JP2006002952A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2006002952A
JP2006002952A JP2004176736A JP2004176736A JP2006002952A JP 2006002952 A JP2006002952 A JP 2006002952A JP 2004176736 A JP2004176736 A JP 2004176736A JP 2004176736 A JP2004176736 A JP 2004176736A JP 2006002952 A JP2006002952 A JP 2006002952A
Authority
JP
Japan
Prior art keywords
air
heat
heat exchanger
heat exchange
source side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004176736A
Other languages
Japanese (ja)
Other versions
JP4353859B2 (en
Inventor
Takaaki Tamura
隆明 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004176736A priority Critical patent/JP4353859B2/en
Publication of JP2006002952A publication Critical patent/JP2006002952A/en
Application granted granted Critical
Publication of JP4353859B2 publication Critical patent/JP4353859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve COP by using exhaust heat in a room. <P>SOLUTION: This air conditioner has a compressor 18, a heat source side heat exchanger 21, and a use side heat exchanger 25. The heat source side heat exchanger 21 has a heat exchange part 21B used in cooling operation for cooling a refrigerant, and this heat exchange part 21B has an inside air exhaust part 52 for exhausting indoor air as an air heat source. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

室内の空気を排気する空気調和装置に関する。   The present invention relates to an air conditioner that exhausts indoor air.

一般に、圧縮機、熱源側熱交換器、及び利用側熱交換器を備え、冷房運転を可能とした空気調和装置が知られている。この種の空気調和装置において、被調和室である室内の空気を排気するとともに、室外の空気を室内に取り入れることで室内の換気を行うものがある(例えば、特許文献1参照)。
特開2000−186840号公報
In general, an air conditioner that includes a compressor, a heat source side heat exchanger, and a use side heat exchanger and enables a cooling operation is known. In this type of air conditioning apparatus, there is an apparatus that exhausts indoor air that is a conditioned room and ventilates the room by taking outdoor air into the room (for example, see Patent Document 1).
JP 2000-186840 A

しかしながら、上記空気調和装置では、冷房運転時には、外気よりも低い温度の室内の空気が室外に排気されることとなるので、室内の熱負荷が増大し、この熱負荷の増大に伴って圧縮機等における消費電力が増大し、COPが低下してしまうという問題があった。   However, in the above air conditioner, during the cooling operation, indoor air having a temperature lower than the outside air is exhausted to the outside of the room, so that the indoor heat load increases, and the compressor increases with the increase in the heat load. There has been a problem that the power consumption in the process increases and the COP decreases.

そこで、本発明の目的は、上述した従来の技術が有する課題を解消し、室内の排熱を利用してCOPを向上させることができる空気調和装置を提供することにある。   Accordingly, an object of the present invention is to provide an air conditioner that can solve the above-described problems of the prior art and can improve COP by utilizing exhaust heat in the room.

上記課題を解決するため、本発明は、圧縮機、熱源側熱交換器、及び利用側熱交換器を備えた空気調和装置において、前記熱源側熱交換器が、冷房運転時に使用されて冷媒を冷却する熱交換部を備え、この熱交換部に空気熱源としての室内の空気を排気する内気排出手段を備えたことを特徴とするものである。   In order to solve the above-described problems, the present invention provides an air conditioner including a compressor, a heat source side heat exchanger, and a use side heat exchanger, wherein the heat source side heat exchanger is used during cooling operation to supply a refrigerant. A heat exchanging part for cooling is provided, and the air exchanging means for exhausting indoor air as an air heat source is provided in the heat exchanging part.

この空気調和装置において、前記内気排出手段は、全熱交換器を備え、この全熱交換器で熱交換した室内の空気を前記熱交換部に導くようにしてもよい。   In this air conditioner, the inside air discharge means may include a total heat exchanger, and the indoor air heat-exchanged by the total heat exchanger may be guided to the heat exchange unit.

また、上記空気調和装置において、前記熱源側熱交換器は、複数の熱交換部を備え、前記内気排出手段は、これら複数の熱交換部のうち、少なくとも一つの熱交換部に室内の空気を導くようにしてもよい。   Further, in the above air conditioner, the heat source side heat exchanger includes a plurality of heat exchange units, and the inside air discharge means supplies room air to at least one of the plurality of heat exchange units. You may make it guide.

更に、上記空気調和装置において、前記内気排出手段は、室内の空気を前記熱交換器部に導く断熱ダクトを備えてもよい。   Furthermore, the said air conditioning apparatus WHEREIN: The said inside air discharge means may be equipped with the heat insulation duct which guides indoor air to the said heat exchanger part.

