JP2006200812A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2006200812A
JP2006200812A JP2005012591A JP2005012591A JP2006200812A JP 2006200812 A JP2006200812 A JP 2006200812A JP 2005012591 A JP2005012591 A JP 2005012591A JP 2005012591 A JP2005012591 A JP 2005012591A JP 2006200812 A JP2006200812 A JP 2006200812A
Authority
JP
Japan
Prior art keywords
air
conditioned space
coil
conditioning system
air conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005012591A
Other languages
Japanese (ja)
Inventor
Kenichi Okao
憲一 岡尾
Fumiaki Kawakami
史晃 川上
Hirohide Sugihara
広英 杉原
Satoshi Okumura
諭 奥村
Shigeru Mizushima
茂 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIMOTO KENCHIKU JIMUSHO KK
Sanki Engineering Co Ltd
Toda Corp
Original Assignee
ISHIMOTO KENCHIKU JIMUSHO KK
Sanki Engineering Co Ltd
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIMOTO KENCHIKU JIMUSHO KK, Sanki Engineering Co Ltd, Toda Corp filed Critical ISHIMOTO KENCHIKU JIMUSHO KK
Priority to JP2005012591A priority Critical patent/JP2006200812A/en
Publication of JP2006200812A publication Critical patent/JP2006200812A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Central Air Conditioning (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioning system capable of carrying out air conditioning that is friendly to the human body even when cold water of 7°C is used, capable of reducing an air conditioning air amount blown out into an air-conditioned space, and reducing a capacity, improving efficiency, or the like of a heat source machine such as a refrigerating machine. <P>SOLUTION: The air conditioning system is provided with a total enthalpy heat exchanger 51 having a total enthalpy heat exchange rotor 61 carrying out total enthalpy heat exchange between introduced outside air and exhaust air which is one part of return air from the air-conditioned space 54 to carry out cooling and dehumidification of the outside air, a dehumidifier 52 having a cold temperature coil 70 cooling air sent from the total enthalpy heat exchanger 51 and a dehumidification rotor 69 dehumidifying air from the cold temperature coil 70, and an air conditioner 53 having a cold temperature coil 75 cooling a mixture of air heated during dehumidification by the dehumidification rotor 69 and sent from the dehumidifier 52, and the return air from the air-conditioned space 54. Air supply from the air conditioner 53 to the air-conditioned space 54 can be carried out. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は空調システムに関する。   The present invention relates to an air conditioning system.

例えば、在室人員が1万人程度で人員密度が2.5人/mのような混雑した室内空間において空調を行なう場合、従来は、一般の空調と同様、冷水コイルと温水コイルを利用すると共に、過冷却と再熱の温湿度制御を行なう空調システムが採用されており、斯かる空調システムの従来例は図3に示されている。 For example, when air-conditioning is performed in a congested indoor space where the number of people in the room is about 10,000 and the staff density is 2.5 people / m 2 , conventionally, a cold water coil and a hot water coil are used as in the case of general air conditioning. In addition, an air-conditioning system that performs temperature and humidity control of supercooling and reheating is employed, and a conventional example of such an air-conditioning system is shown in FIG.

図中、1は外調機、2は空調機、3は空調空間である。而して、外調機1のハウジング1a内は、屋外から導入管4を通り導入された外気(新鮮空気)が管路5側へ送給される径路となる室6と、管路7から送出された排気が導出管8側へ導出される径路となる室9とに分けられており、ハウジング1a内には室6,9に跨って配置された回転駆動可能な全熱交換ロータ10が設けられている。全熱交換ロータ10は外気と排気が有する顕熱と潜熱を同時に交換する空調用の熱交換器である。又、室6における外気の流れ方向と、室9における排気の流れ方向は反対向きとなっている。   In the figure, 1 is an external air conditioner, 2 is an air conditioner, and 3 is an air-conditioned space. Thus, the inside of the housing 1a of the external air conditioner 1 includes a chamber 6 serving as a path through which outside air (fresh air) introduced from the outside through the introduction pipe 4 is fed to the pipe line 5 side, and the pipe line 7 The exhaust gas sent out is divided into a chamber 9 that serves as a path through which the exhaust gas is led out to the outlet pipe 8 side. A rotary heat-driven total heat exchange rotor 10 disposed across the chambers 6 and 9 is disposed in the housing 1a. Is provided. The total heat exchange rotor 10 is a heat exchanger for air conditioning that simultaneously exchanges sensible heat and latent heat of the outside air and exhaust. The flow direction of the outside air in the chamber 6 and the flow direction of the exhaust gas in the chamber 9 are opposite to each other.

室6には、全熱交換ロータ10よりも外気流れ方向上流側にファン11が配置されていると共に、全熱交換ロータ10よりも外気流れ方向下流側に、外気流れ方向へ向けて順次、外気を加熱する温水コイル12、外気を一次冷却する冷水コイル13、必要に応じて外気を加湿する加湿器14が配置されている。又、室9には、全熱交換ロータ10の排気流れ方向上流側にファン15が配置されている。   A fan 11 is disposed in the chamber 6 on the upstream side in the outside air flow direction from the total heat exchange rotor 10, and the outside air is sequentially arranged in the outside air flow direction downstream from the total heat exchange rotor 10 in the outside air flow direction. A hot water coil 12 that heats the air, a cold water coil 13 that primarily cools the outside air, and a humidifier 14 that humidifies the outside air as necessary are arranged. In the chamber 9, a fan 15 is disposed upstream of the total heat exchange rotor 10 in the exhaust flow direction.

空調機2のハウジング2a内には、空気流れ方向上流側から下流側へ向けて順次、管路5からの空気と管路16からの還気が混じった空気を過冷却する冷水コイル17と、冷水コイル17で過冷却された空気を加熱する温水コイル18と、温水コイル18を通過してきた空気を管路19を介し、給気として空調空間3へ送給するためのファン20が配置されている。   In the housing 2a of the air conditioner 2, a chilled water coil 17 for supercooling air mixed with air from the pipeline 5 and return air from the pipeline 16 sequentially from the upstream side to the downstream side in the air flow direction, A hot water coil 18 for heating the air supercooled by the cold water coil 17 and a fan 20 for supplying the air that has passed through the hot water coil 18 to the air-conditioned space 3 as supply air through the pipe line 19 are arranged. Yes.

空調空間3からの還気は管路16へ送出し得るようになっており、管路16の中途部には、還気の一部が排気されるよう管路7の排気流れ方向上流側端部が接続されている。   The return air from the air-conditioned space 3 can be sent to the pipe line 16, and in the middle of the pipe line 16, the upstream end of the pipe line 7 in the exhaust flow direction so that a part of the return air is exhausted Are connected.

温水コイル12には、温水の往管路21と還管路22が接続されており、往管路21の中途部には、温水を温水コイル18へ送給する往管路23が接続され、還管路22の中途部には、温水コイル18からの還りの温水が還管路22へ送給されるよう、還管路24が接続されている。   The warm water coil 12 is connected with a warm water outbound pipeline 21 and a return pipeline 22, and a midway portion of the outbound pipeline 21 is coupled with an outbound pipeline 23 for supplying warm water to the warm water coil 18. A return pipe 24 is connected to the middle part of the return pipe 22 so that hot water returned from the hot water coil 18 is supplied to the return pipe 22.

冷水コイル13には、冷水の往管路25と還管路26が接続されており、往管路25の中途部には、冷水を冷水コイル17へ送給する往管路27が接続され、還管路26の中途部には、冷水コイル17からの還りの冷水が還管路26へ送給されるよう、還管路28が接続されている。なお、図中、29,30,31,32は開閉弁である。   The chilled water coil 13 is connected to a chilled water outgoing line 25 and a return line 26, and an intermediate part of the outgoing line 25 is connected to an outgoing line 27 for supplying chilled water to the chilled water coil 17. A return pipe 28 is connected to the middle of the return pipe 26 so that the cold water returned from the cold water coil 17 is fed to the return pipe 26. In the figure, 29, 30, 31, and 32 are on-off valves.

次に、上記空調システムの作動を図4〜図7をも参照しつつ説明する。例えば、上記空調システムにおいて冷房等の空調を行なう際には、全熱交換ロータ10、ファン11,15,20は駆動されており、開閉弁29は閉止し、他の開閉弁30,31,32は開いている。   Next, the operation of the air conditioning system will be described with reference to FIGS. For example, when air conditioning such as cooling is performed in the air conditioning system, the total heat exchange rotor 10 and the fans 11, 15, and 20 are driven, the on-off valve 29 is closed, and the other on-off valves 30, 31, 32 are operated. Is open.

このため、冷凍機等の熱源機器において冷却された冷水は往管路25から冷水コイル13に送給されると共に、往管路25,27から冷水コイル17へ送給される。冷水コイル13からの戻りの冷水は還管路26から、又、冷水コイル17からの戻りの冷水は還管路28,26から、熱源機器へ戻され、冷却されて再び前記径路を循環する。   For this reason, the cold water cooled in the heat source device such as a refrigerator is supplied from the forward conduit 25 to the cold water coil 13 and from the forward conduits 25 and 27 to the cold water coil 17. Returning chilled water from the chilled water coil 13 is returned to the heat source device from the return pipe 26 and return chilled water from the chilled water coil 17 is returned to the heat source device and is circulated through the path again.

温水機等の熱源機器で生成された温水は、管路21,23から温水コイル18に送給され、温水コイル18から管路24,22を経て熱源機器へ戻され、加熱されて再び前記径路を循環する。   Hot water generated by a heat source device such as a water heater is fed from the pipes 21 and 23 to the hot water coil 18, returned from the hot water coil 18 to the heat source equipment through the pipes 24 and 22, heated and heated again. Circulate.

導入管4から外調機1の室6内に導入された外気(新鮮空気)は、ファン11により室6内を送給され、全熱交換ロータ10において、室9側の排気との間で熱と水蒸気の授受が行われ、冷却されると共に除湿される。全熱交換ロータ10において冷却され且つ除湿された空気は冷水コイル13へ送給され、冷水コイル13により一次冷却されて相対湿度が上昇する。而して、冷却され且つ相対湿度が上昇した空気は、室6から管路5を経て空調機2のハウジング2a内へ導入される。外気を冷水コイル13により二次冷却するのは、外気の熱処理を室内の熱処理と分けることで、空調機2の冷水コイル17における温湿度制御を安定して行なうためである。   Outside air (fresh air) introduced into the chamber 6 of the external air conditioner 1 from the introduction pipe 4 is fed into the chamber 6 by the fan 11, and is exhausted between the exhaust on the chamber 9 side in the total heat exchange rotor 10. Heat and steam are exchanged, cooled and dehumidified. The air cooled and dehumidified in the total heat exchange rotor 10 is supplied to the cold water coil 13 and is primarily cooled by the cold water coil 13 to increase the relative humidity. Thus, the cooled air having an increased relative humidity is introduced from the chamber 6 into the housing 2a of the air conditioner 2 via the pipe line 5. The reason why the outside air is secondarily cooled by the cold water coil 13 is to stably control the temperature and humidity in the cold water coil 17 of the air conditioner 2 by separating the heat treatment of the outside air from the heat treatment in the room.

空気はハウジング2a内において管路16からの還気と合流し、還気と混じった空気は、冷水コイル17により過冷却されると共に除湿され、温水コイル18により再加熱されて温度が上昇する。   The air merges with the return air from the pipe line 16 in the housing 2a, and the air mixed with the return air is supercooled and dehumidified by the cold water coil 17 and reheated by the hot water coil 18 to increase the temperature.

空気の除湿により人体に湿度が高いことによる不快感を与えることが防止される。温水コイル18で加熱するのは、加熱することなく、空調空間3へ給気を供給すると、空調空間3の冷房が効きすぎるためである。   The dehumidification of the air prevents the human body from being uncomfortable due to high humidity. The reason for heating with the hot water coil 18 is that if the air supply is supplied to the conditioned space 3 without heating, the cooling of the conditioned space 3 is too effective.

温水コイル18で加熱された空気はファン20により、管路19を通り給気として空調空間3へ吹出されて空調空間3の冷房に供され、空調空間3を所定の温度及び湿度に保持する。   The air heated by the hot water coil 18 is blown to the air-conditioned space 3 by the fan 20 as air supply through the pipe 19 and supplied to the air-conditioned space 3 to cool the air-conditioned space 3, thereby maintaining the air-conditioned space 3 at a predetermined temperature and humidity.

空調空間3から管路16へ送出された還気の一部は、空調機2の冷水コイル17上流側へ導入されて管路5からの空気と混じり合い、上記した径路を経て再び循環して空調空間3の冷房に供される。   A part of the return air sent from the air-conditioned space 3 to the pipe line 16 is introduced to the upstream side of the cold water coil 17 of the air conditioner 2 and mixed with the air from the pipe line 5 and circulates again through the above-mentioned path. The air-conditioned space 3 is used for cooling.

還気のうち、空調機2へ送給されなかった分は、排気として管路7から外調機1の室9へ送給され、ファン15により全熱交換ロータ10へ送給され、全熱交換ロータ10において室6を送給される外気との間で熱と水蒸気の授受が行なわれ、加熱されると共に絶対湿度が上昇し、導出管8から外部へ排出される。   Of the return air, the portion not sent to the air conditioner 2 is sent as exhaust to the chamber 9 of the external air conditioner 1 from the pipe 7, and sent to the total heat exchanging rotor 10 by the fan 15. Heat and water vapor are exchanged between the exchange rotor 10 and the outside air fed through the chamber 6, heated, and the absolute humidity rises and is discharged from the outlet pipe 8 to the outside.

図3に示す従来の空調システムにおいては、送水温度により冷水コイル17における除湿能力に限界があるため、空調空間3の温湿度条件は、温度25℃、相対湿度60%RH、或は温度26℃、相対湿度50%RHで運用されることが多かった。   In the conventional air conditioning system shown in FIG. 3, the dehumidifying capacity of the cold water coil 17 is limited depending on the water supply temperature, so the temperature and humidity conditions of the air-conditioned space 3 are a temperature of 25 ° C., a relative humidity of 60% RH, or a temperature of 26 ° C. In many cases, it was operated at a relative humidity of 50% RH.

一方、人体に優しい室内温度の条件としては、外気温度と空調空間3との温度差を小さくすると共に、空調空間3の温度を上げるかわりに、湿度を下げるのが望ましく、室内は一般に温度27℃、相対湿度40%RHが好適である。しかし、斯かる室内温度、湿度により、在室人員が1万人程度で人員密度が2.5人/mのような混雑した空調空間3において空調を行なう場合、冷水コイル17の除湿能力の限界により、空調送風量が膨大になる。 On the other hand, as conditions for indoor temperature friendly to the human body, it is desirable to reduce the temperature difference between the outside air temperature and the air-conditioned space 3 and to lower the humidity instead of increasing the temperature of the air-conditioned space 3. A relative humidity of 40% RH is preferred. However, when air conditioning is performed in such a congested air-conditioned space 3 where the number of people in the room is about 10,000 and the personnel density is 2.5 people / m 2 due to such room temperature and humidity, the dehumidifying capacity of the cold water coil 17 is reduced. Due to the limit, the air-conditioning airflow becomes enormous.

すなわち、例えば上記空調システムにおいて、図6に示すような外気条件、空調空間内条件、人員、外気量、冷房負荷で空調を行なった場合、顕熱合計は750,000W、潜熱合計は600,000Wとなる。又、この場合、空調空間3における必要除湿量は、「潜熱合計÷蒸発潜熱」であるため、600,000W÷672Wh/Kg≒893Kg/hとなる。   That is, for example, in the above air conditioning system, when air conditioning is performed with the outside air condition, the air conditioned space condition, the personnel, the outside air amount, and the cooling load as shown in FIG. 6, the total sensible heat is 750,000 W and the total latent heat is 600,000 W. It becomes. In this case, the necessary dehumidification amount in the air-conditioned space 3 is “total latent heat ÷ evaporation latent heat”, and thus 600,000 W ÷ 672 Wh / Kg≈893 Kg / h.

又、図3に示す空調システムにおいて、冷凍機等の熱源機器から空調機2の冷水コイル17へ送給される送水温度が7℃で且つ空調機2の冷水コイル17が12列コイルの場合、冷水コイル17により約10℃DP(7.8g/kg’)程度まで除湿可能である。   Further, in the air conditioning system shown in FIG. 3, when the water supply temperature fed from the heat source device such as a refrigerator to the cold water coil 17 of the air conditioner 2 is 7 ° C. and the cold water coil 17 of the air conditioner 2 is a 12-row coil, The cold water coil 17 can dehumidify to about 10 ° C. DP (7.8 g / kg ′).

この場合、空調空間3の除湿を行なうために必要な空調送風量は、「必要除湿量÷(空調空間3内の絶対湿度−空調空間3へ吹出される給気の絶対湿度)÷比重」であるため、893Kg/h÷(0.0089Kg/kg’−0.0078Kg/kg’)÷1.2kg/m≒676,520m/hとなる。 In this case, the air-conditioning air flow rate necessary for dehumidifying the air-conditioned space 3 is “required dehumidifying amount ÷ (absolute humidity in the air-conditioned space 3−absolute humidity of supply air blown into the air-conditioned space 3) ÷ specific gravity”. Therefore, 893 kg / h ÷ (0.0089 kg / kg′−0.0078 kg / kg ′) ÷ 1.2 kg / m 3 ≈676,520 m 3 / h.

而して、空調空間3の室内温度と空調空間3へ吹出される給気温度の差である吹出温度差は「顕熱合計÷(空調送風量×給気の比熱)」であるため、750,000W÷(676,520m×0.33W/m・℃)≒3.4℃となる。 Thus, since the difference in blow-out temperature, which is the difference between the room temperature of the air-conditioned space 3 and the supply air temperature blown into the air-conditioned space 3, is “sensible heat / (air-conditioning air flow rate × specific heat of supply air)”, 750 , 000 W / (676,520 m 3 × 0.33 W / m 3 · ° C.) ≈3.4 ° C.

上記計算結果を基に、図3の空調システムの所定位置における外気(新鮮空気)、給気、還気、排気の各送風量、各所定位置における温度、絶対湿度を示すと図4に示すようになり、空調送風量、一次エネルギー消費量(消費した石油、石炭、ガス、電気等を計算することにより求められるもの)、熱源機容量を示すと図7における「図3に示す従来の空調システム(送水温度7℃)」のようになる。   Based on the above calculation results, the outside air (fresh air), supply air, return air, exhaust air flow rate at each predetermined position of the air conditioning system of FIG. 3, the temperature at each predetermined position, and the absolute humidity are shown in FIG. The conventional air conditioning system shown in FIG. 7 is shown in FIG. 7 when the air-conditioning blast volume, primary energy consumption (calculated by calculating consumed oil, coal, gas, electricity, etc.) and heat source unit capacity are shown. (Water supply temperature 7 ° C.) ”.

又、図3に示す空調システムにおいて、空調送風量を減少させるため、図6に示す設計条件で且つ冷凍機等の熱源機器から空調機2の冷水コイル17へ送給される送水温度を3℃、冷水コイル17を12列コイルとする場合について、前記した計算と同様の計算を行なうと、必要な空調送風量は284,000m/hとなると共に、空調空間3の室内温度と空調空間3へ吹出される給気温度の差である吹出温度差は8.0℃となり、しかも外気(空気)、給気、還気、排気の各送風量、各所定位置における温度、絶対湿度は図5に示すようになり、更に空調送風量、一次エネルギー消費量、熱源機容量は図7における「図3に示す従来の空調システム(送水温度3℃)」のようになる。而して、この場合は、空調送風量を減少させることができるが、一次エネルギー消費量は若干上昇する。 Further, in the air conditioning system shown in FIG. 3, in order to reduce the air-conditioning air flow rate, the water supply temperature supplied to the cold water coil 17 of the air conditioner 2 from the heat source device such as a refrigerator is 3 ° C. under the design conditions shown in FIG. In the case where the cold water coil 17 is a 12-row coil, if the same calculation as described above is performed, the necessary air-conditioning air flow rate becomes 284,000 m 3 / h, and the indoor temperature of the air-conditioned space 3 and the air-conditioned space 3 The blowout temperature difference, which is the difference in the supply air temperature blown out to the air, is 8.0 ° C., and the outside air (air), supply air, return air, exhaust air flow rate, temperature at each predetermined position, and absolute humidity are shown in FIG. In addition, the air-conditioning blast volume, primary energy consumption, and heat source capacity are as shown in “Conventional air-conditioning system shown in FIG. 3 (water supply temperature 3 ° C.)” in FIG. Thus, in this case, the air-conditioning airflow can be reduced, but the primary energy consumption is slightly increased.

在室人員や人員密度が高い場合の先行技術文献としては非特許文献1がある。この文献の208頁の図1・113には居住域空調方式の例として東京体育館の例が示されている。而して、非特許文献1に示す居住域空調方式においては、外調機と空調機を備えており、外調機には全熱交換器が設けられている。
空気調和・衛生工学便覧6 応用編 2001年(平成13年)11月30日 第13版第1刷発行 発行所 社団法人空気調和・衛生工学会
Non-patent document 1 is a prior art document in the case where the occupant personnel and the staff density are high. FIG. 1 and 113 on page 208 of this document show an example of a Tokyo gymnasium as an example of a living area air conditioning system. Thus, the residential area air conditioning system shown in Non-Patent Document 1 includes an external air conditioner and an air conditioner, and the external air conditioner is provided with a total heat exchanger.
Air Conditioning and Sanitation Engineering Handbook 6 Application November 30, 2001 (Heisei 13) November 13th edition 1st edition issuance

図3に示す従来の空調システムにおいては、冷水コイル17へ送給される冷水の送水温度を7℃とすると、上述のように、冷水コイル17の除湿能力の限界により、空調空間3へ送給される空調送風量は膨大な量となる(図4参照)。   In the conventional air conditioning system shown in FIG. 3, when the water supply temperature of the chilled water supplied to the chilled water coil 17 is 7 ° C., as described above, the chilled water coil 17 is supplied to the conditioned space 3 due to the limit of the dehumidifying capacity. The amount of air-conditioning air blown is huge (see FIG. 4).

一方、図3に示すような空調システムにおいて、冷水コイル17へ送給される冷水の送水温度を約3℃程度にする場合には、空調空間3へ送給される給気温度は冷水コイル17において低露点まで過冷却して除湿されるため、空調送風量を減少させることができるが、冷凍機等の熱源機器において冷水温度をより一層低温に冷却する必要があるため、適用できる熱源機器が限定されたり、熱源機器の外形寸法が増大したり、熱源機器の効率が低下する等の問題があった。又、非特許文献1の場合も、図3に示す空調システムと同様な問題がある。   On the other hand, in the air conditioning system as shown in FIG. 3, when the water supply temperature of the cold water supplied to the cold water coil 17 is about 3 ° C., the air supply temperature supplied to the air conditioned space 3 is the cold water coil 17. Since it is decooled by decooling to a low dew point in the air conditioner, the air-conditioning blast volume can be reduced, but it is necessary to cool the chilled water temperature to a lower temperature in a heat source device such as a refrigerator. There have been problems such as limitations, increased external dimensions of the heat source equipment, and reduced efficiency of the heat source equipment. In the case of Non-Patent Document 1, there is a problem similar to that of the air conditioning system shown in FIG.

本発明は、上述の実情に鑑み、7℃の冷水を使用した場合でも、人体に優しい空調を行なうことができると共に、空調空間へ吹出す空調送風量を減少させることができ、且つ、冷凍機等の熱源機の容量の減少、高効率化等を図った空調システムを提供することを目的としてなしたものである。   In view of the above-described circumstances, the present invention can perform air conditioning that is gentle to the human body even when cold water of 7 ° C. is used, can reduce the amount of air-conditioning air blown to the air-conditioned space, and a refrigerator The purpose of the present invention is to provide an air conditioning system that achieves a reduction in the capacity of the heat source device and the like, and an increase in efficiency.

本発明の空調システムは、導入された外気と空調空間からの還気の一部である排気とを全熱交換して外気の冷却及び除湿を行なう全熱交換手段を有する全熱交換機と、該全熱交換機から送給された空気を冷却するコイル手段及び該コイル手段からの空気を除湿する除湿手段を有する除湿機と、前記除湿手段により除湿される際に加熱されて除湿機から送給された空気と空調空間からの還気とが混じった空気を冷却するコイル手段を有する空調機を備え、該空調機のコイル手段において冷却された空気を前記空調空間へ給気し得るよう構成したものである。   The air conditioning system of the present invention includes a total heat exchanger having total heat exchange means for performing total heat exchange between the introduced outside air and exhaust gas that is part of the return air from the air-conditioned space to cool and dehumidify the outside air, A dehumidifier having coil means for cooling the air supplied from the total heat exchanger, and a dehumidifying means for dehumidifying the air from the coil means, and heated when dehumidified by the dehumidifying means and supplied from the dehumidifier Provided with an air conditioner having coil means for cooling air mixed with fresh air and return air from the air-conditioned space, and configured to supply air cooled by the coil means of the air-conditioner to the air-conditioned space It is.

本発明の空調システムにおいては、全熱交換手段は回転可能な全熱交換ロータであり、除湿手段は回転可能な除湿ロータであり、コイル手段は冷温コイルである。   In the air conditioning system of the present invention, the total heat exchange means is a rotatable total heat exchange rotor, the dehumidification means is a rotatable dehumidification rotor, and the coil means is a cold coil.

本発明の空調システムによれば、コイル手段へ送給される冷水の送水温度を7℃にして空調を行なう場合にも、空調空間内を人体に優しい温度27℃、相対湿度40%RH程度に保持する空調を行なうことができると共に、従来の空調システムにおいて冷水の送水温度を7℃とする場合に比較して空調空間への給気(空調送風量)の量を小風量とすることができ、従って、空調機の小型化、空調騒音の低減、ダクトの小径化が可能となり、更には、従来の空調システムに比べて、一次エネルギー消費量、冷凍機等の熱源機容量を減少させることができ、省エネルギー及びコストダウンを図ることができる、等種々の優れた効果を奏し得る。   According to the air conditioning system of the present invention, even in the case of air conditioning with the temperature of the cold water fed to the coil means being 7 ° C., the temperature in the air-conditioned space is 27 ° C. friendly to the human body and the relative humidity is about 40% RH. Air conditioning can be maintained, and the amount of air supplied to the air-conditioned space (air-conditioning airflow) can be reduced compared to the case where the water supply temperature of chilled water is set to 7 ° C in the conventional air-conditioning system. Therefore, it is possible to reduce the size of the air conditioner, reduce the air conditioning noise, reduce the diameter of the duct, and further reduce the primary energy consumption and the capacity of the heat source equipment such as the refrigerator as compared with the conventional air conditioning system. It is possible to achieve various excellent effects such as energy saving and cost reduction.

以下、本発明の実施の形態を添付図面を参照して説明する。
図1は本発明を実施する形態の一例である。図中、51は全熱交換機、52は除湿機、53は空調機、54は空調空間である。而して、全熱交換機51のハウジング51a内は、屋外から導入管55を通り導入された外気(新鮮空気)が管路56側へ送給される径路となる室57と、管路58から送出された排気が導出管59側へ導出される径路となる室60とに分けられており、ハウジング51a内には室57,60に跨って配置された回転駆動可能な全熱交換ロータ61が設けられている。全熱交換ロータ61は外気と排気が有する顕熱と潜熱を同時に交換する空調用の熱交換器である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is an example of an embodiment for carrying out the present invention. In the figure, 51 is a total heat exchanger, 52 is a dehumidifier, 53 is an air conditioner, and 54 is an air-conditioned space. Thus, the inside of the housing 51a of the total heat exchanger 51 includes a chamber 57 serving as a path through which outside air (fresh air) introduced from the outside through the introduction pipe 55 is supplied to the pipe line 56 side, and the pipe line 58. The exhaust gas sent out is divided into a chamber 60 that serves as a path through which the exhaust gas is led out to the lead-out pipe 59 side. A rotary heat-driving total heat exchange rotor 61 disposed across the chambers 57 and 60 is disposed in the housing 51a. Is provided. The total heat exchange rotor 61 is a heat exchanger for air conditioning that simultaneously exchanges sensible heat and latent heat of the outside air and exhaust.

室57には、全熱交換ロータ61よりも外気流れ方向上流側にファン62が配置されると共に、室60には、全熱交換ロータ61よりも排気流れ方向上流側にファン63が配置されている。又、室57における給気の流れ方向と、室60における排気の流れ方向は反対向きとなっている。   A fan 62 is disposed in the chamber 57 upstream of the total heat exchange rotor 61 in the direction of the outside air flow, and a fan 63 is disposed in the chamber 60 upstream of the total heat exchange rotor 61 in the direction of the exhaust gas flow. Yes. Further, the flow direction of the supply air in the chamber 57 and the flow direction of the exhaust gas in the chamber 60 are opposite to each other.

除湿機52のハウジング52a内は、管路56から導入された空気が管路64側へ送給される室65と、管路66から取込まれた外気が管路67側へ送給される室68とに分けられており、ハウジング52a内には室65,68に跨って配置された回転駆動可能な除湿ロータ69が設けられている。除湿ロータ69は、例えばシリカゲル等を有するハニカム構造で、低露点空気の生成に最適な手段である。   Inside the housing 52a of the dehumidifier 52, the air 65 introduced from the pipe 56 is supplied to the pipe 64, and the outside air taken in from the pipe 66 is supplied to the pipe 67. The housing 68 is divided into a chamber 68, and a dehumidifying rotor 69 that can be driven to rotate is provided across the chambers 65 and 68. The dehumidifying rotor 69 has a honeycomb structure including, for example, silica gel and is an optimal means for generating low dew point air.

室65における除湿ロータ69よりも空気流れ方向上流側には、空気流れ方向上流側から下流側へ向けて、加熱冷却兼用の冷温コイル70、ファン71が配置され、室68の除湿ロータ69よりも外気流れ方向上流側には、除湿ロータ69に捕捉された水分を乾燥させ除去するため、ガスバーナ等の乾燥手段72が配置され、除湿ロータ69の外気流れ方向下流側には、除湿ロータ69から水蒸気として除去された水分と外気を共に排気として管路67へ送出するためのファン73が配置されている。室65における空気流れ方向と、室68における外気及び排気の流れ方向は反対向きとなっている。   On the upstream side of the dehumidifying rotor 69 in the chamber 65 in the air flow direction, a cooling / heating coil 70 and a fan 71 for heating and cooling are arranged from the upstream side to the downstream side in the air flow direction. A drying means 72 such as a gas burner is disposed on the upstream side in the outside air flow direction in order to dry and remove moisture trapped in the dehumidification rotor 69. A fan 73 is disposed to send the removed moisture and outside air to the pipe line 67 as exhaust gas. The air flow direction in the chamber 65 and the flow direction of the outside air and exhaust in the chamber 68 are opposite to each other.

空調機53のハウジング53a内には、給気流れ方向上流側から下流側へ向けて順次、管路64からの空気と管路74からの還気が混じった空気を冷却し或は加熱するための冷温コイル75と、必要に応じて空気を加湿する加湿器76と、空気を管路77を介し給気として空調空間54へ送給するためのファン78が配置されている。   In the housing 53a of the air conditioner 53, in order to cool or heat the air mixed with the air from the pipe 64 and the return air from the pipe 74 sequentially from the upstream side to the downstream side in the air supply flow direction. A cooling / heating coil 75, a humidifier 76 for humidifying air as necessary, and a fan 78 for supplying air to the air-conditioned space 54 as air supply via a pipe line 77 are arranged.

空調空間54からの還気は管路74へ送出し得るようになっており、管路74の中途部には、還気の一部が排気されるよう、管路58の排気流れ方向上流側端部が接続されている。   The return air from the air-conditioned space 54 can be sent to the pipe line 74, and in the middle part of the pipe line 74, upstream of the pipe 58 in the exhaust flow direction so that a part of the return air is exhausted. The ends are connected.

冷温コイル70には、冷水或は温水の往管路79と還管路80が接続されており、往管路79の中途部には、冷水又は温水を冷温コイル75へ送給する往管路81が接続され、還管路80の中途部には、冷温コイル75からの還りの冷水又は温水が還管路80へ送給されるよう、還管路82が接続されている。なお、図中、83,84は開閉弁である。   A cold water or hot water outgoing line 79 and a return pipe 80 are connected to the cold / hot coil 70, and an outgoing line for supplying cold water or hot water to the cold / heated coil 75 in the middle of the outgoing line 79. 81 is connected, and a return pipe 82 is connected to a middle part of the return pipe 80 so that cold water or hot water returned from the cold / hot coil 75 is supplied to the return pipe 80. In the figure, 83 and 84 are on-off valves.

次に、上記した実施の形態の作動を、図2及び図6,図7をも参照しつつ説明する。
例えば、上記空調システムにおいて冷房等の空調を行なう際には、全熱交換ロータ61、除湿ロータ69、ファン62,63,71,73,78は駆動されており、開閉弁83,84は開いている。
Next, the operation of the above-described embodiment will be described with reference to FIG. 2, FIG. 6, and FIG.
For example, when air conditioning such as cooling is performed in the air conditioning system, the total heat exchange rotor 61, the dehumidifying rotor 69, the fans 62, 63, 71, 73, and 78 are driven, and the on-off valves 83 and 84 are opened. Yes.

このため、冷凍機等の熱源機器において冷却された冷水は往管路79から冷温コイル70に送給されると共に、往管路79,81から冷温コイル75へ送給される。冷温コイル70からの戻りの冷水は還管路80から、又、冷温コイル75からの戻りの冷水は還管路82,80から、熱源機器へ戻され、冷却されて再び前記径路を循環する。   For this reason, the cold water cooled in the heat source device such as a refrigerator is supplied from the forward pipe 79 to the cold coil 70 and also from the forward pipes 79 and 81 to the cold coil 75. The returning chilled water from the cooling / heating coil 70 is returned to the heat source device from the return pipe 80 and the returning chilled water from the cooling / heating coil 75 is returned to the heat source device, and cooled and circulated through the path again.

導入管55から全熱交換機51の室57内に導入された外気(新鮮空気)は、ファン62により室57内を送給され、全熱交換ロータ61において、室60側の排気との間で熱と水蒸気の授受が行われ、冷却されると共に除湿され、冷却され且つ除湿された空気は室57から管路56を経て除湿機52のハウジング52aにおける室65内へ導入される。   Outside air (fresh air) introduced into the chamber 57 of the total heat exchanger 51 from the introduction pipe 55 is fed into the chamber 57 by the fan 62, and is exhausted between the exhaust on the chamber 60 side in the total heat exchange rotor 61. Heat and water vapor are exchanged, cooled and dehumidified, and the cooled and dehumidified air is introduced from the chamber 57 into the chamber 65 in the housing 52a of the dehumidifier 52 via the conduit 56.

而して、室65へ導入された空気は冷温コイル70において一次冷却されると共に相対湿度が上昇し、ファン71により除湿ロータ69へ送給される。除湿ロータ69は除湿材に捕捉された水分を除去するため、室68側においてガスバーナ等の乾燥手段72により加熱されており、従って、除湿ロータ69に送給された空気は除湿されて低湿空気となると共に除湿材の吸着熱により加熱されて、温度が上昇し、管路64を経て空調機53のハウジング53aへ導入される。なお、冷温コイル70において空気を一次冷却するのは、空気の相対湿度を上げて除湿ロータ69での除湿効率を上げるためである。   Thus, the air introduced into the chamber 65 is primarily cooled in the cold coil 70 and the relative humidity rises, and is supplied to the dehumidifying rotor 69 by the fan 71. The dehumidifying rotor 69 is heated by a drying means 72 such as a gas burner on the chamber 68 side in order to remove moisture trapped by the dehumidifying material. Therefore, the air supplied to the dehumidifying rotor 69 is dehumidified to become low-humidity air. At the same time, it is heated by the adsorption heat of the dehumidifying material, the temperature rises, and is introduced into the housing 53 a of the air conditioner 53 via the pipe 64. The reason why the air is primarily cooled in the cooling / heating coil 70 is to increase the relative humidity of the air to increase the dehumidifying efficiency of the dehumidifying rotor 69.

管路66から除湿機52の室68へ取込まれた外気はガスバーナ等の乾燥手段72により加熱され、加熱空気により除湿ロータ69の除湿材により空気から除湿された水分が蒸発され、蒸発した水分は空気と共に、管路67から外部へ排気される。   The outside air taken into the chamber 68 of the dehumidifier 52 from the pipe 66 is heated by a drying means 72 such as a gas burner, and the moisture dehumidified from the air by the dehumidifying material of the dehumidifying rotor 69 is evaporated by the heated air, and the evaporated moisture Together with air is exhausted from the pipe 67 to the outside.

空気はハウジング53a内において管路74からの還気と合流し、還気と混じり合った空気は冷温コイル75により冷却される。冷温コイル75で所定温度に冷却された空気は、ファン78により管路77を通り給気として空調空間54へ吹出されて空調空間54の冷房に供され、空調空間54を所定の温度及び湿度に保持する。   The air merges with the return air from the pipe 74 in the housing 53 a, and the air mixed with the return air is cooled by the cold coil 75. The air cooled to a predetermined temperature by the cooling coil 75 passes through the conduit 77 by the fan 78 and is blown to the air-conditioned space 54 as air supply to be used for cooling the air-conditioned space 54. The air-conditioned space 54 is brought to a predetermined temperature and humidity. Hold.

空調空間54から管路74へ送出された還気の一部は、空調機53の冷温コイル75上流側へ導入されて管路64からの空気と混じり合い、上記した径路を経て再び循環し空調空間54の冷房に供される。   A part of the return air sent from the air-conditioned space 54 to the pipe line 74 is introduced to the upstream side of the cooling coil 75 of the air conditioner 53, mixes with the air from the pipe line 64, circulates again through the above-mentioned path, and is air-conditioned. It is used for cooling the space 54.

還気のうち、空調機53へ送給されなかった分は、排気として管路58から全熱交換機51の室60へ送給され、ファン63により全熱交換ロータ61へ送給され、全熱交換ロータ61において室57を送給される外気との間で熱と水蒸気の授受が行なわれ、加熱されると共に絶対湿度が上昇し、導出管59から外部へ排出される。   The portion of the return air that has not been supplied to the air conditioner 53 is supplied as exhaust to the chamber 60 of the total heat exchanger 51 from the pipe 58, and is supplied to the total heat exchange rotor 61 by the fan 63. Heat and steam are exchanged between the exchange rotor 61 and the outside air fed through the chamber 57, heated, and the absolute humidity rises, and is discharged from the outlet pipe 59 to the outside.

次に、本図示例について具体的に数値を上げて説明すると、例えば図1の空調システムにおいて、図6に示すような外気条件、室内条件、人員、外気量、冷房負荷で空調を行なった場合、前述したように、顕熱合計は750,000Wとなる。   Next, this example will be described with specific numerical values. For example, in the air conditioning system shown in FIG. 1, air conditioning is performed under the outdoor air conditions, indoor conditions, personnel, outside air volume, and cooling load as shown in FIG. As described above, the total sensible heat is 750,000 W.

図1に示す空調システムにおいて、冷凍機等の熱源機器から空調機53の冷温コイル75へ送給される送水温度が7℃で且つ冷温コイル75が12列コイルの場合、冷温コイル75により約10℃DP(7.8g/kg’)程度まで除湿可能であり、且つ、除湿機52の除湿ロータ69により約−7.4℃DP(2g/kg’)程度まで除湿可能である。   In the air conditioning system shown in FIG. 1, when the water supply temperature fed from a heat source device such as a refrigerator to the cold / hot coil 75 of the air conditioner 53 is 7 ° C. and the cold / hot coil 75 is a 12-row coil, about 10 It can be dehumidified to about DP DP (7.8 g / kg ′) and can be dehumidified to about −7.4 ° C. DP (2 g / kg ′) by the dehumidifying rotor 69 of the dehumidifier 52.

又、空調空間3への必要な空調送風量は、「顕熱合計÷(冷温コイル75からの給気温度と空調空間54の空調温度との差である送風温度差)×比熱」であるため、750,000W÷(8℃×0.33W/m・℃)≒284,000m/hとなる。 Further, the necessary air-conditioning air flow rate to the air-conditioned space 3 is “sensible heat total ÷ (air temperature difference that is the difference between the supply air temperature from the cold coil 75 and the air-conditioning temperature of the air-conditioned space 54) × specific heat”. 750,000 W / (8 ° C. × 0.33 W / m 3 · ° C.) ≈284,000 m 3 / h.

而して、上記計算結果を基に、図1の空調システムの所定位置における外気(新鮮空気)、給気、還気、排気の各送風量、各所定位置における温度、絶対湿度を示すと図2に示すようになり、空調送風量、一次エネルギー消費量、冷凍機等の熱源機器容量を示すと図7の「図1に示す本発明の空調システム(送水温度7℃)」のようになる。   Thus, on the basis of the above calculation results, the outside air (fresh air), supply air, return air, and exhaust air flow rate at predetermined positions of the air conditioning system of FIG. 1, the temperature at each predetermined position, and absolute humidity are shown. 2, the air-conditioning blast volume, the primary energy consumption, and the heat source equipment capacity such as a refrigerator are shown as “the air-conditioning system of the present invention shown in FIG. 1 (water supply temperature 7 ° C.)” in FIG. .

このため、本図示例によれば、冷温コイル70,75へ送給される冷水の送水温度を7℃にして空調を行なう場合にも、空調空間54内を人体に優しい温度27℃、相対湿度40%RH程度に保持するような空調を行なうことができると共に、図3の空調システムにおいて冷水の送水温度を7℃とする場合に比較して空調空間54への給気(空調送風量)の量を小風量とすることができ、従って、空調機53の小型化、空調騒音の低減、ダクトである管路74,77の小径化が可能となり、更には、図3の空調システムに比べて、一次エネルギー消費量、冷凍機等の熱源機容量を減少させることができ、省エネルギー及びコストダウンを図ることができる。   For this reason, according to the illustrated example, even in the case where air conditioning is performed with the temperature of the chilled water fed to the cooling coils 70 and 75 being 7 ° C., the temperature in the air-conditioned space 54 is 27 ° C. and relative humidity is gentle to the human body. Air conditioning can be performed so that the air temperature is maintained at about 40% RH, and the amount of air supplied to the air-conditioned space 54 (air-conditioning air flow rate) in the air-conditioning system of FIG. 3 is set to 7 ° C. The air volume can be reduced, and therefore the air conditioner 53 can be reduced in size, the air conditioning noise can be reduced, the diameter of the ducts 74 and 77 can be reduced, and moreover, compared with the air conditioning system of FIG. , Primary energy consumption, capacity of heat source equipment such as a refrigerator can be reduced, and energy saving and cost reduction can be achieved.

なお、本発明の空調システムは、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the air conditioning system of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.

本発明の空調システムの実施の形態の一例を示す概念図である。It is a conceptual diagram which shows an example of embodiment of the air conditioning system of this invention. 図1の空調システムの所定位置における外気(新鮮空気)、給気、還気、排気の各送風量、各所定位置における温度、絶対湿度を示す概念図である。FIG. 2 is a conceptual diagram illustrating outside air (fresh air), supply air, return air, and exhaust air flow at predetermined positions of the air conditioning system of FIG. 1, temperature at each predetermined position, and absolute humidity. 従来の空調システムの一例を示す概念図である。It is a conceptual diagram which shows an example of the conventional air conditioning system. 図3の空調システムの所定位置における外気(新鮮空気)、給気、還気、排気の各送風量、各所定位置における温度、絶対湿度の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of outside air (fresh air), supply air, return air, and exhaust air flow at predetermined positions of the air conditioning system of FIG. 3, temperature at each predetermined position, and absolute humidity. 図3の空調システムの所定位置における外気(新鮮空気)、給気、還気、排気の各送風量、各所定位置における温度、絶対湿度の他の例を示す概念図である。It is a conceptual diagram which shows the other example of the air volume in each predetermined position of the external air (fresh air), supply air, return air, and exhaust_gas | exhaustion in the predetermined position of the air conditioning system of FIG. 本発明及び従来の空調システムにおける設計条件を示す図表である。It is a graph which shows the design conditions in this invention and the conventional air conditioning system. 本発明及び従来の空調システムにおいて、図6に示す設計条件を基に求めた計算結果を示す図表である。7 is a chart showing calculation results obtained based on the design conditions shown in FIG. 6 in the present invention and the conventional air conditioning system.

符号の説明Explanation of symbols

51 全熱交換機
52 除湿機
53 空調機
54 空調空間
61 全熱交換ロータ(全熱交換手段)
69 除湿ロータ(除湿手段)
70 冷温コイル(コイル手段)
75 冷温コイル(コイル手段)
51 Total Heat Exchanger 52 Dehumidifier 53 Air Conditioner 54 Air Conditioning Space 61 Total Heat Exchange Rotor (Total Heat Exchange Means)
69 Dehumidification rotor (dehumidification means)
70 Cold coil (coil means)
75 Cold coil (coil means)

Claims (4)

導入された外気と空調空間からの還気の一部である排気とを全熱交換して外気の冷却及び除湿を行なう全熱交換手段を有する全熱交換機と、該全熱交換機から送給された空気を冷却するコイル手段及び該コイル手段からの空気を除湿する除湿手段を有する除湿機と、前記除湿手段により除湿される際に加熱されて除湿機から送給された空気と空調空間からの還気とが混じった空気を冷却するコイル手段を有する空調機を備え、該空調機のコイル手段において冷却された空気を前記空調空間へ給気し得るよう構成したことを特徴とする空調システム。   A total heat exchanger having a total heat exchange means for cooling and dehumidifying the outside air by total heat exchange between the introduced outside air and the exhaust gas that is a part of the return air from the air-conditioned space, and the total heat exchanger fed from the total heat exchanger A dehumidifier having coil means for cooling the air and dehumidifying means for dehumidifying the air from the coil means, and air supplied from the dehumidifier after being dehumidified by the dehumidifying means and the air-conditioned space An air conditioning system comprising an air conditioner having coil means for cooling air mixed with return air, and configured to supply air cooled by the coil means of the air conditioner to the conditioned space. 全熱交換手段は回転可能な全熱交換ロータである請求項1記載の空調システム。   The air conditioning system according to claim 1, wherein the total heat exchange means is a rotatable total heat exchange rotor. 除湿手段は回転可能な除湿ロータである請求項1又は2記載の空調システム。   The air conditioning system according to claim 1 or 2, wherein the dehumidifying means is a rotatable dehumidifying rotor. コイル手段は冷温コイルである請求項1、2又は3記載の空調システム。   The air conditioning system according to claim 1, 2 or 3, wherein the coil means is a cold coil.
JP2005012591A 2005-01-20 2005-01-20 Air conditioning system Pending JP2006200812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005012591A JP2006200812A (en) 2005-01-20 2005-01-20 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005012591A JP2006200812A (en) 2005-01-20 2005-01-20 Air conditioning system

Publications (1)

Publication Number Publication Date
JP2006200812A true JP2006200812A (en) 2006-08-03

Family

ID=36958975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005012591A Pending JP2006200812A (en) 2005-01-20 2005-01-20 Air conditioning system

Country Status (1)

Country Link
JP (1) JP2006200812A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174674A (en) * 2010-02-25 2011-09-08 Marushichi Home Kk Air conditioning system
CN102705921A (en) * 2012-06-08 2012-10-03 吕智 Heat pump driven rotating wheel dehumidification and regeneration type air treatment unit
JP2012197975A (en) * 2011-03-22 2012-10-18 Seibu Giken Co Ltd Dehumidification air conditioning device
JP2012207872A (en) * 2011-03-30 2012-10-25 Sanki Eng Co Ltd Air-conditioning system
JP2013068364A (en) * 2011-09-22 2013-04-18 Seibu Giken Co Ltd Air conditioning apparatus
JPWO2019163042A1 (en) * 2018-02-22 2020-12-17 三菱電機株式会社 Air conditioner and air handling unit
CN113218012A (en) * 2020-07-09 2021-08-06 中国建筑科学研究院有限公司 Anti-frosting fresh air heat recovery device and control method thereof
JPWO2020148806A1 (en) * 2019-01-15 2021-09-09 三菱電機株式会社 Air conditioning system
JP7445855B1 (en) 2022-08-22 2024-03-08 三菱重工冷熱株式会社 Air conditioning unit, control device for air conditioning unit, and control method for air conditioning equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174674A (en) * 2010-02-25 2011-09-08 Marushichi Home Kk Air conditioning system
JP2012197975A (en) * 2011-03-22 2012-10-18 Seibu Giken Co Ltd Dehumidification air conditioning device
JP2012207872A (en) * 2011-03-30 2012-10-25 Sanki Eng Co Ltd Air-conditioning system
JP2013068364A (en) * 2011-09-22 2013-04-18 Seibu Giken Co Ltd Air conditioning apparatus
CN102705921A (en) * 2012-06-08 2012-10-03 吕智 Heat pump driven rotating wheel dehumidification and regeneration type air treatment unit
JPWO2019163042A1 (en) * 2018-02-22 2020-12-17 三菱電機株式会社 Air conditioner and air handling unit
JPWO2020148806A1 (en) * 2019-01-15 2021-09-09 三菱電機株式会社 Air conditioning system
CN113218012A (en) * 2020-07-09 2021-08-06 中国建筑科学研究院有限公司 Anti-frosting fresh air heat recovery device and control method thereof
JP7445855B1 (en) 2022-08-22 2024-03-08 三菱重工冷熱株式会社 Air conditioning unit, control device for air conditioning unit, and control method for air conditioning equipment

Similar Documents

Publication Publication Date Title
JP2006200812A (en) Air conditioning system
JP4169747B2 (en) Air conditioner
JP3649236B2 (en) Air conditioner
US20050252229A1 (en) Air conditioning system
JP5576327B2 (en) Air conditioning system
JP2004212036A (en) Ventilating and air conditioning system
JP5611079B2 (en) Outside air treatment equipment using desiccant rotor
JP2006207856A (en) Air conditioner for conditioning outside air
EP1304529A3 (en) Air conditioner
US8828128B1 (en) Desiccant dehumidification system and method
JP5862266B2 (en) Ventilation system
JP2008070097A (en) Dehumidifying air conditioner
JP2006313027A5 (en)
JP2009192101A (en) Displacement air conditioning system
JP2007315694A (en) Desiccant air conditioning system and its operating method
JP6018938B2 (en) Air conditioning system for outside air treatment
JP5890873B2 (en) Outside air treatment equipment using desiccant rotor
JP6825900B2 (en) Air conditioning system
WO2017183689A1 (en) Outside-air treatment system, and device and method for controlling outside-air treatment system
JP6898138B2 (en) Desiccant type humidity control device and its control method
JP3731113B2 (en) Air conditioner
JP2006002952A (en) Air conditioner
JP2007232290A (en) Air conditioning system in case of large fluctuation width of latent heat load
JP6057789B2 (en) Air conditioning system and air conditioner
JP6858396B2 (en) Air conditioning system