JP2006206523A - Organic fluorescent compound, method for producing the same, light emitting agent for organic electroluminescent element and organic electroluminescent element - Google Patents

Organic fluorescent compound, method for producing the same, light emitting agent for organic electroluminescent element and organic electroluminescent element Download PDF

Info

Publication number
JP2006206523A
JP2006206523A JP2005021968A JP2005021968A JP2006206523A JP 2006206523 A JP2006206523 A JP 2006206523A JP 2005021968 A JP2005021968 A JP 2005021968A JP 2005021968 A JP2005021968 A JP 2005021968A JP 2006206523 A JP2006206523 A JP 2006206523A
Authority
JP
Japan
Prior art keywords
group
chemical formula
substituent
pyrone
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005021968A
Other languages
Japanese (ja)
Inventor
Yoshinori Tominaga
義則 富永
Naoushi Mizuyama
奈央子 水山
Yuka Murakami
由花 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki University NUC
Original Assignee
Nagasaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki University NUC filed Critical Nagasaki University NUC
Priority to JP2005021968A priority Critical patent/JP2006206523A/en
Publication of JP2006206523A publication Critical patent/JP2006206523A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new organic fluorescent compound having remarkable receptivity to ultraviolet light and visible light and remarkable luminescent ability. <P>SOLUTION: The organic luminescent compound comprises a 2H-pyrone derivative represented by one of general formula 1 to general formula 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、機能性有機化合物である有機蛍光性化合物及びその製造方法に関するものであり、とりわけ、蛍光色素及び電界発光において有用な新規2H−ピラン−2−オン誘導体(以下、2H−ピロン誘導体という)からなる有機蛍光性化合物及びその製造方法に関するものである。
本発明は、上記有機蛍光性化合物を用いた有機電界発光素子用発光剤、並びにこの発光剤を備えた有機電界発光素子に関するものである。
The present invention relates to an organic fluorescent compound that is a functional organic compound and a method for producing the same, and in particular, a novel 2H-pyran-2-one derivative (hereinafter referred to as a 2H-pyrone derivative) useful in fluorescent dyes and electroluminescence. And an organic fluorescent compound comprising the same.
The present invention relates to a light emitting agent for an organic electroluminescent device using the organic fluorescent compound, and an organic electroluminescent device provided with the light emitting agent.

従来、蛍光性色素は、樹脂、染料、インクなど種々の材料の着色に利用されている。特に医薬の分野では、蛍光色素を使う蛍光測定が吸光度測定法より高感度のため細胞組織の染色に多用され、また近年の分離法の進歩により臨床診断用にも広く利用されている。蛍光測定法による高感度分析を可能にしたのはコンピューターをはじめ機器の進歩発展による効果も大きいことながら、多種多様の蛍光性有機化合物が見い出されたことも重要な要因の一つである。それぞれの分野で高感度分析を可能にするためには、より一層の高機能性蛍光試薬の開発が望まれている。現在まで多くの試薬が開発されているにも拘わらず未だ十分ではない。生体成分の分析には、その対象となる成分の吸収領域と異なること、試薬の分子吸光係数が多きいこと、化学修飾が容易なこと、溶解性に加工し易いこと、他の配合剤との相溶性に優れていること、安価に入手できること、そして安定であることが挙げられる。   Conventionally, fluorescent pigments are used for coloring various materials such as resins, dyes, and inks. In particular, in the field of medicine, fluorescence measurement using a fluorescent dye is more frequently used for staining cell tissues because it is more sensitive than absorbance measurement, and is also widely used for clinical diagnosis due to recent advances in separation methods. One of the important factors is that the discovery of a wide variety of fluorescent organic compounds has made it possible to carry out high-sensitivity analysis by the fluorescence measurement method, as well as the effects of advances in computer and other equipment. In order to enable high-sensitivity analysis in each field, development of a further highly functional fluorescent reagent is desired. Despite the development of many reagents to date, it is still not sufficient. For analysis of biological components, it is different from the absorption region of the target component, the reagent has a large molecular extinction coefficient, easy chemical modification, easy to process into solubility, It is excellent in compatibility, can be obtained inexpensively, and is stable.

代表的な蛍光誘導体化試薬として4−ブロモメチル−7−メトキシクマリン([化7]参照)や4−ブロモメチル−6,7−ジメトキシクマリン等が挙げられるが、これらはいずれも一長一短があり、多種多様の材料からなる蛍光性有機化合物にあって、前述のような諸特性を常に発揮しうるような化合物は未だ見い出されていない。以上のように蛍光性色素として広く利用されている一方、近年その蛍光効率を利用して、薄膜発光素子等の電子機器分野への用途が開発されている。蛍光性色素については種々の構造及び発光色の色素が知られているが、特に電子機器分野等で要求される赤色に高輝度で発光し、さらに堅牢度の優れた化合物は少ない。これまで2−ピロン誘導体を主要構成部分としての蛍光性を利用した報告はない。もちろん前述の蛍光測定法や電界発光素子に利用されたこともない。   Typical fluorescent derivatization reagents include 4-bromomethyl-7-methoxycoumarin (see [Chemical Formula 7]), 4-bromomethyl-6,7-dimethoxycoumarin, and the like. In the fluorescent organic compound made of the above material, a compound that can always exhibit the above-mentioned properties has not yet been found. While being widely used as a fluorescent dye as described above, in recent years, applications in the field of electronic equipment such as thin-film light-emitting elements have been developed using the fluorescence efficiency. As fluorescent dyes, dyes having various structures and luminescent colors are known. However, there are few compounds that emit light with high brightness in red and are particularly excellent in fastness, particularly required in the field of electronic equipment. So far, there has been no report utilizing fluorescence with a 2-pyrone derivative as a main constituent. Of course, it has never been used in the above-described fluorescence measurement method or electroluminescent device.

ピラン誘導体の一種である縮合2−ピラン誘導体のクマリン誘導体が蛍光測定法の蛍光誘導体化試薬として用いられていることは広く知られている。例えば、下記[化7]に示すベンゾピラン系化合物を利用した蛍光測定法がある。   It is widely known that a coumarin derivative of a condensed 2-pyran derivative, which is a kind of pyran derivative, is used as a fluorescent derivatization reagent for fluorescence measurement. For example, there is a fluorescence measurement method using a benzopyran compound shown in the following [Chemical Formula 7].

Figure 2006206523
Figure 2006206523

種々の複素環系化合物が有機電界発光素子(有機エレクトロルミネッセンス素子:以下、有機EL素子という)の発光色素として用いられていることは広く知られている。例えば、下記[化8]に示すピラン構造を有する4H−ピラン系化合物が赤色系色素としてよく知られている。   It is widely known that various heterocyclic compounds are used as luminescent dyes in organic electroluminescent devices (organic electroluminescent devices: hereinafter referred to as organic EL devices). For example, a 4H-pyran compound having a pyran structure represented by [Chemical Formula 8] below is well known as a red dye.

Figure 2006206523
Figure 2006206523

また、特許文献1には下記[化9]に示す4H−ピラン系化合物を使用して赤色蛍光が得られた例が開示されている。   Patent Document 1 discloses an example in which red fluorescence is obtained using a 4H-pyran compound represented by the following [Chemical 9].

Figure 2006206523
Figure 2006206523

情報表示の分野においては、電界発光素子が次世代の表示素子として脚光を浴びている。現在、コンピューター端末機やテレビジョン受像器などの比較的大型の情報表示機器においては、主として、ブラウン管が用いられている。しかしながら、ブラウン管は体積、重量ともに大きく、動作電圧も高いので、汎用性機器や携帯性を重視する小型の機器には適さない。小型機器には、もっと薄く、軽量の平板状であって、動作電圧が低く、消費電力の小さいものが必要とされている。現在では、液晶素子が、動作電力が低く、消費電力の比較的小さい点が買われて、多方面で汎用されている。しかしながら、液晶素子を用いる情報表示機器は、見る角度によってコントラスが変わるので、ある角度の範囲で読み取らないと明瞭な表示が得られない上に、通常、バクライトを必要とするので、消費電力がそれほど小さくならないという問題がある。この問題を解決し表示素子として登場したのが有機電界素子、すなわち、有機EL素子である。   In the field of information display, electroluminescent elements are in the spotlight as next-generation display elements. Currently, cathode ray tubes are mainly used in relatively large information display devices such as computer terminals and television receivers. However, since the cathode ray tube is large in volume and weight and has a high operating voltage, it is not suitable for general-purpose devices and small devices that place importance on portability. Small devices are required to be thinner and lighter, have a lower operating voltage and lower power consumption. At present, liquid crystal elements are widely used in various fields because of their low operating power and relatively low power consumption. However, the information display device using a liquid crystal element has a contrast that changes depending on the viewing angle, so that a clear display cannot be obtained unless it is read within a certain angle range, and usually a backlight is required. There is a problem of not getting smaller. An organic electric field element, that is, an organic EL element, has emerged as a display element after solving this problem.

有機電界素子は、通常、陽極と陰極との間に発光剤を含有する薄膜を介挿してなり、その陽極と陰極との間に直流電圧を印加して薄膜に正孔及び電子をそれぞれ注入し、それらを互いに再結合させる事によって発光剤の励起状態を作り出し、その励起状態が基底状態に戻るときに放出される蛍光や燐光などの発光を利用する発光素子である。有機電界素子は、適切なホスト発光剤を選択するとともに、そのホスト発光剤に組み合わせるゲスト発光剤を変更することにより、発光の色調を適宣に変えることができる特徴がある。また、ホスト発光剤とゲスト発光剤の組み合わせによっては、発光の輝度と寿命を大幅に向上できる可能性がある。そもそも、有機電界発光素子は自ら発光する素子なので、これを用いる情報表示機器は視野角依存性がないうえに、バックライトが不要なので、消費電力を小さくできる利点があり、原理的に優れた発光素子であると言われている。   An organic field element is usually formed by interposing a thin film containing a luminescent agent between an anode and a cathode, and a direct current voltage is applied between the anode and the cathode to inject holes and electrons into the thin film, respectively. The light emitting device utilizes an emission of fluorescence or phosphorescence that is generated when the excited state of the luminescent agent is created by recombining them with each other and the excited state returns to the ground state. The organic electric field element has a feature that the color tone of light emission can be appropriately changed by selecting an appropriate host luminescent agent and changing the guest luminescent agent combined with the host luminescent agent. Further, depending on the combination of the host light-emitting agent and the guest light-emitting agent, there is a possibility that the luminance and lifetime of light emission can be greatly improved. In the first place, since organic electroluminescent elements emit light by themselves, information display devices that use them do not have a viewing angle dependency and do not require a backlight. It is said to be an element.

これまで、緑色域で発光する有機電界発光素子においては、ゲスト発光剤の配合による発光効率の改善が報告されているけれども、赤色域の発光においては、未だ効果的なゲスト発光剤は見い出されていない。依然として、完全な赤色発光とは程遠く、発光寿命が短く、耐久性においても信頼性においても不充分な状況にある。例えば、特許文献2及び特許文献3に開示された有機電界素子は、輝度が充分でないうえに、発光が完全な赤色ではなく、したがって、フルカラーを実現するうえでなお問題があると言わざれるを得ない。   So far, organic electroluminescent devices emitting in the green range have been reported to improve the luminous efficiency due to the incorporation of the guest luminescent agent. However, an effective guest luminescent agent has not yet been found in the red luminescence. Absent. Still, it is far from perfect red light emission, has a short light emission life, and is in an insufficient state in terms of durability and reliability. For example, the organic electric field elements disclosed in Patent Document 2 and Patent Document 3 are not sufficiently bright and the light emission is not completely red. Therefore, it is said that there are still problems in realizing full color. I don't get it.

さらに、電界発光素子を安価に供給することは、単に、素子全体の構造を簡素化したり、製造の際の蒸着操作を容易にすることだけでなく、ゲスト発光剤によるドーピングを本質的に必要としない発光剤を見い出すことが肝要である。電界発光素子に用いる発光剤については、従来より諸種の提案がなされているけれども、上述のごとき諸条件を充足する化合物は未だ見い出されていない。   Furthermore, supplying the electroluminescent device at low cost not only simply simplifies the structure of the entire device and facilitates the vapor deposition operation during manufacture, but also essentially requires doping with a guest luminescent agent. It is important to find a luminescent agent that does not. Various proposals have been made for luminescent agents used in electroluminescent devices, but no compound that satisfies the above-mentioned conditions has been found yet.

蛍光材料は光により、より高いエネルギー状態に励起され、光としてエネルギーを放出することで元のエネルギー状態に戻る。このフォトルミネッセンス(PL)現象では、一般的に、発光波長特性は、励起光の波長より長波長化することが知られている。有機電界素子や発光ダイオードの場合、発光材料の選択や素子構造の設計等により発光波長特性をある程度調整することができる。しかし、これらの方法だけで青緑赤の三原色表示や白色表示等の要求を満たすことは難しい。そのため、PL現象により、青色発光する発光部材と緑色や赤色の成分を有する光を発光する蛍光材料を組み合わせることにより青緑赤の三原色表示や白色表示を実現しようと試みられている。   The fluorescent material is excited to a higher energy state by light, and returns to the original energy state by releasing energy as light. In this photoluminescence (PL) phenomenon, it is generally known that the emission wavelength characteristic is longer than the wavelength of the excitation light. In the case of an organic electric field element or light emitting diode, the emission wavelength characteristic can be adjusted to some extent by selecting a light emitting material, designing the element structure, or the like. However, it is difficult to satisfy the demands of blue-green-red three primary colors display and white display only by these methods. For this reason, attempts have been made to realize blue-green-red primary colors and white display by combining a light-emitting member that emits blue light and a fluorescent material that emits light having green and red components due to the PL phenomenon.

波長変換特性は、蛍光部材中の蛍光材料に大きく依存し、特定の波長変換特性を得るためにはそれに適した蛍光材料の選択が不可欠である。例えば、特許文献4によると、クマリン系の色素を用いて比較的容易に高効率の変換が可能である。このように青色光から緑色光への変換に適した蛍光材料は容易に入手できる。これに対し青色光から赤色光への変換は、一般的な蛍光材料にとって波長のシフトが大きいので、高効率の変換は難しい。しかしながら、いまだ十分なものではないが青色光から赤色光への変換効率を高める試みが、特許文献4、特許文献5、特許文献6、それに特許文献7に開示されている。このように蛍光材料を用いて青色光を赤色光に高効率に変換する方法が開発される一方、赤色光や白色光等の赤色成分を含む発光色の発光素子の開発が急務である。   The wavelength conversion characteristic greatly depends on the fluorescent material in the fluorescent member, and in order to obtain a specific wavelength conversion characteristic, it is indispensable to select a suitable fluorescent material. For example, according to Patent Document 4, high-efficiency conversion can be performed relatively easily using a coumarin-based dye. Thus, a fluorescent material suitable for conversion from blue light to green light is readily available. On the other hand, the conversion from blue light to red light has a large wavelength shift for a general fluorescent material, so that highly efficient conversion is difficult. However, although not yet sufficient, attempts to increase the conversion efficiency from blue light to red light are disclosed in Patent Document 4, Patent Document 5, Patent Document 6, and Patent Document 7. As described above, while a method for converting blue light into red light with high efficiency using a fluorescent material is developed, it is urgent to develop a light emitting element having a light emitting color including a red component such as red light or white light.

OA機器用バックライト、時計用バックライト、各種デイスプレイ用バックライトなどの用途に発光素子を用いる場合、発光色としては白色が最も好ましい。ところが単一で白色発光を示すような発光素子は一般に知られていないため、白色以外の発光色をもつ発光素子において、発光層と蛍光層や補色発光層とを組み合わせ、白色発光を得る方法が試みられている。   When the light-emitting element is used for applications such as backlights for office automation equipment, backlights for watches, and backlights for various displays, white is most preferable as the emission color. However, since a single light emitting element that emits white light is not generally known, there is a method for obtaining white light emission by combining a light emitting layer, a fluorescent layer, and a complementary light emitting layer in a light emitting element having a light emitting color other than white. Has been tried.

特開2001−81090号公報JP 2001-81090 A 特開平10−6042号公報Japanese Patent Laid-Open No. 10-6042 米国特許第4769292号明細書US Pat. No. 4,769,292 特開平3−152897号公報Japanese Patent Laid-Open No. 3-152897 特開平8−286033号公報JP-A-8-286033 特開平9−213478号公報JP-A-9-213478 特開平12−230172号公報JP-A-12-230172 特開2001−52869号公報JP 2001-52869 A 特開2001−29485号公報JP 2001-29485 A

本発明は、上述の状況に鑑み、紫外光や可視光への顕著な感受性や顕著な発光能を有する新規な有機蛍光性化合物とその製造方法、その有機蛍光性化合物の蛍光試薬及び有機電界発光素子における諸用途、特に有機電界発光素子用発光剤、その発光剤を用いた有機電界発光素子を提供する。
また、本発明は、新規な有機蛍光性化合物を構成するピロン誘導体の、それぞれの位置の、それぞれの置換基による蛍光性の構造活性相関関係を明らかにし、それに基づく有機蛍光性化合物の製造方法を提供する。
In view of the above-described situation, the present invention provides a novel organic fluorescent compound having remarkable sensitivity to ultraviolet light and visible light and a remarkable light emitting ability, a method for producing the same, a fluorescent reagent for the organic fluorescent compound, and organic electroluminescence Provided are various uses in an element, in particular, a luminescent agent for an organic electroluminescent element and an organic electroluminescent element using the luminescent agent.
In addition, the present invention clarifies the fluorescence structure-activity relationship of the pyrone derivative constituting the novel organic fluorescent compound at each position by the respective substituents, and provides a method for producing the organic fluorescent compound based thereon. provide.

本発明に係る有機蛍光性化合物は、[化10]〜[化13]の一般式1、一般式2、一般式3、又は一般式4のいずれかで表される2H−ピロン誘導体からなることを特徴とする。

Figure 2006206523
Figure 2006206523
Figure 2006206523
Figure 2006206523
一般式1に示すAr(アリール基)は各種芳香族化合物を意味し、単環性のフェニル基、双環性のナフチル基、縮合多環性芳香族化合物、電子過剰芳香族複素環化合物、電子不足芳香族複素環化合物を表す。ピロン環上の3位の置換基R1は、電子吸引基を表す。ピロン環上の4位の置換基R2は、硫黄原子、酸素原子、窒素原子の少なくとも1つを含む置換基を表す。ピロン環上の5位の置換基R3は、水素原子、各種アルキル基、フェニル基を表す。
一般式2で示すピロン環上の6位のフェニル基の4位の置換アミノ基の置換基Rは、アルキル基またはアリール基を表す。ピロン環上の3位の置換基R1は、電子吸引基を表す。ピロン環上の4位の置換基R2は、硫黄原子、酸素原子、窒素原子の少なくとも1つを含む置換基を表す。
一般式3に示すピロン環上の6位のスチリル基の末端のフェニル基上の4位の置換基R3は、酸素原子、ハロゲン原子、窒素原子の少なくとも1つを含む置換基である。ピロン環上の3位の置換基R1は、電子吸引基を表す。ピロン環上の4位の置換基R2は、硫黄原子、酸素原子、窒素原子の少なくとも1つを含む置換基を表す。
一般式4で示すピロン環上の6位のフェニル基の4位の置換アミノ基の置換基Rは、アルキル基またはアリール基を表す。ピロン環上の3位の置換基R1は、電子吸引基を表す。ピロン環上の4位の置換基R2は、硫黄原子、酸素原子、窒素原子の少なくとも1つを含む置換基を表す。 The organic fluorescent compound according to the present invention comprises a 2H-pyrone derivative represented by any one of the general formula 1, general formula 2, general formula 3, or general formula 4 of [Chemical Formula 10] to [Chemical Formula 13]. It is characterized by.
Figure 2006206523
Figure 2006206523
Figure 2006206523
Figure 2006206523
Ar (aryl group) shown in the general formula 1 means various aromatic compounds, such as monocyclic phenyl group, bicyclic naphthyl group, condensed polycyclic aromatic compound, electron-rich aromatic heterocyclic compound, electron Represents a deficient aromatic heterocyclic compound. The substituent R1 at the 3-position on the pyrone ring represents an electron withdrawing group. The 4-position substituent R2 on the pyrone ring represents a substituent containing at least one of a sulfur atom, an oxygen atom and a nitrogen atom. The 5-position substituent R3 on the pyrone ring represents a hydrogen atom, various alkyl groups, or a phenyl group.
The substituent R of the substituted amino group at the 4-position of the phenyl group at the 6-position on the pyrone ring represented by the general formula 2 represents an alkyl group or an aryl group. The substituent R1 at the 3-position on the pyrone ring represents an electron withdrawing group. The 4-position substituent R2 on the pyrone ring represents a substituent containing at least one of a sulfur atom, an oxygen atom and a nitrogen atom.
The 4-position substituent R3 on the phenyl group at the end of the 6-position styryl group on the pyrone ring shown in the general formula 3 is a substituent containing at least one of an oxygen atom, a halogen atom and a nitrogen atom. The substituent R1 at the 3-position on the pyrone ring represents an electron withdrawing group. The 4-position substituent R2 on the pyrone ring represents a substituent containing at least one of a sulfur atom, an oxygen atom and a nitrogen atom.
The substituent R of the substituted amino group at the 4-position of the phenyl group at the 6-position on the pyrone ring represented by the general formula 4 represents an alkyl group or an aryl group. The substituent R1 at the 3-position on the pyrone ring represents an electron withdrawing group. The 4-position substituent R2 on the pyrone ring represents a substituent containing at least one of a sulfur atom, an oxygen atom and a nitrogen atom.

前記アリール基は、アルキル基、またはヘテロ原子を有する置換基にすることができる。
前記電子吸引基は、シアノ基、各種エステル基、スルホニル基のいずれかにすることができる。
前記アルキルチオ基は、メチルチオ基またはエチルチオ基のいずれかにすることができる。
前記アルコキシ基は、ハイドロキシ基、メトキシ基、エトキシ基のいずれかにすることができる。
The aryl group can be an alkyl group or a substituent having a hetero atom.
The electron withdrawing group can be any of a cyano group, various ester groups, and a sulfonyl group.
The alkylthio group can be either a methylthio group or an ethylthio group.
The alkoxy group can be any one of a hydroxy group, a methoxy group, and an ethoxy group.

前記一般式1に示すアリール基を単環性のフェニル基で表したとき、その環上の置換基が、アルキル基、アルコキシ基、アミノ基、ハロゲノ基のいずれかにすることができる。   When the aryl group represented by the general formula 1 is represented by a monocyclic phenyl group, the substituent on the ring can be any of an alkyl group, an alkoxy group, an amino group, and a halogeno group.

前記一般式1に示すアリール基は電子過剰芳香族複素環化合物とされ、この電子過剰芳香族複素環化合物はリル基、キノリル基、フタジル基のいずれかにすることができる。
前記一般式1に示すアリール基は電子不足芳香族複素環化合物とされ、この電子不足芳香族複素環化合物は、ピリジル基、キノリル基、フタジル基のいずれかにすることができる。
The aryl group represented by the general formula 1 is an electron-rich aromatic heterocyclic compound, and this electron-rich aromatic heterocyclic compound can be any one of a ryl group, a quinolyl group, and a phthalyl group.
The aryl group represented by the general formula 1 is an electron-deficient aromatic heterocyclic compound, and the electron-deficient aromatic heterocyclic compound can be any one of a pyridyl group, a quinolyl group, and a phthalyl group.

ピロン環上の5位の置換基R3と6位のアリール基とが架橋され、多環性複素環化合物とされた構成とするもともできる。
この架橋は、メチレン基またはエチレン基により形成することができる。
この架橋は、硫黄原子、酸素原子、窒素原子の少なくとも1つを含む置換基により形成することができる。
It can also be configured such that the substituent R3 at the 5-position on the pyrone ring and the aryl group at the 6-position are bridged to form a polycyclic heterocyclic compound.
This bridge can be formed by a methylene group or an ethylene group.
This bridge | crosslinking can be formed by the substituent containing at least 1 of a sulfur atom, an oxygen atom, and a nitrogen atom.

上述の有機蛍光性化合物は、440nmから640nmに発光極大を有することを特徴とする。   The organic fluorescent compound described above is characterized by having an emission maximum from 440 nm to 640 nm.

本発明に係る有機蛍光性化合物の製造方法は、上述のいずれかに記載の有機蛍光性化合の製造方法であって、[化14]の一般式5で表せる化合物に、請求項1に記載の一般式1のArに対応したArを有する[化15]の一般式6で表せる化合物を反応させる工程を経由することを特徴とする。

Figure 2006206523
置換基Xは、CN,COOMeである。置換基R1 は、CN,COOMe,COOEt,SO−Ph,SO−Ph−Meである。
Figure 2006206523
The manufacturing method of the organic fluorescent compound which concerns on this invention is a manufacturing method of the organic fluorescent compound in any one of the above-mentioned, Comprising: The compound represented by General formula 5 of [Chemical Formula 14] is described in Claim 1. It is characterized by going through a step of reacting a compound represented by general formula 6 of [Chemical Formula 15] having Ar corresponding to Ar of general formula 1.
Figure 2006206523
The substituent X is CN, COOMe. Substituent R1 is CN, COOMe, COOEt, SO 2 -Ph, SO 2 -Ph-Me.
Figure 2006206523

本発明に係る有機蛍光性化合物の製造方法は、上述の一般式1、一般式2、一般式3、及び一般式4で表される2H−ピロン誘導体骨格の1位から6位の置換基、6位のアリール基上の置換基による蛍光の構造活性相関関係を明らかにすることを特徴とする。   The method for producing an organic fluorescent compound according to the present invention includes a substituent at the 1st to 6th positions of the 2H-pyrone derivative skeleton represented by the above general formula 1, general formula 2, general formula 3, and general formula 4, It is characterized by clarifying the structure-activity relationship of fluorescence due to substituents on the aryl group at the 6-position.

本発明に係る有機電界発光素子は、上述のいずれかに記載の有機蛍光性化合物を用いて発光層が構成されていることを特徴とする。   The organic electroluminescent element according to the present invention is characterized in that a light emitting layer is formed using any of the organic fluorescent compounds described above.

本発明に係る有機電界発光素子用発光剤は、上述のいずれかに記載の有機蛍光性化合物を用いてなることを特徴とする。   The luminescent agent for an organic electroluminescent device according to the present invention is characterized by using any of the organic fluorescent compounds described above.

本発明に係る有機蛍光性化合物によれば、上述した一般式1、一般式2、一般式3、および一般式4のいずれかで表される2H−ピロン誘導体で構成することによって、固体状態もしくは溶液状態で強い蛍光を示す。この2H−ピロン誘導体は、ただ1種類の化合物で紫外領域から可視領域まで顕著な感受性、発光能を発揮することができ、三原色に必要な青、緑青の全領域に蛍光極大を有する。したがって、本発明の有機蛍光性化合物は、有機電界素子、蛍光誘導体化試薬、情報表示機器等を初めとする産業上有用な諸用途に適用することができる。   According to the organic fluorescent compound according to the present invention, by constituting with the 2H-pyrone derivative represented by any one of the above-described general formula 1, general formula 2, general formula 3, and general formula 4, the solid state or Shows strong fluorescence in solution. This 2H-pyrone derivative can exhibit remarkable sensitivity and luminous ability from the ultraviolet region to the visible region with only one kind of compound, and has a fluorescence maximum in all the blue and patina regions necessary for the three primary colors. Therefore, the organic fluorescent compound of the present invention can be applied to various industrially useful applications such as organic electric field elements, fluorescent derivatization reagents, information display devices and the like.

本発明に係る有機蛍光性化合物の製造方法によれば、上述した一般式5で表される化合物に、上述した一般式6で表される化合物を反応される工程を経由することにより、本発明に係る2H−ピロン誘導体を製造することができる。
本発明は、上述した一般式1、一般式2、一般式3、及び一般式4で表される2H−ピロン誘導体骨格の1位から6位の置換基、6位のアリール基上の置換基による蛍光の構造活性相関関係を明らかにすることで、その構造活性相関関係に基いて本発明に係る新規な2H−ピロン誘導体を製造することができる。
According to the method for producing an organic fluorescent compound according to the present invention, the compound represented by the general formula 5 described above is passed through the step of reacting the compound represented by the general formula 6 described above with the present invention. 2H-pyrone derivatives can be produced.
The present invention relates to a substituent on the 1-position to the 6-position of the 2H-pyrone derivative skeleton represented by the general formula 1, general formula 2, general formula 3, and general formula 4, and a substituent on the 6-position aryl group. By elucidating the structure-activity relationship of fluorescence due to the above, a novel 2H-pyrone derivative according to the present invention can be produced based on the structure-activity relationship.

本発明に係る有機電界発光素子によれば、上述の一般式1、一般式2、一般式3、および一般式4のいずれかで表される2H−ピロン誘導体による有機蛍光性化合物で発光層を形成することにより、優れたカラー画像の得られる有機電界発光素子を提供することができる。   According to the organic electroluminescent device of the present invention, the light emitting layer is formed of an organic fluorescent compound by a 2H-pyrone derivative represented by any one of the above general formula 1, general formula 2, general formula 3, and general formula 4. By forming it, an organic electroluminescent device capable of obtaining an excellent color image can be provided.

本発明に係る有機電界発光素子用発光剤によれば、上述し2H−ピロン誘導体で構成されるので、一種類の化合物で三原色の発光を得ることができ、有機電界発光素子に適用して好適ならしめる。   According to the light emitting agent for an organic electroluminescent device according to the present invention, since it is composed of the 2H-pyrone derivative described above, it is possible to obtain light emission of three primary colors with one kind of compound, which is suitable for application to an organic electroluminescent device. Make it smooth.

本発明者は、前述した課題を解決すべく鋭意研究し、検索した結果、6−置換、特に、6−アリール及び6−スチリール−2H−ピラン−2−オン誘導体に固体状態で強い蛍光を示す化合物を見い出した。これまでにも多くの2H−ピロン誘導体がそれぞれの目的に応じて合成されてきている。縮合ピラン誘導体の一種であるクマリン誘導体が蛍光試薬として様々な分野で活用されていることは周知の事実である。しかしながら単環性の2H−ピロン誘導体は蛍光性試薬として利用はされていない。有機電界素子の分野でクマリン誘導体との組み合わせで置換基の一部として利用され、しかもその6位の置換基はアルキル基である2H−ピロン誘導体が、前記特許文献8や特許文献9に開示されているに過ぎない。各種2H−ピラン−2−オン誘導体に有機電界素子として期待されながらも、この中に未だ有効な有機電界素子は見い出されていない。この点を解決したのが、一般式1、一般式2、一般式3、および一般式4で表されるピロン誘導体である。これらの2H−ピラン2−オン誘導体はいずれもケテンジチオアセタール誘導体に活性メチレンや活性メチル化合物を反応させることによって得られる。本発明の2H-ピロン誘導体は、ただ一種類の化合物で色の三原色、すなわち、紫外領域から可視領域まで顕著な発光能を発揮し、蛍光化試薬や有機発光素子において極めて有用である。これら2H-ピロン誘導体の特性として、固体状態で強い蛍光を示すばかりでなく、医薬の分野で、蛍光色素使用による臨床診断薬等に利用する場合、試薬の分子吸光係数が大きいことに加えて溶解性に加工しやすいことが必要である。このためには溶液中での発光が重要である。本発明の2H−ピロン誘導体の中にはエタノール等の極性溶媒中でも高い蛍光収率で発光を示す誘導体があり、蛍光誘導体化試薬として有用である。この発明は、新規な2H−ピラン誘導体の創製と、その構造活性相関関係の明確化と、それに産業上有用な諸特性、特に、有機電界素子として適用できる知見に基づくものである。   As a result of intensive studies and searches to solve the above-mentioned problems, the present inventors show strong fluorescence in the solid state for 6-substituted, particularly 6-aryl and 6-styryl-2H-pyran-2-one derivatives. I found the compound. Many 2H-pyrone derivatives have been synthesized according to each purpose so far. It is a well-known fact that a coumarin derivative, which is a kind of condensed pyran derivative, is used in various fields as a fluorescent reagent. However, monocyclic 2H-pyrone derivatives are not used as fluorescent reagents. In the field of organic electric field devices, 2H-pyrone derivatives which are used as a part of a substituent in combination with a coumarin derivative and whose 6-position substituent is an alkyl group are disclosed in Patent Document 8 and Patent Document 9. It ’s just that. While various 2H-pyran-2-one derivatives are expected as organic electric field elements, no effective organic electric field elements have been found yet. This is solved by the pyrone derivatives represented by General Formula 1, General Formula 2, General Formula 3, and General Formula 4. Any of these 2H-pyran-2-one derivatives can be obtained by reacting a ketene dithioacetal derivative with an active methylene or an active methyl compound. The 2H-pyrone derivative of the present invention is a very useful compound in fluorescent reagents and organic light-emitting devices because it is a single compound and exhibits remarkable light-emitting ability from three primary colors, that is, from the ultraviolet region to the visible region. As a characteristic of these 2H-pyrone derivatives, they not only exhibit strong fluorescence in the solid state but also dissolve in addition to the large molecular extinction coefficient of the reagent when used for clinical diagnostics by using fluorescent dyes in the pharmaceutical field. It must be easy to process. For this purpose, light emission in solution is important. Among the 2H-pyrone derivatives of the present invention, there are derivatives that emit light with high fluorescence yield even in polar solvents such as ethanol, and are useful as fluorescent derivatization reagents. The present invention is based on the creation of a novel 2H-pyran derivative, the clarification of the structure-activity relationship thereof, and various industrially useful characteristics, particularly the knowledge applicable as an organic electric field device.

次に、本発明の実施の形態について説明する。   Next, an embodiment of the present invention will be described.

本実施の形態は、前述した課題を図1の一般式1乃至4で表わせる2H−ピラン誘導体を提供することによって解決するものである。   The present embodiment solves the above-described problem by providing a 2H-pyran derivative that can be represented by general formulas 1 to 4 in FIG.

図1の一般式1に示すAr(アリール基)は各種芳香族化合物を意味し単環性のフェニル基、双環性のナフチル基、それに縮合多環性芳香族化合物であり、またフリル基、チエニル基、ベンゾチエニル基、ピロール基、それにインドール基等の電子過剰芳香族複素環化合物やピリジル基、キノリル基、フタジル基等の電子不足芳香族複素環化合物も含んでいる。さらにこれらアリール基上にはアルキル基やメトキシ基やアミノ基等のヘテロ原子の置換基をも有している。特に、単環性のフェニル基の場合、その環上の置換基としてはアルキル基、メトキシ基やエトキシ基等のアルコキシ基、それにアミノ基、またクロロやブロモ等のハロゲノ基がある。さらにそれらの置換基の個数やそれの位置によってもそれぞれ違う誘導体とみなす。次にピロン環上の置換基R1は、シアノ基、各種エステル基、それにスルホニル基等の電子吸引基を意味している。ピロン環の4位の置換基R2はメチルチオ基やエチルチオ基等のアルキルチオ基、ハイドロキシ基やメトキシ基、それにエトキシ基等のアルコキシ基、さらに各種アミノ基である。このアミノ基はメチルアミノ基、ジメチルアミノ基、ピロリジノ基、モルホリノ基、チオモルホリノ基、ピペリジノ基等の環状アミノ基、それに各種芳香族アミノ基である。ピロン環上の5位の置換基R3は水素原子、各種アルキル基、それにフェニル基である。またこのピロン環上の5位の置換基R3と6位のアリール基とがメチレン基やエチル基で架橋した二環性や三環性ピロン誘導体も含む。さらに硫黄や酸素、それに窒素原子で架橋した多環性複素環化合物も含む。
図1の一般式2で示される6位のフェニル基の4位の置換アミノ基の置換基Rはメチル基をはじめ他のアルキル基、それにフェニル基や他のアリール基を意味する。ピロン環上の3位の置換基R1はシアノ基、エステル基、それにスルホニル基等の電子吸引基である。またピロン環上の4位の置換基R2は硫黄原子や酸素原子、窒素原子、それに水素原子からなる置換基である。
図1の一般式3で示されるピロン環上の6位のスチリル基の末端のフェニル基上の4位の置換基Rはメトキシ基等の酸素原子やハロゲン原子、窒素原子を含んでいる。ピロン環上の3位の置換基R1はシアノ基、エステル基、それにスルホニル基等の電子吸引基である。またピロン環上の4位の置換基R2は硫黄原子や酸素原子、窒素原子、それに水素原子からなる置換基である。
図1の一般式4で示される6位のフェニル基の4位の置換アミノ基の置換基Rはメチル基をはじめ他のアルキル基、それにフェニル基や他のアリール基を意味する。ピロン環上の3位の置換基R1はシアノ基、エステル基、それにスルホニル基等の電子吸引基である。またピロン環上の4位の置換基R2は硫黄原子や酸素原子、窒素原子、それに水素原子からなる置換基である。
Ar (aryl group) shown in the general formula 1 in FIG. 1 means various aromatic compounds, which are a monocyclic phenyl group, a bicyclic naphthyl group, and a condensed polycyclic aromatic compound, and a furyl group, It also includes electron-rich aromatic heterocyclic compounds such as thienyl group, benzothienyl group, pyrrole group, and indole group, and electron-deficient aromatic heterocyclic compounds such as pyridyl group, quinolyl group, and phthalyl group. Further, these aryl groups also have a heteroatom substituent such as an alkyl group, a methoxy group or an amino group. In particular, in the case of a monocyclic phenyl group, substituents on the ring include an alkyl group, an alkoxy group such as a methoxy group and an ethoxy group, an amino group, and a halogeno group such as chloro and bromo. Furthermore, they are regarded as different derivatives depending on the number of these substituents and their positions. Next, the substituent R1 on the pyrone ring means an electron-withdrawing group such as a cyano group, various ester groups, and a sulfonyl group. The substituent R2 at the 4-position of the pyrone ring is an alkylthio group such as a methylthio group or an ethylthio group, a hydroxy group or a methoxy group, an alkoxy group such as an ethoxy group, and various amino groups. This amino group is a methylamino group, a dimethylamino group, a pyrrolidino group, a morpholino group, a thiomorpholino group, a piperidino group or other cyclic amino group, and various aromatic amino groups. The 5-position substituent R3 on the pyrone ring is a hydrogen atom, various alkyl groups, and a phenyl group. Also included are bicyclic and tricyclic pyrone derivatives in which the 5-position substituent R3 on the pyrone ring and the 6-position aryl group are bridged by a methylene group or an ethyl group. Furthermore, the polycyclic heterocyclic compound bridge | crosslinked with sulfur, oxygen, and the nitrogen atom is also included.
The substituent R of the substituted amino group at the 4-position of the 6-position phenyl group represented by the general formula 2 in FIG. 1 means a methyl group, other alkyl groups, and a phenyl group or other aryl group. The 3-position substituent R1 on the pyrone ring is an electron-withdrawing group such as a cyano group, an ester group, and a sulfonyl group. The 4-position substituent R2 on the pyrone ring is a substituent consisting of a sulfur atom, an oxygen atom, a nitrogen atom, and a hydrogen atom.
The substituent R at the 4-position on the phenyl group at the end of the 6-position styryl group on the pyrone ring represented by the general formula 3 in FIG. 1 contains an oxygen atom such as a methoxy group, a halogen atom, or a nitrogen atom. The 3-position substituent R1 on the pyrone ring is an electron-withdrawing group such as a cyano group, an ester group, and a sulfonyl group. The 4-position substituent R2 on the pyrone ring is a substituent consisting of a sulfur atom, an oxygen atom, a nitrogen atom, and a hydrogen atom.
The substituent R of the substituted amino group at the 4-position of the phenyl group at the 6-position represented by the general formula 4 in FIG. 1 means a methyl group, other alkyl groups, a phenyl group, and other aryl groups. The 3-position substituent R1 on the pyrone ring is an electron-withdrawing group such as a cyano group, an ester group, and a sulfonyl group. The 4-position substituent R2 on the pyrone ring is a substituent consisting of a sulfur atom, an oxygen atom, a nitrogen atom, and a hydrogen atom.

置換基R1の電子吸引基としては、シアノ基、各種エステル基、アセチル基、ベンゾイル基、スルフォニル基、スルフェニル基、各種アリール基などが挙げられる。   Examples of the electron withdrawing group for the substituent R1 include a cyano group, various ester groups, acetyl group, benzoyl group, sulfonyl group, sulfenyl group, and various aryl groups.

この実施の形態による2H−ピロン誘導体の具体例としては、例えば、図2乃至図22に示した化学式1乃至化学式81で表わせる化合物が挙げられる。   Specific examples of the 2H-pyrone derivative according to this embodiment include compounds represented by Chemical Formulas 1 to 81 shown in FIGS.

この実施の形態の4−メチルチオ−2H−ピロン誘導体は、一般式5([化16]参照)で表せるケテンジチオアセタール誘導体([化17]〜[化20]参照)と一般式6([化21]参照)で表される各種アセチル化合物との反応で得ることができる。ケテンジチオアセタールを利用する各種ピロン誘導体の合成法はすでに開示されている(Hetercycles,4,1493(1976); Chem.Pharm.Bull,32,3384(1984);J.Heterocycl.Chem.,24,1557(1987)が、本実施の形態の2H−ピロン誘導体の大部分は新規化合物で新たに合成されたものであり、また反応条件等も開示の方法に改良を加えた。特に、化学式12(図4)、化学式25(図6)、化学式26(図7)、それに化学式27(図7)で表される2H−ピロン誘導体は、橙色から赤色を示す赤色系有機電界素子として有用な化合物で、しかもこれらは最初の合成例のみならず、さまざまな2−ピロン系赤色有機電界素子の開発に道を開くものである。   The 4-methylthio-2H-pyrone derivative of this embodiment includes a ketene dithioacetal derivative (see [Chemical Formula 17] to [Chemical Formula 20]) represented by General Formula 5 (see [Chemical Formula 16]) and a general formula 6 ([Chemical Formula 16] 21])). Methods for synthesizing various pyrone derivatives using ketene dithioacetals have already been disclosed (Hetercycles, 4, 1493 (1976); Chem. Pharm. Bull, 32, 3384 (1984); J. Heterocycl. Chem., 24, 1557 (1987), most of the 2H-pyrone derivatives of this embodiment are newly synthesized from novel compounds, and reaction conditions and the like have been improved over the disclosed method, in particular, chemical formula 12 ( The 2H-pyrone derivative represented by FIG. 4), chemical formula 25 (FIG. 6), chemical formula 26 (FIG. 7), and chemical formula 27 (FIG. 7) is a compound useful as a red-based organic electric field element showing orange to red. Moreover, these open the way to the development of various 2-pyrone red organic electric field elements as well as the first synthesis example.

Figure 2006206523
R1 =CN,COOMe,COOEt,SO−Ph,SO−Ph−Me
X =CN,COOMe
Figure 2006206523
R1 = CN, COOMe, COOEt, SO 2 -Ph, SO 2 -Ph-Me
X = CN, COOMe

Figure 2006206523
Figure 2006206523

Figure 2006206523
Figure 2006206523

Figure 2006206523
Figure 2006206523

Figure 2006206523
Figure 2006206523

Figure 2006206523
Figure 2006206523

Figure 2006206523
Figure 2006206523

本実施の形態の2H−ピロン誘導体の合成は、[化22]に示すように、まずケテンジチオアセタールに苛性ソーダの存在下適当な溶剤中で[化21]の一般式6で表される各種アセチル化合物を反応させて4−メチルチオ−2H−ピロン誘導体の6位置換体(化学式1乃至化学式33:図2乃至図8参照)を合成する。2H−ピロン誘導体の3位の置換基は使用するケテンジチオアセタ-ルに依存する。最初の合成例となる化学式34乃至36化合物(図8、図9参照)の2H−ピロン誘導体は、[化19]及び[化20]で表されるケテンジチオアセタールに各種アセトフェノン誘導体を反応させて得られる。化学式1乃至化学式27(図2乃至図7参照)、及び化学式34乃至化学式36(図8乃至図9参照)の2H−ピロン誘導体は活性高く、容易に各種求核試薬類と反応する。メタノールやエタノールで処理すると化学式37や化学式38(図9参照)で表される2−ピロン誘導体が容易に得られる。さらに、これらの化合物に各種アミン化合物を反応させると化学式39乃至66(図9乃至図19参照)および化学式73(図20参照)で表される4−アミノ−2H−ピロン誘導体が容易に得られる。求核試薬として活性メチレン化合物類を使用すれば化学式74乃至81(図21、図22参照)の2H−ピロン誘導体が得られる。   As shown in [Chemical Formula 22], the synthesis of the 2H-pyrone derivative of the present embodiment is first made by various acetyls represented by the general formula 6 of [Chemical Formula 21] in a suitable solvent in the presence of caustic soda in ketene dithioacetal. The compound is reacted to synthesize a 6-position substituted 4-methylthio-2H-pyrone derivative (Chemical Formula 1 to Chemical Formula 33: see FIGS. 2 to 8). The substituent at the 3-position of the 2H-pyrone derivative depends on the ketene dithioacetal used. The first synthesis example 2H-pyrone derivative of compounds 34 to 36 (see FIGS. 8 and 9) is obtained by reacting ketene dithioacetals represented by [Chemical Formula 19] and [Chemical Formula 20] with various acetophenone derivatives. can get. The 2H-pyrone derivatives of Chemical Formulas 1 to 27 (see FIGS. 2 to 7) and Chemical Formulas 34 to 36 (see FIGS. 8 to 9) are highly active and easily react with various nucleophiles. When treated with methanol or ethanol, a 2-pyrone derivative represented by Chemical Formula 37 or Chemical Formula 38 (see FIG. 9) can be easily obtained. Furthermore, when these compounds are reacted with various amine compounds, 4-amino-2H-pyrone derivatives represented by chemical formulas 39 to 66 (see FIGS. 9 to 19) and chemical formula 73 (see FIG. 20) can be easily obtained. . If active methylene compounds are used as nucleophiles, 2H-pyrone derivatives of chemical formulas 74 to 81 (see FIGS. 21 and 22) can be obtained.

Figure 2006206523
Figure 2006206523

本実施の形態の4−メチルチオ−2H−ピロン誘導体とアミン誘導体や活性メチレン化合物との反応場合、別途の方法も示しておく。すなわち、[化23]に示すように、4−メチルチオ−2H−ピロン誘導体を過酸化水素水やメタクロロ過安息香酸等で処理して、一旦4−メチルスルルフェニル−2H−ピロン誘導体となし、これにアミン誘導体や活性メチレン化合物を反応させる。   When the 4-methylthio-2H-pyrone derivative of the present embodiment is reacted with an amine derivative or an active methylene compound, a separate method is also shown. That is, as shown in [Chemical Formula 23], a 4-methylthio-2H-pyrone derivative was treated with hydrogen peroxide water, metachloroperbenzoic acid or the like to once form a 4-methylsulfurphenyl-2H-pyrone derivative. Is reacted with an amine derivative or an active methylene compound.

Figure 2006206523
Figure 2006206523

この実施の形態は、有機電界素子における当該2H−ピロン誘導体の発光剤としての用途を提供するものである。この実施の形態による2H−ピロン誘導体は可視領域にも発光能を有し、それは波長440nm乃至640nmに発光能を有している。すなわち、440nmから640nmに蛍光極大を有する2H−ピロン誘導体が得られる。特に、この実施の形態の2H−ピロン誘導体は、600nm乃至640nmに蛍光極大を有するので、赤色域の可視光を発光するための有機電界素子用発光剤として極めて有用である。   This embodiment provides an application of the 2H-pyrone derivative as a luminescent agent in an organic electric field element. The 2H-pyrone derivative according to this embodiment also has a light emitting ability in the visible region, and has a light emitting ability at a wavelength of 440 nm to 640 nm. That is, a 2H-pyrone derivative having a fluorescence maximum from 440 nm to 640 nm is obtained. In particular, since the 2H-pyrone derivative of this embodiment has a fluorescence maximum at 600 nm to 640 nm, it is extremely useful as a light emitting agent for an organic electric field element for emitting visible light in the red region.

図24に、図9の化学式39の2H−ピロン誘導体の蛍光スペクトル(固体)を示す。このときの条件は、スキャン範囲が400.0nm〜700nm、励起波長が273nm、バンド幅がEx:10.0nm、Em:10.0nmである。また、図25に、図22の化学式81の2H−ピロン誘導体の蛍光スペクトル(固体)を示す。このときの条件は、スキャン範囲が500.0nm〜800nm、励起波長が566.0nm、バンド幅がEx:10.0nm、Em:10.0nmである。横軸に蛍光波長、縦軸に蛍光強度(相対強度)をとる。図24から、化学式39の2H−ピロン誘導体の蛍光波長は445nmであることが認められる。また図25から、化学式81の2H−ピロン誘導体の発光波長は634nmであることが認められる。   FIG. 24 shows the fluorescence spectrum (solid) of the 2H-pyrone derivative represented by Chemical Formula 39 in FIG. The conditions at this time are a scan range of 400.0 nm to 700 nm, an excitation wavelength of 273 nm, a bandwidth of Ex: 10.0 nm, and Em: 10.0 nm. FIG. 25 shows a fluorescence spectrum (solid) of the 2H-pyrone derivative of the chemical formula 81 in FIG. The conditions at this time are a scan range of 500.0 nm to 800 nm, an excitation wavelength of 566.0 nm, a bandwidth of Ex: 10.0 nm, and Em: 10.0 nm. The horizontal axis represents the fluorescence wavelength, and the vertical axis represents the fluorescence intensity (relative intensity). From FIG. 24, it is recognized that the fluorescence wavelength of the 2H-pyrone derivative of Chemical Formula 39 is 445 nm. 25 that the emission wavelength of the 2H-pyrone derivative of Chemical Formula 81 is 634 nm.

この実施の形態の2H-ピロン誘導体を有利に適用し得る有機電界素子は、本質的に、発光能を有する有機化合物を含んでなる電界素子であって、通常、正電圧を印加する陽極と、負電圧を印加する陰極と、陽極から正孔を注入して輸送する正孔注入/輸送層と、陰極から電子を注入して輸送する電子注入/輸送層と、正孔と電子を再結合させ発光を取り出す発光層とを含んでなる積層型有機EL素子が重要な適用対象となる。この実施の形態の2H-ピロン誘導体は、顕著な発光能を有するうえに、ガラス状態で安定な薄膜を形成するので、有機EL素子におけるホスト発光剤として極めて有用である。さらに、この実施の形態の2H−ピラン誘導体の多くは、正孔注入/輸送層用材、電子注入/輸送層用材、さらには、トリス(8−キノリノラート)アルミニウムなどの、8−キノリノール類を配位子とする金属錯体をはじめとする他のホスト発光剤に微量ドープしてその発光効率や発光スペクトルを改善するためのゲスト発光剤としても機能することから、斯かる材料の単独又は複数が不可欠の要素となる有機電界素子において、単独又は、例えば、ジシアノメチレン(DCM)類、クマリン類、ペリレン類、ルブレン類などの他の発光剤や正孔注入/輸送層用材及び/又は電子注入/輸送層用材と組み合わせて極めて有利に用いることができる。なお、積層型有機電界素子において、発光剤が正孔注入/輸送能又は電子注入/輸送能を兼備する場合には、それぞれ、正孔注入/輸送層又は電子注入/輸送層を省略することがあり、また、正孔注入/輸送層用材及び電子注入/輸送層用材の一方が他方の兼備する場合には、それぞれ、電子注入/輸送層又は正孔注入/輸送層を省略することがある。   An organic electric field element to which the 2H-pyrone derivative of this embodiment can be advantageously applied is essentially an electric field element containing an organic compound having a light emitting ability, and usually an anode for applying a positive voltage; Recombine holes and electrons by applying a negative voltage cathode, hole injection / transport layer for injecting and transporting holes from the anode, electron injection / transport layer for injecting and transporting electrons from the cathode, and holes. A laminated organic EL element including a light emitting layer for extracting light emission is an important application target. The 2H-pyrone derivative of this embodiment is extremely useful as a host light-emitting agent in an organic EL device because it has a remarkable light-emitting ability and forms a stable thin film in a glass state. Furthermore, many of the 2H-pyran derivatives of this embodiment coordinate hole-injecting / transporting layer materials, electron-injecting / transporting layer materials, and 8-quinolinols such as tris (8-quinolinolato) aluminum. Since it also functions as a guest luminescent agent to improve the luminous efficiency and emission spectrum by doping in a small amount to other host luminescent agents such as metal complexes, it is indispensable to use one or more of such materials. In the organic field element as a component, alone or, for example, other luminescent agents such as dicyanomethylenes (DCMs), coumarins, perylenes, rubrenes, and materials for hole injection / transport layers and / or electron injection / transport layers It can be used very advantageously in combination with materials. In the stacked organic field element, when the luminescent agent has both hole injection / transport capability and electron injection / transport capability, the hole injection / transport layer or the electron injection / transport layer may be omitted, respectively. In addition, when one of the hole injection / transport layer material and the electron injection / transport layer material serves as the other, the electron injection / transport layer or the hole injection / transport layer may be omitted.

この実施の形態による有機電界素子用発光剤は、単層型及び積層型有機電界素子のいずれにも適用可能である。有機電界素子の動作は、本質的に、電子及び正孔を電極から注入する過程、電子及び正孔が固体中を移動する過程、電子及び正孔が再結合し、一重項又は三重項励起子を生成する過程、そして、その励起子が発光する過程からなり、これらの過程は単層型及び積層型有機電界素子のいずれにおいても本質的に異なるところがない。しかしながら、単層型有機電界素子においては、発光剤の分子構造を変えることによってのみ上記4過程の特性を改良し得るのに対して、積層型有機電界素子においては、各過程において要求される機能を複数の材料に分担させるとともに、それぞれの材料を独立して最適化することができることから、一般的には、単層型に構成するより積層型に構成する方が所期の性能を達成し易い。   The light emitting agent for an organic electric field element according to this embodiment can be applied to both a single layer type and a stacked type organic electric field element. The operation of an organic field device essentially consists of the process of injecting electrons and holes from an electrode, the process of electrons and holes moving in a solid, the recombination of electrons and holes, and singlet or triplet excitons. And the process in which the excitons emit light, and these processes are essentially different in both the single layer type and the stacked organic field device. However, in the single layer type organic electric field element, the characteristics of the above four processes can be improved only by changing the molecular structure of the luminescent agent, whereas in the laminated type organic electric field element, the functions required in each process. Can be shared among multiple materials and each material can be optimized independently. easy.

この実施の形態の2H−ピロン誘導体は、通常エタノール等の極性溶媒中では弱い蛍光しか示さないが、6位のフェニル基上の置換基によってはエタノ-ル等の溶媒中で強い蛍光を示す。クマリやダンシル誘導体と同様種々の蛍光誘導体化試薬として重要な性質である。   The 2H-pyrone derivative of this embodiment usually shows only weak fluorescence in a polar solvent such as ethanol, but shows strong fluorescence in a solvent such as ethanol depending on the substituent on the 6-position phenyl group. It is an important property as various fluorescent derivatization reagents like Kumari and dansyl derivatives.

なお、本実施の形態では、図1の一般式1、一般式2、一般式3および一般式4のいずれかで表される青色光の2H−ピロン誘導体に赤色変換蛍光部材を混合して、有機電界素子用赤色発光剤を構成することができる。
また、本実施の形態では、図1の一般式1、一般式2、一般式3および一般式4のいずれかで表される青色発光の2H−ピロン誘導体に白色変換蛍光部材を混合して、有機電界素子用白色発光剤を構成することができる。さらに、図1の一般式1、一般式2、一般式3および一般式4のいずれかで表される青色発光、緑色発光および赤色発光のそれぞれの2H−ピロン誘導体を混合して、有機電界素子用の白色発光剤を構成することができる。
In the present embodiment, a red conversion fluorescent member is mixed with the 2H-pyrone derivative of blue light represented by any one of general formula 1, general formula 2, general formula 3, and general formula 4 in FIG. A red light emitting agent for an organic electric field element can be constituted.
Further, in the present embodiment, a white conversion fluorescent member is mixed with a blue light emitting 2H-pyrone derivative represented by any one of General Formula 1, General Formula 2, General Formula 3, and General Formula 4 in FIG. A white light-emitting agent for an organic electric field element can be constituted. Furthermore, each 2H-pyrone derivative of blue light emission, green light emission, and red light emission represented by any one of the general formula 1, general formula 2, general formula 3, and general formula 4 in FIG. White light-emitting agent can be constructed.

次に、この実施の形態を実施例に基づいて説明する。   Next, this embodiment will be described based on examples.

[実施例1] [3−シアノ−6−(2−メトキシフェニル)−4−メチルチオ−2H−ピラン−2−オン]
ケテンジチオアセタールである[化17]の化学式82で表される化合物1.02g及び2−メトキシアセトフェノン0.75gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.4gを加え、室温で4時間撹拌した。この反応混合物を水500mlに注ぎだし、室温で1時間放置する。析出する結晶を吸引虜取し、メタノールから再結晶すると、図2の化学式2で表わされるピラン誘導体の黄色針状結晶が0.79g得られた。
[Example 1] [3-Cyano-6- (2-methoxyphenyl) -4-methylthio-2H-pyran-2-one]
1.02 g of a compound represented by the chemical formula 82 of [Chemical Formula 17] which is a ketene dithioacetal and 0.75 g of 2-methoxyacetophenone is dissolved in 20 ml of dimethyl sulfoxide, and 0.4 g of powdered caustic soda is added thereto. Stir at room temperature for 4 hours. The reaction mixture is poured into 500 ml of water and left at room temperature for 1 hour. The precipitated crystals were sucked and recrystallized from methanol to obtain 0.79 g of yellow needle-like crystals of a pyran derivative represented by Chemical Formula 2 in FIG.

常法にしたがって測定したところ、化学式2で表わされる2H−ピロン誘導体の融点は209乃至211℃であった。重クロロホルム中で1H−核磁気共鳴スペクトル(以下、[1H−NMR]と略する)を測定したところ、化学シフトδ(ppm, TMS)が2.67((3H, s, SMe), 3.99(3H, s, OMe), 7.04(1H, d, J=8.5 Hz, 5’−H), 7.11(1H, dd, J=7.4, 8.2 Hz, 4’−H), 7.37(1H, s, 5−H), 7.52(1H, dd, J=8.2, 8.5 Hz, 5’−H), 8.00(1H, d, J=7.4 Hz, 3’−H)の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 2 was 209 to 211 ° C. When a 1H-nuclear magnetic resonance spectrum (hereinafter abbreviated as [1H-NMR]) was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.67 ((3H, s, SMe), 99 (3H, s, OMe), 7.04 (1H, d, J = 8.5 Hz, 5′-H), 7.11 (1H, dd, J = 7.4, 8.2 Hz, 4 '-H), 7.37 (1H, s, 5-H), 7.52 (1H, dd, J = 8.2, 8.5 Hz, 5'-H), 8.00 (1H, d , J = 7.4 Hz, 3′-H), peaks were observed respectively.

[実施例2] [3−シアノ−6−(3−メトキシフェニル)−4−メチルチオ−2H−ピラン−2−オン]
ケテンジチオアセタールである[化17]の化学式82で表される化合物1.02g及び3−メトキシアセトフェノン0.75gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.4gを加え、室温で4時間撹拌した。この反応混合物を水500mlに注ぎだし、室温で1時間放置する。析出する結晶を吸引虜取し、メタノールから再結晶すると、図2の化学式3で表わされるピラン誘導体の黄色針状結晶が0.72g(収率53%)得られた。
[Example 2] [3-Cyano-6- (3-methoxyphenyl) -4-methylthio-2H-pyran-2-one]
1.02 g of the compound represented by Chemical Formula 82 of [Chemical Formula 17] which is ketene dithioacetal and 0.75 g of 3-methoxyacetophenone are dissolved in 20 ml of dimethyl sulfoxide, and 0.4 g of powdered caustic soda is added thereto. Stir at room temperature for 4 hours. The reaction mixture is poured into 500 ml of water and left at room temperature for 1 hour. The precipitated crystals were sucked and recrystallized from methanol to obtain 0.72 g (yield 53%) of yellow needle-like crystals of a pyran derivative represented by Chemical Formula 3 in FIG.

常法にしたがって測定したところ、化学式3で表わされる2H−ピロン誘導体の融点は181乃至183℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.72((3H, s, SMe), 3.89(3H, s, OMe), 6.70(1H, d, J=8.5 Hz, 5−H), 7.09−7.13(1H, m, 5’−H), 7.38(1H, d, J=1.6 Hz, 2’−H), 7.43(2H, d, J=5.2 Hz, 4’, 6’−H)の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 3 was 181 to 183 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.72 ((3H, s, SMe), 3.89 (3H, s, OMe), 6.70 (1H, d, J = 8.5 Hz, 5-H), 7.09-7.13 (1H, m, 5'-H), 7.38 (1H, d, J = 1.6 Hz, 2'- H), 7.43 (2H, d, J = 5.2 Hz, 4 ′, 6′-H), peaks were observed.

[実施例3] [3−シアノ−6−(2,4−ジメトキシフェニル)−4−メチルチオ−2H−ピラン−2−オン]
ケテンジチオアセタールである[化17]の化学式82で表される化合物1.02g及び2,4−メトキシアセトフェノン0.90gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.5gを加え、室温で4時間撹拌した。この反応混合物を水500mlに注ぎだし、室温で1時間放置する。析出する結晶を吸引虜取し、メタノールから再結晶すると、図2の化学式5で表わされるピラン誘導体の黄色針状結晶が0.50g(収率33%)得られた。
[Example 3] [3-Cyano-6- (2,4-dimethoxyphenyl) -4-methylthio-2H-pyran-2-one]
1.02 g of the compound represented by the chemical formula 82 of [Chemical Formula 17], which is ketene dithioacetal, and 0.90 g of 2,4-methoxyacetophenone are dissolved in 20 ml of dimethyl sulfoxide, and 0.5 g of caustic soda powder is added thereto. The mixture was further stirred at room temperature for 4 hours. The reaction mixture is poured into 500 ml of water and left at room temperature for 1 hour. The precipitated crystals were sucked and recrystallized from methanol to obtain 0.50 g (yield 33%) of yellow needle-like crystals of a pyran derivative represented by Chemical Formula 5 in FIG.

常法にしたがって測定したところ、化学式5で表わされる2H−ピロン誘導体の融点は208乃至210℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.65((3H, s, SMe), 3.90(3H, s, OMe), 3.96(3H、s、OMe), 6.54(1H, d, J=8.8 Hz, 3’−H), 6.63(1H, dd, J=2.5, 8.8 Hz, 5’−H), 7.30(1H, s, 5−H), 8.01(1H, d, J=8.8 Hz, 6’−H)の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 5 was 208 to 210 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.65 ((3H, s, SMe), 3.90 (3H, s, OMe), 3.96 (3H, s, OMe), 6.54 (1H, d, J = 8.8 Hz, 3′-H), 6.63 (1H, dd, J = 2.5, 8.8 Hz, 5′-H) , 7.30 (1H, s, 5-H), 8.01 (1H, d, J = 8.8 Hz, 6′-H), respectively.

[実施例4] [3−シアノ−6−(2,5−ジメトキシフェニル)−4−メチルチオ−2H−ピラン−2−オン]
ケテンジチオアセタールである[化17]の化学式82で表される化合物1.02g及び2,5−メトキシアセトフェノン0.90gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.5gを加え、室温で4時間撹拌した。この反応混合物を水500mlに注ぎだし、室温で1時間放置する。析出する結晶を吸引虜取し、メタノールから再結晶すると、図3の化学式6で表わされるピラン誘導体の黄色木葉状結晶が0.41g(収率27%)得られた。
Example 4 [3-Cyano-6- (2,5-dimethoxyphenyl) -4-methylthio-2H-pyran-2-one]
1.02 g of the compound represented by the chemical formula 82 of [Chemical Formula 17], which is ketene dithioacetal, and 0.90 g of 2,5-methoxyacetophenone are dissolved in 20 ml of dimethyl sulfoxide, and 0.5 g of powdered caustic soda is added thereto. The mixture was further stirred at room temperature for 4 hours. The reaction mixture is poured into 500 ml of water and left at room temperature for 1 hour. The precipitated crystals were sucked and recrystallized from methanol to obtain 0.41 g (yield 27%) of a yellow tree leaf-like crystal of a pyran derivative represented by Chemical Formula 6 in FIG.

常法にしたがって測定したところ、化学式6で表わされる2H−ピロン誘導体の融点は225乃至227℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.66((3H, s, SMe), 3.83(3H, s, OMe), 3.94(3H、s、OMe)、6.97(1H, d, J=9.1 Hz, 4’−H), 7.07(1H, dd, J=2.3, 9.1 Hz, 3’−H), 7.43(1H, s, 5−H), 7.49(1H, d, J=3.3 Hz, 6’−H)の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 6 was 225 to 227 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.66 ((3H, s, SMe), 3.83 (3H, s, OMe), 3.94 (3H, s, OMe), 6.97 (1H, d, J = 9.1 Hz, 4′-H), 7.07 (1H, dd, J = 2.3, 9.1 Hz, 3′-H) , 7.43 (1H, s, 5-H), 7.49 (1H, d, J = 3.3 Hz, 6′-H), peaks were observed.

[実施例5] [3−シアノ−4−メチルチオ−6−(3,4,5−トリメトキシフェニル)−2H−ピラン−2−オン]
ケテンジチオアセタールである[化17]の化学式82で表される化合物1.02g及び3,4,5−トリメトキシアセトフェノン1.05gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.5gを加え、室温で4時間撹拌した。この反応混合物を水500mlに注ぎだし、室温で1時間放置する。析出する結晶を吸引虜取し、メタノールから再結晶すると、図3の化学式8で表わされるピラン誘導体の黄色針状結晶が0.93g(収率56%)得られた。
[Example 5] [3-Cyano-4-methylthio-6- (3,4,5-trimethoxyphenyl) -2H-pyran-2-one]
1.02 g of the compound represented by Chemical Formula 82 of [Chemical Formula 17] which is a ketene dithioacetal and 1.05 g of 3,4,5-trimethoxyacetophenone are dissolved in 20 ml of dimethyl sulfoxide, and powdered caustic soda 0 is dissolved therein. 0.5 g was added and stirred at room temperature for 4 hours. The reaction mixture is poured into 500 ml of water and left at room temperature for 1 hour. The precipitated crystals were sucked and recrystallized from methanol to obtain 0.93 g (yield 56%) of yellow needle-like crystals of a pyran derivative represented by Chemical Formula 8 in FIG.

常法にしたがって測定したところ、化学式8で表わされる2H−ピロン誘導体の融点は208乃至210℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.73((3H, s, SMe), 3.94(9H, s, 3xOMe), 6.60(1H, s, 5−H), 7.04(2H, s, 2’, 6’−H)の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 8 was 208 to 210 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.73 ((3H, s, SMe), 3.94 (9H, s, 3xOMe), 6.60 (1H, s, 5-H), 7.04 (2H, s, 2 ′, 6′-H), peaks were observed.

[実施例6] [6−(2−クロロフェニル)−3−シアノ−4−メチルチオ−2H−ピラン−2−オン]
ケテンジチオアセタールである[化17]の化学式82で表される化合物1.02g及び2−クロロアセトフェノン0.77gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.5gを加え、室温で4時間撹拌した。この反応混合物を水500mlに注ぎだし、室温で1時間放置する。析出する結晶を吸引虜取し、メタノールから再結晶すると、図3の化学式10で表わされるピラン誘導体の黄色綿状結晶が0.91g(収率65%)得られた。
Example 6 [6- (2-Chlorophenyl) -3-cyano-4-methylthio-2H-pyran-2-one]
1.02 g of the compound represented by the chemical formula 82 of [Chemical Formula 17] which is ketene dithioacetal and 0.77 g of 2-chloroacetophenone is dissolved in 20 ml of dimethyl sulfoxide, and 0.5 g of powdered caustic soda is added thereto. Stir at room temperature for 4 hours. The reaction mixture is poured into 500 ml of water and left at room temperature for 1 hour. The precipitated crystals were sucked and recrystallized from methanol to obtain 0.91 g (yield 65%) of a yellow fluffy crystal of a pyran derivative represented by Chemical Formula 10 in FIG.

常法にしたがって測定したところ、化学式10で表わされる2H−ピロン誘導体の融点は179乃至181℃であった。固体状態で蛍光スペクトルを測定したところ、励起波長296nm、蛍光極大491nmを示した。さらに、重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.68((3H, s, SMe), 6.93(1H, s, 5−H), 7.43−7.56(3H, m, 4’, 5’, 6’−H), 7.75(1H, dd, J=1.9, 7.7 Hz, 3’−H)の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 10 was 179 to 181 ° C. When the fluorescence spectrum was measured in the solid state, the excitation wavelength was 296 nm and the fluorescence maximum was 491 nm. Furthermore, when 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.68 ((3H, s, SMe), 6.93 (1H, s, 5-H), 7. 43-7.56 (3H, m, 4 ', 5', 6'-H), 7.75 (1H, dd, J = 1.9, 7.7 Hz, 3'-H) A peak was observed.

[実施例7] [6−(4−ジメチルアミノフェニル)−3−シアノ−4−メチルチオ−2H−ピラン−2−オン]
ケテンジチオアセタールである[化17]の化学式82で表される化合物1.02g及び4−ジメチルアミノアセトフェノン0.82gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.5gを加え、室温で4時間撹拌した。この反応混合物を水500mlに注ぎだし、室温で1時間放置する。析出する結晶を吸引虜取し、メタノールから再結晶すると、図4の化学式12で表わされるピラン誘導体の橙赤色綿状結晶が0.63g(収率43%)得られた。
Example 7 [6- (4-Dimethylaminophenyl) -3-cyano-4-methylthio-2H-pyran-2-one]
1.02 g of the compound represented by the chemical formula 82 of [Chemical Formula 17] which is a ketene dithioacetal and 0.82 g of 4-dimethylaminoacetophenone are dissolved in 20 ml of dimethyl sulfoxide, and 0.5 g of powdered caustic soda is added thereto. And stirred at room temperature for 4 hours. The reaction mixture is poured into 500 ml of water and left at room temperature for 1 hour. The precipitated crystals were sucked and recrystallized from methanol to obtain 0.63 g (yield 43%) of an orange-red cottony crystal of a pyran derivative represented by Chemical Formula 12 in FIG.

常法にしたがって測定したところ、化学式12で表わされる2H−ピロン誘導体の融点は251乃至254℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.66((3H, s, SMe), 3.11(6H, s, NMe2), 6.47(1H, s, 5−H), 6.69(2H, d, J=9.0 Hz, 3’, 4’−H), 7.75(1H, d, J=9.0 Hz, 2’, 6’−H)の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 12 was 251 to 254 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.66 ((3H, s, SMe), 3.11 (6H, s, NMe2), 6.47 (1H, s, 5-H), 6.69 (2H, d, J = 9.0 Hz, 3 ′, 4′-H), 7.75 (1H, d, J = 9.0 Hz, 2 ′, 6 A peak was observed at each position of '-H).

[実施例8] [3−シアノ−6−(4−シアノフェニル)−4−メチルチオ−2H−ピラン−2−オン]
ケテンジチオアセタールである[化17]の化学式82で表される化合物1.02g及び4−シアノアセトフェノン0.73gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.5gを加え、室温で4時間撹拌した。この反応混合物を水500mlに注ぎだし、室温で1時間放置する。析出する結晶を吸引虜取し、メタノールから再結晶すると、図4の化学式13で表わされるピラン誘導体の黄色針状結晶が0.88g(収率66%)得られた。
[Example 8] [3-Cyano-6- (4-cyanophenyl) -4-methylthio-2H-pyran-2-one]
1.02 g of a compound represented by the chemical formula 82 of [Chemical Formula 17] which is a ketene dithioacetal and 0.73 g of 4-cyanoacetophenone are dissolved in 20 ml of dimethyl sulfoxide, and 0.5 g of powdered caustic soda is added thereto. Stir at room temperature for 4 hours. The reaction mixture is poured into 500 ml of water and left at room temperature for 1 hour. The precipitated crystals were sucked and recrystallized from methanol to obtain 0.88 g (yield 66%) of yellow needle-like crystals of a pyran derivative represented by Chemical Formula 13 in FIG.

常法にしたがって測定したところ、化学式13で表わされる2H−ピロン誘導体の融点は251乃至254℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.52((3H, s, SMe), 7.40(1H, s, 5−H), 8.04(1H, d, J=8.7 Hz, 2’, 6’−H), 8.24(2H, d, J=8.7 Hz, 3’, 5’−H)の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 13 was 251 to 254 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.52 ((3H, s, SMe), 7.40 (1H, s, 5-H), 8.04 ( 1H, d, J = 8.7 Hz, 2 ', 6'-H), 8.24 (2H, d, J = 8.7 Hz, 3', 5'-H) It was done.

[実施例9] [6−(4−フェニルフェニル)−3−シアノ−4−メチルチオ−2H−ピラン−2−オン]
ケテンジチオアセタールである[化17]の化学式82で表される化合物1.02g及び4−フェニルアセトフェノン0.98gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.5gを加え、室温で4時間撹拌した。この反応混合物を水500mlに注ぎだし、室温で1時間放置する。析出する結晶を吸引虜取し、メタノールから再結晶すると、図4の化学式14で表わされるピラン誘導体の黄色木葉結晶が1.40g(収率88%)得られた。
Example 9 [6- (4-Phenylphenyl) -3-cyano-4-methylthio-2H-pyran-2-one]
1.02 g of the ketene dithioacetal compound represented by Chemical Formula 82 of [Chemical Formula 17] and 0.98 g of 4-phenylacetophenone are dissolved in 20 ml of dimethyl sulfoxide, and 0.5 g of powdered caustic soda is added thereto. Stir at room temperature for 4 hours. The reaction mixture is poured into 500 ml of water and left at room temperature for 1 hour. The precipitated crystals were sucked and recrystallized from methanol to obtain 1.40 g (yield: 88%) of a yellow tree leaf crystal of a pyran derivative represented by Chemical Formula 14 in FIG.

常法にしたがって測定したところ、化学式14で表わされる2H-ピロン誘導体の融点は273乃至275℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.75((3H, s, SMe), 6.76(1H, s, 5−H), 7.38−7.55(3H, m, 3’’, 4’’, 5’’−H), 7.65(2H, d, J=7.7 Hz, 2’’, 6’’−H), 7.75(2H, d, J=8.5 Hz, 3’, 5’−H), 7.96(2H, d, J=8.2 Hz, 2’, 6’−H)の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 14 was 273 to 275 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.75 ((3H, s, SMe), 6.76 (1H, s, 5-H), 7.38-. 7.55 (3H, m, 3 '', 4 '', 5 ''-H), 7.65 (2H, d, J = 7.7 Hz, 2 '', 6 ''-H), 7 .75 (2H, d, J = 8.5 Hz, 3 ′, 5′-H), 7.96 (2H, d, J = 8.2 Hz, 2 ′, 6′-H) A peak was observed.

[実施例10] [3−シアノ−4−メチルチオ−6−(1−ナフチル)−2H−ピラン−2−オン]
ケテンジチオアセタールである[化17]の化学式82で表される化合物1.02g及び1−ナフチルアセチルナフタレン0.85gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.5gを加え、室温で4時間撹拌した。この反応混合物を水500mlに注ぎだし、室温で1時間放置する。析出する結晶を吸引虜取し、メタノールから再結晶すると、図4の化学式15で表わされるピラン誘導体の黄色木葉状結晶が0.94g(収率63%)得られた。
[Example 10] [3-Cyano-4-methylthio-6- (1-naphthyl) -2H-pyran-2-one]
1.02 g of the compound represented by Chemical Formula 82 of [Chemical Formula 17] which is a ketene dithioacetal and 0.85 g of 1-naphthylacetylnaphthalene are dissolved in 20 ml of dimethyl sulfoxide, and 0.5 g of powdered caustic soda is added thereto. And stirred at room temperature for 4 hours. The reaction mixture is poured into 500 ml of water and left at room temperature for 1 hour. The precipitated crystals were taken up by suction and recrystallized from methanol to obtain 0.94 g (yield 63%) of a yellow tree leaf-like crystal of a pyran derivative represented by Chemical Formula 15 in FIG.

常法にしたがって測定したところ、化学式15で表わされる2H−ピロン誘導体の融点は222乃至224℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.68(3H, s, SMe), 6.64(1H, s, 5−H), 7.54−7.72(3H, m, naphthyl−H), 7.75(1H, d, J=7.1 Hz,naphthyl−H), 7.95(1H, dd, J=2.2, 7.1 Hz, naphthyl−H), 8.05(1H, d, J=8.0 Hz, naphthyl−H), 8.15(1H, d, J=9.9 Hz, naphthyl−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 15 was 222 to 224 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.68 (3H, s, SMe), 6.64 (1H, s, 5-H), 7.54-7. .72 (3H, m, naphthyl-H), 7.75 (1H, d, J = 7.1 Hz, naphthyl-H), 7.95 (1H, dd, J = 2.2, 7.1 Hz) , Naphthyl-H), 8.05 (1H, d, J = 8.0 Hz, naphthyl-H), 8.15 (1H, d, J = 9.9 Hz, naphthyl-H) Was observed.

[実施例11] [3−シアノ−4−メチルチオ−6−(2−ナフチル)−2H−ピラン−2−オン]
ケテンジチオアセタールである[化17]の化学式82で表される化合物1.02g及び2−ナフチルアセチルナフタレン0.85gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.5gを加え、室温で4時間撹拌した。この反応混合物を水500mlに注ぎだし、室温で1時間放置する。析出する結晶を吸引虜取し、メタノールから再結晶すると、図5の化学式16で表わされるピラン誘導体の黄色木葉状結晶が1.11g(収率75%)得られた。
Example 11 [3-Cyano-4-methylthio-6- (2-naphthyl) -2H-pyran-2-one]
1.02 g of the compound represented by Chemical Formula 82 of [Chemical Formula 17] which is a ketene dithioacetal and 0.85 g of 2-naphthylacetylnaphthalene are dissolved in 20 ml of dimethyl sulfoxide, and 0.5 g of powdered caustic soda is added thereto. And stirred at room temperature for 4 hours. The reaction mixture is poured into 500 ml of water and left at room temperature for 1 hour. The precipitated crystals were sucked and recrystallized from methanol to obtain 1.11 g (yield 75%) of a yellow tree leaf-like crystal of a pyran derivative represented by Chemical Formula 16 in FIG.

常法にしたがって測定したところ、化学式16で表わされる2H−ピロン誘導体の融点は245乃至247℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.74((3H, s, SMe), 6.85(1H, s, 5−H), 7.34−7.65(2H, m naphthyl−H), 7.80−8.06(4H, m, naphthyl−H), 8.05(1H, d, J=9.3 Hz, 1’−H)の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 16 was 245 to 247 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.74 ((3H, s, SMe), 6.85 (1H, s, 5-H), 7.34-. 7.65 (2H, m naphthyl-H), 7.80-8.06 (4H, m, naphthyl-H), 8.05 (1H, d, J = 9.3 Hz, 1'-H) Peaks were observed at each position.

[実施例12] [6−(2−フリル)−3−シアノ−4−メチルチオ−2H−ピラン−2−オン]
ケテンジチオアセタールである[化17]の化学式82で表される化合物1.02g及び1−ナフチルアセチルナフタレン0.55gとをジメチルスフォキシド2mlに溶解し、これに粉末の苛性ソーダ0.5gを加え、室温で4時間撹拌した。この反応混合物を水500mlに注ぎだし、室温で1時間放置する。析出する結晶を吸引虜取し、メタノールから再結晶すると、図5の化学式17で表わされるピラン誘導体の黄色木葉状結晶が0.35g(収率30%)得られた。
[Example 12] [6- (2-furyl) -3-cyano-4-methylthio-2H-pyran-2-one]
1.02 g of the compound represented by Chemical Formula 82 of [Chemical Formula 17] which is a ketene dithioacetal and 0.55 g of 1-naphthylacetylnaphthalene are dissolved in 2 ml of dimethyl sulfoxide, and 0.5 g of powdered caustic soda is added thereto. And stirred at room temperature for 4 hours. The reaction mixture is poured into 500 ml of water and left at room temperature for 1 hour. The precipitated crystals were sucked and recrystallized from methanol to obtain 0.35 g (yield 30%) of a yellow tree leaf-like crystal of a pyran derivative represented by Chemical Formula 17 in FIG.

常法にしたがって測定したところ、化学式17で表わされる2H−ピロン誘導体の融点は200乃至202℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.70(3H, s, SMe), 6.65(1H, dd, J=0.8, 1.9 Hz, 5−H), 6.66(1H, s, 5−H), 7.26(1H, m, 4−H), 7.64(1H, dd, J=0.8, 1.9 Hz, 5−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 17 was 200 to 202 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.70 (3H, s, SMe), 6.65 (1H, dd, J = 0.8, 1.9 Hz). , 5-H), 6.66 (1H, s, 5-H), 7.26 (1H, m, 4-H), 7.64 (1H, dd, J = 0.8, 1.9 Hz) , 5-H), peaks were observed.

[実施例13] [4−メチルチオ−6−(5−メチルフリ−2−イル)−2H−ピラン−2−オン]
ケテンジチオアセタールである[化17]の化学式82で表される化合物1.02g及び4−メチル−2−アセチルフラン0.75gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.5gを加え、室温で4時間撹拌した。この反応混合物を水500mlに注ぎだし、10%塩酸で酸性となし、析出する化合物を濃塩酸で処理する。析出する結晶を吸引虜取し、メタノールから再結晶すると、図5の化学式18で表わされるピラン誘導体の黄色綿状結晶が0.42g(収率34%)得られた。
Example 13 [4-Methylthio-6- (5-methylfur-2-yl) -2H-pyran-2-one]
1.02 g of the compound represented by the chemical formula 82 of [Chemical Formula 17], which is ketene dithioacetal, and 0.75 g of 4-methyl-2-acetylfuran are dissolved in 20 ml of dimethyl sulfoxide. 5 g was added and stirred at room temperature for 4 hours. The reaction mixture is poured into 500 ml of water, acidified with 10% hydrochloric acid, and the precipitated compound is treated with concentrated hydrochloric acid. The precipitated crystals were sucked and recrystallized from methanol to obtain 0.42 g (yield 34%) of a yellow fluffy crystal of a pyran derivative represented by Chemical Formula 18 in FIG.

常法にしたがって測定したところ、化学式18で表わされる2H−ピロン誘導体の融点は205乃至207℃であった。エタノール中で紫外吸収スペクトルを測定したところ、波長404nmに吸収極大を示した。固体状態で蛍光スペクトルを測定したところ、励起波長298nm、蛍光極大521nmを示した。さらに、重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.44(3H, s, 5−Me), 2.69(3H, s, SMe), 6.26(1H, dd, J=3.5 Hz, 4’−H), 6.55(1H, s, 5−H), 7.16(1H, d, J=3.5 Hz, 3’−H).の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 18 was 205 to 207 ° C. When an ultraviolet absorption spectrum was measured in ethanol, it showed an absorption maximum at a wavelength of 404 nm. When the fluorescence spectrum was measured in the solid state, the excitation wavelength was 298 nm and the fluorescence maximum was 521 nm. Furthermore, when 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.44 (3H, s, 5-Me), 2.69 (3H, s, SMe), 6.26. (1H, dd, J = 3.5 Hz, 4′-H), 6.55 (1H, s, 5-H), 7.16 (1H, d, J = 3.5 Hz, 3′-H ). A peak was observed at each position.

[実施例14] [6−(2−ベンゾチエニル)−3−シアノ−4−メチルチオ−2H−ピラン−2−オン]
ケテンジチオアセタールである[化17]の化学式82で表される化合物1.02g及び1−ナフチルアセチルナフタレン0.88gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.5gを加え、室温で4時間撹拌した。この反応混合物を水500mlに注ぎだし、室温で1時間放置する。析出する結晶を吸引虜取し、メタノールから再結晶すると、図5の化学式20で表わされるピラン誘導体の橙色木葉状結晶が1.26g(収率84%)得られた。
[Example 14] [6- (2-Benzothienyl) -3-cyano-4-methylthio-2H-pyran-2-one]
1.02 g of the compound represented by Chemical Formula 82 of [Chemical Formula 17] which is a ketene dithioacetal and 0.88 g of 1-naphthylacetylnaphthalene are dissolved in 20 ml of dimethyl sulfoxide, and 0.5 g of powdered caustic soda is added thereto. And stirred at room temperature for 4 hours. The reaction mixture is poured into 500 ml of water and left at room temperature for 1 hour. The precipitated crystals were sucked and recrystallized from methanol to obtain 1.26 g (yield 84%) of an orange tree-like crystal of a pyran derivative represented by Chemical Formula 20 in FIG.

常法にしたがって測定したところ、化学式20で表わされる2H−ピロン誘導体の融点は287乃至289℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.73(3H, s, SMe), 6.58(1H, s, 5−H), 7.48(2H, m, aromatic−H), 7.88(2H, m, aromatic−H), 8.08(1H, s, 3−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 20 was 287 to 289 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.73 (3H, s, SMe), 6.58 (1H, s, 5-H), 7.48 (2H , M, aromatic-H), 7.88 (2H, m, aromatic-H), and 8.08 (1H, s, 3-H).

[実施例15] [3−シアノ−6−(4−N,N−ジメチルアミノ)スチリル−4−メチルチオ−2H−ピラン−2−オン]
ケテンジチオアセタールである[化17]の化学式82で表される化合物2.03g及び4−(4−N,N−ジメチルアミノ)−3−ブテ−2−オン1.89gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.8gする。析出する結晶を吸引虜取し、ジクロルメタンとメタノールの混合溶媒から再結晶すると、図6の化学式25で表わされるピラン誘導体の黒赤色木葉状結晶が0.998g(収率32%)得られた。
Example 15 [3-Cyano-6- (4-N, N-dimethylamino) styryl-4-methylthio-2H-pyran-2-one]
2.03 g of the compound represented by the chemical formula 82 of [Chemical Formula 17] which is a ketene dithioacetal and 1.89 g of 4- (4-N, N-dimethylamino) -3-but-2-one Dissolve in 20 ml of oxide and add 0.8 g of powdered caustic soda. The precipitated crystals were taken up by suction and recrystallized from a mixed solvent of dichloromethane and methanol to obtain 0.998 g (yield 32%) of black-and-red foliar crystals of the pyran derivative represented by Chemical Formula 25 in FIG.

常法にしたがって測定したところ、化学式25で表わされる2H−ピロン誘導体の融点は280乃至284℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.65(3H, s, SMe), 3.10(6H, s, NMe2), 6.12(1H, s, 5−H), 6.44(1H, d, =CH), 6.72(2H, d, 37, 5’−H), 7.48(2H, d, 2’, 6’−H), 7.68(1H, d, =CH) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 25 was 280 to 284 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.65 (3H, s, SMe), 3.10 (6H, s, NMe2), 6.12 (1H, s , 5-H), 6.44 (1H, d, = CH), 6.72 (2H, d, 37, 5'-H), 7.48 (2H, d, 2 ', 6'-H) , 7.68 (1H, d, = CH), peaks were observed respectively.

[実施例16] [3−シアノ−6−(4−N,N−ジエチルアミノ)スチリル−4−メチルチオ−2H−ピラン−2−オン]
ケテンジチオアセタールである[化17]の化学式82で表される化合物2.03g及び4−(4−N,N−ジエチルアミノ)−3−ブテ−2−オン2.17gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.8gを加え、室温で1.5時間撹拌した。この反応混合物を水500mlに注ぎだし、室温で10時間放置する。析出する油状物質を取り出し、これにメタノールを加えて結晶化させる。これを吸引濾取し、ジクロルメタンとメタノールの混合溶媒から再結晶すると、図7の化学式26で表わされるピラン誘導体の黒赤色木葉状結晶が0.892(収率26%)得られた。
Example 16 [3-Cyano-6- (4-N, N-diethylamino) styryl-4-methylthio-2H-pyran-2-one]
2.03 g of the compound represented by the chemical formula 82 of [Chemical Formula 17] which is a ketene dithioacetal and 2.17 g of 4- (4-N, N-diethylamino) -3-but-2-one are converted to dimethyl sulfoxide. Dissolved in 20 ml, 0.8 g of powdered caustic soda was added thereto, and the mixture was stirred at room temperature for 1.5 hours. The reaction mixture is poured into 500 ml of water and left at room temperature for 10 hours. The oily substance which precipitates is taken out, and methanol is added to this to crystallize. When this was filtered off with suction and recrystallized from a mixed solvent of dichloromethane and methanol, 0.892 (yield 26%) of a black-red tree-like crystal of the pyran derivative represented by the chemical formula 26 in FIG. 7 was obtained.

常法にしたがって測定したところ、化学式26で表わされる2H−ピロン誘導体の融点は242乃至246℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が1.21(6H, t, J=7.1 Hz, N−CH2−CH3), 2.61(3H, s, SMe), 3.43(4H, q, J=7.1 Hz, N−CH2−), 6.07(1H, s, 5−H), 6.37(1H, d, J=15.7 Hz, =CH), 6.65(2H, d, J=9.1 Hz, 3’, 5’−H), 7.42(2H, d, J=9.1 Hz, 2’, 6’−H), 7.63(1H, d, J=15.7 Hz, =CH) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 26 was 242 to 246 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 1.21 (6H, t, J = 7.1 Hz, N—CH 2 —CH 3), 2.61 (3H, s , SMe), 3.43 (4H, q, J = 7.1 Hz, N-CH2-), 6.07 (1H, s, 5-H), 6.37 (1H, d, J = 15. 7 Hz, = CH), 6.65 (2H, d, J = 9.1 Hz, 3 ', 5'-H), 7.42 (2H, d, J = 9.1 Hz, 2', 6 '-H), 7.63 (1H, d, J = 15.7 Hz, = CH), peaks were observed.

[実施例17] [3−シアノ4−メチルチオ−6−(4−N,N−ジフェニルアミノ)スチリル−2H−ピラン−2−オン]
ケテンジチオアセタールである[化17]の化学式82で表される化合物1.02g及び4−(4−N,N−ジフェニルアミノ)−3−ブテ−2−オン1.57gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.5gを加え、室温で1.5時間撹拌した。この反応混合物を水500mlに注ぎだし、室温で1時間放置する。析出する結晶を吸引虜取し、ジクロルメタンとメタノールの混合溶媒から再結晶すると、図7の化学式27で表わされるピラン誘導体の褐色木葉状結晶が0.62g(収率29%)得られた。
[Example 17] [3-Cyano-4-methylthio-6- (4-N, N-diphenylamino) styryl-2H-pyran-2-one]
1.02 g of the compound represented by the chemical formula 82 of [Chemical Formula 17] which is a ketene dithioacetal and 1.57 g of 4- (4-N, N-diphenylamino) -3-but-2-one It melt | dissolved in 20 ml of oxides, 0.5 g of powdered caustic soda was added to this, and it stirred at room temperature for 1.5 hours. The reaction mixture is poured into 500 ml of water and left at room temperature for 1 hour. The precipitated crystals were taken up by suction and recrystallized from a mixed solvent of dichloromethane and methanol to obtain 0.62 g (yield 29%) of a brown tree-like crystal of a pyran derivative represented by Chemical Formula 27 in FIG.

常法にしたがって測定したところ、化学式27で表わされる2H−ピロン誘導体の融点は210乃至216℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.62(3H, s, SMe), 6.18(1H, s, 5−H), 6.48(1H, d, J=15.1 Hz, =CH), 6,75−7.40(14H, m, Phenyl−H), 7.61(1H, d, J=15.1 Hz, =CH) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 27 was 210 to 216 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.62 (3H, s, SMe), 6.18 (1H, s, 5-H), 6.48 (1H , D, J = 15.1 Hz, = CH), 6, 75-7.40 (14H, m, Phenyl-H), 7.61 (1H, d, J = 15.1 Hz, = CH) Peaks were observed at each position.

[実施例18] [4−メチルチオ−6−フェニル−3−(4−メチルフェニル)スルフォニル−2H−ピラン−2−オン]
ケテンジチオアセタールである[化19]の化学式84で表される化合物1.50g及びアセトフェノン0.65gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.8gを加え、室温で1.5時間撹拌した。この反応混合物を水500mlに注ぎだし、室温で1時間放置する。析出する結晶を吸引虜取する。これをメタノール50mlに溶解し、この混合物に濃塩酸10mlを加え一時間加熱還流する。メタノールを留去後、析出する結晶を吸引虜取し、トルエンから再結晶すると、図8の化学式34で表わされるピラン誘導体の無色針状結晶が0.322g(収率17%)得られた。
[Example 18] [4-Methylthio-6-phenyl-3- (4-methylphenyl) sulfonyl-2H-pyran-2-one]
1.50 g of a compound represented by the chemical formula 84 of [Chemical Formula 19] which is a ketene dithioacetal and 0.65 g of acetophenone are dissolved in 20 ml of dimethyl sulfoxide, 0.8 g of caustic soda powder is added to this, and 1 at room temperature is added. Stir for 5 hours. The reaction mixture is poured into 500 ml of water and left at room temperature for 1 hour. Capture the precipitated crystals by suction. This is dissolved in 50 ml of methanol, 10 ml of concentrated hydrochloric acid is added to this mixture, and the mixture is heated to reflux for 1 hour. After the methanol was distilled off, the precipitated crystals were sucked and recrystallized from toluene to obtain 0.322 g (yield 17%) of colorless needle-like crystals of the pyran derivative represented by the chemical formula 34 in FIG.

常法にしたがって測定したところ、化学式34で表わされる2H−ピロン誘導体の融点は220乃至222℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.42(3H, s, 4−Me), 2.61(3H, s, SMe), 6.75(1H, s, 5−H), 7.31(1H, d, J=8.5 Hz, phenyl−H), 7.50(3H, m, phenyl−H), 7.80(2H, m, phenyl−H), 8.04(2H, d, J=8.5 Hz, phenyl−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 34 was 220 to 222 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.42 (3H, s, 4-Me), 2.61 (3H, s, SMe), 6.75 (1H , S, 5-H), 7.31 (1H, d, J = 8.5 Hz, phenyl-H), 7.50 (3H, m, phenyl-H), 7.80 (2H, m, phenyl) -H), 8.04 (2H, d, J = 8.5 Hz, phenyl-H), respectively.

[実施例19] [6−(4−メトキシフェニル)−4−メチルチオ−3−フェニルスルホニル−2H−ピラン−2−オン]
ケテンジチオアセタールである[化19]の化学式84で表される化合物1.50g及び4−メトキシアセトフェノン0.84gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.8gを加え、室温で1.5時間撹拌した。この反応混合物を水500mlに注ぎだし、室温で1時間放置する。析出する結晶を吸引虜取する。これをメタノール50mlに溶解し、この混合物に濃塩酸10mlを加え一時間加熱還流する。メタノールを留去後、析出する結晶を吸引虜取し、トルエンから再結晶すると、図8の化学式35で表わされるピラン誘導体の淡黄色針状結晶が0.362g(収率19%)得られた。
Example 19 [6- (4-Methoxyphenyl) -4-methylthio-3-phenylsulfonyl-2H-pyran-2-one]
1.50 g of a compound represented by the chemical formula 84 of [Chemical Formula 19] which is a ketene dithioacetal and 0.84 g of 4-methoxyacetophenone are dissolved in 20 ml of dimethyl sulfoxide, and 0.8 g of powdered caustic soda is added thereto. Stir at room temperature for 1.5 hours. The reaction mixture is poured into 500 ml of water and left at room temperature for 1 hour. Capture the precipitated crystals by suction. This is dissolved in 50 ml of methanol, 10 ml of concentrated hydrochloric acid is added to this mixture, and the mixture is heated to reflux for 1 hour. After distilling off methanol, the precipitated crystals were sucked and recrystallized from toluene to obtain 0.362 g (yield 19%) of a pale yellow acicular crystal of a pyran derivative represented by Chemical Formula 35 in FIG. .

常法にしたがって測定したところ、化学式35で表わされる2H−ピロン誘導体の融点は225乃至230℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.60(3H, s, SMe), 3.87(3H, s, OMe), 6.65(1H, s, 5−H), 6.96(1H, d, J=9.1 Hz, phenyl−H), 7.51−7.64(3H, m, phenyl−H), 7.77(2H, d, J=9.1 Hz, phenyl−H), 8.15(2H, m, phenyl−H). の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 35 was 225 to 230 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.60 (3H, s, SMe), 3.87 (3H, s, OMe), 6.65 (1H, s , 5-H), 6.96 (1H, d, J = 9.1 Hz, phenyl-H), 7.51-7.64 (3H, m, phenyl-H), 7.77 (2H, d , J = 9.1 Hz, phenyl-H), 8.15 (2H, m, phenyl-H). A peak was observed at each position.

[実施例20] [6−(4−メトキシフェニル)−3−(4−メチルフェニルスルフォニル)−4−メチルチオ−2H−ピラン−2−オン]
ケテンジチオアセタールである[化19]の化学式84で表される化合物1.50g及び4−メトキシアセトフェノン0.84gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.8gを加え、室温で1.5時間撹拌した。この反応混合物を水500mlに注ぎだし、室温で1時間放置する。析出する結晶を吸引虜取する。これをメタノール50mlに溶解し、この混合物に濃塩酸10mlを加え一時間加熱還流する。メタノールを留去後、析出する結晶を吸引虜取し、トルエンから再結晶すると、図9の化学式36で表わされるピラン誘導体の淡黄色針状結晶が0.588g(収率29%)得られた。
[Example 20] [6- (4-methoxyphenyl) -3- (4-methylphenylsulfonyl) -4-methylthio-2H-pyran-2-one]
1.50 g of a compound represented by the chemical formula 84 of [Chemical Formula 19] which is a ketene dithioacetal and 0.84 g of 4-methoxyacetophenone are dissolved in 20 ml of dimethyl sulfoxide, and 0.8 g of powdered caustic soda is added thereto. Stir at room temperature for 1.5 hours. The reaction mixture is poured into 500 ml of water and left at room temperature for 1 hour. Capture the precipitated crystals by suction. This is dissolved in 50 ml of methanol, 10 ml of concentrated hydrochloric acid is added to this mixture, and the mixture is heated to reflux for 1 hour. After distilling off methanol, the precipitated crystals were sucked and recrystallized from toluene to obtain 0.588 g (yield 29%) of pale yellow needle-like crystals of the pyran derivative represented by Chemical Formula 36 in FIG. .

常法にしたがって測定したところ、化学式36で表わされる2H−ピロン誘導体の融点は220乃至227℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.42(3H, s, 4−Me), 2.60(3H, s, SMe), 3.88(3H, s, OMe), 6.64(1H, s, 5−H), 6.97(1H, d, J=8.8 Hz, phenyl−H), 7.31(2H, d, J=8.5 Hz,, phenyl−H), 7.72(2H, d, J=8.8 Hz, phenyl−H), 8.04(2H, d, J=8.5 Hz, phenyl−H).の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 36 was 220 to 227 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.42 (3H, s, 4-Me), 2.60 (3H, s, SMe), 3.88 (3H). , S, OMe), 6.64 (1H, s, 5-H), 6.97 (1H, d, J = 8.8 Hz, phenyl-H), 7.31 (2H, d, J = 8 .5 Hz, phenyl-H), 7.72 (2H, d, J = 8.8 Hz, phenyl-H), 8.04 (2H, d, J = 8.5 Hz, phenyl-H). A peak was observed at each position.

[実施例21] [3−シアノ−6−フェニル−4−ピロリジノ−2H−ピラン−2−オン]
2−ピロン誘導体である図2の化学式1で表わされる化合物1.22gにピロリジン2mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図9の化学式40で表わされる4−アミノ−2H−ピラン−2−オン誘導体の白色針状晶が0.69g(収率52%)得られた。
[Example 21] [3-Cyano-6-phenyl-4-pyrrolidino-2H-pyran-2-one]
2 ml of pyrrolidine is added to 1.22 g of the compound represented by Chemical Formula 1 of FIG. 2 which is a 2-pyrone derivative and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 0.69 g (yield 52%) of white needle crystals of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 40 of FIG. 9 was obtained.

常法にしたがって測定したところ、化学式40で表わされる2H−ピロン誘導体の融点は287乃至289℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が1.61(2H, m, −CH2−), 2.09(2H, m, −CH2−), 3.69(2H, m, −CH2−), 4.12(2H, m, −CH2−), 6.35(1H, s, 5−H), 7.42−7.52(3H, m, phenyl−H), 7.79(2H, m, phenyl−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 40 was 287 to 289 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 1.61 (2H, m, —CH 2 —), 2.09 (2H, m, —CH 2 —), 3.69. (2H, m, -CH2-), 4.12 (2H, m, -CH2-), 6.35 (1H, s, 5-H), 7.42-7.52 (3H, m, phenyl- H) and 7.79 (2H, m, phenyl-H) were observed at respective peaks.

[実施例22] [3−シアノ−4−ジメチルアミノ−6−(4−メトキシフェニル)−2H−ピラン−2−オン]
2−ピロン誘導体である図2の化学式4で表わされる化合物1.37gにジメチルアミイン(50%水溶液)4mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図10の化学式42で表わされる4−アミノ−2H−ピラン−2−オン誘導体の黄色針状晶が0.68g(収率50%)得られた。
[Example 22] [3-Cyano-4-dimethylamino-6- (4-methoxyphenyl) -2H-pyran-2-one]
2 ml of dimethylamiin (50% aqueous solution) is added to 1.37 g of the compound represented by Chemical Formula 4 of FIG. 2 which is a 2-pyrone derivative, and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 0.68 g (yield 50%) of yellow needle-like crystals of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 42 in FIG. 10 was obtained.

常法にしたがって測定したところ、化学式42で表わされる2H−ピロン誘導体の融点は194乃至196℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が3.42(6H, s, −NMe2), 3.87(3H, s, OMe), 6.30(1H, s, 5H), 6.96(2H, d, J=8.8 Hz,3’,5’−H), 7.77(2H, dd, J=1.5, 8.8 Hz, 2’, 6’−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 42 was 194 to 196 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 3.42 (6H, s, -NMe2), 3.87 (3H, s, OMe), 6.30 (1H, s, 5H), 6.96 (2H, d, J = 8.8 Hz, 3 ', 5'-H), 7.77 (2H, dd, J = 1.5, 8.8 Hz, 2' , 6′-H), peaks were observed.

[実施例23] [3−シアノ−6−(4−メトキシフェニル)−4−ピロリジノ−2H−ピラン−2−オン]
2−ピロン誘導体である図2の化学式4で表わされる化合物1.37gにピロリジン2mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図10の化学式43で表わされる4−アミノ−2H−ピラン−2−オン誘導体の白色木葉状晶が0.77g(収率51%)得られた。
[Example 23] [3-Cyano-6- (4-methoxyphenyl) -4-pyrrolidino-2H-pyran-2-one]
2 ml of pyrrolidine is added to 1.37 g of the compound represented by Chemical Formula 4 in FIG. 2 which is a 2-pyrone derivative, and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 0.77 g (yield 51%) of white dendritic crystals of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 43 in FIG. 10 was obtained.

常法にしたがって測定したところ、化学式43で表わされる2H−ピロン誘導体の融点は259乃至260℃であった。重クロロホルム中で 1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.07(4H, m, pyrrolodinyl−3,4H), 2.09(2H, m, −CH2−), 3.65(2H, m, pyrrolidino−2H), 3.87(3H, s, OMe), 4.11(2H, m, pyrrolino−5H), 6.95(2H, d, J=9.1 Hz, 3’, 5’−H), 7.76(2H, dd, J=8.5 Hz, 2’, 6’−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 43 was 259 to 260 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.07 (4H, m, pyrorodinyl-3, 4H), 2.09 (2H, m, -CH2-), 3 .65 (2H, m, pyrrolidino-2H), 3.87 (3H, s, OMe), 4.11 (2H, m, pyrrolino-5H), 6.95 (2H, d, J = 9.1 Hz) , 3 ′, 5′-H), 7.76 (2H, dd, J = 8.5 Hz, 2 ′, 6′-H), respectively.

[実施例24] [3−シアノ−6−(4−メトキシフェニル)−4−チオモルホリノ−2H−ピラン−2−オン]
2−ピロン誘導体である図2の化学式4で表わされる化合物1.37gにチオモルホリン2mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図10の化学式45で表わされる4−アミノ−2H−ピラン−2−オン誘導体の白色小葉状晶が0.85g(収率51%)得られた。
[Example 24] [3-Cyano-6- (4-methoxyphenyl) -4-thiomorpholino-2H-pyran-2-one]
2 ml of thiomorpholine is added to 1.37 g of the compound represented by Chemical Formula 4 in FIG. 2 which is a 2-pyrone derivative and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 0.85 g (yield 51%) of white lobular crystals of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 45 in FIG. 10 was obtained.

常法にしたがって測定したところ、化学式45で表わされる2H−ピロン誘導体の融点は218乃至220℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.85−2.89(4H, m, thiomorphlino−H), 3.88(3H, s, OMe), 4.10−4.14(4H, m, thiomorphlino−H), 6.33(1H, s, 5−H), 6.97(2H, d, J=8.8 Hz, 2’, 6’−H), 7.76(2H, dd, J=8.8 Hz, 3’, 5’−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 45 was 218 to 220 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.85-2.89 (4H, m, thiomorphino-H), 3.88 (3H, s, OMe), 4 10-4.14 (4H, m, thiomorphino-H), 6.33 (1H, s, 5-H), 6.97 (2H, d, J = 8.8 Hz, 2 ', 6'- H), 7.76 (2H, dd, J = 8.8 Hz, 3 ′, 5′-H), peaks were observed.

[実施例25] [3−シアノ−4−(N−メチルピペラジン−)−6−(4−メトキシフェニル)−4−ピロリジノ−2H−ピラン−2−オン]
2−ピロン誘導体である図2の化学式4で表わされる化合物1.37gにN−メチルピペラジン2mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図11の化学式46で表わされる4−アミノ−2H−ピラン−2−オン誘導体の黄色小葉状晶が1.49g(収率85%)得られた。
[Example 25] [3-cyano-4- (N-methylpiperazine-)-6- (4-methoxyphenyl) -4-pyrrolidino-2H-pyran-2-one]
2 ml of N-methylpiperazine is added to 1.37 g of the compound represented by Chemical Formula 4 of FIG. 2 which is a 2-pyrone derivative and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 1.49 g (yield: 85%) of yellow leaf-like crystals of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 46 in FIG. 11 was obtained.

常法にしたがって測定したところ、化学式46で表わされる2H−ピロン誘導体の融点は239乃至241℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.36(3H, s, NMe2), 2.58−2.62(4H, m, piperazino−H), 3.86−3.90(4H, m, piperazino−H), 3.87(3H, s, OMe), 6.34(1H, s, 5−H), 6.96(2H, d, J=8.8 Hz, 2’, 6’−H), 7.77(2H, dd, J=8.8 Hz, 3’,5’−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 46 was 239 to 241 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.36 (3H, s, NMe2), 2.58-2.62 (4H, m, piperazino-H), 3 86-3.90 (4H, m, piperazino-H), 3.87 (3H, s, OMe), 6.34 (1H, s, 5-H), 6.96 (2H, d, J = 8.8 Hz, 2 ′, 6′-H), 7.77 (2H, dd, J = 8.8 Hz, 3 ′, 5′-H), peaks were observed.

[実施例26] [3−シアノ−4−ジメチルアミノ−6−(3−メトキシフェニル)−2H−ピラン−2−オン]
2−ピロン誘導体である図2の化学式4で表わされる化合物1.37gにジメチルアミン(50%水溶液)4mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図11の化学式48で表わされる4−アミノ−2H−ピラン−2−オン誘導体の白色綿状晶が0.54g(収率40%)得られた。
[Example 26] [3-Cyano-4-dimethylamino-6- (3-methoxyphenyl) -2H-pyran-2-one]
2 ml of dimethylamine (50% aqueous solution) is added to 1.37 g of the compound represented by Chemical Formula 4 of FIG. 2 which is a 2-pyrone derivative, and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 0.54 g (yield 40%) of white flocculent crystals of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 48 in FIG. 11 was obtained.

常法にしたがって測定したところ、化学式48で表わされる2H−ピロン誘導体の融点は198乃至199℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が3.45(3H, s, NMe2), 3.87(3H, s, OMe), 6.41(1H, s, 5−H), 7.03−7.07(1H, m, 5’−H), 7.33−7.34(1H, m, 2’−H), 7.35−7.37(2H, m, 4’, 6’−H)の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 48 was 198 to 199 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 3.45 (3H, s, NMe2), 3.87 (3H, s, OMe), 6.41 (1H, s , 5-H), 7.03-7.07 (1H, m, 5'-H), 7.33-7.34 (1H, m, 2'-H), 7.35-7.37 ( 2H, m, 4 ′, 6′-H) peaks were observed.

[実施例27] [3−シアノ−6−(3,4−ジメトキシフェニル)−4−モルホリノ−2H−ピラン−2−オン]
2−ピロン誘導体である図3の化学式7で表わされる化合物1.52gにモルホリン2 mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図12の化学式49で表わされる4−アミノ−2H−ピラン−2−オン誘導体の白色木葉状晶が1.18g(収率69%)得られた。
[Example 27] [3-Cyano-6- (3,4-dimethoxyphenyl) -4-morpholino-2H-pyran-2-one]
2 ml of morpholine is added to 1.52 g of the compound represented by Chemical Formula 7 in FIG. 3 which is a 2-pyrone derivative and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 1.18 g (yield 69%) of white dendritic crystals of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 49 in FIG. 12 was obtained.

常法にしたがって測定したところ、化学式49で表わされる2H−ピロン誘導体の融点は243乃至245℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が3.89(8H, m, morpholino−H), 3.963(3H, s, OMe), 6.32(1H, s, 5−H), 6.92(1H, d, J=8.5 Hz, 6’−H), 7.31(1H, d, J=2.2 Hz, 2’−H), 7.40 (1H, dd, J=2.2, 8.5 Hz, 5’−H)の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 49 was 243 to 245 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 3.89 (8H, m, morpholino-H), 3.963 (3H, s, OMe), 6.32 (1H). , S, 5-H), 6.92 (1H, d, J = 8.5 Hz, 6′-H), 7.31 (1H, d, J = 2.2 Hz, 2′-H), A peak was observed at a position of 7.40 (1H, dd, J = 2.2, 8.5 Hz, 5′-H).

[実施例28] [3−シアノ−6−(2,4−ジメトキシフェニル)−4−モルホリノ−2H−ピラン−2−オン]
図2の化学式5で表わされる化合物1.52gにモルホリン2 mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図12の化学式50で表わされる4−アミノ−2H−ピラン−2−オン誘導体の黄色綿状晶が1.37g(収率79%)得られた。
[Example 28] [3-Cyano-6- (2,4-dimethoxyphenyl) -4-morpholino-2H-pyran-2-one]
2 ml of morpholine is added to 1.52 g of the compound represented by Formula 5 in FIG. 2 and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 1.37 g (yield 79%) of a yellow flocculent crystal of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 50 in FIG. 12 was obtained.

常法にしたがって測定したところ、化学式50で表わされる2H−ピロン誘導体の融点は223乃至225℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が3.87(3H, s, OMe), 3.88(8H, s, morpholino−H), 3.93(3H, s, OMe), 6.52(1H, d, J=2.2 Hz, 3’−H), 6.60(1H, dd, J=2.2, 8.8 Hz, 5’−H), 6.98(1H, s, 5−H), 7.95(1H, d, J=8.8 Hz, 6’−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 50 was 223 to 225 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 3.87 (3H, s, OMe), 3.88 (8H, s, morpholino-H), 3.93 (3H). , S, OMe), 6.52 (1H, d, J = 2.2 Hz, 3′-H), 6.60 (1H, dd, J = 2.2, 8.8 Hz, 5′-H) ), 6.98 (1H, s, 5-H), 7.95 (1H, d, J = 8.8 Hz, 6′-H), respectively.

[実施例29] [3−シアノ−6−(2,5−ジメトキシフェニル)−4−モルホリノ−2H−ピラン−2−オン]
2−ピロン誘導体である図3の化学式6で表わされる化合物1.52gにモルホリン2mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図13の化学式51で表わされる4−アミノ−2H−ピラン−2−オン誘導体の黄色小葉状晶が1.33g(収率78%)得られた。
[Example 29] [3-Cyano-6- (2,5-dimethoxyphenyl) -4-morpholino-2H-pyran-2-one]
2 ml of morpholine is added to 1.52 g of the compound represented by Chemical Formula 6 in FIG. 3 which is a 2-pyrone derivative, and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 1.33 g (yield 78%) of yellow leafy crystals of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 51 of FIG. 13 was obtained.

常法にしたがって測定したところ、化学式51で表わされる2H−ピロン誘導体の融点は185乃至187℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が3.82(3H, s, OMe), 3.87(8H, s, morpholino−H), 3.91(3H, s, OMe), 6.95(1H, d, J=9.1 Hz, 4’−H), 7.04(1H, dd, J=3.0, 9.1 Hz, 4’−H), 7.10(1H, s, 5−H), 7.44(3H, d, J=3.0 Hz, 6’−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 51 was 185 to 187 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 3.82 (3H, s, OMe), 3.87 (8H, s, morpholino-H), 3.91 (3H). , S, OMe), 6.95 (1H, d, J = 9.1 Hz, 4′-H), 7.04 (1H, dd, J = 3.0, 9.1 Hz, 4′-H) ), 7.10 (1H, s, 5-H), 7.44 (3H, d, J = 3.0 Hz, 6′-H), respectively.

[実施例30] [3−シアノ−6−(3,4,5−トリメトキシフェニル)−4−ピロリジノ−2H−ピラン−2−オン]
2−ピロン誘導体である図3の化学式8で表わされる化合物1.67gにピロリジン2mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図13の化学式52で表わされる4−アミノ−2H−ピラン−2−オン誘導体の白色綿状晶が1.00g(収率55%)得られた。
Example 30 [3-Cyano-6- (3,4,5-trimethoxyphenyl) -4-pyrrolidino-2H-pyran-2-one]
2 ml of pyrrolidine is added to 1.67 g of the compound represented by the chemical formula 8 of FIG. 3 which is a 2-pyrone derivative and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 1.00 g (yield 55%) of white flocculent crystals of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 52 in FIG. 13 was obtained.

常法にしたがって測定したところ、化学式52で表わされる2H−ピロン誘導体の融点は222乃至224℃であった。重クロロホルム中で 1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.09(4H, m, pyrrolidino−H), 3.70(2H, m, pyrrolidino−H), 3.92(9H, s, 3xOMe), 4.13(2H, m, pyrrolidino−H), 6.24(1H, s, 5−H), 6.98(2H, s, 2’, 6’−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 52 was 222 to 224 ° C. When 1H-NMR was measured in deuterated chloroform, chemical shift δ (ppm, TMS) was 2.09 (4H, m, pyrrolidino-H), 3.70 (2H, m, pyrrolidino-H), 3.92. (9H, s, 3xOMe), 4.13 (2H, m, pyrrolidino-H), 6.24 (1H, s, 5-H), 6.98 (2H, s, 2 ', 6'-H) A peak was observed at each position.

[実施例31] [3−シアノ−4−モロホリノ−6−(3,4,5-トリメトキシフェニル)−2H−ピラン−2−オン]
2−ピロン誘導体である図3の化学式8で表わされる化合物1.67gにピロリジン2mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図13の化学式53で表わされる4−アミノ−2H−ピラン−2−オン誘導体の白色木葉状晶が1.30g(収率70%)得られた。
Example 31 [3-Cyano-4-morpholino-6- (3,4,5-trimethoxyphenyl) -2H-pyran-2-one]
2 ml of pyrrolidine is added to 1.67 g of the compound represented by the chemical formula 8 of FIG. 3 which is a 2-pyrone derivative and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 1.30 g (yield 70%) of white dendritic crystals of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 53 of FIG. 13 was obtained.

常法にしたがって測定したところ、化学式53で表わされる2H-ピロン誘導体の融点は222乃至224℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が3.89(8H, s, morphino−H), 3.99(9H, s, 3xOMe), 6.32(1H, s, 5−H), 6.98(2H, s, 2’, 6’−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 53 was 222 to 224 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 3.89 (8H, s, morphino-H), 3.99 (9H, s, 3 × OMe), 6.32 (1H). , S, 5-H), 6.98 (2H, s, 2 ′, 6′-H), peaks were observed.

[実施例32] [3−シアノ−4−ジメチルアミノ−6−(4−ジメチルアミノフェニル)−2H−ピラン−2−オン]
2−ピロン誘導体である図4の化学式12で表わされる化合物1.43gにジメチルアミン(50%水溶液)4mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図14の化学式54で表わされる4−アミノ−2H−ピラン−2−オン誘導体の黄色針状晶が0.91g(収率64%)得られた。
[Example 32] [3-Cyano-4-dimethylamino-6- (4-dimethylaminophenyl) -2H-pyran-2-one]
4 ml of dimethylamine (50% aqueous solution) is added to 1.43 g of the compound represented by Chemical Formula 12 of FIG. 4 which is a 2-pyrone derivative and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 0.91 g (yield: 64%) of yellow needle-like crystals of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 54 in FIG. 14 was obtained.

常法にしたがって測定したところ、化学式54で表わされる2H−ピロン誘導体の融点は265乃至267℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が3.06(6H, s, NMe2), 3.40(6H, s, NMe2), 6.20(1H, s, 5−H), 6.67(2H, d, J=9.1 Hz, 3’, 5’−H), 7.70(2H, d, J=9.1 Hz, 2’, 6’−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 54 was 265 to 267 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 3.06 (6H, s, NMe2), 3.40 (6H, s, NMe2), 6.20 (1H, s , 5-H), 6.67 (2H, d, J = 9.1 Hz, 3 ′, 5′-H), 7.70 (2H, d, J = 9.1 Hz, 2 ′, 6 ′ A peak was observed at each position of -H).

[実施例33] [3−シアノ−6−(4−ジメチルアミノフェニル)−4−ピロリジノ−2H−ピラン−2−オン]
2−ピロン誘導体である図4の化学式12で表わされる化合物1.43gにピロリジン2 mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図14の学式55で表わされる4−アミノ−2H−ピラン−2−オン誘導体の黄色針状晶が0.68g(収率44%)得られた。
[Example 33] [3-Cyano-6- (4-dimethylaminophenyl) -4-pyrrolidino-2H-pyran-2-one]
2 ml of pyrrolidine is added to 1.43 g of the compound represented by Chemical Formula 12 of FIG. 4 which is a 2-pyrone derivative and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 0.68 g (yield 44%) of yellow needle crystals of the 4-amino-2H-pyran-2-one derivative represented by the formula 55 in FIG. 14 was obtained.

常法にしたがって測定したところ、化学式55で表わされる2H−ピロン誘導体の融点は270乃至271℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.05(4H, s, pyrrolidino−H), 3.06(6H, s, NMe2), 3.65(2H, m, pyrrolidino−H), 4.08(2H, pyrrolidino−H), 6.13(1H, s, 5−H), 6.67(2H, d, J=9.1 Hz, 3’, 5’−H), 7.70(2H, d, J=9.1 Hz, 2’, 6’−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 55 was 270 to 271 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.05 (4H, s, pyrrolidino-H), 3.06 (6H, s, NMe2), 3.65 (2H). , M, pyrrolidino-H), 4.08 (2H, pyrrolidino-H), 6.13 (1H, s, 5-H), 6.67 (2H, d, J = 9.1 Hz, 3 ′, 5'-H) and 7.70 (2H, d, J = 9.1 Hz, 2 ', 6'-H), respectively.

[実施例34] [3−シアノ−6−(4−ジメチルアミノフェニル)−4−チオモルホリノ−2H−ピラン−2−オン]
2−ピロン誘導体である図4の化学式12で表わされる化合物1.43gにチオモルホリン2mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図15の化学式57で表わされる4−アミノ−2H−ピラン−2−オン誘導体の橙色小葉状晶が0.99g(収率58%)得られた。
[Example 34] [3-cyano-6- (4-dimethylaminophenyl) -4-thiomorpholino-2H-pyran-2-one]
2 ml of thiomorpholine is added to 1.43 g of the compound represented by Chemical Formula 12 of FIG. 4 which is a 2-pyrone derivative and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 0.99 g (yield 58%) of orange leaflets of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 57 in FIG. 15 was obtained.

常法にしたがって測定したところ、化学式57で表わされる2H−ピロン誘導体の融点は275乃至277℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフト(ppm, TMS)が2.83−2.87(4H, m, thiomorpholino−H), 3.07(6H, NMe2), 4.07−4.11(4H, m, thiomorpholino−H), 6.22(1H, s, 5−H), 6.97(2H, d, J=9.3 Hz, 3’, 5’−H), 7.70(2H, d, J=9.3 Hz, 2’, 6’−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 57 was 275 to 277 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift (ppm, TMS) was 2.83-2.87 (4H, m, thiomorpholino-H), 3.07 (6H, NMe2), 4.07-. 4.11 (4H, m, thiomorpholino-H), 6.22 (1H, s, 5-H), 6.97 (2H, d, J = 9.3 Hz, 3 ', 5'-H), A peak was observed at a position of 7.70 (2H, d, J = 9.3 Hz, 2 ′, 6′-H).

[実施例35] [3−シアノ−6−(4−ブロモフェニル)−4−ピロリジノ−2H−ピラン−2−オン]
2−ピロン誘導体である[化17]の化学式82で表わされる化合物1.61gにピロリジン2mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図15の化学式58で表わされる4−アミノ−2H−ピラン−2−オン誘導体の黄色小葉状晶が0.93g(収率53%)得られた。
[Example 35] [3-Cyano-6- (4-bromophenyl) -4-pyrrolidino-2H-pyran-2-one]
2 ml of pyrrolidine is added to 1.61 g of the compound represented by the chemical formula 82 of [Chemical Formula 17], which is a 2-pyrone derivative, and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 0.93 g (yield 53%) of a yellow leafy crystal of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 58 in FIG. 15 was obtained.

常法にしたがって測定したところ、化学式58で表わされる2H−ピロン誘導体の融点は282乃至284℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフト(ppm, TMS)が1.57(4H, m, pyrrolidino−H), 3.69(4H, m, pyrrolidino−H), 4.12(2H, m, pyrrolidino−H), 6.33(1H, s, 5−H), 7.62(4H, dd, J=8.8, 11.0 Hz, phenyl−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 58 was 282 to 284 ° C. When 1H-NMR was measured in deuterated chloroform, chemical shift (ppm, TMS) was 1.57 (4H, m, pyrrolidino-H), 3.69 (4H, m, pyrrolidino-H), 4.12 ( 2H, m, pyrrolidino-H), 6.33 (1H, s, 5-H), 7.62 (4H, dd, J = 8.8, 11.0 Hz, phenyl-H) Was observed.

[実施例36] [6−(4−クロロフェニル)−3−シアノ−4−ピロリジノ−2H−ピラン−2−オン]
2−ピロン誘導体である図3の化学式10で表わされる化合物1.39gにピロリジン2 mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図16の化学式59で表わされる4−アミノ−2H−ピラン−2−オン誘導体の黄色綿状晶が1.11g(収率73%)得られた。
[Example 36] [6- (4-Chlorophenyl) -3-cyano-4-pyrrolidino-2H-pyran-2-one]
2 ml of pyrrolidine is added to 1.39 g of the compound represented by Chemical Formula 10 of FIG. 3 which is a 2-pyrone derivative and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. Recrystallization from methanol gave 1.11 g (yield 73%) of a yellow flocculent crystal of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 59 in FIG.

常法にしたがって測定したところ、化学式59で表わされる2H−ピロン誘導体の融点は288乃至290℃であった。重クロロホルム中で1H−核磁気共鳴スペクトル(以下、[1H−NMR]と略する)を測定したところ、化学シフト(ppm, TMS)が2.12(4H, m, pyrrolidino−H), 3.72(2H, m, pyrrolidino−H), 4.16(2H, m, pyrrolidino−H), 7.46(2H, d, J=8.5 Hz, 2’, 6’−H), 7.76(2H, d, J=8.2 Hz, 3’, 5’−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 59 was 288 to 290 ° C. 2. When 1H-nuclear magnetic resonance spectrum (hereinafter abbreviated as [1H-NMR]) was measured in deuterated chloroform, the chemical shift (ppm, TMS) was 2.12 (4H, m, pyrolidino-H), 72 (2H, m, pyrolidino-H), 4.16 (2H, m, pyrolidino-H), 7.46 (2H, d, J = 8.5 Hz, 2 ', 6'-H), 7. Peaks were observed at positions 76 (2H, d, J = 8.2 Hz, 3 ′, 5′-H).

[実施例37] [6−(2−クロロフェニル)−3−シアノ−4−モルホリノ−2H−ピラン−2−オン]
2−ピロン誘導体である図3の化学式10で表わされる化合物1.39gにモルホリン2mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図16の化学式60で表わされる4−アミノ−2H−ピラン−2−オン誘導体の白色小葉状晶が1.49g(収率93%)得られた。
Example 37 [6- (2-Chlorophenyl) -3-cyano-4-morpholino-2H-pyran-2-one]
2 ml of morpholine is added to 1.39 g of the compound represented by Chemical Formula 10 of FIG. 3 which is a 2-pyrone derivative and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 1.49 g (yield 93%) of white leaf-like crystals of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 60 in FIG. 16 was obtained.

常法にしたがって測定したところ、化学式60で表わされる2H−ピロン誘導体の融点は230乃至231℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が3.88(8H, m, morpholino−H), 6.22(1H, s, 5−H), 7.35−7.48(2H, m, 4’, 6’−H), 7.51(1H, dd, J=1.6, 7.7 Hz, 5’−H), 7.69(1H, dd, J=2.2, 6.2 Hz, 3’−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 60 was 230 to 231 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 3.88 (8H, m, morpholino-H), 6.22 (1H, s, 5-H), 7.35. -7.48 (2H, m, 4 ', 6'-H), 7.51 (1H, dd, J = 1.6, 7.7 Hz, 5'-H), 7.69 (1H, dd , J = 2.2, 6.2 Hz, 3′-H).

[実施例38] [3−シアノ−6−(4−フェニルフェニル)−4−ピロリジノ−2H−ピラン−2−オン]
2−ピロン誘導体である図4の化学式14で表わされる化合物1.60gにピロリジン2mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図17の化学式61で表わされる4−アミノ−2H−ピラン−2−オン誘導体の白色綿状晶が1.60g(収率44%)得られた。
[Example 38] [3-Cyano-6- (4-phenylphenyl) -4-pyrrolidino-2H-pyran-2-one]
2 ml of pyrrolidine is added to 1.60 g of the compound represented by the chemical formula 14 of FIG. 4 which is a 2-pyrone derivative and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 1.60 g (yield 44%) of white flocculent crystals of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 61 in FIG. 17 were obtained.

常法にしたがって測定したところ、化学式61で表わされる2H−ピロン誘導体の融点は304乃至305℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.10(4H, m, pyrrolidino−H), 3.71(2H, m, pyrrolidino−H), 4.14(2H, m, pyrrolidino−H), 6.39(1H, s, 5−H), 7.42−7.49(3H, m, 3”, 4”, 5”−H), 7.61(2H, d, J=8.2 Hz, 2’, 6’−H), 7.67(2H, d, J=8.5 Hz, 3’, 5’−H), 7.87(2H, d, J=8.8 Hz, 2”, 6”−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 61 was 304 to 305 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.10 (4H, m, pyrrolidino-H), 3.71 (2H, m, pyrrolidino-H), 4.14. (2H, m, pyrrolidino-H), 6.39 (1H, s, 5-H), 7.42-7.49 (3H, m, 3 ", 4", 5 "-H), 7.61 (2H, d, J = 8.2 Hz, 2 ', 6'-H), 7.67 (2H, d, J = 8.5 Hz, 3', 5'-H), 7.87 (2H , D, J = 8.8 Hz, 2 ″, 6 ″ −H), respectively.

[実施例39] [3−シアノ−6−(1−ナフチル)−4−ピロリジノ−2H−ピラン−2−オン]
2−ピロン誘導体である図4の化学式15で表わされる化合物1.47gにピロリジン2mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図17の化学式62で表わされる4−アミノ−2H−ピラン−2−オン誘導体の黄色小葉状晶が1.36g(収率86%)得られた。
[Example 39] [3-Cyano-6- (1-naphthyl) -4-pyrrolidino-2H-pyran-2-one]
2 ml of pyrrolidine is added to 1.47 g of the compound represented by Chemical Formula 15 of FIG. 4 which is a 2-pyrone derivative and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 1.36 g (yield 86%) of yellow leafy crystals of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 62 in FIG. 17 was obtained.

常法にしたがって測定したところ、化学式62で表わされる2H−ピロン誘導体の融点は259乃至261℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.08(4H, m, pyrrolidino−H), 3.63(2H, m, pyrrolidino−H), 4.17(2H, m, pyrrolidino−H), 6.25(1H, s, 5−H), 7.48−7.60(3H, m, naphthyl−H), 7.67(1H, dd, J=1.4, 7.3 Hz, naphthyl−H), 7.91(1H, m, naphthyl−4−H), 7.99(1H, d, J=8.5 Hz, naphthyl−H), 8.14(1H, d, J=9.6 Hz, naphthyl−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 62 was 259 to 261 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.08 (4H, m, pyrrolidino-H), 3.63 (2H, m, pyrrolidino-H), 4.17. (2H, m, pyrrolidino-H), 6.25 (1H, s, 5-H), 7.48-7.60 (3H, m, naphthyl-H), 7.67 (1H, dd, J = 1.4, 7.3 Hz, naphthyl-H), 7.91 (1H, m, naphthyl-4-H), 7.99 (1H, d, J = 8.5 Hz, naphthyl-H), 8 .14 (1H, d, J = 9.6 Hz, naphthyl-H) were observed at respective peaks.

[実施例40] [3−シアノ−4−モルホリノ−6−(1−ナフチル)−2H−ピラン−2−オン]
2−ピロン誘導体である図4の化学式15で表わされる化合物1.47gにモルホリン2mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図17の化学式63で表わされる4−アミノ−2H−ピラン−2−オン誘導体の白色プリズム状晶が1.46g(収率88%)得られた。
[Example 40] [3-Cyano-4-morpholino-6- (1-naphthyl) -2H-pyran-2-one]
2 ml of morpholine is added to 1.47 g of the compound represented by Chemical Formula 15 of FIG. 4 which is a 2-pyrone derivative, and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 1.46 g (yield 88%) of white prismatic crystals of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 63 in FIG. 17 were obtained.

常法にしたがって測定したところ、化学式63で表わされる2H-ピロン誘導体の融点は206乃至208℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が3.89(8H, m, morpholino−H), 6.33(1H, s, 5−H), 7.51(2H, m, naphthyl−H), 7.58(1H, m, naphthyl−H), 7.67(1H, m, naphthyl−H), 7.99(2H, m, naphthyl−H), 8.11(2H, d, J=6.3 Hz, naphthyl−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 63 was 206 to 208 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 3.89 (8H, m, morpholino-H), 6.33 (1H, s, 5-H), 7.51. (2H, m, naphthyl-H), 7.58 (1H, m, naphthyl-H), 7.67 (1H, m, naphthyl-H), 7.99 (2H, m, naphthyl-H), 8 .11 (2H, d, J = 6.3 Hz, naphthyl-H) were observed at respective peaks.

[実施例41] [3−シアノ−4−ピロリジノ−6−(2−チエニル)−2H−ピラン−2−オン]
2−ピロン誘導体である図5の化学式19で表わされる化合物1.09gにピロリジン2 mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図18の化学式64で表わされる4−アミノ−2H−ピラン−2−オン誘導体の黄色針状晶が0.57g(収率42%)得られた。
[Example 41] [3-Cyano-4-pyrrolidino-6- (2-thienyl) -2H-pyran-2-one]
2 ml of pyrrolidine is added to 1.09 g of the compound represented by Chemical Formula 19 of FIG. 5 which is a 2-pyrone derivative and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 0.57 g (yield 42%) of yellow needle-like crystals of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 64 in FIG. 18 was obtained.

常法にしたがって測定したところ、化学式64で表わされる2H−ピロン誘導体の融点は283乃至285℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が2.08(4H, m, pyrrolidino−H), 3.66(2H, m, pyrrolidino−H), 4.11(2H, m, pyrrolidino−H), 6.18(1H, s, 5−H), 7.13(1H, dd, J=5.2, 4.9 Hz, thienyl−4−H), 7.51(1H, dd, J=5.2, 4.9 Hz, thienyl−5−H), 7.66(1H, dd, thienyl−3−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 64 was 283 to 285 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 2.08 (4H, m, pyrrolidino-H), 3.66 (2H, m, pyrrolidino-H), 4.11. (2H, m, pyrrolidino-H), 6.18 (1H, s, 5-H), 7.13 (1H, dd, J = 5.2, 4.9 Hz, thienyl-4-H), 7 Peaks were observed at the positions of .51 (1H, dd, J = 5.2, 4.9 Hz, thienyl-5-H), 7.66 (1H, dd, thienyl-3-H).

[実施例42] [3−シアノ−4−モルホリノ−6−(2−チエニル)−2H−ピラン−2−オン]
2−ピロン誘導体である図5の化学式19で表わされる化合物1.09gにピロリジン2mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図18の化学式65で表わされる4−アミノ−2H−ピラン−2−オン誘導体の黄色小葉状晶が0.69g(収率47%)得られた。
[Example 42] [3-Cyano-4-morpholino-6- (2-thienyl) -2H-pyran-2-one]
2 ml of pyrrolidine is added to 1.09 g of the compound represented by Chemical Formula 19 of FIG. 5 which is a 2-pyrone derivative, and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 0.69 g (yield 47%) of yellow leafy crystals of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 65 in FIG. 18 was obtained.

常法にしたがって測定したところ、化学式65で表わされる2H−ピロン誘導体の融点は249乃至250℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が3.88(8H, m, morpholino−H), 6.26(1H, s, 5−H), 7.16(1H, dd, J=4.9 Hz, thienyl−4−H), 7.56(1H, dd, J=4.9, 5.2 Hz, thienyl−5−H), 7.70(1H, dd, J=3.8 Hz, thienyl−3−H)の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 65 was 249 to 250 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 3.88 (8H, m, morpholino-H), 6.26 (1H, s, 5-H), 7.16. (1H, dd, J = 4.9 Hz, thienyl-4-H), 7.56 (1H, dd, J = 4.9, 5.2 Hz, thienyl-5-H), 7.70 (1H , Dd, J = 3.8 Hz, thienyl-3-H), respectively.

[実施例43] [3−シアノ−6−(2−ベンゾチエニル)−4−ピペリヂノ−2H−ピラン−2−オン]
2−ピロン誘導体である図5の化学式20で表わされる化合物1.61gにピペリジン2 mlを加えて150℃で10分間加熱する。冷後メタノ-ル2mlを加え結晶化させ、吸引濾取する。メタノールから再結晶すると、図19の化学式66で表わされる4−アミノ−2H−ピラン−2−オン誘導体の黄色小葉状晶が0.91g(収率53%)得られた。
[Example 43] [3-Cyano-6- (2-benzothienyl) -4-piperidino-2H-pyran-2-one]
2 ml of piperidine is added to 1.61 g of the compound represented by Chemical Formula 20 of FIG. 5 which is a 2-pyrone derivative and heated at 150 ° C. for 10 minutes. After cooling, 2 ml of methanol is added to crystallize, and suction filtration is performed. When recrystallized from methanol, 0.91 g (yield: 53%) of yellow leafy crystals of the 4-amino-2H-pyran-2-one derivative represented by Chemical Formula 66 in FIG. 19 was obtained.

常法にしたがって測定したところ、化学式66で表わされる2H−ピロン誘導体の融点は247乃至248℃であった重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が1.82(6H, m, piperidino−H), 3.83(4H, m, piperidino−H), 6.35(1H, s, 5−H), 7.41−7.46(2H, m, bennzothienyl−H), 7.81−7.86(2H, m, benzothienyl−H), 7.97(1H, s, bnezothienyl−3−H) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by chemical formula 66 was 247 to 248 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 1. 82 (6H, m, piperidino-H), 3.83 (4H, m, piperidino-H), 6.35 (1H, s, 5-H), 7.41-7.46 (2H, m, benzothienyl -H), 7.81-7.86 (2H, m, benzothienyl-H), 7.97 (1H, s, bnezothienyl-3-H), respectively.

[実施例44] [4−メチルアミノ−3−メトキシカルボニル−6−フェニル−2H−ピラン−2−オン]
2−ピロン誘導体である図7の化学式28で表わされる化合物0.584gとメチルアミン40%水溶液2mlとを50mlのメタノールに加え、この溶液を3時間加熱環流した。反応後溶媒を留去し、残渣に10mlのメタノールを加え吸引濾取する。この生成物をメタノールで再結晶すると、図19の化学式67で表わされる無色針状晶が0.492g(収率95%)得られた。
[Example 44] [4-Methylamino-3-methoxycarbonyl-6-phenyl-2H-pyran-2-one]
0.584 g of the 2-pyrone derivative represented by the chemical formula 28 in FIG. 7 and 2 ml of a 40% aqueous solution of methylamine were added to 50 ml of methanol, and this solution was heated to reflux for 3 hours. After the reaction, the solvent is distilled off, and 10 ml of methanol is added to the residue and suction filtered. When this product was recrystallized from methanol, 0.492 g (yield 95%) of colorless needles represented by Chemical Formula 67 in FIG. 19 was obtained.

常法にしたがって測定したところ、化学式67で表わされる2H−ピロン誘導体の融点は162乃至165℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が3.12(3H, d, J=4.9 Hz, NMe), 3.89(3H, s, OMe), 6.46(1H, s, 5−H), 7.40−7.52(3H, m, phenyl−H), 7.80−7.91(2H, m, phenyl−H), 10.00(1H, br s, NH)の位置にそれぞれピークが観測された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 67 was 162 to 165 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 3.12 (3H, d, J = 4.9 Hz, NMe), 3.89 (3H, s, OMe), 6.46 (1H, s, 5-H), 7.40-7.52 (3H, m, phenyl-H), 7.80-7.91 (2H, m, phenyl-H), 10.00 A peak was observed at each position (1H, br s, NH).

[実施例45] [4−ベンジルアミノ−3−メトキシカルボニル−6−フェニル−2H−ピラン−2−オン]
2−ピロン誘導体である図23の化学式87で表わされる化合物0.584gとベンジルアミン0.267gとを50mlのメタノールに加え、この溶液を30分加熱環流した。反応後溶媒を留去し、残渣に1mlのメタノールを加え吸引濾取する。この生成物をメタノールで再結晶すると、図19の化学式68で表わされる無色針状晶が0.502g(収率75%)得られた。
Example 45 [4-Benzylamino-3-methoxycarbonyl-6-phenyl-2H-pyran-2-one]
23, which is a 2-pyrone derivative, represented by the chemical formula 87 in FIG. 23 and 0.267 g of benzylamine were added to 50 ml of methanol, and this solution was heated to reflux for 30 minutes. After the reaction, the solvent is distilled off, 1 ml of methanol is added to the residue, and suction filtration is performed. When this product was recrystallized from methanol, 0.502 g (yield 75%) of colorless needle crystals represented by Chemical Formula 68 in FIG. 19 were obtained.

常法にしたがって測定したところ、化学式68で表わされる2H−ピロン誘導体の融点は197乃至198℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が3.90(3H, s, OMe), 4.64(2H, d, J=5.8 Hz, N−CH2−), 6.44(1H, s, 5−H), 7.32−7.52(8H, m, phenyl−H), 7.50−7.80(2H, m, phenyl−H), 10.44(1H, br s, NH)の位置にそれぞれピークが観測された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 68 was 197 to 198 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 3.90 (3H, s, OMe), 4.64 (2H, d, J = 5.8 Hz, N—CH 2. -), 6.44 (1H, s, 5-H), 7.32-7.52 (8H, m, phenyl-H), 7.50-7.80 (2H, m, phenyl-H), A peak was observed at a position of 10.44 (1H, br s, NH).

[実施例46] [4−ジメチルアミノ−3−メトキシカルボニル−6−フェニル−2H−ピラン−2−オン]
2−ピロン誘導体である図7の化学式28で表わされる化合物0.584gとジメチルアミン50%水溶液2mlとを50mlのメタノールに加え、この溶液を1時間加熱環流した。反応後溶媒を留去し、残渣を大量のメタノールで再結晶すると、図19の化学式69で表わされる無色針状晶が0.540g(収率98%) 得られた。
[Example 46] [4-Dimethylamino-3-methoxycarbonyl-6-phenyl-2H-pyran-2-one]
0.584 g of the 2-pyrone derivative represented by the chemical formula 28 in FIG. 7 and 2 ml of a 50% aqueous dimethylamine solution were added to 50 ml of methanol, and this solution was heated to reflux for 1 hour. After the reaction, the solvent was distilled off, and the residue was recrystallized with a large amount of methanol to obtain 0.540 g (yield 98%) of colorless needle crystals represented by Chemical Formula 69 in FIG.

常法にしたがって測定したところ、化学式69で表わされる2H−ピロン誘導体の融点は140乃至145℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が3.11(6H, s, NMe2), 3.89(3H, s, OMe), 6.47(1H, s, 5−H), 7.40−7.52(3H, m, phenyl−H), 7.70−7.85(2H, m, phenyl−H)の位置にそれぞれのピークが観測された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 69 was 140 to 145 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 3.11 (6H, s, NMe2), 3.89 (3H, s, OMe), 6.47 (1H, s , 5-H), 7.40-7.52 (3H, m, phenyl-H), 7.70-7.85 (2H, m, phenyl-H), respectively.

[実施例47] [4−メチルアミノ−3−メトキシカルボニル−6−(4−メトキシフェニル)−2H−ピラン−2−オン]
2−ピロン誘導体である図7の化学式29で表わされる化合物0.644gとメチルアミン40%水溶液2mlとを50mlのメタノールに加え、この溶液を3時間加熱環流した。反応後溶媒を留去し、残渣を大量のメタノールで再結晶すると、図19の化学式70で表わされる無色針状晶が0.549g(収率95%)得られた。
[Example 47] [4-Methylamino-3-methoxycarbonyl-6- (4-methoxyphenyl) -2H-pyran-2-one]
To the 50 ml of methanol was added 0.644 g of the 2-pyrone derivative represented by the chemical formula 29 in FIG. 7 and 2 ml of a 40% aqueous solution of methylamine, and this solution was heated to reflux for 3 hours. After the reaction, the solvent was distilled off, and the residue was recrystallized with a large amount of methanol to obtain 0.549 g (yield 95%) of colorless needle crystals represented by the chemical formula 70 in FIG.

常法にしたがって測定したところ、化学式70で表わされる2H−ピロン誘導体の融点は181乃至186℃であった。エタノール中で紫外吸収スペクトルを測定したところ、波長341nmに吸収極大を示した。また、固体状態で蛍光スペクトルを測定したところ、励起波長270nm、蛍光極大453nmを示した。さらに、重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が3.11(3H, d, J=5.2 Hz, NMe), 3.88(3H, s, OMe), 3.89(3H, s, OMe), 6.34(1H, s, 5−H), 6.97(2H, d, J=8.8 Hz, 3’, 5’−H), 7.85(2H, d, J=8.8 Hz, 2’, 6’−H), 9.96(1H, br s, NH) の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 70 was 181 to 186 ° C. When the ultraviolet absorption spectrum was measured in ethanol, it showed an absorption maximum at a wavelength of 341 nm. When the fluorescence spectrum was measured in a solid state, an excitation wavelength of 270 nm and a fluorescence maximum of 453 nm were shown. Furthermore, when 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 3.11 (3H, d, J = 5.2 Hz, NMe), 3.88 (3H, s, OMe). ), 3.89 (3H, s, OMe), 6.34 (1H, s, 5-H), 6.97 (2H, d, J = 8.8 Hz, 3 ′, 5′-H), Peaks were observed at the positions of 7.85 (2H, d, J = 8.8 Hz, 2 ′, 6′-H) and 9.96 (1H, br s, NH), respectively.

[実施例48] [4−ジメチルアミノ−3−メトキシカルボニル−6−(4−メトキシフェニル)−2H−ピラン−2−オン]
2−ピロン誘導体である図7の化学式29で表わされる化合物0.644gとジメチルアミン40%水溶液2mlとを50mlのメタノールに加え、この溶液を1時間加熱環流した。反応後溶媒を留去し、残渣を大量のメタノールで再結晶すると、図20の化学式71で表わされる無色針状晶が0.432g(収率72%)得られた。
Example 48 [4-Dimethylamino-3-methoxycarbonyl-6- (4-methoxyphenyl) -2H-pyran-2-one]
To the 50 ml of methanol was added 0.644 g of the 2-pyrone derivative represented by the chemical formula 29 in FIG. 7 and 2 ml of a dimethylamine 40% aqueous solution, and this solution was heated to reflux for 1 hour. After the reaction, the solvent was distilled off, and the residue was recrystallized with a large amount of methanol to obtain 0.432 g (yield 72%) of colorless needle crystals represented by Chemical Formula 71 in FIG.

常法にしたがって測定したところ、化学式71で表わされる2H−ピロン誘導体の融点は150乃至151℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が3.09(3H, s, NMe2), 3.85(3H, s, OMe), 3.88(3H, s, OMe), 6.36(1H, s, 5−H), 6.93(2H, d, J=9.1 Hz, 3’, 5’−H), 7.77(1H, d, J=9.1 Hz)の位置にそれぞれのピークが観測された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 71 was 150 to 151 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 3.09 (3H, s, NMe2), 3.85 (3H, s, OMe), 3.88 (3H, s , OMe), 6.36 (1H, s, 5-H), 6.93 (2H, d, J = 9.1 Hz, 3 ′, 5′-H), 7.77 (1H, d, J = 9.1 Hz), each peak was observed.

[実施例49] [3−メトキシカルボニル−6−(4−メトキシフェニル)−4−ピロリジノ−2H−ピラン−2−オン]
2−ピロン誘導体である図7の化学式29で表わされる化合物0.644gとピロリジン0.203gとを50mlのメタノールに加え、この溶液を3時間加熱環流した。反応後溶媒を留去し、残渣をメタノールで再結晶すると、図20の化学式72で表わされる無色針状晶が0.549g(収率72%)得られた。
Example 49 [3-Methoxycarbonyl-6- (4-methoxyphenyl) -4-pyrrolidino-2H-pyran-2-one]
A compound having a 2-pyrone derivative represented by the chemical formula 29 of FIG. 7 (0.644 g) and pyrrolidine (0.203 g) were added to 50 ml of methanol, and this solution was heated to reflux for 3 hours. After the reaction, the solvent was distilled off, and the residue was recrystallized from methanol to obtain 0.549 g (yield 72%) of colorless needle crystals represented by Chemical Formula 72 in FIG.

常法にしたがって測定したところ、化学式72で表わされる2H−ピロン誘導体の融点は185乃至186℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が1.58(4H, m, pyrrolidino−H), 3.48(4H, m, pyrrolidino−H), 3.86(3H, s, OMe), 3.90(3H, s, OMe), 6.31(1H, s, 5−H), 6.95(2H, d, J=9.1 Hz, 3’, 5’−H), 7.77(2H, d, J=9.1 Hz, 2’, 6’−H)にそれぞれピークが観測された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 72 was 185 to 186 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 1.58 (4H, m, pyrrolidino-H), 3.48 (4H, m, pyrrolidino-H), 3.86. (3H, s, OMe), 3.90 (3H, s, OMe), 6.31 (1H, s, 5-H), 6.95 (2H, d, J = 9.1 Hz, 3 ′, 5'-H) and 7.77 (2H, d, J = 9.1 Hz, 2 ', 6'-H), respectively.

[実施例50] [3−シアノ−6−(4−ジメチルアミノ)スチリル−4−モルホリノ−2H−ピラン−2−オン]
2−ピロン誘導体である図6の化学式24で表わされる化合物0.624gとモルホリン0.435gとを100mlのメタノールに加え、この溶液を40時間加熱環流した。反応後溶媒を留去し、残渣に10mlのメタノールを加え吸引濾取する。この生成物を大量のメタノールで再結晶すると図20の化学式73で表わされる赤色針状晶が0.210g(収率30%)得られた。
Example 50 [3-Cyano-6- (4-dimethylamino) styryl-4-morpholino-2H-pyran-2-one]
0.624 g of the compound represented by the chemical formula 24 of FIG. 6 and 0.435 g of morpholine, which are 2-pyrone derivatives, were added to 100 ml of methanol, and this solution was heated to reflux for 40 hours. After the reaction, the solvent is distilled off, and 10 ml of methanol is added to the residue and suction filtered. When this product was recrystallized with a large amount of methanol, 0.210 g (yield 30%) of red needle crystals represented by the chemical formula 73 in FIG. 20 were obtained.

常法にしたがって測定したところ、化学式73で表わされる2H−ピロン誘導体の融点は245乃至255℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が3.07(6H, s, 2xNMe2), 3.82(8H, m, morpholino−H), 5.83(1H, s, 5−H), 6.34(1H, d, J=15.7 Hz, =CH), 6.67(2H, d, J=9.0 Hz, 3’, 5’−H), 7.40(2H, d, J=9.0 Hz, 2’, 6’−H), 7.54(1H, d, J=15.7 Hz, =CH)の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 73 was 245 to 255 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 3.07 (6H, s, 2 × NMe2), 3.82 (8H, m, morpholino-H), 5.83 (1H). , S, 5-H), 6.34 (1H, d, J = 15.7 Hz, = CH), 6.67 (2H, d, J = 9.0 Hz, 3 ', 5'-H) , 7.40 (2H, d, J = 9.0 Hz, 2 ', 6'-H), 7.54 (1H, d, J = 15.7 Hz, = CH) It was.

[実施例51] [ジエチル 3-シアノ−6−フェニル−2−オキソ(2H)−ピラン−4−イルマロナート]
2H−ピロン誘導体である図2の化学式1で表される化合物1.22g及びジエチルマロナート1.60gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.5gを加え、室温で1時間撹拌した。この反応混合物を水500mlに注ぎだし、10%塩酸で酸性とする。析出する結晶を吸引虜取し、エタノールから再結晶すると、図21の化学式75で表わされるピラン誘導体の白色針状結晶が1.48g(収率84%)得られた。
Example 51 Diethyl 3-cyano-6-phenyl-2-oxo (2H) -pyran-4-ylmalonate
2H-pyrone derivative 1.22 g of the compound represented by Chemical Formula 1 in FIG. 2 and 1.60 g of diethyl malonate are dissolved in 20 ml of dimethyl sulfoxide, and 0.5 g of powdered caustic soda is added thereto at room temperature. Stir for 1 hour. The reaction mixture is poured into 500 ml of water and acidified with 10% hydrochloric acid. The precipitated crystals were sucked and recrystallized from ethanol to obtain 1.48 g (yield 84%) of white needle-like crystals of a pyran derivative represented by Chemical Formula 75 in FIG.

常法にしたがって測定したところ、化学式75で表わされる2H−ピロン誘導体の融点は146乃至148℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が1.34(6H, t, J=7.2 Hz, O−CH2−CH3), 4.29(4H, m, O−CH2−), 5.02(1H, s, −CH−), 7.17(1H, s, 5−H), 7.48−7.58(3H, m, phenyl−H), 7.88−7.92(2H, m, phenyl−H) の位置にそれぞれのピークが観測された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 75 was 146 to 148 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 1.34 (6H, t, J = 7.2 Hz, O—CH 2 —CH 3), 4.29 (4H, m , O-CH2-), 5.02 (1H, s, -CH-), 7.17 (1H, s, 5-H), 7.48-7.58 (3H, m, phenyl-H), Each peak was observed at a position of 7.88-7.92 (2H, m, phenyl-H).

[実施例52] [ジメチル 3-シアノ−6−(4−メトキシフェニル)−2−オキソ(2H)−ピラン−4−イルマロナート]
2H−ピロン誘導体である図2の化学式4で表される化合物1.36g及びジメチルマロナート2.00gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.5gを加え、室温で1時間撹拌した。この反応混合物を水500mlに注ぎだし、10%塩酸で酸性とする。析出する結晶を吸引虜取し、エタノールから再結晶すると、図21の化学式76で表わされるピラン誘導体の黄色針状結晶が1.42g(収率80%)得られた。
Example 52 [Dimethyl 3-cyano-6- (4-methoxyphenyl) -2-oxo (2H) -pyran-4-ylmalonate]
2.36 g of the 2H-pyrone derivative compound represented by Chemical Formula 4 in FIG. 2 and 2.00 g of dimethyl malonate are dissolved in 20 ml of dimethyl sulfoxide, and 0.5 g of powdered caustic soda is added thereto at room temperature. Stir for 1 hour. The reaction mixture is poured into 500 ml of water and acidified with 10% hydrochloric acid. The precipitated crystals were sucked and recrystallized from ethanol to obtain 1.42 g (yield 80%) of yellow needle-like crystals of a pyran derivative represented by Chemical Formula 76 in FIG.

常法にしたがって測定したところ、化学式76で表わされる2H−ピロン誘導体の融点は180乃至183℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が3.86(6H, s, OMe), 3.90(3H, s, OMe), 5.03(1H, s, −CH−), 6.98(1H, s, 5−H), 7.13(2H, dd, J=0.9, 8.5 Hz, 3’, 5’−H), 7.87(2H, d, J=8.5 Hz, 2’, 6’−H) の位置にそれぞれのピークが観測された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 76 was 180 to 183 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 3.86 (6H, s, OMe), 3.90 (3H, s, OMe), 5.03 (1H, s , -CH-), 6.98 (1H, s, 5-H), 7.13 (2H, dd, J = 0.9, 8.5 Hz, 3 ', 5'-H), 7.87. Each peak was observed at the position (2H, d, J = 8.5 Hz, 2 ′, 6′−H).

[実施例53] [ジメチル 3-シアノ−6−(4−N,N−ジメチルアミノフェニル)−2−オキソ(2H)−ピラン−4−イルマロナート]
2H−ピロン誘導体である図4の化学式12で表される化合物1.43g及びジメチルマロナート2.00gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.5gを加え、室温で1時間撹拌した。この反応混合物を水500mlに注ぎだし、10%塩酸で中和する。析出する結晶を吸引虜取し、メタノールから再結晶すると、図21の化学式77で表わされるピラン誘導体の赤色針状結晶が1.44g(収率78%)得られた。
[Example 53] [Dimethyl 3-cyano-6- (4-N, N-dimethylaminophenyl) -2-oxo (2H) -pyran-4-ylmalonate]
4H, which is a 2H-pyrone derivative, is dissolved in 20 ml of dimethyl sulfoxide, and 1.4 g of dimethyl malonate is dissolved in 20 ml of dimethyl sulphoxide. Stir for 1 hour. The reaction mixture is poured into 500 ml of water and neutralized with 10% hydrochloric acid. The precipitated crystals were sucked and recrystallized from methanol to obtain 1.44 g (yield 78%) of red needle crystals of a pyran derivative represented by Chemical Formula 77 in FIG.

常法にしたがって測定したところ、化学式77で表わされる2H−ピロン誘導体の融点は187乃至190℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が3.12(6H, s, NMe2), 3.85(6H, s, OMe), 4.99(1H, s, −CH−), 6.69(2H, d, J=9.1 Hz, 3’, 5’−H), 6.90(1H, s, 5−H), 7.79(2H, d, J=9.1 Hz, 2’, 6’−H) の位置にそれぞれのピークが観測された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 77 was 187 to 190 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 3.12 (6H, s, NMe2), 3.85 (6H, s, OMe), 4.99 (1H, s , -CH-), 6.69 (2H, d, J = 9.1 Hz, 3 ', 5'-H), 6.90 (1H, s, 5-H), 7.79 (2H, d , J = 9.1 Hz, 2 ′, 6′−H), each peak was observed.

[実施例54] [ジエチル 3-シアノ−6−(4−N,N−ジメチルフェニル)−2−オキソ(2H)−ピラン−4−イルマロナート]
2H−ピロン誘導体である図4の化学式12で表される化合物1.36g及びジエチルマロナート1.60gとをジメチルスフォキシド20mlに溶解し、これに粉末の苛性ソーダ0.5gを加え、室温で1時間撹拌した。この反応混合物を水500mlに注ぎだし、10%塩酸で酸性とする。析出する結晶を吸引虜取し、エタノールから再結晶すると、図21の化学式78で表わされるピラン誘導体の橙赤色針状結晶が1.62g(収率81%)得られた。
Example 54 Diethyl 3-cyano-6- (4-N, N-dimethylphenyl) -2-oxo (2H) -pyran-4-ylmalonate
A compound of 1.36 g represented by Chemical Formula 12 in FIG. 4 and 1.60 g of diethyl malonate, which is a 2H-pyrone derivative, is dissolved in 20 ml of dimethyl sulfoxide, and 0.5 g of powdered caustic soda is added thereto at room temperature. Stir for 1 hour. The reaction mixture is poured into 500 ml of water and acidified with 10% hydrochloric acid. The precipitated crystals were sucked and recrystallized from ethanol to obtain 1.62 g (yield 81%) of orange-red needle crystals of a pyran derivative represented by Chemical Formula 78 in FIG.

常法にしたがって測定したところ、化学式78で表わされる2H−ピロン誘導体の融点は194乃至198℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が1.33(6H, t, J=7.2 Hz, O−CH2−CH3), 3.11(6H, s, NMe2), 4.30(4H, m, O−CH2−), 4.96(1H, s, −CH−), 6.69(2H, d, J=9.3 Hz, 3’, 5’−H), 6.91(1H, s, 5−H), 7.79(2H, d, J=9.3, Hz, 2’, 6’−H) の位置にそれぞれのピークが観測された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 78 was 194 to 198 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 1.33 (6H, t, J = 7.2 Hz, O—CH 2 —CH 3), 3.11 (6H, s , NMe2), 4.30 (4H, m, O-CH2-), 4.96 (1H, s, -CH-), 6.69 (2H, d, J = 9.3 Hz, 3 ', 5 '-H), 6.91 (1H, s, 5-H), 7.79 (2H, d, J = 9.3, Hz, 2', 6'-H) It was done.

[実施例55] [ジメチル 3−シアノ−6−(4−ジメチルアミノ)スチリル−2−オキソ(2H)−ピラン−4−イルマロナート]
2−ピロン誘導体である図6の化学式25で表わされる化学物0.624gとジメチルマロナート0.66gとをジメチルスホキシド20mlに溶解し、この溶液の中に炭酸カリ0.55gを加え2時間室温で撹拌する。反応終了後、反応混合物を水300ml中に注ぎだし、10%塩酸で中和する。析出する沈殿物を吸引濾取する。乾燥後メタノールから再結晶すると図22の化学式81で表わされる黒赤色結晶が0.667g(収率84%)得られた。
Example 55 [Dimethyl 3-cyano-6- (4-dimethylamino) styryl-2-oxo (2H) -pyran-4-ylmalonate]
A chemical compound represented by the chemical formula 25 in FIG. 6 (0.624 g) and dimethyl malonate (0.66 g), which are 2-pyrone derivatives, are dissolved in 20 ml of dimethyl sulfoxide, and 0.55 g of potassium carbonate is added to this solution for 2 hours. Stir at room temperature. After completion of the reaction, the reaction mixture is poured into 300 ml of water and neutralized with 10% hydrochloric acid. The deposited precipitate is filtered off with suction. When recrystallized from methanol after drying, 0.667 g (yield 84%) of black-red crystals represented by Chemical Formula 81 in FIG. 22 was obtained.

常法にしたがって測定したところ、化学式81で表わされる2H−ピロン誘導体の融点は200乃至202℃であった。重クロロホルム中で1H−NMRを測定したところ、化学シフトδ(ppm, TMS)が3.07(6H, s, NMe2), 3.04(3H, s, OMe), 4.95(1H, s, −CH−), 6.08(1H, s, 5−H), 6.45(1H, d, J=15.4 Hz, =CH), 6.67(2H, d, J=9.0 Hz, 3’, 5’−H), 7.44(2H, dd, J=2.2, 9.0 Hz, 2’, 6’−H), 7.63(1H, d, J=15.4 Hz, =CH)の位置にそれぞれピークが観察された。   When measured according to a conventional method, the melting point of the 2H-pyrone derivative represented by Chemical Formula 81 was 200 to 202 ° C. When 1H-NMR was measured in deuterated chloroform, the chemical shift δ (ppm, TMS) was 3.07 (6H, s, NMe2), 3.04 (3H, s, OMe), 4.95 (1H, s , -CH-), 6.08 (1H, s, 5-H), 6.45 (1H, d, J = 15.4 Hz, = CH), 6.67 (2H, d, J = 9. 0 Hz, 3 ', 5'-H), 7.44 (2H, dd, J = 2.2, 9.0 Hz, 2', 6'-H), 7.63 (1H, d, J = A peak was observed at a position of 15.4 Hz, = CH).

化学式1乃至化学式81(一部、実施例参照)の2H−ピロン誘導体の物性を表1乃至表4に纏めた。吸収極大の波長は、エタノールに溶解して測定したものであり、また、蛍光スペクトルは固体状態で島津UV3100PCを用いて測定した。なお、対照には、前述の[化24]で表わせる公知のトリス(8−キノリノール)アルミニウム化合物を用いた。   Tables 1 to 4 summarize the physical properties of 2H-pyrone derivatives of Chemical Formula 1 to Chemical Formula 81 (partly, see Examples). The wavelength of the absorption maximum was measured by dissolving in ethanol, and the fluorescence spectrum was measured using a Shimadzu UV3100PC in a solid state. For the control, a known tris (8-quinolinol) aluminum compound represented by the above [Chemical Formula 24] was used.

Figure 2006206523
Figure 2006206523

表1及び表2の結果に見られるように、この実施の形態の2H−ピロン誘導体においては、対照の[化24]の化合物と比較して、一部低い蛍光を示す化合物もあるが、ほとんどの化合物が同等もしくはそれ以上の蛍光を示した。化学式1乃至化学式36は4−メチルチオ−2H−ピロン誘導体で6位のアリール基によってその蛍光の度合が相当異なる。6位のフェニル基では一般にメトキシ基のような電子供与基の方が対照の化合物と比較して強い蛍光を示した。そのメトキシ基でもその位置及びその個数によってもその蛍光の強さは異なる。また、ナフチル基等の2環性アリール基でもその蛍光は強い。このことは6位の多環性芳香族誘導体でも強い蛍光を示すことが示唆される。化合物フェニル基上に電子吸引基のシアノ基がある化学式13で表わせる化合物の蛍光は全く蛍光を示さない。同様に電子不足型複素環化合物のピリジル基を6位に持つ化学式21で表わせる化合物でも同様、その蛍光は微弱である。ところが同じ6位に電子過剰型の複素環化合物であるフランやチオフェン誘導体、化学式17乃至化学式20で表わせる化合物ではその蛍光は強くなる。2H−ピロン環とアリール基との間に二重結合を導入した6−スチル−2H−ピロン誘導体(化学式22乃至化学式27)でも同様相当の蛍光を示す。   As can be seen from the results in Tables 1 and 2, in the 2H-pyrone derivative of this embodiment, there are some compounds that show some lower fluorescence as compared to the control [Chemical Formula 24] compound, This compound showed the same or higher fluorescence. Chemical formulas 1 to 36 are 4-methylthio-2H-pyrone derivatives, and the degree of fluorescence varies considerably depending on the 6-position aryl group. In the 6-position phenyl group, an electron donating group such as a methoxy group generally showed stronger fluorescence than the control compound. The fluorescence intensity varies depending on the position and the number of methoxy groups. In addition, the fluorescence is strong even in bicyclic aryl groups such as naphthyl groups. This suggests that even the 6-position polycyclic aromatic derivative exhibits strong fluorescence. The fluorescence of the compound represented by the chemical formula 13 having a cyano group as an electron withdrawing group on the compound phenyl group does not show fluorescence at all. Similarly, the fluorescence of the electron-deficient heterocyclic compound represented by the chemical formula 21 having the pyridyl group at the 6-position is weak. However, in the same 6-position, an electron-rich heterocyclic compound such as a furan or thiophene derivative, or a compound represented by Chemical Formula 17 to Chemical Formula 20 has strong fluorescence. The 6-stil-2H-pyrone derivative (Chemical Formula 22 to Chemical Formula 27) in which a double bond is introduced between the 2H-pyrone ring and the aryl group similarly exhibits a corresponding fluorescence.

蛍光色素で赤色蛍光は、有機電界素子用色素の開発にとってきわめて重要である。本実施の形態の2H−ピロン誘導体の中で、6位のフェニル基のパラ位にジメチルアミノ基が導入された化学式12で示される化合物の吸収極大波長は、467nmでその蛍光スペクトルは波長608nmで公知の[化7]で表される化合物の波長589nmより長波長側で発光する。さらにこの化合物に二重結合を導入した化学式25で示される化合物は波長610nmで発光する赤色発光体である。化学式26で表されるN−エチル体は614nmで発光し、化学式27で表わせる化合物は波長620nmで発光する。これは本実施の形態の4−メチルチオ−2H−ピロン誘導体の中で最も長波長側で発光する化合物である。これら一連のパラN,N−ジメチルアミノフェニル誘導体は赤色有機電界素子として極めて有用である。   Red fluorescence as a fluorescent dye is extremely important for the development of dyes for organic electric field elements. Among the 2H-pyrone derivatives of the present embodiment, the maximum absorption wavelength of the compound represented by Chemical Formula 12 in which a dimethylamino group is introduced at the para-position of the 6-position phenyl group is 467 nm, and the fluorescence spectrum is 608 nm. The compound represented by [Chemical Formula 7] emits light at a wavelength longer than the wavelength 589 nm. Furthermore, the compound represented by the chemical formula 25 in which a double bond is introduced into this compound is a red light emitter that emits light at a wavelength of 610 nm. The N-ethyl compound represented by Chemical Formula 26 emits light at 614 nm, and the compound represented by Chemical Formula 27 emits light at a wavelength of 620 nm. This is a compound that emits light on the longest wavelength side among the 4-methylthio-2H-pyrone derivatives of the present embodiment. These series of para N, N-dimethylaminophenyl derivatives are extremely useful as red organic electric field devices.

Figure 2006206523
Figure 2006206523

さらに重要な事は、表1に示しているように2H−ピロン誘導体の3位には電子吸引基としてシアノ基の存在は欠かせない事実であるが、表2に示すように電子吸引基としてメチルエステル基やスルホニル基のように、4位のメチルチオ基の硫黄原子との相互作用がある化合物では、その発光強度は対照とする[化24]で示される化合物よりも3.94倍であった。特に、スルホニル体である化学式36で示される化合物は実に11.27倍の発光.能を示した。本実施の形態の範囲はこの3位の置換基が種々の電子吸引性置換基におよぶ事を意味している。それは各種メチルエステル基、エチルエステル基のようなアルキル基やアリール基も含まれる。またアセチル基やアロイル基、それに種々のアリール基も含む。また、アリール基としてフェニル基のみを示しているが、フェニル基に限定されるものではない。このアリール基として多環性アリール基をはじめ各種複素環化合物や、スチリール基も含んでいる。さらにアリール基上の置換着としては電子吸引基やメトキシ基やアミノ基等の電子供与基全般を意味している。   More importantly, as shown in Table 1, the presence of a cyano group as an electron withdrawing group is indispensable at the 3 position of the 2H-pyrone derivative. For compounds having an interaction with the sulfur atom of the methylthio group at the 4-position, such as a methyl ester group or a sulfonyl group, the emission intensity was 3.94 times that of the compound represented by [Chem. It was. In particular, the compound represented by Chemical Formula 36, which is a sulfonyl compound, has a light emission of 11.27 times. Showed the ability. The range of this embodiment means that the substituent at the 3-position extends to various electron-withdrawing substituents. It includes alkyl groups and aryl groups such as various methyl ester groups and ethyl ester groups. Also included are acetyl groups, aroyl groups, and various aryl groups. Moreover, although only the phenyl group is shown as an aryl group, it is not limited to a phenyl group. The aryl group includes a polycyclic aryl group, various heterocyclic compounds, and a styryl group. Further, the substitution on the aryl group means all electron donating groups such as electron withdrawing group, methoxy group and amino group.

化学式37乃至化学式73(一部、実施例参照)の2H−ピロン誘導体の物性を表3に纏めた。吸収極大の波長は、エタノールに溶解して測定したものであり、また、蛍光スペクトルは固体状態で島津UV3100PCを用いて測定した。なお、対照には、[化24]で表わせる公知のトリス(8−キノリンノール)アルミニウム(以下Alq3)化合物を用いた。   Table 3 summarizes the physical properties of 2H-pyrone derivatives of Chemical Formula 37 to Chemical Formula 73 (partly, see Examples). The wavelength of the absorption maximum was measured by dissolving in ethanol, and the fluorescence spectrum was measured using a Shimadzu UV3100PC in a solid state. As a control, a known tris (8-quinolinol) aluminum (hereinafter referred to as Alq3) compound represented by [Chemical Formula 24] was used.

Figure 2006206523
Figure 2006206523

表3に示すように化学式37や化学式38で表わせる4−メトキシ2H−ピロン誘導体は、対照化学物の[化24]で表わせる化合物よりは2.88倍強く発光し、3−シアノ−6−(4−メトキシフェニル)−4−メトキシ−2H−ピロンは5.14倍の発光を示した。このように4位のメチルチオ基を他の原子、すなわち酸素原子であるメトキシ基に変えるとその蛍光強度は強められる。ここではメトキシ基だけについて検討しているが、各種アルコキシ基やフェノキシ基等も本実施の形態に含まれる。   As shown in Table 3, the 4-methoxy-2H-pyrone derivative represented by Chemical Formula 37 and Chemical Formula 38 emitted 2.88 times stronger than the compound represented by [Chemical Formula 24] of the reference chemical, and 3-cyano-6 -(4-Methoxyphenyl) -4-methoxy-2H-pyrone showed 5.14 times light emission. Thus, when the methylthio group at the 4-position is changed to another atom, that is, a methoxy group which is an oxygen atom, the fluorescence intensity is enhanced. Although only the methoxy group is considered here, various alkoxy groups, phenoxy groups, and the like are also included in this embodiment.

化学式1乃至化学式36で表される4−メチルチオ−2H−ピロン誘導体と各種アミン誘導体との反応で得られる化学式37乃至化学式73で表される4−アミノ−2H−ピロン誘導体(一部、実施例参照)の吸収極大値はやや短波長側に移動するが、蛍光強度は著しく増強される。特に、化学式54で表わされる4−ジメチルアミノ−6−(4−N,N−ジメチルアミノフェニル)−3−シアノ−2H−ピロンは対照化合物の9.9倍であった。6位のフェニル基のパラ位にジメチルアミノ基のある化学式54乃至化学式57の吸収極大は400nmから410nmに、それらの蛍光スペクトルは517nm−606nmで発光する。化学式54の蛍光は対照化合物の9.90倍と4−アミノ−2H−ピロン誘導体の中で最も強かった。化学式65で表わされる6位の複素環基の3−シアノ−4−モルホリノ−6−チエニル−2H−ピロンも対照化合物の6.99倍の蛍光を示した。このように化学式39乃至化学式73の化合物は図23の化学式87で表わされる化合物と2級アミンとの反応で得られるが、1級アミンとの反応で得られ化学式70は蛍光が弱められる。   4-amino-2H-pyrone derivatives represented by chemical formulas 37 to 73 obtained by the reaction of 4-methylthio-2H-pyrone derivatives represented by chemical formulas 1 to 36 and various amine derivatives (partially, examples) The absorption maximum value of (see) shifts slightly to the short wavelength side, but the fluorescence intensity is remarkably enhanced. In particular, 4-dimethylamino-6- (4-N, N-dimethylaminophenyl) -3-cyano-2H-pyrone represented by the chemical formula 54 was 9.9 times the control compound. The absorption maximum of Chemical Formulas 54 to 57 having a dimethylamino group in the para position of the 6-position phenyl group is emitted from 400 nm to 410 nm, and their fluorescence spectrum emits at 517 nm to 606 nm. The fluorescence of Formula 54 was 9.90 times that of the control compound and the strongest among the 4-amino-2H-pyrone derivatives. The 6-position heterocyclic group 3-cyano-4-morpholino-6-thienyl-2H-pyrone represented by the chemical formula 65 also exhibited 6.99 times the fluorescence of the control compound. As described above, the compounds represented by the chemical formula 39 to the chemical formula 73 are obtained by the reaction of the compound represented by the chemical formula 87 of FIG. 23 with the secondary amine. However, the chemical formula 70 obtained by the reaction with the primary amine attenuates the fluorescence.

表4には4−メチルチオ−2H−ピロン誘導体の4位のメチルチオ基を活性メチレン化合物との反応で置換した化学式74乃至化学式81(一部、実施例参照)で表される化合物の物性を示している。吸収極大の波長は、エタノールに溶解して測定したものであり、また、蛍光スペクトルは固体状態で島津UV3100PCを用いて測定した。なお、対照には、[化24]で表わせる公知Alq3化合物を用いた。   Table 4 shows the physical properties of the compounds represented by chemical formula 74 to chemical formula 81 (see some examples) in which the methylthio group at the 4-position of the 4-methylthio-2H-pyrone derivative was substituted by reaction with an active methylene compound. ing. The wavelength of the absorption maximum was measured by dissolving in ethanol, and the fluorescence spectrum was measured using a Shimadzu UV3100PC in a solid state. As a control, a known Alq3 compound represented by [Chemical Formula 24] was used.

Figure 2006206523
Figure 2006206523

化学式1乃至化学式36で表される4−メチルチオ−2H−ピロン誘導体から活性メチレン化合物の反応で得られる化学式74乃至化学式81で表される2H−ピロン誘導体の蛍光は、それぞれの原料の4−メチルチオ−2H−ピロン誘導体よりも強い。またその蛍光波長もやや長波長側に見られる。   The fluorescence of the 2H-pyrone derivative represented by Chemical Formula 74 to Chemical Formula 81 obtained by the reaction of the active methylene compound from the 4-methylthio-2H-pyrone derivative represented by Chemical Formula 1 to Chemical Formula 36 is the 4-methylthio of each raw material. Stronger than -2H-pyrone derivatives. The fluorescence wavelength is also seen on the longer wavelength side.

特に赤色蛍光化合物である化学式12や化学式25で表わされる化合物から活性メチレン化合物との反応で得られる化学式77,化学式78,それに化学式81で表される2H−ピロン誘導体は、その蛍光がさらに強められる。対照のDCM等の赤色蛍光化合物より蛍光は強く、その蛍光スペクトルは590nmから620nmに極大値があり赤色有機電界素子として極めて有用である。   In particular, the 2H-pyrone derivatives represented by Chemical Formula 77, Chemical Formula 78, and Chemical Formula 81 obtained by reacting the compound represented by Chemical Formula 12 or Chemical Formula 25, which is a red fluorescent compound, with an active methylene compound have a further enhanced fluorescence. . The fluorescence is stronger than that of a red fluorescent compound such as DCM, and the fluorescence spectrum has a maximum value from 590 nm to 620 nm, which is extremely useful as a red organic electric field device.

本実施の形態の大部分は固体状態で強い蛍光を示すが、橙色から赤色蛍光物質に至っては結晶状態ではその蛍光が弱く相対的比較ができない場合がある。表5に化学式12乃至化学式81で表せる化合物のジクロロメタン中での吸収極大波長と蛍光極大波長とその励起波長を示している。標準物質としてDCMを使用している。化学式12で表される2H−ピロン誘導体は結晶状態でも強い蛍光(表3参照)を示したが、ジクロロメタン中でもDCMの8.54倍と強い蛍光を示した。   Most of the present embodiment shows strong fluorescence in the solid state, but from the orange to the red fluorescent material, the fluorescence is weak in the crystalline state, and there are cases where relative comparison cannot be made. Table 5 shows the absorption maximum wavelength, the fluorescence maximum wavelength and the excitation wavelength in dichloromethane of the compounds represented by Chemical Formula 12 to Chemical Formula 81. DCM is used as a standard substance. The 2H-pyrone derivative represented by Chemical Formula 12 showed strong fluorescence (see Table 3) even in the crystalline state, but it was 8.54 times as strong as DCM even in dichloromethane.

Figure 2006206523
Figure 2006206523

この実施の形態の有機蛍光化合物は、固体状態もしくは溶液状態で強い蛍光を示すもので、特に固体状態で強い蛍光を示すものは有機電界素子として極めて重要である。発光体や情報を視覚的に表示する情報表示機器として必要な光の三原色、すなわち青緑赤色で、蛍光スペクトルで表わすと440nmから640nmの波長領域にある。本実施の形態の2H−ピロン誘導体はただ1種類の化合物でその三原色に必要な全領域に蛍光極大をもつ。特に、これまで開発が困難とされていた617nmから640 nmに蛍光極大がある赤色蛍光化合物は、発光体や情報を視覚的に表示する情報表示機器において多種多様の用途を有する。有機電界素子を光源とする発光体は、消費電力が小さいうえに、軽量な平板状に構成することができるので、一般照明の光源に加えて、液晶素子、複写装置、印字装置、電子写真装置、コンピューター及びその応用機器、工業制御機器、電子計測機器、分析機器、計器一般、通信機器、医療用電子計測機器、自動車、船舶、航空機、宇宙船などに搭載する機器、航空機の管制機器、インテリア、看板、標識などの省エネルギーにして省スペースな光源として有用である。この実施の形態の蛍光体はそれぞれの蛍光極大の色をそれぞれ単色光としても利用可能であるが、それぞれの別の領域で発光する有機電界素子と組み合わせても利用可能である。その実現によってテレビジョン、コンピューター、ビデオ、ゲーム機、カーナビゲション、オシロスコープ、レーダー、ソナーなどの情報表示機器に用いることも可能である。   The organic fluorescent compound of this embodiment exhibits strong fluorescence in a solid state or a solution state, and particularly, a material exhibiting strong fluorescence in a solid state is extremely important as an organic electric field element. The three primary colors of light necessary for an information display device for visually displaying light emitters and information, that is, bluish red, are in the wavelength region of 440 nm to 640 nm in terms of fluorescence spectrum. The 2H-pyrone derivative of the present embodiment is only one kind of compound and has a fluorescence maximum in the entire region necessary for the three primary colors. In particular, a red fluorescent compound having a fluorescence maximum from 617 nm to 640 nm, which has been considered difficult to develop, has a wide variety of uses in information display devices for visually displaying light emitters and information. A light emitter using an organic electric field element as a light source has low power consumption and can be configured in a light flat plate shape. In addition to a light source for general illumination, a liquid crystal element, a copying apparatus, a printing apparatus, and an electrophotographic apparatus , Computers and their application equipment, industrial control equipment, electronic measurement equipment, analysis equipment, general instruments, communication equipment, medical electronic measurement equipment, equipment mounted on automobiles, ships, aircraft, spacecrafts, aircraft control equipment, interior It is useful as an energy-saving and space-saving light source such as signboards and signs. The phosphor of this embodiment can be used as a single color light with each fluorescent maximum color, but can also be used in combination with an organic electric field element that emits light in different regions. With this realization, it can be used for information display devices such as televisions, computers, videos, game machines, car navigation systems, oscilloscopes, radars and sonars.

本発明に係る一般式1乃至一般式4で表せる2H−ピロン誘導体の化学式を示す図である。It is a figure which shows the chemical formula of the 2H-pyrone derivative which can be represented with General formula 1 thru | or General formula 4 which concern on this invention. 本発明に係る2H−ピロン誘導体の例である化学式1乃至化学式5を示す図である。It is a figure which shows Chemical formula 1 thru | or Chemical formula 5 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る2H−ピロン誘導体の例である化学式6乃至化学式10を示す図である。It is a figure which shows Chemical formula 6 thru | or Chemical formula 10 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る2H−ピロン誘導体の例である化学式11乃至化学式15を示す図である。It is a figure which shows Chemical formula 11 thru | or Chemical formula 15 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る2H−ピロン誘導体の例である化学式16乃至化学式20を示す図である。It is a figure which shows Chemical formula 16 thru | or Chemical formula 20 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る2H−ピロン誘導体の例である化学式21乃至化学式25を示す図である。It is a figure which shows Chemical formula 21 thru | or Chemical formula 25 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る2H−ピロン誘導体の例である化学式26乃至化学式30を示す図である。It is a figure which shows Chemical formula 26 thru | or Chemical formula 30 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る2H−ピロン誘導体の例である化学式31乃至化学式35を示す図である。It is a figure which shows Chemical formula 31 thru | or Chemical formula 35 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る2H−ピロン誘導体の例である化学式36乃至化学式40を示す図である。It is a figure which shows Chemical formula 36 thru | or Chemical formula 40 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る2H−ピロン誘導体の例である化学式41乃至化学式45を示す図である。It is a figure which shows Chemical formula 41 thru | or Chemical formula 45 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る2H−ピロン誘導体の例である化学式46乃至化学式48を示す図である。It is a figure which shows Chemical formula 46 thru | or Chemical formula 48 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る2H−ピロン誘導体の例である化学式49乃至化学式50を示す図である。It is a figure which shows Chemical formula 49 thru | or Chemical formula 50 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る2H−ピロン誘導体の例である化学式51乃至化学式53を示す図である。It is a figure which shows Chemical formula 51 thru | or Chemical formula 53 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る2H−ピロン誘導体の例である化学式54乃至化学式55を示す図である。It is a figure which shows Chemical formula 54 thru | or Chemical formula 55 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る2H−ピロン誘導体の例である化学式56乃至化学式58を示す図である。It is a figure which shows Chemical formula 56 thru | or Chemical formula 58 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る2H−ピロン誘導体の例である化学式59乃至化学式60を示す図である。It is a figure which shows Chemical formula 59 thru | or Chemical formula 60 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る2H−ピロン誘導体の例である化学式61乃至化学式63を示す図である。It is a figure which shows Chemical formula 61 thru | or Chemical formula 63 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る2H−ピロン誘導体の例である化学式64乃至化学式65を示す図である。It is a figure which shows Chemical formula 64 thru | or Chemical formula 65 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る2H−ピロン誘導体の例である化学式66乃至化学式70を示す図である。It is a figure which shows Chemical formula 66 thru | or Chemical formula 70 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る2H−ピロン誘導体の例である化学式71乃至化学式73を示す図である。It is a figure which shows Chemical formula 71 thru | or Chemical formula 73 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る2H−ピロン誘導体の例である化学式74乃至化学式78を示す図である。It is a figure which shows Chemical formula 74 thru | or Chemical formula 78 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る2H−ピロン誘導体の例である化学式79乃至化学式81を示す図である。It is a figure which shows Chemical formula 79 thru | or Chemical formula 81 which are examples of the 2H-pyrone derivative based on this invention. 本発明に係る化学式87を示す図である。It is a figure which shows Chemical formula 87 based on this invention. 本発明に係る化学式39で表わされる2H−ピロン誘導体の蛍光スペクトル図である。It is a fluorescence spectrum figure of the 2H-pyrone derivative represented by Chemical formula 39 based on this invention. 本発明に係る化学式81で表わされる2H−ピロン誘導体の蛍光スペクトル図である。It is a fluorescence spectrum figure of the 2H-pyrone derivative represented by Chemical formula 81 based on this invention.

Claims (16)

一般式1、一般式2、一般式3、又は一般式4のいずれかで表される2H−ピロン誘導体からなる
ことを特徴とする有機蛍光性化合物。
Figure 2006206523
Figure 2006206523
Figure 2006206523
Figure 2006206523
一般式1に示すAr(アリール基)は各種芳香族化合物を意味し、単環性のフェニル基、双環性のナフチル基、縮合多環性芳香族化合物、電子過剰芳香族複素環化合物、電子不足芳香族複素環化合物を表す。ピロン環上の3位の置換基R1は、電子吸引基を表す。ピロン環上の4位の置換基R2は、硫黄原子、酸素原子、窒素原子の少なくとも1つを含む置換基を表す。ピロン環上の5位の置換基R3は、水素原子、各種アルキル基、フェニル基を表す。
一般式2で示すピロン環上の6位のフェニル基の4位の置換アミノ基の置換基Rは、アルキル基またはアリール基を表す。ピロン環上の3位の置換基R1は、電子吸引基を表す。ピロン環上の4位の置換基R2は、硫黄原子、酸素原子、窒素原子の少なくとも1つを含む置換基を表す。
一般式3に示すピロン環上の6位のスチリル基の末端のフェニル基上の4位の置換基R3は、酸素原子、ハロゲン原子、窒素原子の少なくとも1つを含む置換基である。ピロン環上の3位の置換基R1は、電子吸引基を表す。ピロン環上の4位の置換基R2は、硫黄原子、酸素原子、窒素原子の少なくとも1つを含む置換基を表す。
一般式4で示すピロン環上の6位のフェニル基の4位の置換アミノ基の置換基Rは、アルキル基またはアリール基を表す。ピロン環上の3位の置換基R1は、電子吸引基を表す。ピロン環上の4位の置換基R2は、硫黄原子、酸素原子、窒素原子の少なくとも1つを含む置換基を表す。
An organic fluorescent compound comprising a 2H-pyrone derivative represented by any one of General Formula 1, General Formula 2, General Formula 3, or General Formula 4.
Figure 2006206523
Figure 2006206523
Figure 2006206523
Figure 2006206523
Ar (aryl group) shown in the general formula 1 means various aromatic compounds, such as monocyclic phenyl group, bicyclic naphthyl group, condensed polycyclic aromatic compound, electron-rich aromatic heterocyclic compound, electron Represents a deficient aromatic heterocyclic compound. The substituent R1 at the 3-position on the pyrone ring represents an electron withdrawing group. The 4-position substituent R2 on the pyrone ring represents a substituent containing at least one of a sulfur atom, an oxygen atom and a nitrogen atom. The 5-position substituent R3 on the pyrone ring represents a hydrogen atom, various alkyl groups, or a phenyl group.
The substituent R of the substituted amino group at the 4-position of the phenyl group at the 6-position on the pyrone ring represented by the general formula 2 represents an alkyl group or an aryl group. The substituent R1 at the 3-position on the pyrone ring represents an electron withdrawing group. The 4-position substituent R2 on the pyrone ring represents a substituent containing at least one of a sulfur atom, an oxygen atom and a nitrogen atom.
The 4-position substituent R3 on the phenyl group at the end of the 6-position styryl group on the pyrone ring shown in the general formula 3 is a substituent containing at least one of an oxygen atom, a halogen atom and a nitrogen atom. The substituent R1 at the 3-position on the pyrone ring represents an electron withdrawing group. The 4-position substituent R2 on the pyrone ring represents a substituent containing at least one of a sulfur atom, an oxygen atom and a nitrogen atom.
The substituent R of the substituted amino group at the 4-position of the phenyl group at the 6-position on the pyrone ring represented by the general formula 4 represents an alkyl group or an aryl group. The substituent R1 at the 3-position on the pyrone ring represents an electron withdrawing group. The 4-position substituent R2 on the pyrone ring represents a substituent containing at least one of a sulfur atom, an oxygen atom and a nitrogen atom.
前記アリール基が、アルキル基、またはヘテロ原子を有する置換基とされた
ことを特徴とする請求項1に記載の有機蛍光性化合物。
The organic fluorescent compound according to claim 1, wherein the aryl group is an alkyl group or a substituent having a hetero atom.
前記電子吸引基が、シアノ基、各種エステル基、スルホニル基のいずれかとされた
ことを特徴とする請求項1に記載の有機蛍光性化合物。
The organic fluorescent compound according to claim 1, wherein the electron withdrawing group is any one of a cyano group, various ester groups, and a sulfonyl group.
前記アルキルチオ基が、メチルチオ基またはエチルチオ基のいずれかとされた
ことを特徴とする請求項1に記載の有機蛍光性化合物。
The organic fluorescent compound according to claim 1, wherein the alkylthio group is either a methylthio group or an ethylthio group.
前記アルコキシ基が、ハイドロキシ基、メトキシ基、エトキシ基のいずれかとされた
ことを特徴とする請求項1に記載の有機蛍光性化合物。
The organic fluorescent compound according to claim 1, wherein the alkoxy group is any one of a hydroxy group, a methoxy group, and an ethoxy group.
前記一般式1に示すアリール基を単環性のフェニル基で表したとき、その環上の置換基が、アルキル基、アルコキシ基、アミノ基、ハロゲノ基のいずれかとされた
ことを特徴とする請求項1に記載の有機蛍光性化合物。
When the aryl group represented by Formula 1 is represented by a monocyclic phenyl group, the substituent on the ring is any one of an alkyl group, an alkoxy group, an amino group, and a halogeno group. Item 10. The organic fluorescent compound according to Item 1.
前記一般式1に示すアリール基が電子過剰芳香族複素環化合物とされ、
前記電子過剰芳香族複素環化合物が、フリル基、キノリル基、フタジル基のいずれかとされた
ことを特徴とする請求項1に記載の有機蛍光性化合物。
The aryl group represented by the general formula 1 is an electron-rich aromatic heterocyclic compound,
The organic fluorescent compound according to claim 1, wherein the electron-rich aromatic heterocyclic compound is any one of a furyl group, a quinolyl group, and a phthalazyl group.
前記一般式1に示すアリール基が電子不足芳香族複素環化合物とされ、
前記電子不足芳香族複素環化合物が、ピリジル基、キノリル基、フタジル基のいずれかとされた
ことを特徴とする請求項1に記載の有機蛍光性化合物。
The aryl group represented by the general formula 1 is an electron-deficient aromatic heterocyclic compound,
The organic fluorescent compound according to claim 1, wherein the electron-deficient aromatic heterocyclic compound is a pyridyl group, a quinolyl group, or a phthalazyl group.
ピロン環上の5位の置換基R3と6位のアリール基とが架橋され、多環性複素環化合物とされた
ことを特徴とする請求項1に記載の有機蛍光性化合物。
The organic fluorescent compound according to claim 1, wherein the 5-position substituent R3 on the pyrone ring and the 6-position aryl group are crosslinked to form a polycyclic heterocyclic compound.
前記架橋が、メチレン基またはエチレン基により形成された
ことを特徴とする請求項9に記載の有機蛍光性化合物。
The organic fluorescent compound according to claim 9, wherein the bridge is formed by a methylene group or an ethylene group.
前記架橋が、硫黄原子、酸素原子、窒素原子の少なくとも1つを含む置換基により形成された
ことを特徴とする請求項9に記載の有機蛍光性化合物。
The organic fluorescent compound according to claim 9, wherein the bridge is formed by a substituent containing at least one of a sulfur atom, an oxygen atom, and a nitrogen atom.
440nmから640nmに発光極大を有する
ことを特徴とする請求項1乃至11に記載の有機蛍光性化合物。
The organic fluorescent compound according to any one of claims 1 to 11, which has an emission maximum from 440 nm to 640 nm.
請求項1乃至請求項12のいずれかに記載の有機蛍光性化合物の製造方法であって、
一般式5で表せる化合物に、請求項1に記載の一般式1のArに対応したArを有する一般式6で表せる化合物を反応させる工程を経由する
ことを特徴とする有機蛍光性化合物の製造方法。
Figure 2006206523
置換基Xは、CN,COOMeである。置換基R1は、CN,COOMe,COOEt,SO−Ph,SO−Ph−Meである。
Figure 2006206523
It is a manufacturing method of the organic fluorescent compound in any one of Claims 1 thru | or 12, Comprising:
A method for producing an organic fluorescent compound, comprising: reacting a compound represented by general formula 5 with a compound represented by general formula 6 having Ar corresponding to Ar of general formula 1 according to claim 1. .
Figure 2006206523
The substituent X is CN, COOMe. Substituent R1 is CN, COOMe, COOEt, SO 2 -Ph, SO 2 -Ph-Me.
Figure 2006206523
請求項1に記載の一般式1、一般式2、一般式3、及び一般式4で表される2H−ピロン誘導体骨格の1位から6位の置換基、6位のアリール基上の置換基による蛍光の構造活性相関関係を明らかにする
ことを特徴とする有機蛍光性化合物の製造方法。
The substituents on the 1st to 6th positions of the 2H-pyrone derivative skeleton represented by the general formula 1, the general formula 2, the general formula 3, and the general formula 4 according to claim 1, and a substituent on the 6th position aryl group A method for producing an organic fluorescent compound, characterized in that the structure-activity relationship of fluorescence is clarified.
請求項1乃至請求項12のいずれかに記載の有機蛍光性化合物を用いて発光層が構成されている
ことを特徴とする有機電界発光素子。
An organic electroluminescent device, wherein a light emitting layer is formed using the organic fluorescent compound according to claim 1.
請求項1乃至請求項12のいずれかに記載の有機蛍光性化合物を用いてなる
ことを特徴とする有機電界発光素子用発光剤。
A light-emitting agent for an organic electroluminescence device, comprising the organic fluorescent compound according to any one of claims 1 to 12.
JP2005021968A 2005-01-28 2005-01-28 Organic fluorescent compound, method for producing the same, light emitting agent for organic electroluminescent element and organic electroluminescent element Pending JP2006206523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005021968A JP2006206523A (en) 2005-01-28 2005-01-28 Organic fluorescent compound, method for producing the same, light emitting agent for organic electroluminescent element and organic electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005021968A JP2006206523A (en) 2005-01-28 2005-01-28 Organic fluorescent compound, method for producing the same, light emitting agent for organic electroluminescent element and organic electroluminescent element

Publications (1)

Publication Number Publication Date
JP2006206523A true JP2006206523A (en) 2006-08-10

Family

ID=36963755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005021968A Pending JP2006206523A (en) 2005-01-28 2005-01-28 Organic fluorescent compound, method for producing the same, light emitting agent for organic electroluminescent element and organic electroluminescent element

Country Status (1)

Country Link
JP (1) JP2006206523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305616A (en) * 2006-05-08 2007-11-22 Osaka Univ Novel organic element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305616A (en) * 2006-05-08 2007-11-22 Osaka Univ Novel organic element
JP4734606B2 (en) * 2006-05-08 2011-07-27 国立大学法人大阪大学 Organic element containing α-pyrone and / or α-pyrone derivative

Similar Documents

Publication Publication Date Title
JP2013258416A (en) Electroluminescent material
KR20120123368A (en) Organic electroluminescent element
CN110408383B (en) Pure organic room temperature phosphorescent material with twisted donor-acceptor structure and preparation method and application thereof
JP2010143879A (en) Diacenaphtho[1,2-b:1&#39;,2&#39;-k]chrysene derivative
CN108774258A (en) A kind of Heterocyclic Compound Containing Boron and its application in organic electro-optic device
KR20170058619A (en) Pyrimidine derivative substituted with phenyl group, and organic electroluminescent device including the same
JP4606328B2 (en) LIGHT EMITTING ELEMENT, Fused Polycyclic Compound Used therein, and Method for Producing the Same
JP2006206523A (en) Organic fluorescent compound, method for producing the same, light emitting agent for organic electroluminescent element and organic electroluminescent element
EP1475380A1 (en) White light emitting compound, white light emission illuminator, and white light emission organic el device
JP3520880B2 (en) Oxadiazole derivative and method for producing the same
KR20040083091A (en) Nile red type compound emitting red light, process for producing the same, and luminescent element utilizing the same
JP4719863B2 (en) Novel fluorescent material, luminescent material, and fluorescent pigment comprising the fluorescent material
KR100725591B1 (en) Luminescent material and organic electroluminescent device using the same
EP1564216A1 (en) White organic fluorescent compound
JP2006219623A (en) Fluorescent material
JP2003086379A (en) Light-emitting element
KR101071992B1 (en) Luminescent material and organic electroluminescent device using the same
JP2006008628A (en) Blue light emitting compound and light emitting element
KR100929413B1 (en) Red light emitting material and organic electroluminescent device comprising the same
KR100376320B1 (en) A red dopant for organic electroluminscene device and the organic electroluminscene device using the same
KR100948672B1 (en) Red luminescent material and organic electroluminescent device
JP2004315366A (en) Luminescent material and electroluminescent element using the same
KR20040001968A (en) NOVEL BRANCHED α-CYANOSTILBENE FLUOROPHORES
JP2010138092A (en) New indenobenzoanthracene compound
KR100993012B1 (en) Diphenyl amine derivatives having luminescence property