本発明によれば、室内の排熱を有効に利用してCOPを向上させることができる。   According to the present invention, COP can be improved by effectively using exhaust heat in the room.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[1]第1実施形態
図1は、本発明に係る空気調和装置の第1実施形態が適用された空気調和装置を示す管路図である。
[1] First Embodiment FIG. 1 is a pipeline diagram showing an air conditioner to which a first embodiment of an air conditioner according to the present invention is applied.

空気調和装置10は、図1に示すように、熱源側ユニット11、及び利用側ユニット13を有して構成される。熱源側ユニット11の冷媒配管14と、利用側ユニット13の冷媒配管30とが、冷媒配管(液管)16、冷媒配管(ガス管)17により接続される。   As shown in FIG. 1, the air conditioner 10 includes a heat source side unit 11 and a use side unit 13. The refrigerant pipe 14 of the heat source side unit 11 and the refrigerant pipe 30 of the use side unit 13 are connected by a refrigerant pipe (liquid pipe) 16 and a refrigerant pipe (gas pipe) 17.

熱源側ユニット11は、例えば、室外に設置され、利用側ユニット13は、被空調室である室内に設置される。   The heat source side unit 11 is installed outside a room, for example, and the use side unit 13 is installed in a room which is an air-conditioned room.

熱源側ユニット11は、容量可変型の圧縮機18と、アキュムレータ19と、四方弁20と、熱源側熱交換器21と、電動膨張弁(減圧器)22とを備え、冷媒配管14に圧縮機18が配設され、この圧縮機18の吸込側にアキュムレータ19が、吐出側に四方弁20がそれぞれ配設され、この四方弁20に熱源側熱交換器21及び電動膨張弁22が冷媒配管14を介して接続される。更に、熱源側ユニット11は、熱源側熱交換器21に送風する熱源側送風機24を備えている。   The heat source side unit 11 includes a variable capacity compressor 18, an accumulator 19, a four-way valve 20, a heat source side heat exchanger 21, and an electric expansion valve (decompressor) 22. 18, an accumulator 19 is disposed on the suction side of the compressor 18, and a four-way valve 20 is disposed on the discharge side. A heat source side heat exchanger 21 and an electric expansion valve 22 are connected to the refrigerant pipe 14 on the four-way valve 20. Connected through. Furthermore, the heat source side unit 11 includes a heat source side blower 24 that blows air to the heat source side heat exchanger 21.

利用側ユニット13は、利用側熱交換器25及び電動膨張弁(減圧器)26を備え、冷媒配管30に利用側熱交換器25が配設され、この冷媒配管30において利用側熱交換器25近傍に電動膨張弁26が配設されて構成される。この電動膨張弁26は、空調負荷に応じて弁開度が調整される。更に、利用側ユニット13は、利用側熱交換器25に送風する利用側送風機27を備えており、空気が利用側熱交換器25で冷媒と熱交換した後に、被調和室に吹出される。また、利用側ユニット13は、室内の換気を行う換気装置50を備えている。この換気装置50は、空調用の各種機器25、26、27等が収められる利用側ユニット13の筐体内に一体に収められている。   The use side unit 13 includes a use side heat exchanger 25 and an electric expansion valve (decompressor) 26, and the use side heat exchanger 25 is disposed in the refrigerant pipe 30, and the use side heat exchanger 25 is provided in the refrigerant pipe 30. An electric expansion valve 26 is disposed in the vicinity. The valve opening degree of the electric expansion valve 26 is adjusted according to the air conditioning load. Further, the use side unit 13 includes a use side blower 27 that blows air to the use side heat exchanger 25, and after the air exchanges heat with the refrigerant in the use side heat exchanger 25, the air is blown into the conditioned room. Moreover, the use side unit 13 is provided with the ventilation apparatus 50 which ventilates a room. This ventilation device 50 is housed integrally in the housing of the use side unit 13 in which the various devices 25, 26, 27, etc. for air conditioning are housed.

換気装置50は、室外空気(外気)を室内に導く外気導入部51と、室内空気(内気)を室外に排気する内気排出部52とを備えている。また、換気装置50は、全熱交換器としての全熱交換素子53を備えている。この全熱交換素子53は、外気導入部51の外気導入風路54及び内気排出部52の内気排出風路55に跨るように配置され、導入された外気と、導入された内気との間で熱交換させる機能を備えている。つまり、空気調和装置10が冷房運転を行っている際に換気装置50が換気運転を行う場合、全熱交換素子53は、暖かい外気と冷えた室内の排気との間で熱交換して外気を冷やし、室内に給気している。また、空気調和装置10が暖房運転を行っている際に換気装置50が換気運転を行う場合、全熱交換素子53は、冷たい外気と暖かい室内の排気との間で熱交換して外気を暖め、室内に給気している。これによって、換気運転による室内の熱負荷の増大を抑制することができるとともに、換気運転により空調性が低下するのを抑制することができる。   The ventilator 50 includes an outside air introduction unit 51 that guides outdoor air (outside air) to the room, and an inside air discharge unit 52 that exhausts room air (inside air) to the outside of the room. Moreover, the ventilator 50 is provided with the total heat exchange element 53 as a total heat exchanger. The total heat exchange element 53 is arranged so as to straddle the outside air introduction air passage 54 of the outside air introduction portion 51 and the inside air discharge air passage 55 of the inside air discharge portion 52, and between the introduced outside air and the introduced inside air. It has a function to exchange heat. In other words, when the ventilator 50 performs the ventilation operation while the air conditioner 10 is performing the cooling operation, the total heat exchange element 53 exchanges heat between the warm outside air and the cold indoor exhaust air to remove the outside air. It is cooled and air is supplied indoors. When the ventilator 50 performs the ventilation operation while the air conditioner 10 is performing the heating operation, the total heat exchange element 53 heats the outside air by exchanging heat between the cold outside air and the warm indoor exhaust. , Indoor air supply. As a result, an increase in the indoor heat load due to the ventilation operation can be suppressed, and a decrease in air conditioning performance due to the ventilation operation can be suppressed.

外気導入部51は、外気導入風路54に給気ファン56、外気フィルタ57、全熱交換素子53及び加湿器58を備えている。給気ダクト59を介して外気導入風路54に導入された外気は、給気ファン56を経た後、外気フィルタ57を介して全熱交換素子53に至り、ここで内気と熱交換した後、加湿器58を経て室内に吹出される。この加湿器58には加湿タンク58Aが接続され、この加湿タンク58Aの加湿水が加湿器58に順次供給される。   The outside air introduction unit 51 includes an air supply fan 56, an outside air filter 57, a total heat exchange element 53, and a humidifier 58 in the outside air introduction air passage 54. The outside air introduced into the outside air introduction air passage 54 via the air supply duct 59 passes through the air supply fan 56, reaches the total heat exchange element 53 via the outside air filter 57, and exchanges heat with the inside air here. It blows out into the room through a humidifier 58. A humidifying tank 58A is connected to the humidifier 58, and humidified water from the humidifying tank 58A is sequentially supplied to the humidifier 58.

また、内気排出部52は、内気排出風路55に全熱交換素子53、ダンパ60及び排気ファン61を備えている。内気排出風路55に導かれた内気は、全熱交換素子53に至り、ここで、外気と熱交換した後に、ダンパ60及び排気ファン61を経て排気ダクト62を介して室外に排気される。   Further, the inside air discharge unit 52 includes a total heat exchange element 53, a damper 60, and an exhaust fan 61 in the inside air discharge air passage 55. The inside air guided to the inside air discharge air passage 55 reaches the total heat exchange element 53, and after it exchanges heat with the outside air, it is exhausted outside through the damper 60 and the exhaust fan 61 through the exhaust duct 62.

ダンパ60は風路を遮断自在であり、ダンパ60が動作すると、内気排出風路55における全熱交換素子53の出口が封鎖され、内気は、全熱交換素子53をバイパスし、普通換気風路63を介して排気ファン61に至り、排気ダクト62を介して室外に排気される。   The damper 60 can block the air path, and when the damper 60 is operated, the outlet of the total heat exchange element 53 in the inside air discharge air path 55 is blocked, and the inside air bypasses the total heat exchange element 53, and the normal ventilation air path The exhaust fan 61 is reached through 63 and exhausted to the outside through the exhaust duct 62.

熱源側ユニット11には、空気調和装置10全体の運転制御を行う制御手段としての制御装置45が設けられている。ここで、この制御装置45は、利用側ユニット13に設けられる場合であってもよいし、これらユニット11,13とは別体(例えば、リモートコントローラ)に設けられてもよい。   The heat source side unit 11 is provided with a control device 45 as control means for performing operation control of the entire air conditioner 10. Here, the control device 45 may be provided in the use side unit 13 or may be provided separately from the units 11 and 13 (for example, a remote controller).

ところで、熱源側熱交換器21は、複数(例えば、2つ)の熱交換部21A、21Bを備えている。これら熱交換部21A、21Bは、冷媒配管14によって互いに直列に接続されている。この熱交換部21Aには、熱源側送風機24が隣接して配置されている。なお、電動膨張弁22は、熱交換部21Aと熱交換部21Bとの間に配設されている。   By the way, the heat source side heat exchanger 21 includes a plurality of (for example, two) heat exchange units 21A and 21B. These heat exchanging parts 21A and 21B are connected in series by the refrigerant pipe 14. A heat source side fan 24 is disposed adjacent to the heat exchanging portion 21A. The electric expansion valve 22 is disposed between the heat exchange unit 21A and the heat exchange unit 21B.

通常、空気調和装置10の冷房運転時において換気運転を行う場合、内気温度は、外気温度よりも低いものである。   Normally, when the ventilation operation is performed during the cooling operation of the air conditioner 10, the inside air temperature is lower than the outside air temperature.

本第1実施形態では、内気排出部52は、熱交換部21Bに空気熱源として内気を排気するように構成されている。内気をこの熱交換部21Bへ排気する動作は、冷房運転時に行われる。   In the first embodiment, the inside air discharge unit 52 is configured to exhaust the inside air as an air heat source to the heat exchange unit 21B. The operation of exhausting the inside air to the heat exchange unit 21B is performed during the cooling operation.

空気調和装置10の冷房運転について説明すると、空気調和装置10の冷房運転時は、電動膨張弁22が全開に制御され、電動膨張弁26の弁開度が調整される。   The cooling operation of the air conditioner 10 will be described. During the cooling operation of the air conditioner 10, the electric expansion valve 22 is controlled to be fully opened, and the valve opening degree of the electric expansion valve 26 is adjusted.

この状態で、圧縮機18から吐出されたガス冷媒は、熱源側熱交換器21の熱交換部21Aに流入して凝縮し、電動膨張弁22を経て、熱交換部21Bに流入する。   In this state, the gas refrigerant discharged from the compressor 18 flows into the heat exchange part 21A of the heat source side heat exchanger 21 and condenses, and then flows into the heat exchange part 21B via the electric expansion valve 22.

この熱交換部21Bには、内気排出部52により冷風が吹付けられるので、熱交換部21Bに流入した冷媒は、更に冷却されて過冷却状態となる。従って、熱交換部21Bに流入した冷媒は、十分に冷却されて液冷媒となるので、冷媒がフラッシュガスとなるのを抑制することができる。従って、冷媒配管(液管)16を細径化することができるので、コストダウンを図ることができ、また、冷媒配管16における冷媒の圧力損失を低減することができる。   Since the cool air is blown to the heat exchanging portion 21B by the inside air discharge portion 52, the refrigerant flowing into the heat exchanging portion 21B is further cooled to be in a supercooled state. Accordingly, the refrigerant that has flowed into the heat exchanging portion 21B is sufficiently cooled to become a liquid refrigerant, so that the refrigerant can be prevented from becoming flash gas. Therefore, since the diameter of the refrigerant pipe (liquid pipe) 16 can be reduced, the cost can be reduced, and the pressure loss of the refrigerant in the refrigerant pipe 16 can be reduced.

この熱交換部21Bにて過冷却状態となった液冷媒は、利用側ユニット13の電動膨張弁26にて減圧され、利用側熱交換器25で蒸発して、室内を冷房する。   The liquid refrigerant that has been supercooled in the heat exchanging portion 21B is depressurized by the electric expansion valve 26 of the use side unit 13, evaporated in the use side heat exchanger 25, and cools the room.

このように、過冷却液となった冷媒が利用側ユニット13の電動膨張弁26に入り、利用側熱交換器25で蒸発するので、冷房能力が向上する。また、圧縮機18や熱源側送風機24の消費電力を抑えることができる。従って、室外に排出される排気の冷熱(排熱)を利用して冷房運転時のCOPを向上させることができる。   In this way, the refrigerant that has become the supercooled liquid enters the electric expansion valve 26 of the usage-side unit 13 and evaporates in the usage-side heat exchanger 25, so that the cooling capacity is improved. Moreover, the power consumption of the compressor 18 and the heat source side fan 24 can be suppressed. Accordingly, the COP during the cooling operation can be improved by utilizing the cold heat (exhaust heat) of the exhaust discharged to the outside.

この利用側熱交換器25で蒸発気化した冷媒は、熱源側ユニット11の四方弁20へ至り、アキュムレータ19を経て圧縮機18に戻される。   The refrigerant evaporated by the use side heat exchanger 25 reaches the four-way valve 20 of the heat source side unit 11 and is returned to the compressor 18 through the accumulator 19.

本第1実施形態では、内気排出部52は、全熱交換素子53で熱交換した内気を熱交換部21Bに導くように構成されている。つまり、換気運転の際に全熱交換素子53で排気しようとする内気と室内に給気しようとする外気とを熱交換しても、この全熱交換素子53で熱交換した内気は、室外の外気温度よりも低い状態である。例えば、室内の温度が27℃であり、外気温度が35℃であった場合、全熱交換素子53にて熱交換した内気の温度は、30℃程度にまで上昇するが、外気温度(35℃)よりも低い状態である。   In this 1st Embodiment, the inside air discharge part 52 is comprised so that the inside air heat-exchanged with the total heat exchange element 53 may be guide | induced to the heat exchange part 21B. That is, even if the inside air to be exhausted by the total heat exchanging element 53 and the outside air to be supplied to the room during the ventilation operation are heat exchanged, the inside air that has been heat exchanged by the total heat exchanging element 53 remains outside the room. The temperature is lower than the outside air temperature. For example, when the room temperature is 27 ° C. and the outside air temperature is 35 ° C., the temperature of the inside air that is heat-exchanged by the total heat exchange element 53 rises to about 30 ° C., but the outside air temperature (35 ° C. ) Is lower.

したがって、熱交換部21Bには、外気温度よりも低温の排気が導かれるので、熱交換部21Bに流入した冷媒を十分に冷却することができ、より効率的な冷房運転を行うことができる。   Therefore, since the exhaust gas having a temperature lower than the outside air temperature is guided to the heat exchange unit 21B, the refrigerant flowing into the heat exchange unit 21B can be sufficiently cooled, and a more efficient cooling operation can be performed.

また、内気排出部52は、全熱交換素子53で熱交換した内気を熱交換部21Bに導く断熱ダクト66を備えている。このように、断熱ダクト66を用いて内気を熱交換部21Bに導くようにしたので、この断熱ダクト66を通過する空気の熱損失を低減することができる。   Moreover, the inside air discharge part 52 is provided with the heat insulation duct 66 which guides the inside air heat-exchanged with the total heat exchange element 53 to the heat exchange part 21B. As described above, since the inside air is guided to the heat exchanging portion 21 </ b> B using the heat insulating duct 66, the heat loss of the air passing through the heat insulating duct 66 can be reduced.

本第1実施形態では、内気排出部52は、冷房運転時に全熱交換素子53で熱交換した室内の空気を熱交換部21Bに導き、冷房運転以外の運転時(例えば、暖房運転時)に室外に排気する切換手段としての三方弁65が、全熱交換素子53の内気出口側に配設されている。   In the first embodiment, the inside air discharge unit 52 guides the indoor air heat-exchanged by the total heat exchange element 53 during the cooling operation to the heat exchange unit 21B, and performs an operation other than the cooling operation (for example, during the heating operation). A three-way valve 65 serving as switching means for exhausting the air outside is disposed on the inside air outlet side of the total heat exchange element 53.

この三方弁65は、1つの空気入口ポートと、2つの空気出口ポートとを備え、一方の空気出口ポートが断熱ダクト66に接続されるとともに、他方の空気出口ポートが排気ダクト62に接続されている。そして、三方弁65の開閉制御により、全熱交換素子53を通過した内気が断熱ダクト66を介して熱交換部21Bに導かれ、室外に排気されるか、或いは、排気ダクト62を介して直接室外に排気される。この三方弁65は、制御装置45により弁の開閉が制御される。   The three-way valve 65 includes one air inlet port and two air outlet ports. One air outlet port is connected to the heat insulation duct 66 and the other air outlet port is connected to the exhaust duct 62. Yes. Then, by the open / close control of the three-way valve 65, the inside air that has passed through the total heat exchange element 53 is guided to the heat exchanging portion 21B through the heat insulation duct 66 and exhausted to the outside or directly through the exhaust duct 62. Exhausted outside the room. The opening and closing of the three-way valve 65 is controlled by the control device 45.

これによって、冷房運転時に室内の換気による冷風が熱交換部21Bに吹付けられることとなるので、熱源側熱交換器21にて冷媒を過冷却液にすることができ、冷房能力が向上し、COPが向上する。   As a result, cold air from indoor ventilation is blown to the heat exchanging portion 21B during the cooling operation, so that the refrigerant can be made into a supercooled liquid in the heat source side heat exchanger 21, and the cooling capacity is improved. COP is improved.

また、本第1実施形態では、室内の温度を検出する室内温度検出手段として、温度センサ47が、換気装置50の内気を吸込む吸込口(不図示)近傍に設けられている。また、外気温度を検出する外気温度検出手段として、温度センサ48が、熱源側ユニット11の空気吸込口(不図示)近傍に設けられている。   In the first embodiment, the temperature sensor 47 is provided in the vicinity of the suction port (not shown) for sucking the inside air of the ventilator 50 as the room temperature detecting means for detecting the room temperature. Further, a temperature sensor 48 is provided in the vicinity of an air inlet (not shown) of the heat source unit 11 as an outside air temperature detecting means for detecting the outside air temperature.

空気調和装置10が冷房運転時に換気運転を行っている場合、制御装置45は、室内の温度が外気温度を上回るか否かを判断する(判断手段)。この判断の結果、例えば、真夏等の部屋を閉め切った状態の空気調和装置10の起動時等、室内温度が外気温度を上回る場合、制御装置45は、断熱ダクト66側(熱交換部21B側)を遮断し、内気を室外に直接排気するように、三方弁65を制御する(排気手段)。これによって、熱風が熱交換部21Bに吹付けられるのを防止することができるので、より安定した冷房運転を実施することができる。   When the air conditioning apparatus 10 is performing a ventilation operation during the cooling operation, the control device 45 determines whether or not the indoor temperature exceeds the outside air temperature (determination means). As a result of this determination, for example, when the room temperature exceeds the outside air temperature, such as when starting the air conditioner 10 in a state in which the room is closed, such as midsummer, the control device 45 is on the heat insulation duct 66 side (heat exchange unit 21B side). The three-way valve 65 is controlled so that the inside air is exhausted directly outside the room (exhaust means). Thereby, since hot air can be prevented from being blown to the heat exchanging portion 21B, a more stable cooling operation can be performed.

また、この場合、ダンパ60を動作させ、全熱交換素子53をバイパスし、内気を排気するのが好ましい。これによって、冷房運転時に熱風が室内に吹きつけられるのを抑制することができ、冷房運転時の空調性が低下するのを抑制することができる。   In this case, it is preferable to operate the damper 60, bypass the total heat exchange element 53, and exhaust the inside air. Thereby, it can suppress that a hot air is blown indoors at the time of air_conditionaing | cooling operation, and can suppress that the air-conditioning property at the time of air_conditionaing | cooling operation falls.

[2]第2実施形態
上記第1実施形態では、熱源側熱交換器21が複数の熱交換部21A、21Bを備え、熱交換部21Bに、内気を排気する場合について説明したが、本第2実施形態では、熱源側熱交換器21が1つの熱交換部で構成される場合について説明する。図2は、第2実施形態が適用された空気調和装置を示す管路図である。以下、この第2実施形態において、上記第1実施形態と同様な部分は、同一の符号を付すことにより説明を省略する。
[2] Second Embodiment In the first embodiment, the heat source side heat exchanger 21 includes a plurality of heat exchange units 21A and 21B, and the case where the inside air is exhausted to the heat exchange unit 21B has been described. 2 embodiment demonstrates the case where the heat source side heat exchanger 21 is comprised by one heat exchange part. FIG. 2 is a pipeline diagram showing an air conditioner to which the second embodiment is applied. Hereinafter, in this 2nd Embodiment, the part similar to the said 1st Embodiment attaches | subjects the same code | symbol, and abbreviate | omits description.

図2に示すように、熱源側熱交換器21は、1つの熱交換部を備えており、空気調和装置10の冷房運転時に全熱交換素子53で熱交換した内気が断熱ダクト66を介して熱源側熱交換器21に導かれる。これによって、上記第1実施形態と同様に、熱源側熱交換器21には、内気排出部52により冷風が吹付けられることとなるので、熱源側熱交換器21に流入した冷媒は、更に冷却されて過冷却状態となる。従って、熱源側熱交換器21に流入した冷媒は、十分に冷却されて液冷媒となるので、冷媒がフラッシュガスとなるのを抑制することができる。従って、冷媒配管(液管)16を細径化することができるので、コストダウンを図ることができ、また、冷媒配管16における冷媒の圧力損失を低減することができる。また、過冷却液となった冷媒が利用側ユニット13の電動膨張弁26に入り、利用側熱交換器25で蒸発するので、冷房能力が向上し、冷房運転時のCOPを向上させることができる。   As shown in FIG. 2, the heat source side heat exchanger 21 includes one heat exchanging unit, and the inside air that has exchanged heat with the total heat exchanging element 53 during the cooling operation of the air conditioner 10 passes through the heat insulating duct 66. It is led to the heat source side heat exchanger 21. As a result, similarly to the first embodiment, since the cool air is blown to the heat source side heat exchanger 21 by the inside air discharge unit 52, the refrigerant flowing into the heat source side heat exchanger 21 is further cooled. It becomes a supercooled state. Therefore, the refrigerant that has flowed into the heat source side heat exchanger 21 is sufficiently cooled to become a liquid refrigerant, so that the refrigerant can be prevented from becoming flash gas. Therefore, since the diameter of the refrigerant pipe (liquid pipe) 16 can be reduced, the cost can be reduced, and the pressure loss of the refrigerant in the refrigerant pipe 16 can be reduced. Further, since the refrigerant that has become the supercooled liquid enters the electric expansion valve 26 of the use side unit 13 and evaporates in the use side heat exchanger 25, the cooling capacity is improved, and the COP during the cooling operation can be improved. .

以上、一実施形態に基づいて本発明を説明したが、本発明は、これに限定されるものではない。   As mentioned above, although this invention was demonstrated based on one Embodiment, this invention is not limited to this.

例えば、上記第1実施形態では、熱源側熱交換器21が複数の熱交換部21A、21Bを備え、熱交換部21Bに内気を排気するように構成した場合について説明したが、これに限るものではなく、少なくとも一つの熱交換部に内気を排気するように構成されていればよく、例えば、熱交換部21Aに内気を排気してもよいし、熱交換部21A、21Bに内気を排気してもよい。   For example, in the first embodiment, the heat source side heat exchanger 21 includes a plurality of heat exchange units 21A and 21B, and the heat exchange unit 21B is configured to exhaust the inside air. However, the present invention is not limited thereto. Instead, it may be configured to exhaust the inside air to at least one heat exchanging unit. For example, the inside air may be exhausted to the heat exchanging unit 21A, or the inside air may be exhausted to the heat exchanging units 21A and 21B. May be.

また、上記第1、第2実施形態では、三方弁65を備え、この三方弁65を切り替えて内気を熱交換部21B側に排気、又は直接室外に排気する場合について説明したが、これに限るものではなく、三方弁65の替わりにダンパを設け、このダンパを切り替えることにより、全熱交換素子53で熱交換した内気を熱交換部21B側に排気、又は直接室外に排気するように構成してもよい。   In the first and second embodiments, the three-way valve 65 is provided, and the three-way valve 65 is switched to exhaust the inside air to the heat exchanging portion 21B side or directly to the outside of the room. However, the present invention is not limited to this. Instead of this, a damper is provided instead of the three-way valve 65, and by switching this damper, the internal air heat exchanged by the total heat exchange element 53 is exhausted to the heat exchanging portion 21B side or directly to the outside. May be.

第1実施形態が適用された空気調和装置を示す管路図である。It is a pipe line figure showing the air harmony device to which a 1st embodiment was applied. 第2実施形態が適用された空気調和装置を示す管路図である。It is a pipe line figure showing the air harmony device to which a 2nd embodiment was applied.

符号の説明Explanation of symbols

10 空気調和装置
18 圧縮機
21 熱源側熱交換器
21A,21B 熱交換部
25 利用側熱交換器
51 外気導入部
52 内気排出部(内気排出手段)
54 全熱交換素子(全熱交換器)
66 断熱ダクト
DESCRIPTION OF SYMBOLS 10 Air conditioning apparatus 18 Compressor 21 Heat source side heat exchanger 21A, 21B Heat exchange part 25 Use side heat exchanger 51 Outside air introduction part 52 Inside air discharge part (inside air discharge means)
54 Total heat exchange element (total heat exchanger)
66 Thermal insulation duct

Claims (4)

圧縮機、熱源側熱交換器、及び利用側熱交換器を備えた空気調和装置において、
前記熱源側熱交換器が、冷房運転時に使用されて冷媒を冷却する熱交換部を備え、
この熱交換部に空気熱源としての室内の空気を排気する内気排出手段を備えたことを特徴とする空気調和装置。
In an air conditioner including a compressor, a heat source side heat exchanger, and a use side heat exchanger,
The heat source side heat exchanger includes a heat exchange unit that is used during cooling operation to cool the refrigerant,
An air conditioner characterized in that the heat exchanging unit is provided with inside air discharging means for exhausting indoor air as an air heat source.
請求項1に記載の空気調和装置において、
前記内気排出手段は、全熱交換器を備え、この全熱交換器で熱交換した室内の空気を前記熱交換部に導くことを特徴とする空気調和装置。
In the air conditioning apparatus according to claim 1,
The air conditioner is characterized in that the inside air discharge means includes a total heat exchanger, and guides indoor air heat-exchanged by the total heat exchanger to the heat exchange unit.
請求項1又は請求項2に記載の空気調和装置において、
前記熱源側熱交換器は、複数の熱交換部を備え、
前記内気排出手段は、これら複数の熱交換部のうち、少なくとも一つの熱交換部に室内の空気を導くことを特徴とする空気調和装置。
In the air conditioning apparatus according to claim 1 or 2,
The heat source side heat exchanger includes a plurality of heat exchange units,
The air conditioner is characterized in that the inside air discharge means guides indoor air to at least one of the plurality of heat exchange sections.
請求項1乃至請求項3のいずれか一項に記載の空気調和装置において、
前記内気排出手段は、室内の空気を前記熱交換器部に導く断熱ダクトを備えたことを特徴とする空気調和装置。
In the air harmony device according to any one of claims 1 to 3,
The air conditioner characterized in that the inside air discharging means includes a heat insulation duct for guiding indoor air to the heat exchanger section.
JP2004176736A 2004-06-15 2004-06-15 Air conditioner Expired - Fee Related JP4353859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004176736A JP4353859B2 (en) 2004-06-15 2004-06-15 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004176736A JP4353859B2 (en) 2004-06-15 2004-06-15 Air conditioner

Publications (2)

Publication Number Publication Date
JP2006002952A true JP2006002952A (en) 2006-01-05
JP4353859B2 JP4353859B2 (en) 2009-10-28

Family

ID=35771495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004176736A Expired - Fee Related JP4353859B2 (en) 2004-06-15 2004-06-15 Air conditioner

Country Status (1)

Country Link
JP (1) JP4353859B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315710A (en) * 2006-05-26 2007-12-06 Max Co Ltd Air conditioner and building
JP2007315713A (en) * 2006-05-26 2007-12-06 Max Co Ltd Air conditioner and building
JP2007315711A (en) * 2006-05-26 2007-12-06 Max Co Ltd Air conditioner, heat exchange element and building
JP2007315714A (en) * 2006-05-26 2007-12-06 Max Co Ltd Air conditioner and building
JP2008116087A (en) * 2006-11-01 2008-05-22 Sanyo Electric Co Ltd Air conditioner
KR102160016B1 (en) * 2019-06-25 2020-09-25 이주열 Interworking system among air circulator and outdoor unit of air conditioner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101680095B1 (en) * 2016-03-23 2016-11-28 천두황 One body type heat-pump air-conditioner
JP6583489B1 (en) * 2018-06-15 2019-10-02 ダイキン工業株式会社 Heat exchange unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315710A (en) * 2006-05-26 2007-12-06 Max Co Ltd Air conditioner and building
JP2007315713A (en) * 2006-05-26 2007-12-06 Max Co Ltd Air conditioner and building
JP2007315711A (en) * 2006-05-26 2007-12-06 Max Co Ltd Air conditioner, heat exchange element and building
JP2007315714A (en) * 2006-05-26 2007-12-06 Max Co Ltd Air conditioner and building
JP2008116087A (en) * 2006-11-01 2008-05-22 Sanyo Electric Co Ltd Air conditioner
KR102160016B1 (en) * 2019-06-25 2020-09-25 이주열 Interworking system among air circulator and outdoor unit of air conditioner

Also Published As

Publication number Publication date
JP4353859B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
JP5328951B2 (en) Air conditioning system
JP6735933B2 (en) Heat pump system
WO2015173909A1 (en) Outside air processor and air conditioner
WO2016013487A1 (en) Room temperature adjustment system
JP2006313027A (en) Ventilation air conditioner
KR100860035B1 (en) Air-conditioning system and controlling method for the same
JP2010249340A (en) Heat pump type intermediate temperature air conditioning system
JP2006317078A (en) Heat pump type air conditioner
JP2007064513A (en) Heat pump type air conditioning method and device
JP4182494B2 (en) Large temperature difference air conditioning system
KR20100011144A (en) Ventilating system having heat pump
JP4723911B2 (en) Air conditioner and air conditioning system
JP4353859B2 (en) Air conditioner
JP2012057813A (en) Air conditioner and operation control method of the same
KR20120026754A (en) Airconditioing circulation system
JP4647399B2 (en) Ventilation air conditioner
JP6675057B2 (en) Heat exchange ventilator
JP2012077949A (en) Controller, humidity conditioning control unit, and air conditioning processing system
KR101562744B1 (en) Air handling system interworking with ventilation unit
JP2010243005A (en) Dehumidification system
JP5827717B2 (en) Fan coil type radiant air conditioning panel air conditioner with heat pump
CN211011666U (en) Waste heat recovery type high air supply temperature fresh air dehumidification unit
JP2018054255A (en) Air conditioner
JP4404698B2 (en) Air conditioner
JP4989307B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees