JP2006200491A - Multi-cylinder diesel engine - Google Patents

Multi-cylinder diesel engine Download PDF

Info

Publication number
JP2006200491A
JP2006200491A JP2005014964A JP2005014964A JP2006200491A JP 2006200491 A JP2006200491 A JP 2006200491A JP 2005014964 A JP2005014964 A JP 2005014964A JP 2005014964 A JP2005014964 A JP 2005014964A JP 2006200491 A JP2006200491 A JP 2006200491A
Authority
JP
Japan
Prior art keywords
intake
egr gas
port
cylinder
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005014964A
Other languages
Japanese (ja)
Other versions
JP4431062B2 (en
Inventor
Toshio Nakanishi
俊夫 中西
Satoru Maekoya
哲 前小屋
Takatoshi Imai
隆敏 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2005014964A priority Critical patent/JP4431062B2/en
Publication of JP2006200491A publication Critical patent/JP2006200491A/en
Application granted granted Critical
Publication of JP4431062B2 publication Critical patent/JP4431062B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-cylinder diesel engine capable of making EGR gas distribution amount of respective cylinders uniform. <P>SOLUTION: In the multi-cylinder diesel engine, a plurality of the cylinders 1 are provided, a helical suction port 2 and a straight suction port 3 are provided for each of the cylinders 1, and EGR gas 5 is added to suction air 4. EGR gas distribution passage 6 is provided, a plurality of gas distribution outlets 7 of the EGR gas distribution passage 6 are respectively opened only by a port inlet 8 of the respective helical suction ports 2, and thereby the EGR gas 5 is introduced into the respective helical suction ports 2, and is not introduced into the straight suction ports 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、多気筒ディーゼルエンジンに関し、詳しくは、各シリンダへのEGRガス分配量を均等にすることができる多気筒ディーゼルエンジンに関するものである。   The present invention relates to a multi-cylinder diesel engine, and more particularly to a multi-cylinder diesel engine capable of equalizing an EGR gas distribution amount to each cylinder.

従来の多気筒エンジンとして、本発明と同様、複数のシリンダを備え、各シリンダ毎にヘリカル吸気ポートとストレート吸気ポートとを設け、吸気にEGRガスを添加するようにしたものがある(例えば、特許文献1参照)。
この種の多気筒エンジンでは、ヘリカル吸気ポートでシリンダ内にスワールを発生させ、シリンダ内での空気と燃料の混合性能を高めるとともに、ストレート吸気ポートで吸気の充填効率を高めることにより、出力向上を図ることができる利点がある。また、同時に、EGRガスの添加で最高燃焼温度を低下させることにより、窒素酸化物の発生量を低減させることができる利点もある。
As in the present invention, a conventional multi-cylinder engine includes a plurality of cylinders, each of which is provided with a helical intake port and a straight intake port, and EGR gas is added to the intake air (for example, a patent) Reference 1).
In this type of multi-cylinder engine, the helical intake port generates swirl in the cylinder, improving the mixing performance of air and fuel in the cylinder, and improving the charging efficiency of the intake through the straight intake port. There is an advantage that can be achieved. At the same time, there is an advantage that the amount of nitrogen oxides generated can be reduced by lowering the maximum combustion temperature by adding EGR gas.

しかし、上記従来の多気筒エンジンでは、EGRガス供給通路の単一のガス出口を吸気分配通路で開口させているため、問題が生じるおそれがある。   However, in the conventional multi-cylinder engine, a single gas outlet of the EGR gas supply passage is opened by the intake air distribution passage, which may cause a problem.

実開平6−67846号公報(図1参照)Japanese Utility Model Publication No. 6-67846 (see FIG. 1)

上記従来技術では、次の問題が生じるおそれがある。
《問題》 各シリンダへのEGRガス分配量が均等になりにくい。
EGRガス供給通路の単一のガス出口を吸気分配通路で開口させているため、EGRガスが吸気分配通路を通過する過程で、EGRガスの濃度分布が変化し、各シリンダの吸気ポートの位置毎に、各シリンダへのEGRガス分配量が相違し、各シリンダへのEGRガス分配量が均等になりにくい。この場合、各シリンダでの燃焼状態の差が大きくなり、運転の不調、排気ガスの悪化等の弊害が生じる。
In the above prior art, the following problems may occur.
<< Problem >> The EGR gas distribution amount to each cylinder is difficult to be equalized.
Since the single gas outlet of the EGR gas supply passage is opened by the intake distribution passage, the concentration distribution of the EGR gas changes in the process of passing the EGR gas through the intake distribution passage, and the intake port position of each cylinder changes. In addition, the EGR gas distribution amount to each cylinder is different, and the EGR gas distribution amount to each cylinder is not easily equalized. In this case, the difference in the combustion state between the cylinders becomes large, causing problems such as malfunction of the operation and deterioration of the exhaust gas.

本発明は、上記問題点を解決することができる多気筒エンジン、すなわち、各シリンダのEGRガス分配量を均等にすることができる多気筒エンジン、を提供することを課題とする。   An object of the present invention is to provide a multi-cylinder engine that can solve the above-described problems, that is, a multi-cylinder engine that can equalize the EGR gas distribution amount of each cylinder.

請求項1に係る発明の発明特定事項は、次の通りである。
図1(A)に例示するように、複数のシリンダ(1)(1)を備え、各シリンダ(1)毎にヘリカル吸気ポート(2)とストレート吸気ポート(3)とを設け、吸気(4)にEGRガス(5)を添加するようにした、多気筒ディーゼルエンジンにおいて、
図1(B)(C)に例示するように、EGRガス分配通路(6)を設け、このEGRガス分配通路(6)の複数のガス分配出口(7)を各ヘリカル吸気ポート(2)のポート入口(8)のみでそれぞれ開口させることにより、EGRガス(5)が各ヘリカル吸気ポート(2)には導入されるが、各ストレート吸気ポート(3)には導入されないようにした、ことを特徴とする、多気筒ディーゼルエンジン。
Invention specific matters of the invention according to claim 1 are as follows.
As illustrated in FIG. 1A, a plurality of cylinders (1) and (1) are provided, and a helical intake port (2) and a straight intake port (3) are provided for each cylinder (1), and intake (4 In a multi-cylinder diesel engine in which EGR gas (5) is added to
As illustrated in FIGS. 1B and 1C, an EGR gas distribution passage (6) is provided, and a plurality of gas distribution outlets (7) of the EGR gas distribution passage (6) are connected to each helical intake port (2). By opening each port only at the port inlet (8), EGR gas (5) is introduced into each helical intake port (2) but not to each straight intake port (3). Features a multi-cylinder diesel engine.

(請求項1に係る発明)
《効果》 各シリンダへのEGRガス分配量を均等にすることができる。
図1(B)(C)に例示するように、EGRガス分配通路(6)を設け、このEGRガス分配通路(6)の複数のガス分配出口(7)を各ヘリカル吸気ポート(2)のポート入口(8)のみでそれぞれ開口させるので、各シリンダ(1)のヘリカル吸気ポート(2)の位置に拘わらず、各シリンダ(1)へのEGRガス(5)の分配量を一致させやすく、各シリンダ(1)へのEGRガス分配量を均等にすることができる。このため、各シリンダ(1)での燃焼状態の差が大きくなる不具合がなくなり、この不具合に起因する運転の不調、排気ガスの悪化等の弊害が生じにくい。
(Invention according to Claim 1)
<Effect> The EGR gas distribution amount to each cylinder can be made uniform.
As illustrated in FIGS. 1B and 1C, an EGR gas distribution passage (6) is provided, and a plurality of gas distribution outlets (7) of the EGR gas distribution passage (6) are connected to each helical intake port (2). Since each port is opened only at the port inlet (8), the distribution amount of the EGR gas (5) to each cylinder (1) can be easily matched regardless of the position of the helical intake port (2) of each cylinder (1). The EGR gas distribution amount to each cylinder (1) can be equalized. For this reason, the problem that the difference in the combustion state in each cylinder (1) becomes large is eliminated, and adverse effects such as malfunction of the operation and deterioration of the exhaust gas due to this problem are unlikely to occur.

《効果》 EGRガスと空気との混合が良好になる。
図1(B)(C)に例示するように、EGRガス(5)が各ヘリカル吸気ポート(2)には導入されるが、各ストレート吸気ポート(3)には導入されないため、EGRガス(5)の全てがスワール用の吸気(4)に添加され、スワール比が高まり、シリンダ(1)内でのEGRガス(5)と空気との混合が良好になる。これにより、EGRガス添加時のスモークの発生を抑制することができ、ひいてはEGRガスの還元率を高めて、窒素酸化物の低減機能を高めることができる。
<Effect> Mixing of EGR gas and air is improved.
As illustrated in FIGS. 1B and 1C, EGR gas (5) is introduced into each helical intake port (2), but is not introduced into each straight intake port (3). All of 5) is added to the swirl intake air (4), the swirl ratio is increased, and mixing of the EGR gas (5) and air in the cylinder (1) is improved. Thereby, generation | occurrence | production of the smoke at the time of EGR gas addition can be suppressed, and by extension, the reduction rate of EGR gas can be raised and the reduction function of nitrogen oxides can be raised.

(請求項2に係る発明)
請求項1に係る発明の効果に加え、次の効果を奏する。
《効果》 EGRガスと空気との混合が良好になる。
図1(B)に例示するように、各シリンダ(1)のヘリカル吸気ポート(2)のポート入口上部(8a)とポート入口下部(8b)のうち、ポート入口上部(8a)に吸気分配出口(15)を臨ませ、ポート入口下部(8b)にガス分配出口(7)を臨ませたため、ヘリカル吸気ポート(2)の上部に比較的温度が低く比重の重い吸気(4)が流れ込み、ヘリカル吸気ポート(2)の下部に比較的温度が高く比重の軽いEGRガス(5)が流れ込む。このため、ヘリカル吸気ポート(2)内で、比重の軽いEGRガス(5)は浮上し、比重の重い吸気(4)は下降し、これらがヘリカル吸気ポート(2)内で予備的に混合され、シリンダ(1)内での空気とEGRガス(5)との混合が良好になる。これにより、EGRガス添加時のスモークの発生を抑制することができ、ひいてはEGRガスの還元率を高めて、窒素酸化物の低減機能を高めることができる。
(Invention according to Claim 2)
In addition to the effect of the invention according to claim 1, the following effect is achieved.
<Effect> Mixing of EGR gas and air is improved.
As illustrated in FIG. 1 (B), among the port inlet upper part (8 a) and the port inlet lower part (8 b) of the helical intake port (2) of each cylinder (1), the intake distribution outlet is located at the port inlet upper part (8 a). (15) is faced, and the gas distribution outlet (7) is faced to the port inlet lower part (8b), so that the intake air (4) having a relatively low temperature and heavy specific gravity flows into the upper part of the helical intake port (2), and the helical EGR gas (5) having a relatively high temperature and a low specific gravity flows into the lower portion of the intake port (2). For this reason, the light EGR gas (5) with a low specific gravity rises in the helical intake port (2), the intake with a high specific gravity (4) descends, and these are preliminarily mixed in the helical intake port (2). The mixing of the air and the EGR gas (5) in the cylinder (1) becomes good. Thereby, generation | occurrence | production of the smoke at the time of EGR gas addition can be suppressed, and by extension, the reduction rate of EGR gas can be raised and the reduction function of nitrogen oxides can be raised.

(請求項3に係る発明)
請求項1または請求項2に係る発明の効果に加え、次の効果を奏する。
《効果》 EGRガス分岐通路を安価に製造することができる。
図2に例示するように、吸気分配手段(11)の内部に通路区画壁(13)を設け、この通路区画壁(13)を、吸気分配手段(11)の成型時に、吸気分配手段(11)の外壁(12)と一体成型で形成し、この通路区画壁(13)で吸気分配通路(14)とEGRガス分配通路(6)とを区画したので、EGRガス分配通路(6)を吸気分配手段(11)の成型時に同時に形成することができ、EGRガス分岐通路(6)を安価に製造することができる。
(Invention according to claim 3)
In addition to the effect of the invention according to claim 1 or claim 2, the following effect is achieved.
<Effect> The EGR gas branch passage can be manufactured at low cost.
As illustrated in FIG. 2, a passage partition wall (13) is provided inside the intake air distribution means (11), and this passage partition wall (13) is used when the intake air distribution means (11) is molded. ) And the outer partition wall (12), and the intake partition passage (14) and the EGR gas distribution passage (6) are partitioned by the passage partition wall (13), so that the EGR gas distribution passage (6) is taken into the intake air. It can be formed simultaneously with the molding of the distribution means (11), and the EGR gas branch passage (6) can be manufactured at low cost.

本発明の実施の形態を図面に基づいて説明する。図1から図3は本発明の実施形態に係る多気筒ディーゼルエンジンを説明する図で、この実施形態では、コモンレール噴射式で過給機付きの縦型水冷直列4気筒ディーゼルエンジンについて説明する。   Embodiments of the present invention will be described with reference to the drawings. FIGS. 1 to 3 are diagrams for explaining a multi-cylinder diesel engine according to an embodiment of the present invention. In this embodiment, a vertical water-cooled in-line four-cylinder diesel engine with a common rail injection type and a supercharger will be described.

本発明の実施形態の概要は、次の通りである。
図3に示すように、シリンダブロックの上部にシリンダヘッド(9)を組み付け、シリンダヘッド(9)の上部にヘッドカバー(16)を組み付けている。シリンダヘッド(9)の幅方向を横方向として、シリンダヘッド(9)の一方の横壁に排気合流手段(17)を取り付け、他方の横壁(10)に吸気分配手段(11)を取り付けている。吸気分配手段(11)とは、各シリンダ(1)に吸気を分配するための手段で、一般には、吸気マニホルドというが、この実施形態のものは、箱型で、分岐管を備えていないため、このような表現とした。また、排気合流手段(17)は、各シリンダ(1)からの排気を合流させるための手段で、一般には、排気マニホルドというが、吸気分配手段(11)という表現に合わせてこのような表現とした。燃料は、燃料サプライポンプ(24)でコモンレール(25)に供給され、コモンレール(25)から高圧管(26)を介して各シリンダ(1)のインジェクタ(27)に供給される。
The outline of the embodiment of the present invention is as follows.
As shown in FIG. 3, the cylinder head (9) is assembled to the upper part of the cylinder block, and the head cover (16) is assembled to the upper part of the cylinder head (9). The exhaust merging means (17) is attached to one lateral wall of the cylinder head (9), and the intake air distributing means (11) is attached to the other lateral wall (10) with the width direction of the cylinder head (9) as the lateral direction. The intake air distribution means (11) is a means for distributing the intake air to each cylinder (1), and is generally called an intake manifold, but this embodiment is a box type and does not have a branch pipe. , With such an expression. The exhaust merging means (17) is a means for merging the exhaust from the cylinders (1), and is generally referred to as an exhaust manifold, but this expression is adapted to the expression of the intake air distributing means (11). did. The fuel is supplied to the common rail (25) by the fuel supply pump (24), and is supplied from the common rail (25) to the injector (27) of each cylinder (1) through the high-pressure pipe (26).

吸気装置の構成は、次の通りである。
図3に示すように、排気合流手段(17)の出口には過給機(18)が配置されている。この過給機(18)から過給パイプ(図外)を介して吸気分配手段(11)の入口に過給がなされる。このエンジンは、4本のシリンダ(1)(1)を備え、図1(A)に示すように、シリンダ(1)毎にヘリカル吸気ポート(2)とストレート吸気ポート(3)とを設け、吸気(4)にEGRガス(5)を添加するようになっている。図中の符号(4)はヘリカル吸気ポート(2)に導入される吸気、(28)はストレート吸気ポート(3)に導入される吸気である。
The configuration of the intake device is as follows.
As shown in FIG. 3, a supercharger (18) is arranged at the outlet of the exhaust merging means (17). The supercharger (18) is supercharged to the inlet of the intake air distribution means (11) through a supercharge pipe (not shown). This engine includes four cylinders (1) and (1). As shown in FIG. 1 (A), a helical intake port (2) and a straight intake port (3) are provided for each cylinder (1). The EGR gas (5) is added to the intake air (4). Reference numeral (4) in the figure denotes intake air introduced into the helical intake port (2), and (28) denotes intake air introduced into the straight intake port (3).

EGRガス供給装置の構成は、次の通りである。
図3に示すように、排気合流手段(17)の後部からEGRガス出口通路(19)を導出し、シリンダヘッド(9)の後方にEGRガスクーラ(20)を配置し、EGRガス出口通路(19)を、EGRガスクーラ(20)と逆止弁ケース(21)とEGR弁ケース(22)とを順に介して、吸気分配手段(11)に設けた図2のEGRガス分配通路(6)に連通させている。EGRガスクーラ(20)は、EGRガスを冷却し、吸気の充填効率の低下を抑制するとともに、EGR弁の熱損傷を抑制する。逆止弁ケース(22)は、内部に逆止弁を収容し、この逆止弁は、過給圧が排気圧を越えた場合に閉弁し、EGRガス分配通路(6)からEGRガスクーラ(20)側にEGRガスが逆流するのを防止する。EGR弁ケース(22)は、内部にEGR弁を収容している。このEGR弁は弁アクチュエータ(23)に連動させ、弁アクチュエータ(23)は制御手段(図外)に連携させている。制御手段は、マイクロコンピュータで、エンジン負荷やエンジン回転数等の運転状態に応じて、EGR弁の開度を調節する。
The configuration of the EGR gas supply device is as follows.
As shown in FIG. 3, the EGR gas outlet passage (19) is led out from the rear part of the exhaust merging means (17), the EGR gas cooler (20) is arranged behind the cylinder head (9), and the EGR gas outlet passage (19 ) Communicated with the EGR gas distribution passage (6) of FIG. 2 provided in the intake distribution means (11) through the EGR gas cooler (20), the check valve case (21), and the EGR valve case (22) in this order. I am letting. The EGR gas cooler (20) cools the EGR gas, suppresses a decrease in intake charging efficiency, and suppresses thermal damage to the EGR valve. The check valve case (22) accommodates a check valve inside, and the check valve is closed when the supercharging pressure exceeds the exhaust pressure, and the EGR gas cooler (6) is connected to the EGR gas distribution passage (6). 20) Prevent EGR gas from flowing back to the side. The EGR valve case (22) accommodates an EGR valve therein. The EGR valve is linked to a valve actuator (23), and the valve actuator (23) is linked to control means (not shown). The control means is a microcomputer and adjusts the opening degree of the EGR valve in accordance with the operating state such as the engine load and the engine speed.

EGRガス供給装置の工夫は、次の通りである。
図1(A)〜(C)に示すように、EGRガス分配通路(6)の複数のガス分配出口(7)を各ヘリカル吸気ポート(2)のポート入口(8)のみでそれぞれ開口させることにより、EGRガス(5)が各ヘリカル吸気ポート(2)には導入されるが、各ストレート吸気ポート(3)には導入されないようにしている。吸気分配手段(11)の上部に吸気分配通路(14)を配置し、吸気分配手段(11)の下部にEGRガス分配通路(6)を配置し、各シリンダ(1)のヘリカル吸気ポート(2)のポート入口上部(8a)とポート入口下部(8b)のうち、ポート入口上部(8a)に吸気分配出口(15)を臨ませ、ポート入口下部(8b)にガス分配出口(7)を臨ませている。
The device of the EGR gas supply device is as follows.
As shown in FIGS. 1A to 1C, the plurality of gas distribution outlets (7) of the EGR gas distribution passage (6) are opened only at the port inlets (8) of the respective helical intake ports (2). Thus, the EGR gas (5) is introduced into each helical intake port (2) but is not introduced into each straight intake port (3). An intake distribution passage (14) is disposed above the intake distribution means (11), an EGR gas distribution passage (6) is disposed below the intake distribution means (11), and the helical intake port (2) of each cylinder (1) is disposed. ) Of the port inlet upper part (8a) and the port inlet lower part (8b), the port inlet upper part (8a) faces the intake distribution outlet (15), and the port inlet lower part (8b) faces the gas distribution outlet (7). Not.

吸気分配手段の構成は、次の通りである。
図1(A)〜(C)に示すように、シリンダヘッド(9)の幅方向を横方向として、シリンダヘッド(9)の横壁(10)に吸気分配手段(11)を取り付け、この吸気分配手段(11)の内部に通路区画壁(13)を設け、この通路区画壁(13)を、吸気分配手段(11)の成型時に、吸気分配手段(11)の外壁(12)と一体成型で形成し、この通路区画壁(13)で吸気分配通路(14)とEGRガス分配通路(6)とを区画している。この吸気分配手段(11)は鋳造品である。
The configuration of the intake air distribution means is as follows.
As shown in FIGS. 1 (A) to 1 (C), the intake head distribution means (11) is attached to the horizontal wall (10) of the cylinder head (9) with the width direction of the cylinder head (9) as the horizontal direction. A passage partition wall (13) is provided inside the means (11), and the passage partition wall (13) is integrally formed with the outer wall (12) of the intake distribution means (11) when the intake distribution means (11) is molded. The intake partition passage (14) and the EGR gas distribution passage (6) are partitioned by the passage partition wall (13). The intake air distribution means (11) is a cast product.

本発明の実施形態に係るエンジンのシリンダヘッドの吸気分配手段を説明する図で、図1(A)は横断平面図、図1(B)は図1(A)のB−B線断面図、図1(C)は図1(A)のC−C線断面図である。FIGS. 1A and 1B are cross-sectional plan views, FIG. 1B is a cross-sectional view taken along line BB in FIG. 1A, and FIG. FIG. 1C is a cross-sectional view taken along the line CC of FIG. 図1(A)のII−II線断面図である。It is the II-II sectional view taken on the line of FIG. 本発明の実施形態に係るエンジンの平面図である。1 is a plan view of an engine according to an embodiment of the present invention.

符号の説明Explanation of symbols

(1)‥シリンダ、(2)‥ヘリカル吸気ポート、(3)‥‥ストレート吸気ポート、(4)‥吸気、(5)‥EGRガス、(6)‥EGRガス分配通路、(7)‥ガス分配出口、(8)‥ポート入口、(8a)‥ポート入口上部、(8b)‥ポート入口下部、(9)‥シリンダヘッド、(10)‥横壁、(11)‥吸気分配手段、(12)‥外壁、(13)‥通路区画壁、(14)‥吸気分配通路、(15)‥吸気分配出口。
(1) Cylinder, (2) Helical intake port, (3) Straight intake port, (4) Intake, (5) EGR gas, (6) EGR gas distribution passage, (7) Gas Distribution outlet, (8) ... Port inlet, (8a) ... Port inlet upper part, (8b) ... Port inlet lower part, (9) ... Cylinder head, (10) ... Side wall, (11) ... Intake distribution means, (12) ...... External wall, (13) Passage partition wall, (14) Intake distribution passage, (15) Intake distribution outlet.

Claims (3)

複数のシリンダ(1)(1)を備え、各シリンダ(1)毎にヘリカル吸気ポート(2)とストレート吸気ポート(3)とを設け、吸気(4)にEGRガス(5)を添加するようにした、多気筒ディーゼルエンジンにおいて、
EGRガス分配通路(6)を設け、このEGRガス分配通路(6)の複数のガス分配出口(7)を各ヘリカル吸気ポート(2)のポート入口(8)のみでそれぞれ開口させることにより、EGRガス(5)が各ヘリカル吸気ポート(2)には導入されるが、各ストレート吸気ポート(3)には導入されないようにした、ことを特徴とする、多気筒ディーゼルエンジン。
A plurality of cylinders (1) and (1) are provided, each cylinder (1) is provided with a helical intake port (2) and a straight intake port (3), and EGR gas (5) is added to the intake (4). In a multi-cylinder diesel engine,
By providing an EGR gas distribution passage (6) and opening a plurality of gas distribution outlets (7) of the EGR gas distribution passage (6) only at the port inlets (8) of the respective helical intake ports (2), EGR A multi-cylinder diesel engine characterized in that gas (5) is introduced into each helical intake port (2) but is not introduced into each straight intake port (3).
請求項1に記載した多気筒ディーゼルエンジンにおいて、
吸気分配手段(11)の上部に吸気分配通路(14)を配置し、吸気分配手段(11)の下部にEGRガス分配通路(6)を配置し、各シリンダ(1)のヘリカル吸気ポート(2)のポート入口上部(8a)とポート入口下部(8b)のうち、ポート入口上部(8a)に吸気分配出口(15)を臨ませ、ポート入口下部(8b)にガス分配出口(7)を臨ませた、ことを特徴とする、多気筒ディーゼルエンジン。
The multi-cylinder diesel engine according to claim 1,
An intake distribution passage (14) is disposed above the intake distribution means (11), an EGR gas distribution passage (6) is disposed below the intake distribution means (11), and the helical intake port (2) of each cylinder (1) is disposed. ) Of the port inlet upper part (8a) and the port inlet lower part (8b), the port inlet upper part (8a) faces the intake distribution outlet (15), and the port inlet lower part (8b) faces the gas distribution outlet (7). A multi-cylinder diesel engine characterized by that.
請求項1または請求項2に記載した多気筒ディーゼルエンジンにおいて、
シリンダヘッド(9)の幅方向を横方向として、シリンダヘッド(9)の横壁(10)に吸気分配手段(11)を取り付け、この吸気分配手段(11)の内部に通路区画壁(13)を設け、この通路区画壁(13)を、吸気分配手段(11)の成型時に、吸気分配手段(11)の外壁(12)と一体成型で形成し、この通路区画壁(13)で吸気分配通路(14)とEGRガス分配通路(6)とを区画した、ことを特徴とする多気筒ディーゼルエンジン。

The multi-cylinder diesel engine according to claim 1 or 2,
An intake distributing means (11) is attached to the horizontal wall (10) of the cylinder head (9) with the width direction of the cylinder head (9) as the horizontal direction, and a passage partition wall (13) is provided inside the intake distributing means (11). The passage partition wall (13) is formed integrally with the outer wall (12) of the intake distribution means (11) when the intake distribution means (11) is molded, and the intake distribution passage is formed by the passage partition wall (13). A multi-cylinder diesel engine characterized by partitioning (14) and an EGR gas distribution passage (6).

JP2005014964A 2005-01-24 2005-01-24 Multi-cylinder diesel engine Expired - Fee Related JP4431062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005014964A JP4431062B2 (en) 2005-01-24 2005-01-24 Multi-cylinder diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005014964A JP4431062B2 (en) 2005-01-24 2005-01-24 Multi-cylinder diesel engine

Publications (2)

Publication Number Publication Date
JP2006200491A true JP2006200491A (en) 2006-08-03
JP4431062B2 JP4431062B2 (en) 2010-03-10

Family

ID=36958702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005014964A Expired - Fee Related JP4431062B2 (en) 2005-01-24 2005-01-24 Multi-cylinder diesel engine

Country Status (1)

Country Link
JP (1) JP4431062B2 (en)

Also Published As

Publication number Publication date
JP4431062B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
US8955497B2 (en) Air intake device
CN102777293B (en) Intake manifold assembly for dedicated exhaust gas recirculation
US20090235890A1 (en) Intake control device for an engine
JPWO2005010330A1 (en) Turbocharger
JP2014051907A (en) Intake system of internal combustion engine
US20100037853A1 (en) Intake system for an internal combustion engine
US11053894B2 (en) Multi-cylinder engine
JP4431062B2 (en) Multi-cylinder diesel engine
JP2005090361A (en) Exhaust gas recirculation air conditioner
JP2018173014A (en) Intake device of multi-cylinder engine
JP6409560B2 (en) Engine intake structure
JP2005180309A (en) Intake device for internal combustion engine
JPS6088821A (en) Suction air cooling device for supercharged engine
US20190226422A1 (en) Multi-cylinder engine
JP2021113531A (en) Intake device of engine
JP2007085215A (en) Multicylinder engine
JP2020002796A (en) Intake system for multiple cylinder engine
JP2010031685A (en) Spark ignition internal combustion engine
JP2010031687A (en) Spark ignition internal combustion engine
KR100844565B1 (en) Exhaust gas recirculation system for v8 type diesel engine
JP5917987B2 (en) EGR gas introduction structure
JP2018200038A (en) Intake structure of multi-cylinder engine
JP7151209B2 (en) Intake system for multi-cylinder engine
JP2006207411A (en) Multicylinder engine
JP2010053829A (en) Intake device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees