the coal gasification furnace can be operated continuously for a long period of time.

第7の手段よりなる請求項7に記載の石炭ガス化複合発電設備は、第1ないし第6の手段に係る加圧型石炭ガス化炉の何れかの作用効果を有すると共に、加圧型石炭ガス化炉により生成された生成ガスのガスエネルギーを効率よく有効に活用することができ、かつ、長期間に渡り安定して発電を行い得る。   The combined coal gasification combined cycle facility according to claim 7, comprising the seventh means, has the function and effect of any one of the pressurized coal gasification furnaces according to the first to sixth means, and the pressurized coal gasification The gas energy of the generated gas generated by the furnace can be efficiently and effectively used, and power can be generated stably over a long period of time.

本発明に係る加圧型石炭ガス化炉および石炭ガス化複合発電設備を、図1ないし図6に基づき説明する。   A pressurized coal gasification furnace and a coal gasification combined cycle facility according to the present invention will be described with reference to FIGS.

図1ないし図4は本発明に係る加圧型石炭ガス化炉において、主にスラグ水の循環流路を示す各実施例図であり、図1は実施例1に係る水槽の循環流路図、図2は実施例2に係る水槽の循環流路図、図3は実施例3に係る水槽の循環流路図、図4は実施例4に係る水槽の循環流路図である。
図5は本発明に係る石炭ガス化複合発電設備を示す全体系統図、図6は実施例1ないし4に係るフィルタ装置の他事例を示す流路図である。
FIG. 1 to FIG. 4 are each an example diagram mainly showing a circulation channel of slag water in a pressurized coal gasification furnace according to the present invention, and FIG. 1 is a circulation channel diagram of a water tank according to Example 1, 2 is a circulation channel diagram of the water tank according to the second embodiment, FIG. 3 is a circulation channel diagram of the water tank according to the third embodiment, and FIG. 4 is a circulation channel diagram of the water tank according to the fourth embodiment.
FIG. 5 is an overall system diagram showing the coal gasification combined power generation facility according to the present invention, and FIG. 6 is a flow chart showing another example of the filter device according to the first to fourth embodiments.

図1及び図5に基づき、本発明に係る加圧型石炭ガス化炉の実施例1を説明する。
加圧型石炭ガス化炉2は、その一部を図1に、その全体構成を図5に示すように、石炭原料供給管3aより供給される石炭原料を加圧下で熱処理してガス化するガス化炉3と、ガス化炉3の底部に設けられていてスラグを水砕するための水槽4と、ガス化炉3内で生成されたガスのガス排出流路16に設けられている熱交換器17とで構成されている。
前記石炭原料は、微粉炭化したものを投入しており、また、図5のサイクロンフィルタ18などで捕集された石炭チャーを併せ投入してもよい。
Example 1 of the pressurized coal gasifier according to the present invention will be described with reference to FIGS. 1 and 5.
As shown in FIG. 1 for a part of the pressurized coal gasification furnace 2 and as shown in FIG. 5 for the whole structure, the gas supplied from the coal raw material supply pipe 3a is heat treated under pressure and gasified. Heat exchange provided in the gasification furnace 3, the water tank 4 provided at the bottom of the gasification furnace 3 for granulating slag, and the gas discharge passage 16 for the gas generated in the gasification furnace 3 And a device 17.
As the coal raw material, finely powdered carbon is introduced, and coal char collected by the cyclone filter 18 of FIG.

水槽4には水を供給する給水管5と、スラグ水を排水する排水管6とが設けられていて、その他端相互は連通され、閉鎖系の循環流路7、つまり、大気圧開放端部を具えず、配管流路が一連に連通する閉鎖流路を形成している。循環流路7には、循環水の冷却器8、循環ポンプ9、オンラインで自動洗浄可能なフィルタ装置10、水温検知装置であるスラグホッパ水出口温度計T1、流路の監視のための冷却器出口温度計T2、循環ポンプ9の性能(摩耗)監視や水レベル制御弁CV3が開いているのに流路内に水が流れていない等の監視のための循環水流量計F1を設けている。   The water tank 4 is provided with a water supply pipe 5 for supplying water and a drain pipe 6 for draining slag water. The other ends communicate with each other, and a closed circulation path 7, that is, an atmospheric pressure open end. The closed flow path in which the piping flow path communicates in series is formed. The circulation channel 7 includes a circulating water cooler 8, a circulation pump 9, a filter device 10 that can be automatically cleaned online, a slag hopper water outlet thermometer T1 that is a water temperature detection device, and a cooler outlet for channel monitoring. A circulating water flow meter F1 is provided for monitoring the performance (wear) of the thermometer T2 and the circulation pump 9 and for monitoring that the water level control valve CV3 is open but water is not flowing in the flow path.

フィルタ装置10は自動洗浄機能を有すもので、一例としてその自動洗浄機構は、モータMによりケース内の円筒状のメッシュフィルタ10aが軸回転され、メッシュフィルタ10aがケースのスラグ排出開口に臨んだ時に、水によりスラグが系外に逆洗される形式のものであり、前記軸回転に伴ってメッシュフィルタ10aのスラグ濾面は常に清浄した状態に保たれる。   The filter device 10 has an automatic cleaning function. As an example, the automatic cleaning mechanism is such that the cylindrical mesh filter 10a in the case is axially rotated by the motor M, and the mesh filter 10a faces the slag discharge opening of the case. In some cases, slag is backwashed out of the system by water, and the slag surface of the mesh filter 10a is always kept clean with the rotation of the shaft.

また、水槽4にはスラグホッパ水水位計L1が設けられていて、このスラグホッパ水水位計L1よりのレベル信号aにより水レベル制御弁CV2または水レベル制御弁CV3の開度を調整制御し、水槽4の水位が常に給水管5および排水管6よりも上水位となるようにしており、循環流路7内は常に水に満たされた状態にある。蒸発などにより水槽4および循環流路7内の水が足らなくなった場合には、水レベル制御弁CV3を開弁し、補給水ポンプ14より補給水を水槽4の給水管5に供給する。また、ポンプ軸シール水などの流入などにより水槽4及び循環流路7系内の水が過剰となった場合には、水レベル制御弁CV2より抜く。循環流路7内の循環水(スラグ水)の流速は詰まりが発生しない程度の流速とし、また、循環ポンプ9には最低限の水量を供給し、スラグ分が多くなれば水を増やす。   Further, the water tank 4 is provided with a slag hopper water level meter L1, and the opening degree of the water level control valve CV2 or the water level control valve CV3 is adjusted and controlled by the level signal a from the slag hopper water level gauge L1. The water level is always higher than the water supply pipe 5 and the drain pipe 6, and the inside of the circulation channel 7 is always filled with water. When there is not enough water in the water tank 4 and the circulation channel 7 due to evaporation or the like, the water level control valve CV3 is opened, and makeup water is supplied from the makeup water pump 14 to the water supply pipe 5 of the water tank 4. Further, when water in the water tank 4 and the circulation channel 7 system becomes excessive due to inflow of pump shaft seal water or the like, the water level control valve CV2 is withdrawn. The flow rate of the circulating water (slag water) in the circulation flow path 7 is set to a flow rate that does not cause clogging, and a minimum amount of water is supplied to the circulation pump 9, and the water is increased if the slag amount increases.

水槽4の底には、スラグ弁12を介してスラグを一時格納するロックホッパ11が設けてあり、ロックホッパ11の下部にはスラグ排出弁13が設けられている。水槽4に沈殿するスラグを排出する場合には、スラグ弁12を開弁して、スラグをロックホッパ11内に収納し、スラグ弁12を閉め、スラグ排出弁13を開弁してスラグを系外に排出する。
しかして、図5に示す石炭原料供給管3aより投入された石炭原料は、ガス化炉3内にて、その可燃分が一酸化炭素及び水素に富むガスに生成される。石炭原料の灰分は溶融スラグとなり、図1中のア矢印方向に落下し、溶融スラグは水槽4内にて急冷されて水砕される。
A lock hopper 11 that temporarily stores slag is provided via a slag valve 12 at the bottom of the water tank 4, and a slag discharge valve 13 is provided below the lock hopper 11. When discharging the slag that settles in the water tank 4, the slag valve 12 is opened, the slag is stored in the lock hopper 11, the slag valve 12 is closed, the slag discharge valve 13 is opened, and the slag is recovered. Drain outside.
Thus, the coal raw material input from the coal raw material supply pipe 3a shown in FIG. 5 is generated in the gasification furnace 3 as a gas rich in carbon monoxide and hydrogen. The ash content of the coal raw material becomes molten slag and falls in the direction of arrow a in FIG. 1, and the molten slag is rapidly cooled in the water tank 4 and crushed.

水槽4内の水温が大気圧における沸点温度以上とならないように、冷却器8により冷却された水を循環供給する。水槽4より排出されるスラグ水にはスラグが混入しているので、循環ポンプ9に至る前にフィルタ装置10によりスラグ等をろ過して、フィルタ装置10のスラグ排出管10bより系外あるいは図5に示す石炭原料供給管3aの管路に送られる。
なお、フィルタ装置10は、循環ポンプ9を耐摩耗性のものとすれば、循環ポンプ9の下流側に設けてもよく、また、場合によっては設置しなくても良い。また、冷却器8をチュウブ式熱交換器やプレート式熱交換器とする場合には、その入口にフィルタ装置を設ければよい。また、上記スラグホッパ水水位計L1は差圧式のものであるが、一点で計る圧力式のものでもよい。
The water cooled by the cooler 8 is circulated and supplied so that the water temperature in the water tank 4 does not exceed the boiling point temperature at atmospheric pressure. Since slag is mixed in the slag water discharged from the water tank 4, the slag and the like are filtered by the filter device 10 before reaching the circulation pump 9, and the slag water is removed from the system from the slag discharge pipe 10b of the filter device 10 or FIG. To the pipe of the coal raw material supply pipe 3a shown in FIG.
The filter device 10 may be provided on the downstream side of the circulation pump 9 as long as the circulation pump 9 is wear resistant, and may not be installed depending on circumstances. When the cooler 8 is a tube heat exchanger or a plate heat exchanger, a filter device may be provided at the inlet. The slag hopper water level gauge L1 is of a differential pressure type, but may be of a pressure type measured at one point.

本実施例は、閉鎖系の循環流路7としたので、従来のような大容量高揚程ポンプやポンプを多段設置してのポンプ昇圧は不要となり、低揚程の汎用の循環ポンプ9を用いることができ、装置製造コスト、ひいては、納入予備品コストの低減化が達成できる。
また、高圧のガス化炉3から大気圧下へのスラグ水排出量が従来に比べ、殆どなくなるため、循環流路7の配管や循環ポンプ9が本質的に摩耗しにくくなり、ガス化炉3の長期連続稼動が可能となる効果がある。また、スラグ水を循環して使用するので、使用水量が少なくてすみ、廃水処理設備の負担を低減することができ、それは環境配慮からも好ましい。また、水槽4内の水温を大気圧における沸点温度以下(1気圧下では100℃以下)に制御しているので、フラッシング現象が発生せず、同現象に起因する配管系の摩耗損傷が防止できる。
In this embodiment, since the closed circulation channel 7 is used, it is not necessary to increase the pump pressure by installing multiple stages of large-capacity high-lift pumps and pumps as in the prior art, and a low-head general-purpose circulation pump 9 is used. Therefore, it is possible to achieve a reduction in device manufacturing cost and, in turn, delivery spare part cost.
Further, since the amount of slag water discharged from the high-pressure gasification furnace 3 to the atmospheric pressure is almost smaller than that in the past, the piping of the circulation flow path 7 and the circulation pump 9 are essentially less likely to wear, and the gasification furnace 3 There is an effect that long-term continuous operation is possible. Further, since the slag water is circulated and used, the amount of water used can be reduced, and the burden on the wastewater treatment facility can be reduced, which is also preferable from the environmental considerations. In addition, since the water temperature in the water tank 4 is controlled to be equal to or lower than the boiling point temperature at atmospheric pressure (100 ° C. or less under 1 atm), the flushing phenomenon does not occur, and wear damage to the piping system due to the phenomenon can be prevented. .

次に、図2に基づき、本発明に係る加圧型石炭ガス化炉の実施例2を説明する。
本実施例のものは、ガス化炉3、水槽4、循環流路7等の装置構成は、実施例1のものと同様であるが、スラグホッパ水出口温度計T1よりの温度信号bにより循環水流量制御弁CV1の開度を制御する温度調整手段が付加されている。このスラグホッパ水出口温度計T1による制御は、水槽4内の水が沸騰しない温度以下に制御するものであって、スラグホッパ水出口温度計T1の設置位置において30℃〜70℃の範囲を設定温度としており、同設定温度を超えると循環水流量制御弁CV1を開弁し、同設定温度を下回ると循環水流量制御弁CV1を閉弁(絞り)方向に制御する。なお、前記設定温度を低温側よりも高温側に設定する方が、必要循環水量が少量ですみ、結果として、使用により汚染された水量を少なくできる。
Next, based on FIG. 2, Example 2 of the pressurized coal gasifier according to the present invention will be described.
In the present embodiment, the gasification furnace 3, the water tank 4, the circulation flow path 7, and the like are the same as those in the first embodiment, but the circulating water is detected by the temperature signal b from the slag hopper water outlet thermometer T1. A temperature adjusting means for controlling the opening degree of the flow control valve CV1 is added. The control by the slag hopper water outlet thermometer T1 is controlled to a temperature below which the water in the water tank 4 does not boil, and the range of 30 ° C. to 70 ° C. is set at the installation position of the slag hopper water outlet thermometer T1. When the set temperature is exceeded, the circulating water flow rate control valve CV1 is opened, and when the set temperature falls below the set temperature, the circulating water flow rate control valve CV1 is controlled in the valve closing (throttle) direction. Note that setting the set temperature to the high temperature side rather than the low temperature side requires a small amount of circulating water, and as a result, the amount of water contaminated by use can be reduced.

水槽4内の水温が大気圧における沸点温度を超えると、スラグを系外に排出するときに発生するフラッシュ現象により、配管系、特に、ロックホッパ11のスラグ排出弁13での摩耗が問題となるが、本実施例の水槽4内の水温の温度制御によりその問題を解消している。また、本実施例のものは、フィルタ10aの詰まりが少なくなり、閉塞し難いものであると共に、循環水流量制御弁CV1を絞り方向に制御した場合には、圧損が高まり、循環ポンプ9を流れる水の量が減るので、循環ポンプ9の動力を低減する作用効果がある。
本実施例のものは、循環水量を必要最小量のものとすることができ、また、水槽4内の水温を30℃ないし70℃の設定温度に保つと、スラグを比較的、小粒径の粒子状のものに水砕することができる。
When the water temperature in the water tank 4 exceeds the boiling point temperature at atmospheric pressure, wear on the piping system, in particular, the slag discharge valve 13 of the lock hopper 11 becomes a problem due to a flash phenomenon that occurs when slag is discharged out of the system. However, the problem is solved by temperature control of the water temperature in the water tank 4 of the present embodiment. Further, in the present embodiment, the filter 10a is less clogged and difficult to close, and when the circulating water flow control valve CV1 is controlled in the throttle direction, the pressure loss increases and flows through the circulation pump 9. Since the amount of water is reduced, there is an effect of reducing the power of the circulation pump 9.
In this embodiment, the amount of circulating water can be set to the minimum necessary amount, and when the water temperature in the water tank 4 is kept at a set temperature of 30 ° C. to 70 ° C., the slag has a relatively small particle size. It can be granulated into particles.

図3に基づき、本発明に係る加圧型石炭ガス化炉の実施例3を説明する。
本実施例のものは、ガス化炉3、水槽4、循環流路7等の装置構成は、実施例1のものと同様であるが、スラグホッパ水出口温度計T1よりの温度信号dにより、インバータ15制御のモータMにより、循環ポンプ9の駆動を調節しポンプ吐出量を増減制御する温度調整手段が付加されている。また、インバータ15の代わりに流体継手等の可変速継手によるものを用いても良い。
A third embodiment of the pressurized coal gasifier according to the present invention will be described with reference to FIG.
In this embodiment, the gasification furnace 3, the water tank 4, the circulation flow path 7 and the like are the same as those in the first embodiment, but the inverter receives the temperature signal d from the slag hopper water outlet thermometer T1. A temperature adjusting means for adjusting the drive of the circulation pump 9 and increasing / decreasing the pump discharge amount is added by a 15-control motor M. Further, instead of the inverter 15, a variable speed joint such as a fluid joint may be used.

