JP2006201759A - Method of forming anisotropic dye film, anisotropic dye film and polarizing element - Google Patents

Method of forming anisotropic dye film, anisotropic dye film and polarizing element Download PDF

Info

Publication number
JP2006201759A
JP2006201759A JP2005366703A JP2005366703A JP2006201759A JP 2006201759 A JP2006201759 A JP 2006201759A JP 2005366703 A JP2005366703 A JP 2005366703A JP 2005366703 A JP2005366703 A JP 2005366703A JP 2006201759 A JP2006201759 A JP 2006201759A
Authority
JP
Japan
Prior art keywords
film
dye
dye film
group
anisotropic dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005366703A
Other languages
Japanese (ja)
Inventor
Takeshi Fujiwara
毅 藤原
Masami Kadowaki
雅美 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2005366703A priority Critical patent/JP2006201759A/en
Publication of JP2006201759A publication Critical patent/JP2006201759A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anisotropic dye film having high dichromatic ratio and high surface smoothness, and to provide a polarizing element having the effect of preventing scattering of light. <P>SOLUTION: The method of forming the anisotropic dye film is carried out by after applying a dye solution containing at least a dye, such as a dichromatic dye and a solvent on a base material, such as glass or a polymer film, to form a dye film and vacuum-treating the dye film. The anisotropic dye film is obtained using the method of forming the anisotropic dye film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、異方性色素膜の製造方法に関するもので、詳しくは二色比の高い異方性色素膜を得られる製造方法に関するものである。   The present invention relates to a method for producing an anisotropic dye film, and more particularly to a method for producing an anisotropic dye film having a high dichroic ratio.

LCD(液晶表示ディスプレイ)では、表示における旋光性や複屈折性を制御するために直線偏光板や円偏光板が用いられている。OLED(有機EL素子)においても、外光の反射防止のために円偏光板が使用されている。
従来、これらの偏光板(偏光素子)には、ヨウ素や二色性を有する有機色素を、ポリビニルアルコール等の高分子材料に溶解または吸着させ、その膜を一方向にフィルム状に延伸して、二色性色素を配向させることにより得られる偏光膜が広く使用されてきた。しかしながら、このようにして製造される従来の偏光膜では、用いる色素や高分子材料によっては耐熱性や耐光性が十分でない;液晶装置製造時における偏光膜の貼り合わせの歩留りが悪い;等の問題があった。
In an LCD (liquid crystal display), a linearly polarizing plate and a circularly polarizing plate are used to control optical rotation and birefringence in display. Also in OLED (organic EL element), a circularly polarizing plate is used to prevent reflection of external light.
Conventionally, in these polarizing plates (polarizing elements), iodine or an organic dye having dichroism is dissolved or adsorbed in a polymer material such as polyvinyl alcohol, and the film is stretched in a film shape in one direction. Polarizing films obtained by orienting dichroic dyes have been widely used. However, the conventional polarizing film manufactured in this way has insufficient heat resistance and light resistance depending on the dye or polymer material used; problems such as poor yield of bonding of the polarizing film when manufacturing a liquid crystal device; was there.

そのため、ガラスや透明フィルムなどの基板上に、二色性色素を含む溶液を塗布する湿式成膜法にて二色性色素を含む膜を形成し、分子間相互作用などを利用して二色性色素を配向させることにより偏光膜を製造する方法(例えば、特許文献1、2および非特許文献1、2参照)が検討されている。
偏光素子としての用途においては、より高い偏光性能を得るために、二色性の高い偏光膜が求められているが、特許文献1、2および非特許文献1、2に記載されるような従来の方法で製造された偏光膜は、高い二色比を得ることが出来ず、より優れた偏光性能を得ることはできないという問題点があった。
米国特許第2,400,877号明細書 特表平8−511109号公報 Dreyer,J.F.,Phys.And Colloid Chem.,1948,52,808.,“TheFixing of Molecular Orientation” Dreyer,J.F.,Journal de Physique,1969,4,114.,“LightPolarization From Films of Lyotropic Nematic Liquid Crystals”
Therefore, a film containing a dichroic dye is formed on a substrate such as glass or a transparent film by a wet film-forming method in which a solution containing a dichroic dye is applied, and two colors are used by utilizing intermolecular interaction. A method for producing a polarizing film by orienting a functional dye (for example, see Patent Documents 1 and 2 and Non-Patent Documents 1 and 2) has been studied.
In the use as a polarizing element, in order to obtain higher polarization performance, a polarizing film with high dichroism is required. However, the conventional art described in Patent Documents 1 and 2 and Non-Patent Documents 1 and 2 is required. The polarizing film produced by this method has a problem that a high dichroic ratio cannot be obtained and a more excellent polarizing performance cannot be obtained.
US Pat. No. 2,400,877 JP-T 8-511109 Dreyer, JF, Phys. And Colloid Chem., 1948, 52, 808., “TheFixing of Molecular Orientation” Dreyer, JF, Journal de Physique, 1969, 4, 114., “LightPolarization From Films of Lyotropic Nematic Liquid Crystals”

本発明は、異方性色素膜の製造方法において、二色比の高い異方性色素膜を得る方法を提供することを課題とする。   An object of the present invention is to provide a method for obtaining an anisotropic dye film having a high dichroic ratio in a method for producing an anisotropic dye film.

本発明者らが、鋭意検討した結果、色素溶液を湿式成膜法にて色素を含む膜を形成後、減圧処理することにより、高二色比の異方性色素膜を得られることがわかり、本発明に到達した。
減圧処理することにより、高二色比の異方性色素膜を得られる理由は、以下の通りであると推測される。減圧処理を行うことにより、色素膜を形成後、急速に色素膜を乾燥することが出来る。この急速な乾燥により、配向の緩和や熱対流等によると考えられる色素膜の配向の乱れを防ぐことができる。これにより、高い配向性を有する色素膜が得ることができ、またこの色素膜は高い二色比を奏するものと推測される。
As a result of intensive studies by the present inventors, it was found that an anisotropic dye film having a high dichroic ratio can be obtained by forming a film containing a dye by a wet film forming method and then subjecting the dye solution to a reduced pressure treatment. The present invention has been reached.
The reason why an anisotropic dye film having a high dichroic ratio can be obtained by performing the decompression process is presumed as follows. By performing the reduced pressure treatment, the dye film can be rapidly dried after the dye film is formed. By this rapid drying, it is possible to prevent the disorder of the orientation of the dye film, which is considered to be due to the relaxation of orientation and thermal convection. Thereby, a dye film having high orientation can be obtained, and this dye film is presumed to exhibit a high dichroic ratio.

本発明の製造方法によれば、高い二色比を持つ異方性色素膜を得ることができる。
また、表面の平滑性が高い異方性色素膜を得ることができ、偏光素子として使用したときに光の散乱防止の効果がある。
According to the production method of the present invention, an anisotropic dye film having a high dichroic ratio can be obtained.
Further, an anisotropic dye film having high surface smoothness can be obtained, and when used as a polarizing element, there is an effect of preventing light scattering.

以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、これらの内容に特定はされない。
尚、本発明でいう異方性色素膜とは、色素膜の厚み方向及び任意の直交する面内2方向の立体座標系における合計3方向から選ばれる任意の2方向における電磁気学的性質に異方性を有する色素膜である。電磁気学的性質としては、吸収、屈折などの光学的性質、抵抗、容量などの電気的性質などが挙げられる。吸収、屈折などの光学的異方性を有する膜としては、例えば、直線偏光膜、円偏光膜、位相差膜、導電異方性膜などがある。すなわち、本発明は、偏光膜、位相差膜、導電異方性膜に用いられることが好ましく、偏光膜に用いられることがより好ましい。
The description of the constituent requirements described below is an example (representative example) of the embodiment of the present invention, and the contents are not specified.
The anisotropic dye film referred to in the present invention differs from the electromagnetic properties in any two directions selected from a total of three directions in the three-dimensional coordinate system of the thickness direction of the dye film and any two in-plane orthogonal directions. It is a dye film having anisotropy. Examples of electromagnetic properties include optical properties such as absorption and refraction, and electrical properties such as resistance and capacitance. Examples of the film having optical anisotropy such as absorption and refraction include a linearly polarizing film, a circularly polarizing film, a retardation film, and a conductive anisotropic film. That is, the present invention is preferably used for a polarizing film, a retardation film, and a conductive anisotropic film, and more preferably used for a polarizing film.

本発明の異方性色素膜は通常湿式製膜法により製造される。本発明でいう湿式製膜法とは、色素溶液を塗布液として調製後、基材上に塗布し、色素を配向及び/又は積層して得る方法をいう。本発明でいう色素溶液とは、通常、色素及び溶剤を含むものをいう。
基材としては、ガラスやトリアセテート、アクリル、ポリエステル、トリアセチルセルロース又はウレタン系のフィルム等が挙げられる。また、この基材表面には、色素の配向方向を制御するために、「液晶便覧」(丸善株式会社、平成12年10月30日発行)226頁〜239頁などに記載の公知の方法により、配向処理層を施しておいてもよい。
(i)色素
本発明の異方性色素膜に用いられる色素としては、通常二色性色素が用いられる。好ましくは、アゾ系色素、スチルベン系色素、シアニン系色素、フタロシアニン系色素、縮合多環系色素(ペリレン系、オキサジン系)等が挙げられる。これら色素の中でも、異方性色素膜中で高い分子配列をとりうるアゾ系色素が特に好ましい。
The anisotropic dye film of the present invention is usually produced by a wet film forming method. The wet film forming method referred to in the present invention refers to a method in which a dye solution is prepared as a coating solution and then applied onto a substrate, and the dye is oriented and / or laminated. The dye solution referred to in the present invention usually means a solution containing a dye and a solvent.
Examples of the substrate include glass, triacetate, acrylic, polyester, triacetyl cellulose, and a urethane film. Moreover, in order to control the orientation direction of a pigment | dye, in order to control the orientation direction of a pigment | dye on this base material surface, the known method as described in "Liquid Crystal Handbook" (Maruzen Co., Ltd., issued on October 30, 2000) pp. An alignment treatment layer may be provided.
(i) Dye A dichroic dye is usually used as the dye used in the anisotropic dye film of the present invention. Preferred examples include azo dyes, stilbene dyes, cyanine dyes, phthalocyanine dyes, and condensed polycyclic dyes (perylene and oxazine dyes). Among these dyes, azo dyes that can take a high molecular arrangement in the anisotropic dye film are particularly preferable.

アゾ系色素とは、アゾ基を少なくとも1個以上持つ色素をいう。その一分子中のアゾ基の数は、色調および製造面の観点から、1以上が好ましく、さらに好ましくは2以上で、6以下が好ましく、さらに好ましくは4以下である。
アゾ系色素の中でも、下記式(1)で表される色素が好ましい。
An azo dye means a dye having at least one azo group. The number of azo groups in one molecule is preferably 1 or more, more preferably 2 or more, preferably 6 or less, and more preferably 4 or less, from the viewpoint of color tone and production.
Among the azo dyes, a dye represented by the following formula (1) is preferable.

Figure 2006201759
Figure 2006201759

(式中、D1およびE1は、置換基を有していてもよいフェニレン基、または置換基を有していてもよいナフチレン基を表し、
1はカルボキシ基、スルホ基、またはリン酸基を表し、
1はハロゲン原子、水酸基、ニトロ基、置換基を有していてもよいアミノ基、置換基
を有していてもよい炭素数1〜4のアルキル基、置換基を有していてもよい炭素数1〜3のアルコキシ基、カルボキシ基、或いはスルホ基を表し、
2およびQ3はそれぞれ独立に、水素原子、置換基を有していてもよい炭素数1〜4のアルキル基、或いは置換基を有していてもよいフェニル基を表し、
pは0または1を表し、tは1または2を表す。)
ここで、上記式(1)で表されるトリスアゾ色素について説明する。
(Wherein D 1 and E 1 represent a phenylene group which may have a substituent or a naphthylene group which may have a substituent,
G 1 represents a carboxy group, a sulfo group, or a phosphate group,
Q 1 may have a halogen atom, a hydroxyl group, a nitro group, an amino group which may have a substituent, an alkyl group having 1 to 4 carbon atoms which may have a substituent, or a substituent. Represents an alkoxy group having 1 to 3 carbon atoms, a carboxy group, or a sulfo group;
Q 2 and Q 3 each independently represent a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, or an optionally substituted phenyl group,
p represents 0 or 1, and t represents 1 or 2. )
Here, the trisazo dye represented by the above formula (1) will be described.

該トリスアゾ色素は水溶性の黒色の二色性色素である。該トリスアゾ色素は、分子長軸の両端の特定位置に他の分子に強い引力を与える置換基を配した分子構造、およびD1
1に疎水性を有するため、互いの分子同士が疎水性による相互作用(疎水性相互作用)
を有し、分子同士が会合状態を作りやすくなっている。
上記式(1)において、D1およびE1は、置換基を有していても良いフェニレン基または置換基を有していても良いナフチレン基を表す。フェニレン基としては1,4−フェニレン基が好ましく、ナフチレン基としては1,4−ナフチレン基が、疎水性相互作用を示すために好ましい。このフェニレン基の置換基としては、置換基を有していても良い、炭素数1〜4のアルキル基(例えば、メチル基、エチル基、n−プロピル基、n−ブチル基等)、置換基を有していても良い、炭素数1〜4のアルコキシ基(例えば、メトキシ基、エトキシ基、n−プロポキシ基、n−ブトキシ基等)、置換基を有していても良い、炭素数2〜7のアシルアミノ基(例えばアセチルアミノ基、ベンゾイルアミノ基等)等の極性の小さい基がリオトロピック液晶を形成する上での疎水性相互作用による会合性向上の点で好ましい。
The trisazo dye is a water-soluble black dichroic dye. The trisazo dye has a molecular structure in which substituents that give strong attractive force to other molecules are arranged at specific positions on both ends of the molecular long axis, and D 1 ,
Since E 1 has hydrophobicity, interaction between the molecules is due to hydrophobicity (hydrophobic interaction)
It is easy to make an association state between molecules.
In the above formula (1), D 1 and E 1 represent a phenylene group which may have a substituent or a naphthylene group which may have a substituent. As the phenylene group, a 1,4-phenylene group is preferable, and as the naphthylene group, a 1,4-naphthylene group is preferable in order to exhibit a hydrophobic interaction. As the substituent of this phenylene group, an optionally substituted alkyl group having 1 to 4 carbon atoms (for example, methyl group, ethyl group, n-propyl group, n-butyl group, etc.), substituent group An alkoxy group having 1 to 4 carbon atoms (for example, a methoxy group, an ethoxy group, an n-propoxy group, an n-butoxy group, etc.) and a substituent group that may have a carbon number of 2 A group having a small polarity such as an acylamino group of ˜7 (for example, acetylamino group, benzoylamino group, etc.) is preferable from the viewpoint of improving associative property due to hydrophobic interaction in forming a lyotropic liquid crystal.

ナフチレン基の置換基としては、置換基を有していても良い、炭素数1〜4のアルコキシ基(例えば、メトキシ基、エトキシ基等)等の極性の小さい基がリオトロピック液晶を形成する上での疎水性相互作用による会合性向上の点で好ましい。前記アルキル基、アルコキシ基、アシルアミノ基の有し得る置換基としては、ヒドロキシ基、アルキル基、アルコキシ基等が挙げられる。   As a substituent of the naphthylene group, a group having a small polarity such as an alkoxy group having 1 to 4 carbon atoms (for example, methoxy group, ethoxy group, etc.) which may have a substituent may form a lyotropic liquid crystal. From the viewpoint of improving the association property due to the hydrophobic interaction. Examples of the substituent that the alkyl group, alkoxy group, and acylamino group may have include a hydroxy group, an alkyl group, and an alkoxy group.

1としては、スルホ基、カルボキシ基、リン酸基が上記のように強い引力を与える置
換基であることから好ましく、広いpH範囲で引力を与えるという点で特に好ましくはスルホ基が挙げられる。
1は、ハロゲン原子、水酸基、ニトロ基、置換基を有していても良いアミノ基(好ま
しくはアセチルアミノ基、ベンゾイルアミノ基等のアシルアミノ基)、置換基を有していても良い、炭素数1〜4のアルキル基(例えば、メチル基、エチル基等)、置換基を有していても良い、炭素数1〜3のアルコキシ基、カルボキシ基およびスルホ基を表し、特に好ましくは水素原子、水酸基、カルボキシ基、スルホ基が挙げられる。前記アルキル基、アルコキシ基の有し得る置換基としては、ヒドロキシ基、アルキル基、アルコキシ基等が挙げられる。
G 1 is preferably a sulfo group, a carboxy group, or a phosphate group because they are substituents that give a strong attractive force as described above, and a sulfo group is particularly preferable in that it gives an attractive force in a wide pH range.
Q 1 is a halogen atom, a hydroxyl group, a nitro group, an amino group which may have a substituent (preferably an acylamino group such as an acetylamino group or a benzoylamino group), an optionally substituted carbon, Represents an alkyl group having 1 to 4 carbon atoms (for example, a methyl group, an ethyl group, etc.), an alkoxy group having 1 to 3 carbon atoms, a carboxy group, and a sulfo group, which may have a substituent, and particularly preferably a hydrogen atom. , Hydroxyl group, carboxy group, and sulfo group. Examples of the substituent that the alkyl group and alkoxy group may have include a hydroxy group, an alkyl group, and an alkoxy group.

2およびQ3はそれぞれ独立に、水素原子、置換基を有していても良い、炭素数1〜4のアルキル基(例えば、メチル基、エチル基等)、置換基を有していても良いフェニル基であり、特に好ましくはQ2あるいはQ3のいずれかが水素原子であることが挙げられる。前記アルキル基およびフェニル基の有し得る置換基としては、ヒドロキシ基、カルボキシ基、スルホ基が挙げられる。 Q 2 and Q 3 may each independently have a hydrogen atom, a substituent, an alkyl group having 1 to 4 carbon atoms (for example, a methyl group, an ethyl group, etc.), or a substituent. It is a good phenyl group, and particularly preferred is that either Q 2 or Q 3 is a hydrogen atom. Examples of the substituent that the alkyl group and the phenyl group may have include a hydroxy group, a carboxy group, and a sulfo group.

pは0または1を表し、tは1または2の数を表す。
前記式(1)で表されるアゾ色素は黒色を示すものであるが、中でも刺激純度0%〜12%の色素であることが好ましい。即ち、刺激純度0%〜12%の色素を使用すれば、特に、異なる分子を混合することによる分子配向の乱れがなく、高い二色性を示すことができる。
p represents 0 or 1, and t represents a number of 1 or 2.
The azo dye represented by the formula (1) exhibits a black color, and among them, a dye having an excitation purity of 0% to 12% is preferable. That is, when a dye having a stimulus purity of 0% to 12% is used, there is no disorder of molecular orientation caused by mixing different molecules, and high dichroism can be exhibited.

ここで、刺激純度とは、色度図より標準の光の色度座標Nと求めた色素の色度座標Cを
直線で結び、その延長のスペクトル軌跡との交点に対応する波長を主波長とし、各点の比率からを算出する。色度座標Cは、水に色素を加え色素水溶液とし、この水溶液の可視光透過率を分光光度計で測定し、CIE1964 XYZ表色系、D65標準光源下での色度xyを算出して得ることができる。色素の刺激純度とは、色素を水に加えて色素水溶液として測定、算出されたものをいう。また、その算出法としては、日本色彩学会編「新編
色彩科学ハンドブック」財団法人東京大学出版会、1989年11月25日(第2回改訂)発行、104ページから105ページなどに記載の公知の方法により求めることができる。
Here, the stimulus purity refers to the wavelength corresponding to the intersection with the extended spectral locus as a principal wavelength by connecting the chromaticity coordinate N of the standard light and the chromaticity coordinate C of the obtained pigment from a chromaticity diagram. Calculate from the ratio of each point. The chromaticity coordinates C are obtained by adding a dye to water to obtain an aqueous dye solution, measuring the visible light transmittance of this aqueous solution with a spectrophotometer, and calculating the chromaticity xy under the CIE1964 XYZ color system, D65 standard light source. be able to. The stimulating purity of a pigment means that measured and calculated as a pigment aqueous solution by adding the pigment to water. In addition, as a calculation method thereof, a publicly known publication described in “New Color Science Handbook” edited by the Japan Color Society, published by the University of Tokyo Press, November 25, 1989 (2nd revision), pages 104 to 105, etc. It can be determined by a method.

前記式(1)で表されるアゾ色素は、刺激純度0%以上12%以下の色素であれば好ましいが、刺激純度は0%以上、更に好ましくは9%以下、最も好ましくは6%以下である。
また、前記式(1)で表される色素の分子量は、遊離酸の形で、通常595以上、通常1500以下、好ましくは1200以下である。
The azo dye represented by the formula (1) is preferably a dye having a stimulus purity of 0% to 12%, but the stimulus purity is 0% or more, more preferably 9% or less, and most preferably 6% or less. is there.
The molecular weight of the dye represented by the formula (1) is usually 595 or more, usually 1500 or less, preferably 1200 or less in the form of a free acid.

また、本発明における色素は、前記湿式製膜法に供するためには水溶性であることが好ましい。従って、水溶性を与える置換基として、スルホ基、カルボキシ基、リン酸基等の酸性基、アミノ酸基等の塩基性基、水酸基等の可溶性基を有する色素が好ましく、水溶性の高さから、特にスルホ基、カルボキシ基を有することが好ましい。
本発明における色素の分子量は、塩型をとらない遊離の状態で通常200以上、特に350以上で、通常5000以下、特に3500以下であることが、色調および製造面の観点から好ましい。
Moreover, it is preferable that the pigment | dye in this invention is water-soluble in order to use for the said wet film forming method. Therefore, as a substituent that imparts water solubility, a dye having an acidic group such as a sulfo group, a carboxy group, or a phosphoric acid group, a basic group such as an amino acid group, or a soluble group such as a hydroxyl group is preferable. In particular, it preferably has a sulfo group or a carboxy group.
The molecular weight of the dye in the present invention is preferably 200 or more, particularly 350 or more, and usually 5000 or less, particularly 3500 or less in a free state that does not take a salt form, from the viewpoints of color tone and production.

また、本発明における色素は、液晶相を有する色素であることが好ましい。ここで、液晶相を有する色素とは、色素と混和性のある溶剤との混合物がリオトロピック液晶性を示すものを意味する。
また、色素は、その配向の緩和時間が10秒以下であることが好ましい。本発明において、配向の緩和時間は粟屋裕著「高分子素材の偏光顕微鏡入門」(株式会社アグネ技術センター出版、2001年10月15日発行)などに記載の、クロスニコル下での偏光顕微鏡で観察したときに色素溶液に1000[1/s]のずりを10秒かけた後の光線透過率がずりをか
える前の光線透過率に戻る時間を表す。
Moreover, it is preferable that the pigment | dye in this invention is a pigment | dye which has a liquid crystal phase. Here, the pigment having a liquid crystal phase means that a mixture of a pigment and a miscible solvent exhibits lyotropic liquid crystallinity.
In addition, the dye preferably has a relaxation time of 10 seconds or less. In the present invention, the orientation relaxation time is measured with a polarizing microscope under crossed Nicols, as described in Hiroya Ashiya “Introduction to Polarizing Microscopes for Polymer Materials” (published by Agne Technology Center, Inc., published on October 15, 2001). When observed, it represents the time for the light transmittance to return to the light transmittance before changing the shear after applying 1000 [1 / s] to the dye solution for 10 seconds.

本発明において、上述したような色素は単独で使用することができるが、これらの2種以上を併用してもよく、また、配向を低下させない程度に上記例示色素以外の色素を配合して用いることもでき、これにより各種の色相を有する異方性色素膜を製造することができる。
他の色素を配合する場合の配合用色素の例としては、C.I.Direct Yellow 12、C.I.Direct Yellow 34、C.I.Direct Yellow 86、C.I.Direct Yellow 142、C.I.Direct
Yellow 132、C.I.Acid Yellow 25、C.I.Direct Orange 39、C.I.Direct Orange 72、C.I.Direct Orange 79,、C.I.Acid Orange 28、C.I.Direct Red 39、C.I.Direct Red 79、C.I.Direct
Red 81、C.I.Direct Red 83、C.I.Direct Red
89、C.I.Acid Red 37、C.I.Direct Violet 9、C.I.Direct Violet 35、C.I.Direct Violet 48、C.I.Direct Violet 57、C.I.Direct Blue 1、C.I.Direct Blue 67、C.I.Direct Blue 83、C.I.Direct Blue 90、C.I.Direct Green 42、C.I.Direct Green 51、C.I.Direct Green 59等が挙げられる。
In the present invention, the above-described dyes can be used alone, but two or more of these may be used in combination, and dyes other than the above exemplified dyes are blended and used to such an extent that the orientation is not lowered. Thus, anisotropic dye films having various hues can be produced.
Examples of blending dyes when blending other dyes include C.I. I. Direct Yellow 12, C.I. I. Direct Yellow 34, C.I. I. Direct Yellow 86, C.I. I. Direct Yellow 142, C.I. I. Direct
Yellow 132, C.I. I. Acid Yellow 25, C.I. I. Direct Orange 39, C.I. I. Direct Orange 72, C.I. I. Direct Orange 79, C.I. I. Acid Orange 28, C.I. I. Direct Red 39, C.I. I. Direct Red 79, C.I. I. Direct
Red 81, C.I. I. Direct Red 83, C.I. I. Direct Red
89, C.I. I. Acid Red 37, C.I. I. Direct Violet 9, C.I. I. Direct Violet 35, C.I. I. Direct Violet 48, C.I. I. Direct Violet 57, C.I. I. Direct Blue 1, C.I. I. Direct Blue 67, C.I. I. Direct Blue 83, C.I. I. Direct Blue 90, C.I. I. Direct Green 42, C.I. I. Direct Green 51, C.I. I. Direct Green 59 etc. are mentioned.

(ii)溶剤
溶剤としては、水、水混和性のある有機溶剤、或いはこれらの混合物が適している。有機溶剤の具体例としては、メチルアルコール、エチルアルコール、イソプロピルアルコール、グリセリン等のアルコール類、エチレングリコール、ジエチレングリコール等のグリコール類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類などの単独又は2種以上の混合溶剤が挙げられる。
(ii) As a solvent solvent, water, an organic solvent miscible with water, or a mixture thereof is suitable. Specific examples of the organic solvent include alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol and glycerin, glycols such as ethylene glycol and diethylene glycol, cellosolves such as methyl cellosolve and ethyl cellosolve, or a mixture of two or more. A solvent is mentioned.

(iii)濃度
色素溶液中の色素の濃度としては、製膜条件によるが、通常0.01重量%以上、特に0.1重量%以上であることが好ましく、通常50重量%以下、特に30重量%以下であることが好ましい。色素濃度が低過ぎると得られる異方性色素膜において十分な光透過性や二色性を得ることができず、高すぎると色素溶液中で色素が析出する恐れがある。
(iii) Concentration The concentration of the dye in the dye solution is usually 0.01% by weight or more, particularly preferably 0.1% by weight or more, and usually 50% by weight or less, particularly 30% by weight, although it depends on the film forming conditions. % Or less is preferable. If the dye concentration is too low, sufficient optical transparency and dichroism cannot be obtained in the obtained anisotropic dye film, and if it is too high, the dye may precipitate in the dye solution.

(iv)その他
色素溶液には、さらに必要に応じて、界面活性剤、pH調整剤等の添加剤が配合されていてもよい。添加剤により、濡れ性、塗布性を向上させることができる。
界面活性剤としては、アニオン性、カチオン性およびノニオン性のいずれも使用可能である。その添加濃度は、目的の効果を得るために十分であって、かつ色素分子の配向を阻害しない量として、色素溶液中の濃度として通常0.05重量%以上、0.5重量%以下が好ましい。
また、色素溶液中での色素の造塩や凝集などの不安定性を抑制する等の目的のために、通常公知の酸、アルカリ等のpH調整剤などを、色素溶液の構成成分の混合の前後或いは混合中のいずれかで添加してpH調整を行ってもよい。
さらに、上記以外の添加剤として、“Additive for Coating”,Editedby J.Bieleman,Willey-VCH(2000)記載の公知の添加剤を用いることもできる。
(iv) Others The dye solution may further contain additives such as a surfactant and a pH adjuster as necessary. Additives can improve wettability and coatability.
As the surfactant, any of anionic, cationic and nonionic can be used. The concentration of the additive is sufficient to obtain the desired effect, and the concentration in the dye solution is usually 0.05% by weight or more and 0.5% by weight or less as an amount that does not inhibit the orientation of the dye molecules. .
In addition, for the purpose of suppressing instability such as salt formation and aggregation of the dye in the dye solution, generally known pH adjusters such as acids and alkalis are mixed before and after mixing the components of the dye solution. Alternatively, the pH may be adjusted by adding either during mixing.
Furthermore, as additives other than those described above, known additives described in “Additive for Coating”, Edited by J. Bieleman, Willey-VCH (2000) can also be used.

(v)異方性色素膜の形成方法
本発明の異方性色素膜を湿式成膜法で形成する場合には、通常、色素溶液を基材に塗布する。
色素溶液を基材に塗布する方法としては、原崎勇次著「コーティング工学」(株式会社朝倉書店、1971年3月20日発行)253頁〜277頁や市村國宏監修「分子協調材料の創製と応用」(株式会社シーエムシー出版、1998年3月3日発行)118頁〜149頁などに記載の公知の方法や、例えば、予め配向処理を施した基材上に、スピンコート法、スプレーコート法、バーコート法、ロールコート法、ブレードコート法などで塗布する方法が挙げられる。
(v) Method for Forming Anisotropic Dye Film When forming the anisotropic dye film of the present invention by a wet film forming method, a dye solution is usually applied to a substrate.
As a method of applying a dye solution to a substrate, Yuji Harasaki, “Coating Engineering” (Asakura Shoten Co., Ltd., published on March 20, 1971), pages 253 to 277 and Kunihiro Ichimura supervised “ Application ”(CMC Publishing Co., Ltd., published on March 3, 1998), pages 118 to 149, etc., for example, spin coating method, spray coating on a substrate previously subjected to orientation treatment Examples thereof include a coating method such as a method, a bar coating method, a roll coating method, and a blade coating method.

色素溶液の基材上への塗布時の温度は、通常0℃以上、80℃以下、好ましくは40℃以下である。また、湿度は、通常10%RH以上、好ましくは30%RH以上で、通常80RH%以下である。   The temperature at the time of application | coating of the dye solution on the base material is 0 degreeC or more and 80 degrees C or less normally, Preferably it is 40 degrees C or less. The humidity is usually 10% RH or more, preferably 30% RH or more, and usually 80 RH% or less.

(vi)減圧処理
本発明の異方性色素膜の製造方法は、色素溶液を基材上に塗布後、色素膜を減圧処理することを特徴とする。減圧処理することにより、通常色素膜を乾燥させることが出来る。
(vi) Decompression treatment The method for producing an anisotropic dye film of the present invention is characterized by subjecting the dye film to a depressurization treatment after coating the dye solution on a substrate. The dye film can usually be dried by subjecting it to a reduced pressure treatment.

従来の異方性色素膜の製造方法では、色素溶液を基材上に塗布後、自然乾燥させていた。すなわち、従来は常圧下で乾燥させていたが、この乾燥方法では高い二色性を有する異方性色素膜を得ることが困難であった。この原因は、色素溶液を基材上に塗布し、色素膜が形成された後に色素の配向の乱れが起こるためと推測される。本発明によれば、減圧処理することにより、色素膜を形成後、急速に色素膜を乾燥することが出来る。この急速な乾燥により、配向の緩和や熱対流等によると考えられる色素膜の配向の乱れを防ぐことができる。これにより、高い配向性を有する色素膜が得ることができ、またこの色素膜は高い二色比を奏するものと推測される。   In the conventional method for producing an anisotropic dye film, a dye solution is applied onto a substrate and then naturally dried. That is, conventionally, drying was performed under normal pressure, but it was difficult to obtain an anisotropic dye film having high dichroism by this drying method. This is presumably because the pigment orientation is disturbed after the pigment solution is applied onto the substrate and the pigment film is formed. According to the present invention, the dye film can be rapidly dried after the dye film is formed by performing the reduced pressure treatment. By this rapid drying, it is possible to prevent the disorder of the orientation of the dye film, which is considered to be due to the relaxation of orientation and thermal convection. Thereby, a dye film having high orientation can be obtained, and this dye film is presumed to exhibit a high dichroic ratio.

本発明でいう減圧処理とは、色素膜を減圧条件下におくことを言う。このとき、色素膜を有する基材は高部から底部に流れないよう、水平にしておくことが好ましい。
塗布後、色素膜の減圧処理を始めるまでの時間は、短ければ短いほどよく、好ましくは1秒以上30秒以内である。
減圧処理の方法としては、例えば以下の様な方法が挙げられる。色素溶液を基材上に塗布し得られた色素膜を、減圧処理装置に入れて減圧処理する。例えば図9や図10のような減圧処理装置を使用することができる。減圧処理装置の詳細については、特開2004−169975号公報に記載されている。
The decompression treatment referred to in the present invention means that the dye film is placed under decompression conditions. At this time, it is preferable to keep the base material having the dye film horizontal so as not to flow from the high part to the bottom part.
The shorter the time it takes to start the decompression treatment of the dye film after coating, the better, and it is preferably 1 second or more and 30 seconds or less.
Examples of the decompression method include the following methods. The dye film obtained by applying the dye solution on the substrate is put into a reduced pressure processing apparatus and subjected to a reduced pressure treatment. For example, a decompression apparatus as shown in FIGS. 9 and 10 can be used. Details of the decompression processing apparatus are described in JP-A No. 2004-169975.

減圧処理の条件としては、色素膜の存在する系内の圧力が、好ましくは2×104Pa以下、さらに好ましくは1×104Pa以下、特に好ましくは1×103Pa以下である。また、好ましくは1Pa以上、更に好ましくは1×101Pa以上である。通常、系内が最終的に到達する圧力が前
記の通りであることが好ましい。上限を上回ると乾燥できず配向が乱れる恐れがあり、下限を下回ると乾燥が急速過ぎて欠陥が発生する恐れがある。
また、減圧処理時間は、好ましくは5秒以上180秒以内である。上限を上回ると配向緩和前に急速に色素膜を乾燥できず配向が乱れる恐れがあり、下限を下回ると乾燥できず配向が乱れる恐れがある。
As the conditions for the decompression treatment, the pressure in the system where the dye film is present is preferably 2 × 10 4 Pa or less, more preferably 1 × 10 4 Pa or less, and particularly preferably 1 × 10 3 Pa or less. Further, it is preferably 1 Pa or more, more preferably 1 × 10 1 Pa or more. Usually, the pressure finally reached in the system is preferably as described above. If the upper limit is exceeded, drying may not be possible and the orientation may be disturbed. If the lower limit is not reached, drying may be too rapid and defects may occur.
The decompression time is preferably 5 seconds or more and 180 seconds or less. If the upper limit is exceeded, the dye film cannot be dried quickly before orientation relaxation, and the orientation may be disturbed. If the lower limit is not reached, drying may not be possible and the orientation may be disturbed.

また、減圧処理する際の系内の温度は、好ましくは10℃以上60℃以下である。上限を上回ると乾燥時に対流が起こり塗布膜に不均一性の発生の恐れがあり、下限を下回ると乾燥できず配向が乱れる恐れがある。
また、湿式製膜法で色素膜を塗布するときには、基材を加温してもよいし冷却してもよい。このときの基材の温度は、好ましくは10℃以上60℃以下である。上限を上回ると減圧乾燥を行う前に配向が乱れて乾燥する恐れがあり、下限を下回ると基材表面に水滴が付き塗布の障害になる恐れがある。湿式製膜法により塗布した色素膜を減圧乾燥するときに基材の加温を行ってもよい。このときの基材の温度は、好ましくは60℃以下である。上限を上回ると減圧乾燥を行う前に配向が乱れて乾燥する恐れがある。
Further, the temperature in the system during the decompression treatment is preferably 10 ° C. or more and 60 ° C. or less. If the value exceeds the upper limit, convection may occur during drying, resulting in the occurrence of non-uniformity in the coating film. If the value is less than the lower limit, the film cannot be dried and orientation may be disturbed.
Moreover, when apply | coating a pigment | dye film | membrane by the wet film forming method, you may heat a base material and may cool it. The temperature of the substrate at this time is preferably 10 ° C. or higher and 60 ° C. or lower. If the upper limit is exceeded, the orientation may be disturbed before drying under reduced pressure, and if it is lower than the lower limit, water droplets may adhere to the substrate surface, which may impede coating. The substrate may be heated when the dye film applied by the wet film forming method is dried under reduced pressure. The temperature of the substrate at this time is preferably 60 ° C. or less. If the upper limit is exceeded, the orientation may be disturbed before drying under reduced pressure.

(vii)異方性色素膜
本発明の異方性色素膜の膜厚は、通常乾燥後の膜厚で、好ましくは10nm以上、さらに好ましくは50nm以上で、好ましくは30μm以下、さらに好ましくは1μm以下である。異方性色素膜の膜厚が30μmを超えると、膜内で色素分子の均一な配向を得ることが難しくなるおそれがあり、10nmを下回ると均一な膜厚とすることが難しくなるおそれがあるため、好ましくない。
(vii) Anisotropic Dye Film The thickness of the anisotropic dye film of the present invention is usually the film thickness after drying, preferably 10 nm or more, more preferably 50 nm or more, preferably 30 μm or less, more preferably 1 μm. It is as follows. If the thickness of the anisotropic dye film exceeds 30 μm, it may be difficult to obtain uniform orientation of the dye molecules within the film, and if it is less than 10 nm, it may be difficult to obtain a uniform film thickness. Therefore, it is not preferable.

本発明の異方性色素膜は、必要に応じ、保護層を設けて使用する。この保護層は、例えば、トリアセテート、アクリル、ポリエステル、ポリイミド、トリアセチルセルロース又はウレタン系のフィルム等の透明な高分子膜によりラミネーションして形成され、実用に供される。   The anisotropic dye film of the present invention is used with a protective layer provided if necessary. This protective layer is formed by lamination with a transparent polymer film such as triacetate, acrylic, polyester, polyimide, triacetyl cellulose, or urethane film, and is put to practical use.

(viii)素子
また、本発明の異方性色素膜をLCDやOLEDなどの各種の表示素子に偏光フィルター等として用いる場合には、これらの表示素子を構成する電極基板などに直接、該異方性色素膜を形成したり、該異方性色素膜を形成した基材をこれら表示素子の構成部材として用いればよい。
(viii) Element In addition, when the anisotropic dye film of the present invention is used as a polarizing filter or the like for various display elements such as LCDs and OLEDs, the anisotropic dye film is directly applied to the electrode substrate or the like constituting these display elements. A base material on which an anisotropic dye film is formed or an anisotropic dye film is formed may be used as a constituent member of these display elements.

本発明の異方性色素膜は、光吸収の異方性を利用し直線偏光、円偏光、楕円偏光等を得る偏光膜として機能する他、膜形成プロセスと基材や色素を含有する組成物の選択により、屈折異方性や伝導異方性などの各種異方性膜として機能化が可能となり、様々な種類の、多様な用途に使用可能な偏光素子とすることができる。   The anisotropic dye film of the present invention functions as a polarizing film that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption, and also includes a film forming process and a composition containing a substrate and a dye Thus, it is possible to make it functional as various anisotropic films such as refraction anisotropy and conduction anisotropy, and it is possible to obtain various kinds of polarizing elements that can be used for various purposes.

本発明の偏光素子は、上述した本発明の異方性色素膜を用いたものであるが、異方性色素膜のみからなる偏光素子であってもよいし、基板上に異方性色素膜を有する偏光素子であってもよい。基板上に異方性色素膜を有する偏光素子は、基板も含めて偏光素子とよぶ。
本発明の異方性色素膜を基板上に形成して偏光素子として使用する場合、形成された異方性色素膜そのものを使用してもよく、また上記の様な保護層のほか、粘着層或いは反射防止層、配向膜、位相差フィルムとしての機能、輝度向上フィルムとしての機能、反射フィルムとしての機能、半透過反射フィルムとしての機能、拡散フィルムとしての機能などの光学機能をもつ層など、様々な機能をもつ層を湿式成膜法などにより積層形成し、積層体として使用してもよい。
これら光学機能を有する層は、例えば以下の様な方法により形成することが出来る。
位相差フィルムとしての機能を有する層は、例えば特許第2841377号公報、特許第3094113号公報などに記載の延伸処理を施したり、特許第3168850号公報などに記載された処理を施したりすることにより形成することができる。
また、輝度向上フィルムとしての機能を有する層は、例えば特開 2002-169025号公報や特開 2003-29030 号公報に記載されるような方法で微細孔を形成すること、或いは、選択反射の中心波長が異なる2層以上のコレステリック液晶層を重畳することにより形成することができる。
反射フィルム又は半透過反射フィルムとしての機能を有する層は、蒸着やスパッタリングなどで得られた金属薄膜を用いて形成することができる。
拡散フィルムとしての機能を有する層は、上記の保護層に微粒子を含む樹脂溶液をコーティングすることにより、形成することができる。
また、位相差フィルムや光学補償フィルムとしての機能を有する層は、ディスコティック液晶性化合物、ネマティック液晶性化合物などの液晶性化合物を塗布して配向させることにより形成することができる。
本発明の色素を用いた異方性色素膜は、ガラスなどの高耐熱性基材上に直接形成することが可能であり、高耐熱性の偏光素子を得ることができるという点から、液晶ディスプレーや有機ELディスプレーだけでなく液晶プロジェクタや車載用表示パネル等、高耐熱性が求められる用途に好適に使用することができる。
The polarizing element of the present invention uses the above-described anisotropic dye film of the present invention, but it may be a polarizing element consisting only of an anisotropic dye film, or an anisotropic dye film on a substrate. It may be a polarizing element. A polarizing element having an anisotropic dye film on a substrate is referred to as a polarizing element including the substrate.
When the anisotropic dye film of the present invention is formed on a substrate and used as a polarizing element, the formed anisotropic dye film itself may be used. In addition to the protective layer as described above, an adhesive layer Or a layer having an optical function such as an antireflection layer, an alignment film, a function as a retardation film, a function as a brightness enhancement film, a function as a reflection film, a function as a transflective film, a function as a diffusion film, etc. Layers having various functions may be laminated by a wet film formation method or the like, and used as a laminate.
These layers having optical functions can be formed, for example, by the following method.
The layer having a function as a retardation film is subjected to, for example, a stretching process described in Japanese Patent No. 2841377, Japanese Patent No. 3094113, or a process described in Japanese Patent No. 3168850. Can be formed.
In addition, the layer having a function as a brightness enhancement film may be formed by forming a fine hole by a method as described in, for example, JP 2002-169025 A or JP 2003-29030 A, or the center of selective reflection. It can be formed by overlapping two or more cholesteric liquid crystal layers having different wavelengths.
The layer having a function as a reflective film or a transflective film can be formed using a metal thin film obtained by vapor deposition or sputtering.
The layer having a function as a diffusion film can be formed by coating the protective layer with a resin solution containing fine particles.
The layer having a function as a retardation film or an optical compensation film can be formed by applying and aligning a liquid crystal compound such as a discotic liquid crystal compound or a nematic liquid crystal compound.
The anisotropic dye film using the dye of the present invention can be directly formed on a high heat resistant substrate such as glass, and a liquid crystal display can be obtained from the point that a high heat resistant polarizing element can be obtained. In addition to organic EL displays, it can be suitably used for applications requiring high heat resistance such as liquid crystal projectors and in-vehicle display panels.

次に、実施例により本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
また、二色比(D)はヨウ素系偏光素子を入射光学系に配した分光光度計(大塚電子社製「瞬間マルチ測光システムMCPD2000」)で異方性色素膜の透過率を測定した後、次式により計算した。
EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example, unless the summary is exceeded.
In addition, the dichroic ratio (D) is measured after measuring the transmittance of the anisotropic dye film with a spectrophotometer (“instant multi-photometry system MCPD2000” manufactured by Otsuka Electronics Co., Ltd.) in which an iodine polarizing element is arranged in the incident optical system. The following formula was used for calculation.

二色比(D)=Az/Ay
Az=−log(Tz)
Ay=−log(Ty)
Tz:色素膜の吸収軸方向の偏光に対する透過率
Ty:色素膜の偏光軸方向の偏光に対する透過率
また、配向の緩和時間はクロスニコル下で観察したときに色素溶液に1000[1/s]のずり
を10秒かけた後の光線透過率がずりをかえる前の光線透過率に戻る時間を表す。
Dichroic ratio (D) = Az / Ay
Az = -log (Tz)
Ay = -log (Ty)
Tz: transmittance for polarized light in the absorption axis direction of the dye film
Ty: Transmittance to polarization in the direction of the polarization axis of the dye film Also, the relaxation time of the orientation is the light transmittance after applying a 1000 [1 / s] shear to the dye solution for 10 seconds when observed under crossed Nicols. It represents the time to return to the light transmittance before changing the shear.

以下において「部」は「重量部」を示す。
(実施例1)
水79.8部に下記例示色素(I)15部とガラクトース5部とノニオン系界面活性剤エマルゲン109P(花王社製)0.2部を撹拌溶解させて色素溶液を得た。
In the following, “part” means “part by weight”.
Example 1
The following pigment (I) 15 parts, galactose 5 parts and nonionic surfactant Emulgen 109P (manufactured by Kao) 0.2 parts were stirred and dissolved in 79.8 parts of water to obtain a dye solution.

Figure 2006201759
Figure 2006201759

ガラス製基材(75mm×25mm、厚さ1mm)上にシルク印刷法によりポリイミドの配向膜が形成された基板(ポリイミド膜厚 約800Å)を、予め布でラビング処理を施したものを用意した。これに前記色素溶液をバーコータ(テスター産業社製「No.2」使用)で塗布した後、減圧処理することにより膜厚約0.4μmの異方性色素膜を得た。   A substrate (polyimide film thickness of about 800 mm) on which a polyimide alignment film was formed by a silk printing method on a glass substrate (75 mm × 25 mm, thickness 1 mm) was prepared by rubbing with a cloth in advance. The dye solution was applied to this with a bar coater (using “No. 2” manufactured by Tester Sangyo Co., Ltd.) and then subjected to reduced pressure to obtain an anisotropic dye film having a thickness of about 0.4 μm.

減圧処理条件は、以下の条件で実施した。
・減圧開始から約5秒で約2×104 Pa かつ減圧開始から約30秒で約1×102Pa 、
・減圧開始から約5秒で約2×104 Pa かつ減圧開始から約20秒で約1×102Pa 、
・減圧開始から約5秒で約2×104 Pa かつ減圧開始から約10秒で約1×102Pa 、
・減圧開始から約10秒で約1×102 Pa 、
・減圧開始から約5秒で約5×104 Pa かつ減圧開始から約10秒で約1×102Pa
また、減圧処理を始めるまでの時間は約5〜10秒であった。また、減圧処理装置は次のものを使用した。
The decompression treatment conditions were as follows.
・ About 2 × 10 4 Pa in about 5 seconds from the start of decompression and about 1 × 10 2 Pa in about 30 seconds from the start of decompression,
・ About 2 × 10 4 Pa in about 5 seconds from the start of decompression and about 1 × 10 2 Pa in about 20 seconds from the start of decompression,
・ About 2 × 10 4 Pa in about 5 seconds from the start of decompression and about 1 × 10 2 Pa in about 10 seconds from the start of decompression,
・ About 1 × 10 2 Pa in about 10 seconds from the start of decompression,
・ About 5 × 10 4 Pa in about 5 seconds from the start of decompression and about 1 × 10 2 Pa in about 10 seconds from the start of decompression
Moreover, the time until the pressure reduction treatment was started was about 5 to 10 seconds. Moreover, the following was used for the pressure reduction processing apparatus.

減圧処理装置:約150cm3の減圧室を持ち、その減圧室には二つの減圧部と一つの復圧部を有する。二つの減圧部のうち一つには約200l/分の油回転真空ポンプ(例:アルバック
機工GLD-201)をつなぎ、他方には約800l/minのメカニカルブースータポンプ(例:アル
バック機工MBS-050)をつないだ。二つの減圧部及び一つの復圧部には減圧速度及び復圧
速度の調整機構を備えている。減圧室には熱伝導による乾燥ムラを防ぐために基材の接触面積を小さく保持する機構を有する。
Decompression treatment apparatus: It has a decompression chamber of about 150 cm 3, and the decompression chamber has two decompression sections and one decompression section. One of the two decompression sections is connected to an oil rotary vacuum pump (eg ULVAC Kiko GLD-201) of about 200 l / min, and the other is a mechanical booster pump of about 800 l / min (eg ULVAC Kiko MBS). -050). The two decompression units and the one decompression unit are provided with a mechanism for adjusting the decompression speed and the decompression speed. The decompression chamber has a mechanism for keeping the contact area of the substrate small in order to prevent drying unevenness due to heat conduction.

尚、塗布条件は25℃、50%RH及び25℃、10%RHの何れかで作製した。得られた異方性色素膜の二色比を測定したところ図1のような結果を得た。図1の結果から、二色比は平均15.2であり、減圧処理を行うことにより異方性色素膜の二色比が向上することが確認された。   The coating conditions were 25 ° C., 50% RH and 25 ° C., 10% RH. When the dichroic ratio of the obtained anisotropic dye film was measured, the result as shown in FIG. 1 was obtained. From the results in FIG. 1, the dichroic ratio was 15.2 on average, and it was confirmed that the dichroic ratio of the anisotropic dye film was improved by performing the decompression treatment.

(比較例1)
色素溶液を塗布後、減圧処理を行わず、色素膜を自然乾燥させたこと以外は、実施例1と同様にして異方性色素膜を得た。尚、自然乾燥条件は、各膜の塗布条件にあわせ25℃、50%RH及び25℃、10%RHの何れかとした。
得られた異方性色素膜の二色比を測定したところ図1のような結果を得た。図1の結果から、二色比は平均6.3であり、減圧処理を行ったものに比較して、二色比が低かった。
(Comparative Example 1)
After applying the dye solution, an anisotropic dye film was obtained in the same manner as in Example 1 except that the pressure reduction treatment was not performed and the dye film was naturally dried. The natural drying conditions were any of 25 ° C., 50% RH and 25 ° C., 10% RH according to the coating conditions of each film.
When the dichroic ratio of the obtained anisotropic dye film was measured, the result as shown in FIG. 1 was obtained. From the result of FIG. 1, the dichroic ratio was an average of 6.3, and the dichroic ratio was lower than that obtained by performing the decompression treatment.

(実施例2)
水84.7部に前記例示色素(I)15部とポリエチレングリコール0.1部とノニオン系界面活性剤エマルゲン109P(花王社製)0.2部を撹拌溶解させて色素溶液を得た。
ガラス製基材(75mm×25mm、厚さ1mm)上にシルク印刷法によりポリイミドの配向膜が形成された基板(ポリイミド膜厚 約800Å)を、予め布でラビング処理を施したものを用意しておき、これに前記色素溶液をバーコータ(テスター産業社製「No.2」使用)で塗布した後、減圧処理することにより膜厚約0.4μmの異方性色素膜を得た。
(Example 2)
In 84.7 parts of water, 15 parts of the exemplified dye (I), 0.1 part of polyethylene glycol, and 0.2 part of nonionic surfactant Emulgen 109P (manufactured by Kao Corporation) were stirred and dissolved to obtain a dye solution.
Prepare a substrate (polyimide film thickness of about 800 mm), on which a polyimide alignment film is formed by a silk printing method on a glass substrate (75 mm x 25 mm, thickness 1 mm), and then rubbed with a cloth in advance. Then, the dye solution was applied to this with a bar coater (using “No. 2” manufactured by Tester Sangyo Co., Ltd.) and then subjected to reduced pressure to obtain an anisotropic dye film having a thickness of about 0.4 μm.

減圧処理条件は、減圧開始から約5秒で約2×104 Pa かつ減圧開始から約30秒で
約1×102 Paとした。塗布条件は、22℃、36%RHであった。
図2に、減圧処理により得られた異方性色素膜の表面性状を示す。表面性状は、レーザ顕微鏡(Lasertec、LaserMicroscope 1LM11)により、対物レンズ80倍で観察した。尚、
図中に示される縦2本の白色点線間の長さが10μmである。
図2の結果から明らかなように、表面の平滑性が高い異方性色素膜を得ることができた。よって、表面での光散乱防止に効果があると考えられる。
The decompression conditions were about 2 × 10 4 Pa in about 5 seconds from the start of decompression and about 1 × 10 2 Pa in about 30 seconds from the start of decompression. The coating conditions were 22 ° C. and 36% RH.
FIG. 2 shows the surface properties of the anisotropic dye film obtained by the reduced pressure treatment. The surface properties were observed with a laser microscope (Lasertec, LaserMicroscope 1LM11) at an objective lens of 80 times. still,
The length between two vertical white dotted lines shown in the figure is 10 μm.
As is apparent from the results of FIG. 2, an anisotropic dye film having high surface smoothness could be obtained. Therefore, it is thought that it is effective in preventing light scattering on the surface.

(実施例3)
ガラス製基材として、150mm×75mm、厚さ1mmのものを使用し、色素溶液をスロットダイコータで塗布したこと以外は、実施例2と同様にして異方性色素膜を得た。
図3に、異方性色素膜の表面性状を示す。表面性状の観察条件等は、実施例2と同様である。図3の結果から明らかな様に、表面の平滑性が高い異方性色素膜を得ることが出来た。よって、光散乱防止に効果があると考えられる。また、この異方性色素膜の二色比を測定した結果を図4に示す。二色比は12であった。
(Example 3)
An anisotropic dye film was obtained in the same manner as in Example 2 except that a glass substrate having a size of 150 mm × 75 mm and a thickness of 1 mm was used and the dye solution was applied with a slot die coater.
FIG. 3 shows the surface properties of the anisotropic dye film. The observation conditions and the like of the surface properties are the same as in Example 2. As is apparent from the results of FIG. 3, an anisotropic dye film having high surface smoothness could be obtained. Therefore, it is considered effective for preventing light scattering. Moreover, the result of having measured the dichroic ratio of this anisotropic dye film | membrane is shown in FIG. The dichroic ratio was 12.

(比較例2)
色素溶液を塗布後、減圧処理を行わず、色素膜を自然乾燥させたこと以外は、実施例2と同様にして異方性色素膜を得た。
尚、自然乾燥条件は、22℃、36%RHとした。
図5に、自然乾燥により得られた異方性色素膜の表面性状を示す。表面の平滑性が高い異方性色素膜とは言えなかった。
(Comparative Example 2)
After applying the dye solution, an anisotropic dye film was obtained in the same manner as in Example 2 except that the pressure reduction treatment was not performed and the dye film was naturally dried.
The natural drying conditions were 22 ° C. and 36% RH.
FIG. 5 shows the surface properties of the anisotropic dye film obtained by natural drying. It could not be said to be an anisotropic dye film having high surface smoothness.

(比較例3)
ガラス製基材として、150mm×75mm、厚さ1mmのものを使用し、色素溶液をスロットダイコータで塗布したこと以外は、比較例2と同様にして異方性色素膜を得た。
図6に、異方性色素膜の表面性状を示す。表面の平滑性が高い異方性色素膜とは言えなかった。
この異方性色素膜の二色比を測定した結果を図7に示す。二色比は約7であった。減圧処理により得られた異方性色素膜に比べ、二色比が低かった。減圧処理により異方性色素膜の二色比が向上することが確認された。
(実施例4)
実施例1と同様に水79.8部に下記例示色素(I)15部とガラクトース5部とノニオン系界面活性剤エマルゲン109P(花王社製)0.2部を撹拌溶解させて色素溶液を得た。
ガラス製基材(75mm×25mm、厚さ1mm)上にシルク印刷法によりポリイミドの配向膜が形成された基板(ポリイミド膜厚 約800Å)を、予め布でラビング処理を施したものを用意した。これに前記色素溶液をバーコータ(テスター産業社製「No.2
」使用)で塗布した後、減圧処理することにより膜厚約0.4μmの異方性色素膜を得た。
減圧処理条件は、以下の条件で実施した。
・減圧開始から約5秒で約2×104 Pa かつ減圧開始から約10秒で約1×102 Pa
また、減圧処理を始めるまでの時間は約5秒で、減圧処理装置は実施例1と同様のものを使用した。
尚、塗布条件は25℃、50%RH及で作製した。得られた異方性色素膜の反射率(Reflection)を測定(測定装置:日立製作所U3500形自記分光光度計、測定条件:380〜780nm、R%モード)したところ図8の(1)のような結果を得た。この結果から、減圧処理をした表面の反射率は平均9.5%であり、減圧処理を行うことにより表面の光の散乱が少なくなることがわかった。
(比較例4)
減圧処理を行わないで自然乾燥を行う以外は実施例4と同様にして、得られた異方性色素膜の反射率を測定したところ図8の(2)のような結果を得た。この結果から、減圧処理をした表面の反射率は平均2.3%であり、減圧処理を行わないと表面の光の散乱が多くなることがわかった。
(Comparative Example 3)
An anisotropic dye film was obtained in the same manner as in Comparative Example 2 except that a glass substrate having a size of 150 mm × 75 mm and a thickness of 1 mm was used and the dye solution was applied with a slot die coater.
FIG. 6 shows the surface properties of the anisotropic dye film. It could not be said to be an anisotropic dye film having high surface smoothness.
The results of measuring the dichroic ratio of this anisotropic dye film are shown in FIG. The dichroic ratio was about 7. The dichroic ratio was lower than that of the anisotropic dye film obtained by the reduced pressure treatment. It was confirmed that the dichroic ratio of the anisotropic dye film was improved by the reduced pressure treatment.
Example 4
In the same manner as in Example 1, 15 parts of Exemplified dye (I) shown below, 5 parts of galactose, and 0.2 part of nonionic surfactant Emulgen 109P (manufactured by Kao Corporation) were stirred and dissolved in 79.8 parts of water to obtain a dye solution. It was.
A substrate (polyimide film thickness of about 800 mm) on which a polyimide alignment film was formed by a silk printing method on a glass substrate (75 mm × 25 mm, thickness 1 mm) was prepared by rubbing with a cloth in advance. The dye solution was added to the bar coater (“No. 2 manufactured by Tester Sangyo Co., Ltd.).
After application, the anisotropic dye film having a film thickness of about 0.4 μm was obtained by performing a reduced pressure treatment.
The decompression treatment conditions were as follows.
・ About 2 × 10 4 Pa in about 5 seconds from the start of decompression and about 1 × 10 2 Pa in about 10 seconds from the start of decompression
Further, the time until the pressure reduction treatment was started was about 5 seconds, and the same pressure reduction treatment apparatus as in Example 1 was used.
The coating conditions were 25 ° C. and 50% RH. When the reflectance of the obtained anisotropic dye film was measured (measuring device: Hitachi U3500-type self-recording spectrophotometer, measuring conditions: 380 to 780 nm, R% mode), as shown in (1) of FIG. Results were obtained. From this result, it was found that the average reflectance of the surface subjected to the reduced pressure treatment was 9.5%, and that the scattering of light on the surface was reduced by performing the reduced pressure treatment.
(Comparative Example 4)
When the reflectance of the obtained anisotropic dye film was measured in the same manner as in Example 4 except that natural drying was performed without performing the decompression treatment, the result as shown in FIG. 8 (2) was obtained. From this result, it was found that the reflectance of the surface subjected to the reduced pressure treatment was 2.3% on average, and that the scattering of light on the surface increased unless the reduced pressure treatment was performed.

単体透過率と二色比の関係について、減圧処理した場合と自然乾燥した場合で比較したグラフ(実施例1、比較例1)。The graph which compared with the case where it reduced-pressure-processed and the case where it dried naturally about the relationship between a single-piece | unit transmittance | permeability and dichroic ratio (Example 1, Comparative Example 1). 減圧処理をしたときの異方性色素膜の表面性状の図(実施例2)Example of surface properties of anisotropic dye film when decompressed (Example 2) 減圧処理をしたときの異方性色素膜の表面性状の図(実施例3)FIG. 3 is a diagram of the surface properties of an anisotropic dye film when subjected to a reduced pressure treatment (Example 3). 減圧処理をしたときの異方性色素膜の二色比の図(実施例3)Diagram of dichroic ratio of anisotropic dye film when decompressed (Example 3) 自然乾燥をしたときの異方性色素膜の表面性状の図(比較例2)Diagram of surface properties of anisotropic dye film when naturally dried (Comparative Example 2) 自然乾燥をしたときの異方性色素膜の表面性状の図(比較例3)Diagram of surface properties of anisotropic dye film when naturally dried (Comparative Example 3) 自然乾燥をしたときの異方性色素膜の二色比の図(比較例3)Diagram of dichroic ratio of anisotropic dye film when naturally dried (Comparative Example 3) 波長と反射率の関係について、減圧処理と自然乾燥をした場合で比較した図(実施例4、比較例4)The figure which compared the relationship between a wavelength and a reflectance in the case of carrying out pressure reduction processing and natural drying (Example 4, Comparative Example 4) 減圧処理装置の例を示す図The figure which shows the example of the decompression processing equipment 減圧処理装置の例を示す図The figure which shows the example of the decompression processing equipment

符号の説明Explanation of symbols

1 上部チャンバー
2 下部チャンバー
3 ステージ
4 塗布基板
5 昇降シャフト
6 真空シール部材
7 排気ポート
8 真空シール部材
9 気体導入ポート
1 0 気流制御板
1 1 副減圧室
1 2 開閉弁
1 3 減圧室
DESCRIPTION OF SYMBOLS 1 Upper chamber 2 Lower chamber 3 Stage 4 Coating substrate 5 Lifting shaft 6 Vacuum seal member 7 Exhaust port 8 Vacuum seal member 9 Gas introduction port 1 0 Airflow control board 1 1 Sub decompression chamber 1 2 On-off valve 1 3 Decompression chamber

Claims (6)

色素溶液を基材上に塗布し、色素膜を形成した後、該色素膜を減圧処理することを特徴とする異方性色素膜の製造方法。   A method for producing an anisotropic dye film, comprising: applying a dye solution onto a substrate to form a dye film; and then subjecting the dye film to a reduced pressure treatment. 減圧処理が5×104Pa以下で行なわれる請求項1に記載の異方性色素膜の製造方法。 The method for producing an anisotropic dye film according to claim 1, wherein the decompression treatment is performed at 5 × 10 4 Pa or less. 色素溶液に含まれる色素が液晶相を有する色素である、請求項1または2に記載の異方性色素膜の製造方法。   The method for producing an anisotropic dye film according to claim 1 or 2, wherein the dye contained in the dye solution is a dye having a liquid crystal phase. 色素溶液に含まれる色素の配向の緩和時間が10秒以下である請求項1〜3のいずれか一項に記載の異方性色素膜の製造方法。   The method for producing an anisotropic dye film according to any one of claims 1 to 3, wherein the relaxation time of the orientation of the dye contained in the dye solution is 10 seconds or less. 請求項1〜4のいずれか一項に記載の製造方法により製造された異方性色素膜。   The anisotropic dye film manufactured by the manufacturing method as described in any one of Claims 1-4. 請求項5に記載の異方性色素膜を用いた偏光素子。   A polarizing element using the anisotropic dye film according to claim 5.
JP2005366703A 2004-12-22 2005-12-20 Method of forming anisotropic dye film, anisotropic dye film and polarizing element Pending JP2006201759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005366703A JP2006201759A (en) 2004-12-22 2005-12-20 Method of forming anisotropic dye film, anisotropic dye film and polarizing element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004372264 2004-12-22
JP2005366703A JP2006201759A (en) 2004-12-22 2005-12-20 Method of forming anisotropic dye film, anisotropic dye film and polarizing element

Publications (1)

Publication Number Publication Date
JP2006201759A true JP2006201759A (en) 2006-08-03

Family

ID=36959759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005366703A Pending JP2006201759A (en) 2004-12-22 2005-12-20 Method of forming anisotropic dye film, anisotropic dye film and polarizing element

Country Status (1)

Country Link
JP (1) JP2006201759A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030883A1 (en) 2009-09-14 2011-03-17 Fujifilm Corporation Color filter and light-emitting display element
WO2011125620A1 (en) 2010-03-31 2011-10-13 富士フイルム株式会社 Liquid crystalline compound, liquid crystalline composition, anisotropically light-absorbing film, and liquid crystal display device
WO2011125622A1 (en) 2010-03-31 2011-10-13 富士フイルム株式会社 Light-absorbable anisotropic film, polarizing film, process for producing same, and display device using same
WO2011125621A1 (en) 2010-03-31 2011-10-13 富士フイルム株式会社 Polarizing film, display device, and process for producing same
WO2016171126A1 (en) * 2015-04-20 2016-10-27 日本化薬株式会社 Composition containing dichroic dye, dye film produced using same, and polarizing element comprising said dye film
JP2018004862A (en) * 2016-06-30 2018-01-11 東京エレクトロン株式会社 Optical film forming method, program, computer storage medium, and optical film forming device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030883A1 (en) 2009-09-14 2011-03-17 Fujifilm Corporation Color filter and light-emitting display element
WO2011125620A1 (en) 2010-03-31 2011-10-13 富士フイルム株式会社 Liquid crystalline compound, liquid crystalline composition, anisotropically light-absorbing film, and liquid crystal display device
WO2011125622A1 (en) 2010-03-31 2011-10-13 富士フイルム株式会社 Light-absorbable anisotropic film, polarizing film, process for producing same, and display device using same
WO2011125621A1 (en) 2010-03-31 2011-10-13 富士フイルム株式会社 Polarizing film, display device, and process for producing same
WO2016171126A1 (en) * 2015-04-20 2016-10-27 日本化薬株式会社 Composition containing dichroic dye, dye film produced using same, and polarizing element comprising said dye film
CN107532009A (en) * 2015-04-20 2018-01-02 日本化药株式会社 Composition containing dichroism pigment, the pigmented film made using said composition and the polarizer with the pigmented film
CN107532009B (en) * 2015-04-20 2020-04-24 日本化药株式会社 Composition containing dichroic dye, dye film produced using the composition, and polarizing element having the dye film
JP2018004862A (en) * 2016-06-30 2018-01-11 東京エレクトロン株式会社 Optical film forming method, program, computer storage medium, and optical film forming device

Similar Documents

Publication Publication Date Title
JP5422864B2 (en) Trisazo dye, composition for anisotropic dye film containing the dye, anisotropic dye film, and polarizing element
JP4876549B2 (en) Azo dye, composition for anisotropic dye film using the same, anisotropic dye film and polarizing element
JP2010026024A (en) Composition for anisotropic film, anisotropic film, polarizing element, and azo compound
JP5168878B2 (en) Composition for anisotropic dye film, anisotropic dye film and polarizing element
JP2006201759A (en) Method of forming anisotropic dye film, anisotropic dye film and polarizing element
WO2007010841A1 (en) Composition for anisotropic pigmented film, anisotropic pigmented film, and polarizing element
JP2010001368A (en) Liquid crystal composition, light absorption anisotropic film, polarizing element and liquid crystal display device
JP4736823B2 (en) Composition for anisotropic dye film, anisotropic dye film, polarizing element and dye for anisotropic dye film
JP4784417B2 (en) Composition for anisotropic dye film, anisotropic dye film and polarizing element
JP2006047966A (en) Pigment for anisotropic pigment film, pigment composition for anisotropic pigment film, anisotropic pigment film and polarizing element
JP6604203B2 (en) Composition for anisotropic dye film, anisotropic dye film and optical element
JP2007226212A (en) Coating liquid material, anisotropic film, method for manufacturing anisotropic film, and optical element
JP6406262B2 (en) Manufacturing method of anisotropic dye film, anisotropic dye film manufactured by the manufacturing method, optical element including the anisotropic dye film, and liquid crystal element including the optical element
JP2007302807A (en) Azo dye for anisotropic dye film, composition containing the azo dye, anisotropic dye film and polarizing element
JP2009132748A (en) Azo pigment for anisotropic pigment film
JP2006293025A (en) Manufacturing method of anisotropic dyestuff film, anisotropic dyestuff film and polarizing element
JP5092345B2 (en) Anisotropic dye film and polarizing element
JP6160198B2 (en) Manufacturing method of polarizer
JP2007093938A (en) Liquid crystalline coating liquid material for anisotropic dye film, and method for manufacturing anisotropic dye film and optical element
JP2008020908A (en) Pigment for anisotropic pigment film
JP2005284260A (en) Anisotropic organic film, its manufacturing method, and polarizing film and polarizing element
JP2006003864A (en) Dye composition for anisotropic dye film, anisotropic dye film and polarizing element
JP5499791B2 (en) Azo compound for anisotropic film, composition for anisotropic film, anisotropic film and polarizing element
JP5076308B2 (en) Water-soluble dye and dye composition, anisotropic dye film and polarizing element using the same
JP2007127897A (en) Method of manufacturing anisotropic optical film, anisotropic optical film, and optical element