スラグホッパ水出口温度計T1による制御は、水槽4内の水温が大気圧における沸点温度以上にならないように制御するものであって、スラグホッパ水出口温度計T1の設置位置において30℃〜70℃の範囲を設定温度としており、同設定温度を超えると循環ポンプ9の駆動を高め循環水量を増やし、同設定温度を下回ると循環ポンプ9の駆動を低くし循環水量を減らす方向に制御することで、水槽4内の水温を大気圧における沸点温度以下になるようにしている。
水槽4内の水温が大気圧における沸点温度を超えると、スラグを系外に排出するときに発生するフラッシュ現象により、配管系、特に、ロックホッパ11のスラグ排出弁13での摩耗が問題となるが、本実施例のものは、循環水流量を増減して、水槽4内の水温を大気圧における沸点温度を超えないように温度制御することによりその問題を解消している。
本実施例のものは、循環水量を必要最小量のものとすることができ、また、水槽4内の水温を30℃ないし70℃の設定温度に保つと、スラグを比較的、小粒径の粒子状のものに水砕することができる。
The control by the slag hopper water outlet thermometer T1 is performed so that the water temperature in the water tank 4 does not exceed the boiling point temperature at atmospheric pressure, and is in the range of 30 ° C. to 70 ° C. at the installation position of the slag hopper water outlet thermometer T1. Is set to a set temperature, and when the set temperature is exceeded, the circulation pump 9 is driven and the amount of circulating water is increased. When the set temperature is below the set temperature, the drive of the circulation pump 9 is lowered and the amount of circulating water is reduced. The water temperature in 4 is set to be equal to or lower than the boiling temperature at atmospheric pressure.
When the water temperature in the water tank 4 exceeds the boiling point temperature at atmospheric pressure, wear on the piping system, in particular, the slag discharge valve 13 of the lock hopper 11 becomes a problem due to a flash phenomenon that occurs when slag is discharged out of the system. However, the thing of the present Example is solving the problem by controlling the temperature so that the water temperature in the water tank 4 may not exceed the boiling point temperature in atmospheric pressure by increasing / decreasing the circulating water flow rate.
In this embodiment, the amount of circulating water can be set to the minimum necessary amount, and when the water temperature in the water tank 4 is kept at a set temperature of 30 ° C. to 70 ° C., the slag has a relatively small particle size. It can be granulated into particles.

図4に基づき、本発明に係る加圧型石炭ガス化炉の実施例4を説明する。
本実施例のものは、ガス化炉3、水槽4、循環流路7等の装置構成は、実施例1のものと同様であるが、スラグホッパ水出口温度計T1よりの温度信号cにより、冷却器8の冷媒流路8aに設けている冷媒流量制御弁CV4の開度を制御する温度調整手段が付加されている。
スラグホッパ水出口温度計T1よりの温度信号cによる制御は、水槽4内の水温が大気圧における沸点温度以上にならないように制御するものであって、スラグホッパ水出口温度計T1の設置位置において30℃〜70℃の範囲を設定温度としており、同設定温度を超えると冷媒流量制御弁CV4を開弁方向に制御し、同設定温度を下回ると冷媒流量制御弁CV4を閉弁(絞り)方向に制御する。
Based on FIG. 4, Example 4 of the pressurized coal gasification furnace which concerns on this invention is demonstrated.
In this embodiment, the gasification furnace 3, the water tank 4, the circulation flow path 7 and the like are the same as those in the first embodiment, but are cooled by the temperature signal c from the slag hopper water outlet thermometer T1. A temperature adjusting means for controlling the opening degree of the refrigerant flow rate control valve CV4 provided in the refrigerant flow path 8a of the vessel 8 is added.
The control by the temperature signal c from the slag hopper water outlet thermometer T1 is performed so that the water temperature in the water tank 4 does not exceed the boiling point temperature at atmospheric pressure, and is 30 ° C. at the installation position of the slag hopper water outlet thermometer T1. The temperature range of ˜70 ° C. is set as the set temperature. When the set temperature is exceeded, the refrigerant flow control valve CV4 is controlled in the valve opening direction, and when the set temperature is below the set temperature, the refrigerant flow control valve CV4 is controlled in the valve closing (throttle) direction. To do.

つまり、冷却器8の冷媒流量制御弁CV4を開くと、冷媒が多く流れ、冷却器8を流れる循環水を強く冷却し、逆に、冷媒流量制御弁CV4を閉じる方向に制御すると、循環水の冷却が弱まることになり、水槽4内の水温を大気圧における沸点温度以下に制御できる。
水槽4内の水温が大気圧における沸点温度を超えると、スラグを系外に排出するときに発生するフラッシュ現象により、配管系、特に、ロックホッパ11のスラグ排出弁13での摩耗が問題となるが、本実施例の温度制御によりその問題を解消している。
本実施例のものは、循環流路7を流れる循環水量を、常に一定の必要最小量に設定しておくことができ、また、水槽4内の水温を30℃ないし70℃の設定温度に保つと、スラグを比較的、小粒径の粒子状のものに水砕することができる。
That is, when the refrigerant flow control valve CV4 of the cooler 8 is opened, a large amount of refrigerant flows and the circulating water flowing through the cooler 8 is strongly cooled. Conversely, when the refrigerant flow control valve CV4 is controlled to close, the circulating water Cooling will be weakened, and the water temperature in the water tank 4 can be controlled below the boiling point temperature at atmospheric pressure.
When the water temperature in the water tank 4 exceeds the boiling point temperature at atmospheric pressure, wear on the piping system, in particular, the slag discharge valve 13 of the lock hopper 11 becomes a problem due to a flash phenomenon that occurs when slag is discharged out of the system. However, this problem is solved by the temperature control of this embodiment.
In this embodiment, the amount of circulating water flowing through the circulation channel 7 can be always set to a certain minimum required amount, and the water temperature in the water tank 4 is kept at a set temperature of 30 ° C. to 70 ° C. Then, the slag can be granulated into particles having a relatively small particle size.

なお、本実施例の循環水温制御と、上記実施例2、3の循環水流量制御との両制御を組合せて同時併用制御してもよく、また、両制御手段を併設しておき切り替え制御しても良い。また、上述した加圧型石炭ガス化炉の実施例1〜4においては、スラグホッパ水出口温度計T1を循環流路7に設けているが、スラグホッパ水出口温度計T1をガス化炉3の水槽4に設けてもよい。   The control of the circulating water temperature of the present embodiment and the control of the circulating water flow rate of the embodiments 2 and 3 may be combined and controlled simultaneously. May be. Moreover, in Examples 1-4 of the pressurization type coal gasification furnace mentioned above, although the slag hopper water exit thermometer T1 is provided in the circulation flow path 7, the slag hopper water exit thermometer T1 is provided in the water tank 4 of the gasification furnace 3. May be provided.

上述したように、本実施例に係る加圧型石炭ガス化炉は、スラグホッパ水(水槽4内の水)を冷却し、かつスラグホッパ水の必要水位を保つためにスラグ水を循環するシステムであり、循環ポンプ9、冷却器8、各制御弁(CV1〜CV4)、フィルタ装置10等により構成される。また、スラグ水循環系統に自動洗浄式フィルタ等のオンラインで洗浄可能なフィルタ10aを設置したものである。
また、スラグホッパ水出口温度が約70℃以下となるように冷却器8及び循環ポンプ9の仕様を決定し、循環ポンプ9で水を循環させる。スラグの量によりスラグホッパ水出口温度が変わるが、循環ポンプ9にて出なりの流量とする。スラグホッパ水(水槽4)の水位については、水レベル制御弁(CV2、CV3)により補給水量、系外ブロー量により調整する。
As described above, the pressurized coal gasification furnace according to the present embodiment is a system that cools slag hopper water (water in the water tank 4) and circulates slag water in order to maintain the required water level of the slag hopper water. It is comprised by the circulation pump 9, the cooler 8, each control valve (CV1-CV4), the filter apparatus 10, etc. Further, an on-line washable filter 10a such as an automatic washing filter is installed in the slag water circulation system.
Further, the specifications of the cooler 8 and the circulation pump 9 are determined so that the slag hopper water outlet temperature is about 70 ° C. or less, and the circulation pump 9 circulates water. Although the slag hopper water outlet temperature varies depending on the amount of slag, the circulation pump 9 sets the flow rate appropriately. The water level of the slag hopper water (water tank 4) is adjusted by the amount of makeup water and the amount of blowout outside the system by the water level control valves (CV2, CV3).

また、ポンプ等の摩耗低減やフィルタの負荷低減のため、スラグによる熱負荷が少ない場合には循環流量を低減するものである。すなわち、循環水流量制御弁CV1にてスラグホッパ水出口温度が一定となるような制御を行う。ガス化炉からの入熱が少なくスラグホッパ水出口温度が約70℃に達しない場合には、循環水流量が少なくなるが、循環水流量計F1によりポンプ過熱防止、配管内への異物堆積防止及びガス化炉内のスラグ水温度を確実にスラグホッパ水出口温度計T1で検出するために、ミニマムフロー量以上を確保する運転を行うものである。スラグホッパ水(水槽4)の水位については、水レベル制御弁(CV2、CV3)により補給水量、系外ブロー量により調整する。   Further, in order to reduce wear of the pump and the like and filter load, the circulation flow rate is reduced when the heat load due to the slag is small. That is, the slag hopper water outlet temperature is controlled to be constant by the circulating water flow rate control valve CV1. When the heat input from the gasification furnace is low and the slag hopper water outlet temperature does not reach about 70 ° C., the circulating water flow rate decreases, but the circulating water flow meter F1 prevents the pump from overheating, prevents foreign matter from accumulating in the piping, In order to reliably detect the slag water temperature in the gasification furnace with the slag hopper water outlet thermometer T1, an operation for ensuring a minimum flow amount or more is performed. The water level of the slag hopper water (water tank 4) is adjusted by the water level control valve (CV2, CV3) according to the amount of makeup water and the amount of blow outside the system.

本実施例に係る加圧型石炭ガス化炉は、スラグを含んだスラグ水を送水するための大容量高揚程ポンプが不要となり、また高圧のガス化炉から大気圧下へのスラグ水排出量が少なくなるため、配管、ポンプが本質的に摩耗しにくいものであり、ポンプ、配管のメンテナンス費用低減、納入予備品のコスト低減や配管取替えリスクの低減、高圧ポンプを低揚程の循環ポンプとすることにより、モータ容量の低減、補機動力の低減などの効果がある。
なお、前記実施例2、3、4の温度調整手段は、図1に示す閉鎖系の循環流路に設置するのが、最も効果が大きいが、図7に示す開放系の循環流路のものに設定してもよく、その場合でも、ある程度の効果が期待できる。
また、図1ないし図4に示すフィルタ装置10に代えて、図6に示すように、一般的な逆洗フィルタ10Aと、その入口弁10Bおよび出口弁10Cとを具えたものを、並列に2系列組み合わせ、入口弁10B、出口弁10Cを閉弁し、逆洗水入口弁10D及び逆洗水出口弁10Eを開弁することにより、フィルタ装置10の出口側に逆洗水を供給し、フィルタ装置10の逆洗フィルタ10Aを逆洗してダストを排水除去するものを採用してもよい。
The pressurized coal gasifier according to the present embodiment does not require a large-capacity high-lift pump for feeding slag water containing slag, and the amount of slag water discharged from the high-pressure gasifier to atmospheric pressure is low. Since the number of pipes and pumps is inherently less likely to wear out, maintenance costs for pumps and pipes are reduced, spare parts costs are reduced and the risk of pipe replacement is reduced, and high-pressure pumps are used as low-pump circulation pumps. Thus, there are effects such as reduction of motor capacity and reduction of auxiliary machine power.
The temperature adjusting means of the second, third, and fourth embodiments are most effective when installed in the closed circulation channel shown in FIG. 1, but the open circuit circulation channel shown in FIG. Even in that case, a certain degree of effect can be expected.
Further, in place of the filter device 10 shown in FIGS. 1 to 4, as shown in FIG. 6, a general backwash filter 10A and its inlet valve 10B and outlet valve 10C are provided in parallel. The series combination, the inlet valve 10B and the outlet valve 10C are closed, and the backwash water inlet valve 10D and the backwash water outlet valve 10E are opened to supply backwash water to the outlet side of the filter device 10, and the filter You may employ | adopt what wash | cleans the backwashing filter 10A of the apparatus 10, and drains and removes dust.

図5に基づき、本発明に係る石炭ガス化複合発電設備の実施例を説明する。
本実施例は、上述した加圧型石炭ガス化炉(実施例1〜4)の何れかを用いて、発電を行う、石炭ガス化複合発電設備1である。
Based on FIG. 5, the Example of the coal gasification combined cycle power generation equipment which concerns on this invention is described.
A present Example is the coal gasification combined cycle power generation equipment 1 which produces electric power using any of the pressurization type coal gasification furnace (Examples 1-4) mentioned above.

本石炭ガス化複合発電設備1は、加圧型石炭ガス化炉2のガス排出流路16に設けられている熱交換器17と、ガス排出流路16から配管eを経て排出されたガス中の塵を除塵するサイクロンフィルタ18およびポーラスフィルタ19とよりなる除塵装置と、同除塵装置よりガス精製設備20、燃焼器21を経て供給される加圧ガスにより駆動されるガスタービン22と、ガスタービン22駆動後、排出ガス管kを経て供給される排出ガスの排熱回収を行う排熱回収ボイラ26とで構成されている。更に、加圧型石炭ガス化炉2に具えられている熱交換器17から配管fを経て供給される発生蒸気および排熱回収ボイラ26から配管iを経て供給される発生蒸気により駆動される蒸気タービン24と、ガスタービン22および蒸気タービン24の駆動力により発電を行う発電機25とで構成されている。   The combined coal gasification combined power generation facility 1 includes a heat exchanger 17 provided in a gas discharge passage 16 of the pressurized coal gasification furnace 2 and a gas in the gas discharged from the gas discharge passage 16 through a pipe e. A dust removal device comprising a cyclone filter 18 and a porous filter 19 for removing dust, a gas turbine 22 driven by pressurized gas supplied from the dust removal device through a gas purification facility 20 and a combustor 21, and a gas turbine 22 The exhaust heat recovery boiler 26 performs exhaust heat recovery of exhaust gas supplied through the exhaust gas pipe k after driving. Furthermore, the steam turbine driven by the generated steam supplied from the heat exchanger 17 provided in the pressurized coal gasification furnace 2 via the pipe f and the generated steam supplied from the exhaust heat recovery boiler 26 via the pipe i. 24 and a generator 25 that generates electric power by the driving force of the gas turbine 22 and the steam turbine 24.

そして、ガスタービン22駆動後のガスは排熱回収ボイラ26を経て、煙突27より排出される。また、図中、gは熱交換器17への給水管、hは排熱回収ボイラ26への給水管、jは圧縮機23への大気供給ダクトを示す。
しかして、本石炭ガス化複合発電設備1は、加圧型石炭ガス化炉2により生成されたスラグガス中の塵(チャー)を、前記除塵装置(18、19)で回収した後、そのガスによりガスタービン22を回して発電を行う、また、加圧型石炭ガス化炉2に具えられている熱交換器17からの発生蒸気により、蒸気タービン24を回して発電を行うものである。
The gas after driving the gas turbine 22 is discharged from the chimney 27 through the exhaust heat recovery boiler 26. In the figure, g is a water supply pipe to the heat exchanger 17, h is a water supply pipe to the exhaust heat recovery boiler 26, and j is an air supply duct to the compressor 23.
Thus, the combined coal gasification combined power generation facility 1 collects the dust (char) in the slag gas generated by the pressurized coal gasification furnace 2 with the dust removing device (18, 19), and then uses the gas to gas. The turbine 22 is rotated to generate power, and the steam turbine 24 is rotated by generated steam from the heat exchanger 17 provided in the pressurized coal gasification furnace 2 to generate power.

本石炭ガス化複合発電設備1は、加圧型石炭ガス化炉2により生成されたガスエネルギーを効率よく有効に活用することができ、かつ、長期間に渡り安定して発電を行い得、従来に比べ、メンテナンス期間の延長をも図れるものである。
なお、上記実施例のものにおいて、配管fよりの蒸気を、最初に排熱回収ボイラ26に導入して加熱した後、蒸気タービン24に供給するようにしてもよい。
The combined coal gasification combined power generation facility 1 can efficiently and effectively utilize the gas energy generated by the pressurized coal gasification furnace 2, and can stably generate power over a long period of time. In comparison, the maintenance period can be extended.
In the above embodiment, the steam from the pipe f may be first introduced into the exhaust heat recovery boiler 26 and heated, and then supplied to the steam turbine 24.

また、本発明は、本願出願人が先に出願している特願2004−188888などで出願中の排煙脱硫型IGCCにも適用でき、その場合には、上述したように、ガスタービン22の前段でガス精製を行わず、ガスタービン22の後段にて脱硫処理を行う方式のものとなる。
また、本発明は上記実施例に限定されるものではなく必要に応じ、適宜設計変更し得るものである。また、上記実施例における各構成要素には、当業者が容易に想定できるものや、実質的に同一のものが含まれる。
The present invention can also be applied to the flue gas desulfurization type IGCC filed in Japanese Patent Application No. 2004-188888 filed earlier by the applicant of the present application. Gas purification is not performed in the previous stage, and desulfurization processing is performed in the subsequent stage of the gas turbine 22.
Further, the present invention is not limited to the above-described embodiments, and can be appropriately modified as necessary. In addition, each component in the embodiment includes those that can be easily assumed by those skilled in the art and those that are substantially the same.

本発明の実施例1に係る加圧型石炭ガス化炉の水槽の循環流路図である。It is a circulation flow path figure of the water tank of the pressurization type coal gasification furnace concerning Example 1 of the present invention. 本発明の実施例2に係る加圧型石炭ガス化炉の水槽の循環流路図である。It is a circulation flow path figure of the water tank of the pressurization type coal gasification furnace concerning Example 2 of the present invention. 本発明の実施例3に係る加圧型石炭ガス化炉の水槽の循環流路図である。It is a circulation flow path figure of the water tank of the pressurization type coal gasification furnace concerning Example 3 of the present invention. 本発明の実施例4に係る加圧型石炭ガス化炉の水槽の循環流路図である。It is a circulation flow path figure of the water tank of the pressurization type coal gasification furnace concerning Example 4 of the present invention. 本発明に係る石炭ガス化複合発電設備を示す系統図である。It is a systematic diagram which shows the coal gasification combined cycle power generation equipment which concerns on this invention. 本発明の実施例1ないし4に係るフィルタ装置の他事例を示す流路図である。It is a flow path figure showing other examples of a filter device concerning Examples 1 thru / or 4 of the present invention. 出願人が先に提案している加圧型石炭ガス化炉の水槽の循環流路図である。It is a circulation flow path figure of the water tank of the pressurization type coal gasifier which the applicant has proposed previously.

符号の説明Explanation of symbols

1 石炭ガス化複合発電設備
2 加圧型石炭ガス化炉
3 ガス化炉
4 水槽
5 給水管
6 排水管
7 循環流路
8 冷却器
9 循環ポンプ
10 フィルタ装置
16 ガス排出流路
17 熱交換器
18 サイクロンフィルタ(除塵装置)
19 ポーラスフィルタ(除塵装置)
22 ガスタービン
24 蒸気タービン
25 発電機
T1 スラグホッパ水出口温度計(水温検知装置)
CV1 循環水流量制御弁

DESCRIPTION OF SYMBOLS 1 Coal gasification combined cycle power generation facility 2 Pressurization type coal gasification furnace 3 Gasification furnace 4 Water tank 5 Water supply pipe 6 Drain pipe 7 Circulation flow path 8 Cooler 9 Circulation pump 10 Filter apparatus 16 Gas discharge flow path 17 Heat exchanger 18 Cyclone Filter (dust remover)
19 Porous filter (dust remover)
22 Gas turbine 24 Steam turbine 25 Generator T1 Slag hopper water outlet thermometer (water temperature detection device)
CV1 Circulating water flow control valve

Claims (7)

石炭原料を加圧下で熱処理してガス化するガス化炉の底部に、スラグを水砕するための水槽が設置された加圧型石炭ガス化炉において、前記水槽に設けられている給水管と排水管との他端部相互を連通して、閉鎖系の循環流路とすると共に、前記循環流路に循環水の冷却器および循環ポンプを設けたことを特徴とする加圧型石炭ガス化炉。   In a pressurized coal gasification furnace in which a water tank for granulating slag is installed at the bottom of a gasification furnace that heats and gasifies coal raw material under pressure, a water supply pipe and drainage provided in the water tank A pressurized coal gasification furnace characterized in that the other end of the pipe communicates with each other to form a closed circulation channel, and a circulating water cooler and a circulation pump are provided in the circulation channel. 前記水槽または循環流路に水温検知装置を設け、前記水温検知装置よりの温度信号により、前記水槽内の水温を所定の設定温度に調節するための温度調整手段を制御することを特徴とする請求項1に記載の加圧型石炭ガス化炉。   A water temperature detection device is provided in the water tank or the circulation channel, and temperature adjusting means for adjusting the water temperature in the water tank to a predetermined set temperature is controlled by a temperature signal from the water temperature detection device. Item 2. The pressurized coal gasification furnace according to Item 1. 前記循環流路に循環水流量制御弁を設け、前記水温検知装置よりの温度信号により、前記循環水流量制御弁を開閉制御することを特徴とする請求項2に記載の加圧型石炭ガス化炉。   The pressurized coal gasification furnace according to claim 2, wherein a circulating water flow rate control valve is provided in the circulation channel, and the circulating water flow rate control valve is controlled to open and close by a temperature signal from the water temperature detection device. . 前記水温検知装置よりの温度信号により、前記循環ポンプの吐出容量を増減制御することを特徴とする請求項2に記載の加圧型石炭ガス化炉。   The pressurized coal gasification furnace according to claim 2, wherein the discharge capacity of the circulation pump is controlled to increase or decrease by a temperature signal from the water temperature detection device. 前記水温検知装置よりの温度信号により、前記冷却器の冷媒流量を増減制御することを特徴とする請求項2に記載の加圧型石炭ガス化炉。   The pressurized coal gasification furnace according to claim 2, wherein the refrigerant flow rate of the cooler is controlled to increase or decrease by a temperature signal from the water temperature detection device. 前記循環流路にオンラインで洗浄可能なフィルタ装置を設置することを特徴とする請求項1ないし請求項5の何れかに記載の加圧型石炭ガス化炉。   The pressurized coal gasification furnace according to any one of claims 1 to 5, wherein a filter device capable of being washed online is installed in the circulation channel. 請求項1ないし請求項6の何れかに記載の加圧型石炭ガス化炉と、前記加圧型石炭ガス化炉のガス排出流路に設ける熱交換器と、前記ガス中の塵を除塵する除塵装置と、前記除塵装置よりのガスにより駆動されるガスタービンと、同ガスタービンの排出ガスにより蒸気を発生させる排熱回収ボイラと、前記熱交換器及び排熱回収ボイラからの発生蒸気により駆動される蒸気タービンとを具え、前記ガスタービンおよび蒸気タービンの駆動力により発電することを特徴とする石炭ガス化複合発電設備。   The pressurized coal gasifier according to any one of claims 1 to 6, a heat exchanger provided in a gas discharge passage of the pressurized coal gasifier, and a dust removing device that removes dust in the gas. And a gas turbine driven by the gas from the dust removing device, a waste heat recovery boiler that generates steam by the exhaust gas of the gas turbine, and a steam generated from the heat exchanger and the exhaust heat recovery boiler A coal gasification combined power generation facility comprising a steam turbine and generating electric power by a driving force of the gas turbine and the steam turbine.
JP2005021739A 2005-01-28 2005-01-28 Pressurized coal gasification furnace and coal gasification combined cycle power generation facility Expired - Fee Related JP4533764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005021739A JP4533764B2 (en) 2005-01-28 2005-01-28 Pressurized coal gasification furnace and coal gasification combined cycle power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005021739A JP4533764B2 (en) 2005-01-28 2005-01-28 Pressurized coal gasification furnace and coal gasification combined cycle power generation facility

Publications (2)

Publication Number Publication Date
JP2006206776A true JP2006206776A (en) 2006-08-10
JP4533764B2 JP4533764B2 (en) 2010-09-01

Family

ID=36963968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005021739A Expired - Fee Related JP4533764B2 (en) 2005-01-28 2005-01-28 Pressurized coal gasification furnace and coal gasification combined cycle power generation facility

Country Status (1)

Country Link
JP (1) JP4533764B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044013A (en) * 2012-08-28 2014-03-13 Chugoku Electric Power Co Inc:The Method for discharging blow water of cooling tower for desulfurization equipment
US9505995B2 (en) 2011-09-07 2016-11-29 Mitsubishi Hitachi Power Systems, Ltd. Slag discharge system, gasifier, and gasification power generation apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936195A (en) * 1982-08-25 1984-02-28 Hitachi Ltd Method for gasifying coal in jetted stream bed
JPS5984980A (en) * 1982-11-04 1984-05-16 Hitachi Ltd Coal gasification apparatus
JPH036443U (en) * 1989-06-05 1991-01-22
JPH09301748A (en) * 1996-05-16 1997-11-25 Kawasaki Heavy Ind Ltd Production of stable slag
JPH1073233A (en) * 1996-08-30 1998-03-17 Mitsui Eng & Shipbuild Co Ltd Molten slug water-cooling device for combustion melting furnace
JPH10251669A (en) * 1997-03-12 1998-09-22 Mitsubishi Heavy Ind Ltd Gasification/generation system
JP2001214178A (en) * 2000-02-02 2001-08-07 Ube Ammonia Kogyo Kk Process for recovering unburned carbon in gasification treatment of solid fuel and apparatus therefor
WO2003085322A1 (en) * 2002-04-10 2003-10-16 Ebara Corporation Ash fusing system, method of operating the system, and gasification fusing system for waste

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936195A (en) * 1982-08-25 1984-02-28 Hitachi Ltd Method for gasifying coal in jetted stream bed
JPS5984980A (en) * 1982-11-04 1984-05-16 Hitachi Ltd Coal gasification apparatus
JPH036443U (en) * 1989-06-05 1991-01-22
JPH09301748A (en) * 1996-05-16 1997-11-25 Kawasaki Heavy Ind Ltd Production of stable slag
JPH1073233A (en) * 1996-08-30 1998-03-17 Mitsui Eng & Shipbuild Co Ltd Molten slug water-cooling device for combustion melting furnace
JPH10251669A (en) * 1997-03-12 1998-09-22 Mitsubishi Heavy Ind Ltd Gasification/generation system
JP2001214178A (en) * 2000-02-02 2001-08-07 Ube Ammonia Kogyo Kk Process for recovering unburned carbon in gasification treatment of solid fuel and apparatus therefor
WO2003085322A1 (en) * 2002-04-10 2003-10-16 Ebara Corporation Ash fusing system, method of operating the system, and gasification fusing system for waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9505995B2 (en) 2011-09-07 2016-11-29 Mitsubishi Hitachi Power Systems, Ltd. Slag discharge system, gasifier, and gasification power generation apparatus
JP2014044013A (en) * 2012-08-28 2014-03-13 Chugoku Electric Power Co Inc:The Method for discharging blow water of cooling tower for desulfurization equipment

Also Published As

Publication number Publication date
JP4533764B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
KR102235889B1 (en) Power generating system by using syngas that pyrolysis and gasification using combustible renewable fuels including biomass
TWI503158B (en) Continuous coarse ash depressurization system
JP4533764B2 (en) Pressurized coal gasification furnace and coal gasification combined cycle power generation facility
JP5818307B2 (en) Boiler equipment and method for controlling gas temperature at outlet thereof
US20080115479A1 (en) Pressurized coal gasifier and coal gasification combined cycle power plant
JP6873738B2 (en) How to regenerate the filter device and the filter device and gasification combined cycle equipment
JP6929649B2 (en) How to operate slag discharge system, gasification furnace equipment, gasification combined power generation equipment, and slag discharge system
JP6209860B2 (en) Slag breaking device
JP7039793B2 (en) How to stop the slag discharge system, slag discharge system and gasification combined cycle
JP2020200353A (en) Gasification system for carbon-based fuel
US10808191B2 (en) Gasification apparatus, control device, integrated gasification combined cycle, and control method
CN111201307A (en) Aftertreatment arrangement and method for the aftertreatment of gases at least downstream of a fluidized bed gasification process, and logic unit and use
JP6938146B2 (en) Gasifier equipment and its operation method
JP5529678B2 (en) Char recovery device
JP6910872B2 (en) Gasification furnace equipment and gasification combined cycle equipment equipped with this
JP4508443B2 (en) Coal gasification power plant
JP2018080247A (en) Gasified gas generation system
JP6390111B2 (en) Melting furnace system
JP6766772B2 (en) Power generation system using waste heat in sewage sludge incineration equipment and operation method of power generation system
CN108367226B (en) Filtering and backwashing device, coal tar recovery device, filtering and backwashing method and gasification composite power generation equipment
JP7458795B2 (en) Filter regeneration system, gasification combined cycle power generation equipment, and filter regeneration method
JP2020168614A (en) Suspension filter, slag water filter circulation system, gasification furnace, gasification combined power generation facility and suspension filtration method
JP6576845B2 (en) Foreign matter removal apparatus, gasification facility, gasification combined power generation facility, and foreign matter removal method
JP2010043857A (en) Method of storing heat into heat storage device
JP6957198B2 (en) Gasification furnace equipment and gasification combined cycle equipment equipped with this

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R151 Written notification of patent or utility model registration

Ref document number: 4533764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees