JP2006207411A - Multicylinder engine - Google Patents

Multicylinder engine Download PDF

Info

Publication number
JP2006207411A
JP2006207411A JP2005017789A JP2005017789A JP2006207411A JP 2006207411 A JP2006207411 A JP 2006207411A JP 2005017789 A JP2005017789 A JP 2005017789A JP 2005017789 A JP2005017789 A JP 2005017789A JP 2006207411 A JP2006207411 A JP 2006207411A
Authority
JP
Japan
Prior art keywords
egr gas
intake
gas outlet
intake air
outlet pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005017789A
Other languages
Japanese (ja)
Inventor
Toshio Nakanishi
俊夫 中西
Satoru Maekoya
哲 前小屋
Takatoshi Imai
隆敏 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2005017789A priority Critical patent/JP2006207411A/en
Publication of JP2006207411A publication Critical patent/JP2006207411A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multicylinder engine for uniformizing an EGR gas distribution amount to each cylinder. <P>SOLUTION: In the multicylinder engine, EGR gas 2 is supplied to an intake distribution means 1, and intake air 3 and the EGR gas 2 are distributed to a plurality of cylinders 44 through the intake distribution means 1. An EGR gas outlet pipe 6 is stretched to cross the inside of an intake inlet pipe 5 of the intake distribution means 1, and an EGR gas outlet 7 is formed in a peripheral wall of the EGR gas outlet pipe 6. Preferably, the EGR gas outlet 7 should be formed in an intake upstream part 6a, against which the intake air 3 is blown, out of the peripheral wall of the EGR gas outlet pipe 6. The EGR gas outlets 7 may be formed in both end parts 6b in both side parts 6b, where the intake air 3 goes by, out of the peripheral wall of the EGR gas outlet pipe 6. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、多気筒エンジンに関し、詳しくは、各シリンダへのEGRガス分配量を均一化することができる多気筒エンジンに関するものである。   The present invention relates to a multi-cylinder engine, and more particularly to a multi-cylinder engine that can equalize an EGR gas distribution amount to each cylinder.

従来の多気筒エンジンとして、本発明と同様、吸気分配手段にEGRガスを供給し、吸気とEGRガスとを吸気分配手段を介して複数のシリンダに分配するようにしたものがある(例えば、特許文献1参照)。
この種のエンジンでは、EGRガスの添加でシリンダ内での最高燃焼温度を低下させることにより、窒素酸化物の発生量を低減させることができる利点がある。
As a conventional multi-cylinder engine, as in the present invention, there is one in which EGR gas is supplied to intake distribution means and intake air and EGR gas are distributed to a plurality of cylinders via intake distribution means (for example, patents). Reference 1).
This type of engine has an advantage that the amount of nitrogen oxides generated can be reduced by lowering the maximum combustion temperature in the cylinder by adding EGR gas.

しかし、上記従来のエンジンでは、吸気分配手段の長手方向に沿って長尺の部屋を形成し、この長尺の部屋と直交する向きで、この長尺の部屋に吸気入口管を連通させるとともに、この長尺の部屋の長手方向に沿ってEGRガス出口管を架設し、EGRガス出口管の周壁にEGRガス出口を設け、この長尺の部屋を吸気分配手段に連通させているため、問題が生じるおそれがある。   However, in the conventional engine, a long chamber is formed along the longitudinal direction of the intake distributing means, and the intake inlet pipe is communicated with the long chamber in a direction orthogonal to the long chamber. Since an EGR gas outlet pipe is installed along the longitudinal direction of the long room, an EGR gas outlet is provided on the peripheral wall of the EGR gas outlet pipe, and the long room is communicated with the intake air distribution means, there is a problem. May occur.

特開平7−34984号公報(図1参照)JP-A-7-34984 (see FIG. 1)

上記従来技術では、次の問題が生じるおそれがある。
《問題》 各シリンダへのEGRガス分配量が均等になりにくい。
長尺の部屋と直交する向きで、この長尺の部屋に吸気入口管を連通させるとともに、この長尺の部屋の長手方向に沿ってEGRガス出口管を架設しているため、吸気速度が吸気入口管から長尺の部屋に入った段階で急速に低下し、EGRガスと吸気との混合が不十分となり、EGRガスが吸気中に均一に分散しない。このため、吸気分配手段内を吸気が通過する過程で、吸気中のEGRガスの濃度分布が変化し、吸気ポートの位置の相違によって、各シリンダへのEGRガス分配量が相違し、各シリンダへのEGRガス分配量が均等になりにくい。この場合、各シリンダでの燃焼状態の差が大きくなり、運転の不調、排気ガスの悪化等の弊害が生じる。
In the above prior art, the following problems may occur.
<< Problem >> The EGR gas distribution amount to each cylinder is difficult to be equalized.
Since the intake inlet pipe communicates with the long room in a direction orthogonal to the long room, and the EGR gas outlet pipe is installed along the longitudinal direction of the long room, the intake speed is increased. When it enters the long room from the inlet pipe, it rapidly decreases, mixing of the EGR gas and the intake air becomes insufficient, and the EGR gas is not uniformly dispersed in the intake air. For this reason, the concentration distribution of the EGR gas in the intake air changes in the process of intake air passing through the intake air distribution means, and the EGR gas distribution amount to each cylinder differs depending on the position of the intake port. The EGR gas distribution amount is difficult to be uniform. In this case, the difference in the combustion state between the cylinders becomes large, causing problems such as malfunction of the operation and deterioration of the exhaust gas.

本発明は、上記問題点を解決することができる多気筒エンジン、すなわち、各シリンダへのEGRガス分配量を均一化することができる多気筒エンジンを提供することを課題とする。   It is an object of the present invention to provide a multi-cylinder engine that can solve the above-described problems, that is, a multi-cylinder engine that can equalize the EGR gas distribution amount to each cylinder.

請求項1に係る発明の発明特定事項は、次の通りである。
図1(A)〜(C)に例示するように、吸気分配手段(1)にEGRガス(2)を供給し、吸気(3)とEGRガス(2)とを吸気分配手段(1)を介して複数のシリンダ(4)(4)に分配するようにした、多気筒エンジンにおいて、
吸気分配手段(1)の吸気入口管(5)内にEGRガス出口管(6)を横断状に架設し、このEGRガス出口管(6)の周壁にEGRガス出口(7)を設けた、ことを特徴とする多気筒エンジン。
Invention specific matters of the invention according to claim 1 are as follows.
As illustrated in FIGS. 1A to 1C, the EGR gas (2) is supplied to the intake air distribution means (1), and the intake air distribution means (1) is connected to the intake air (3) and the EGR gas (2). In a multi-cylinder engine that is distributed to a plurality of cylinders (4) and (4) through
An EGR gas outlet pipe (6) is installed in a transverse manner in the intake inlet pipe (5) of the intake distribution means (1), and an EGR gas outlet (7) is provided on the peripheral wall of the EGR gas outlet pipe (6). This is a multi-cylinder engine.

(請求項1に係る発明)
《効果》 各シリンダへのEGRガス分配量を均等にすることができる。
図1(A)〜(C)に例示するように、吸気分配手段(1)の吸気入口管(5)内にEGRガス出口管(6)を横断状に架設し、このEGRガス出口管(6)の周壁にEGRガス出口(7)を設けたため、吸気入口管(5)内で速度の速い吸気(3)とEGRガス(2)とが接触し、EGRガス(2)が吸気(3)中に均一に拡散する。このため、吸気分配手段(1)内を吸気(3)が通過する過程で、吸気(3)中のEGRガス(2)の濃度分布が変化せず、吸気ポート(8)の位置の相違に拘わらず、各シリンダ(4)へのEGRガス分配量を一致させやすく、各シリンダ(4)へのEGRガス分配量を均等にすることができる。このため、各シリンダ(4)での燃焼状態の差が大きくなる不具合がなくなり、この不具合に起因する運転の不調、排気ガスの悪化等の弊害が生じにくい。
(Invention according to Claim 1)
<Effect> The EGR gas distribution amount to each cylinder can be made uniform.
As illustrated in FIGS. 1A to 1C, an EGR gas outlet pipe (6) is installed in a transverse manner in the intake inlet pipe (5) of the intake distribution means (1), and this EGR gas outlet pipe ( Since the EGR gas outlet (7) is provided on the peripheral wall of 6), the quick intake air (3) and the EGR gas (2) come into contact with each other in the intake air inlet pipe (5), and the EGR gas (2) is taken into the intake air (3 ) Uniformly diffuse inside. For this reason, the concentration distribution of the EGR gas (2) in the intake air (3) does not change in the process of the intake air (3) passing through the intake air distribution means (1), and the position of the intake port (8) is different. Regardless, the EGR gas distribution amount to each cylinder (4) can be easily matched, and the EGR gas distribution amount to each cylinder (4) can be made uniform. For this reason, the problem that the difference in the combustion state in each cylinder (4) becomes large is eliminated, and adverse effects such as malfunctioning of the operation and deterioration of exhaust gas due to this problem are less likely to occur.

(請求項2に係る発明)
請求項1に係る発明の効果に加え、次の効果を奏する。
《効果》 EGRガスの吸気中への拡散が速やかに行われる。
図1(C)に例示するように、EGRガス出口管(6)の周壁のうち、吸気(3)が吹き当たる吸気上流側部分(6a)に、EGRガス出口(7)を設けたため、EGRガス出口(7)から流出したEGRガス(2)が速度の速い吸気(3)と正面衝突し、EGRガス(2)の吸気(3)中への拡散が速やかに行われる。
(Invention according to Claim 2)
In addition to the effect of the invention according to claim 1, the following effect is achieved.
<Effect> EGR gas is rapidly diffused into the intake air.
As illustrated in FIG. 1C, since the EGR gas outlet (7) is provided in the intake upstream side portion (6a) where the intake air (3) blows out of the peripheral wall of the EGR gas outlet pipe (6), EGR is provided. The EGR gas (2) flowing out from the gas outlet (7) collides head-on with the high-speed intake air (3), and the EGR gas (2) diffuses quickly into the intake air (3).

(請求項3に係る発明)
請求項1または請求項2に係る発明の効果に加え、次の効果を奏する。
《効果》 EGRガスの吸気中への拡散が速やかに行われる。
図1(C)に例示するように、EGRガス出口管(6)の周壁のうち、吸気(3)が脇を通過する両側部分(6b)(6b)に、EGRガス出口(7)を設けたため、EGRガス出口(7)から流出したEGRガス(2)と速度の速い吸気(3)とが、EGRガス出口管(6)の両側で接触し、EGRガス(2)の吸気(3)中への拡散が速やかに行われる。
(Invention according to claim 3)
In addition to the effect of the invention according to claim 1 or claim 2, the following effect is achieved.
<Effect> EGR gas is rapidly diffused into the intake air.
As illustrated in FIG. 1 (C), an EGR gas outlet (7) is provided on both sides (6b) and (6b) of the peripheral wall of the EGR gas outlet pipe (6) through which the intake air (3) passes. Therefore, the EGR gas (2) flowing out from the EGR gas outlet (7) and the high-speed intake air (3) come into contact with both sides of the EGR gas outlet pipe (6), and the intake air (3) of the EGR gas (2) Rapid diffusion into the inside.

(請求項4に係る発明)
請求項1から請求項3のいずれかに係る発明の効果に加え、次の効果を奏する。
《効果》 EGRガスの吸気中への拡散が速やかに行われる。
図1(A)(B)に例示するように、EGRガス出口(7)を、EGRガス出口管(6)の管路方向に沿って長いスリット状に形成したため、EGRガス出口(7)から流出したEGRガス(2)と速度の速い吸気(3)とが、長いEGRガス出口(9)に沿う広い範囲で接触し、EGRガス(2)の吸気(3)中への拡散が速やかに行われる。
(Invention of Claim 4)
In addition to the effects of the invention according to any one of claims 1 to 3, the following effects are provided.
<Effect> EGR gas is rapidly diffused into the intake air.
As illustrated in FIGS. 1 (A) and 1 (B), the EGR gas outlet (7) is formed in a long slit shape along the pipe line direction of the EGR gas outlet pipe (6), so that the EGR gas outlet (7) The outflowed EGR gas (2) and the high-speed intake air (3) contact in a wide range along the long EGR gas outlet (9), and the diffusion of the EGR gas (2) into the intake air (3) is promptly performed. Done.

(請求項5に係る発明)
請求項1から請求項4のいずれかに係る発明の効果に加え、次の効果を奏する。
《効果》 EGRガスの吸気中への拡散が速やかに行われる。
図1(C)に例示するように、EGRガス出口管(6)を方形管で構成し、EGRガス出口管(6)の周壁のうち、吸気(3)が吹き当たる吸気上流側部分(6a)とは反対側の吸気下流側部分(6c)を、吸気入口管(5)の管路方向と直交する向きとしたため、EGRガス出口管(6)の吸気下流側の領域に広い乱流発生領域が形成され、この乱流発生領域で発生した乱流(9)により、EGRガス(2)を含む吸気(3)が攪拌され、EGRガス(2)の吸気(3)中への拡散が速やかに行われる。
(Invention according to claim 5)
In addition to the effects of the invention according to any one of claims 1 to 4, the following effects are provided.
<Effect> EGR gas is rapidly diffused into the intake air.
As illustrated in FIG. 1C, the EGR gas outlet pipe (6) is a square pipe, and the intake upstream side portion (6a) to which the intake (3) blows is formed in the peripheral wall of the EGR gas outlet pipe (6). ) On the opposite side of the intake downstream side (6c) to the direction perpendicular to the pipe direction of the intake inlet pipe (5), so that a wide turbulent flow is generated in the downstream area of the EGR gas outlet pipe (6) A region is formed, and the turbulent flow (9) generated in this turbulent flow generation region stirs the intake air (3) containing the EGR gas (2), and the diffusion of the EGR gas (2) into the intake air (3) Promptly.

本発明の実施の形態を図面に基づいて説明する。図1から図3は本発明の実施形態に係る多気筒エンジンを説明する図で、この実施形態では、コモンレール噴射式で過給機付きの縦型水冷直列4気筒ディーゼルエンジンについて説明する。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 to FIG. 3 are diagrams for explaining a multi-cylinder engine according to an embodiment of the present invention. In this embodiment, a vertical water-cooled in-line four-cylinder diesel engine with a common rail injection type and a supercharger will be described.

本発明の実施形態の概要は、次の通りである。
図3に示すように、シリンダブロック(10)の上部にシリンダヘッド(11)を組み付け、シリンダヘッド(11)の上部にヘッドカバー(12)を組み付けている。シリンダブロック(10)の下部にはオイルパン(13)を組み付けている。シリンダブロック(10)の前部には巻き掛け伝動装置(14)とラジエータファン(15)を配置し、シリンダブロック(10)の後部にはタイミングギヤトレインケース(16)とフライホイルケース(17)を配置している。図2に示すように、シリンダヘッド(11)の幅方向を左右方向として、シリンダヘッド(11)の横一側に吸気分配手段(1)を組み付け、シリンダヘッド(11)の横他側に排気合流手段(18)を組み付けている。吸気分配手段(1)とは、一般には吸気マニホルドと呼ばれるものであるが、この実施形態のものは、箱型構造で、枝管を備えていないため、吸気分配手段という表現にした。また、排気合流手段(18)とは、一般には排気マニホルドと呼ばれるものであるが、吸気マニホルドを吸気分配手段(1)という表現にしたため、これに合わせて排気合流手段という表現にした。
The outline of the embodiment of the present invention is as follows.
As shown in FIG. 3, the cylinder head (11) is assembled to the upper part of the cylinder block (10), and the head cover (12) is assembled to the upper part of the cylinder head (11). An oil pan (13) is assembled to the lower part of the cylinder block (10). A winding transmission (14) and a radiator fan (15) are arranged at the front of the cylinder block (10), and a timing gear train case (16) and a flywheel case (17) are arranged at the rear of the cylinder block (10). Is arranged. As shown in FIG. 2, with the width direction of the cylinder head (11) as the left-right direction, the intake distribution means (1) is assembled on one side of the cylinder head (11), and the exhaust is placed on the other side of the cylinder head (11). The merging means (18) is assembled. The intake air distribution means (1) is generally referred to as an intake manifold, but this embodiment is expressed as an intake air distribution means because it has a box structure and no branch pipes. Further, the exhaust merging means (18) is generally called an exhaust manifold. However, since the intake manifold is expressed as the intake distribution means (1), the exhaust merging means is expressed as the exhaust merging means.

燃料供給装置の構成は、次の通りである。
図3に示すように、吸気分配手段(1)側でタイミングギヤトレインケース(16)の前部に燃料サプライポンプ(19)を組み付け、吸気分配手段(1)の下方にコモンレール(20)を配置し、図1(A)に示すように、シリンダヘッド(11)に各シリンダ(4)の中心部に向かうインジェクタ(21)を配置している。燃料は、燃料サプライポンプ(19)からコモンレール(20)に供給され、コモンレール(20)内で蓄圧され、インジェクタ(21)から所定のタイミングでシリンダ(4)内に噴射される。
The configuration of the fuel supply device is as follows.
As shown in FIG. 3, the fuel supply pump (19) is assembled to the front portion of the timing gear train case (16) on the intake distribution means (1) side, and the common rail (20) is disposed below the intake distribution means (1). As shown in FIG. 1 (A), an injector (21) directed to the center of each cylinder (4) is arranged in the cylinder head (11). The fuel is supplied from the fuel supply pump (19) to the common rail (20), accumulated in the common rail (20), and injected from the injector (21) into the cylinder (4) at a predetermined timing.

吸気装置の構成は、次の通りである。
図2に示すように、排気合流手段(18)の排気出口に過給機(22)を設け、この過給機(22)から吸気を吸気パイプ(29)を介して吸気分配手段(1)の吸気入口管(5)に供給する。吸気入口管(5)は、吸気分配手段(1)の長手方向と直交する向きに形成している。図1(A)に示すように、シリンダヘッド(11)には各シリンダ(4)毎にヘリカル吸気ポート(8a)とストレート吸気ポート(8b)とを形成し、吸気分配手段(1)で各シリンダ(4)の吸気ポート(8)に吸気を分配する。
The configuration of the intake device is as follows.
As shown in FIG. 2, a supercharger (22) is provided at the exhaust outlet of the exhaust merging means (18), and intake air is supplied from the supercharger (22) via an intake pipe (29). To the intake pipe (5). The intake inlet pipe (5) is formed in a direction orthogonal to the longitudinal direction of the intake distribution means (1). As shown in FIG. 1 (A), a helical intake port (8a) and a straight intake port (8b) are formed for each cylinder (4) in the cylinder head (11). The intake air is distributed to the intake port (8) of the cylinder (4).

EGRガス供給装置の構成は、次の通りである。
図2に示すように、排気合流手段(18)からEGRガス導出管(23)を導出し、シリンダヘッド(11)の後方にEGRガスクーラ(24)を配置し、EGRガス導出管(23)の導出端にEGRガスクーラ(24)の一端部を接続している。吸気分配手段(1)の後部上面にEGR弁ケース(25)を取り付け、EGR弁ケース(25)の後部に逆止弁ケース(26)を組み付け、逆止弁ケース(26)とEGRガスクーラ(24)との間に連通パイプ(27)を組み付けている。吸気分配手段(1)の上部には、EGRガス通路(28)を形成している。
The configuration of the EGR gas supply device is as follows.
As shown in FIG. 2, the EGR gas outlet pipe (23) is led out from the exhaust merging means (18), the EGR gas cooler (24) is arranged behind the cylinder head (11), and the EGR gas outlet pipe (23) One end of the EGR gas cooler (24) is connected to the outlet end. An EGR valve case (25) is attached to the upper surface of the rear part of the intake air distribution means (1), a check valve case (26) is assembled to the rear part of the EGR valve case (25), and the check valve case (26) and the EGR gas cooler (24 ) Is connected to the communication pipe (27). An EGR gas passage (28) is formed in the upper part of the intake air distribution means (1).

EGRガスは、排気合流手段(18)からEGRガス導出管(23)とEGRガスクーラ(24)と連通パイプ(27)と逆止弁ケース(26)とEGR弁ケース(25)とEGRガス通路(28)とを介して吸気分配手段(1)の吸気入口管(5)に供給される。EGRガスクーラ(24)は、EGRガスを冷却し、吸気の充填効率の低下を抑制する。コントローラ(図外)で、EGR弁ケース(25)内のEGR弁を、エンジン負荷やエンジン回転数等のエンジン運転状態に応じて開閉し、或いは開度を調節し、EGRガス還元率を調節する。逆止弁ケース(26)内の逆止弁は、過給圧が排気圧を越えた場合に、EGRガスがEGRガスクーラ(24)側に逆流するのを防止する。このようにして、吸気分配手段(1)にEGRガス(2)を供給し、吸気(3)とEGRガス(2)とを吸気分配手段(1)を介して複数のシリンダ(4)(4)に分配する。   The EGR gas is supplied from the exhaust gas merging means (18) to the EGR gas outlet pipe (23), the EGR gas cooler (24), the communication pipe (27), the check valve case (26), the EGR valve case (25), and the EGR gas passage ( 28) to the intake inlet pipe (5) of the intake distribution means (1). The EGR gas cooler (24) cools the EGR gas and suppresses a decrease in intake charging efficiency. A controller (not shown) adjusts the EGR gas reduction rate by opening / closing the EGR valve in the EGR valve case (25) according to the engine operating state such as engine load and engine speed, or adjusting the opening. . The check valve in the check valve case (26) prevents the EGR gas from flowing back to the EGR gas cooler (24) when the supercharging pressure exceeds the exhaust pressure. In this way, the EGR gas (2) is supplied to the intake air distribution means (1), and the intake air (3) and the EGR gas (2) are connected to the plurality of cylinders (4) (4) via the intake air distribution means (1). ).

EGRガス供給装置の工夫は、次の通りである。
図1(A)〜(C)に示すように、吸気分配手段(1)の吸気入口管(5)内にEGRガス出口管(6)を横断状に架設し、このEGRガス出口管(6)の周壁にEGRガス出口(7)を設けている。すなわち、EGRガス出口管(6)の周壁のうち、吸気(3)が吹き当たる吸気上流側部分(6a)に、EGRガス出口(7)を設けている。また、EGRガス出口管(6)の周壁のうち、吸気(3)が脇を通過する両側部分(6b)(6b)にも、EGRガス出口(7)を設けている。これらEGRガス出口(7)を、EGRガス出口管(6)の管路方向に沿って長いスリット状に形成している。また、EGRガス出口管(6)を方形管で構成し、EGRガス出口管(6)の周壁のうち、吸気(3)が吹き当たる吸気上流側部分(6a)とは反対側の吸気下流側部分(6c)を、吸気入口管(5)の管路方向と直交する向きとしている。
The device of the EGR gas supply device is as follows.
As shown in FIGS. 1 (A) to (C), an EGR gas outlet pipe (6) is installed in a transverse manner in the intake inlet pipe (5) of the intake distribution means (1), and this EGR gas outlet pipe (6 ) Is provided with an EGR gas outlet (7). That is, the EGR gas outlet (7) is provided in the intake upstream portion (6a) where the intake air (3) blows in the peripheral wall of the EGR gas outlet pipe (6). Moreover, the EGR gas outlet (7) is provided also in the both-sides part (6b) (6b) where the intake (3) passes aside among the surrounding walls of the EGR gas outlet pipe (6). These EGR gas outlets (7) are formed in a long slit shape along the pipe line direction of the EGR gas outlet pipe (6). The EGR gas outlet pipe (6) is a square pipe, and the intake downstream side of the peripheral wall of the EGR gas outlet pipe (6) is opposite to the intake upstream part (6a) where the intake (3) blows. The portion (6c) is oriented in a direction perpendicular to the pipe direction of the intake inlet pipe (5).

本発明の実施形態に係るエンジンのシリンダヘッドと吸気分配手段を説明する図で、図1(A)の横断平面図、図1(B)は図1(A)のB−B線断面図、図1(C)は図1(B)のC−C線断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the cylinder head and intake air distribution means of the engine which concern on embodiment of this invention, and is a cross-sectional top view of FIG. 1 (A), FIG.1 (B) is the BB sectional drawing of FIG. FIG. 1C is a cross-sectional view taken along line CC of FIG. 本発明の実施形態に係るエンジンの平面図である。1 is a plan view of an engine according to an embodiment of the present invention. 図2のエンジンの側面図である。It is a side view of the engine of FIG.

符号の説明Explanation of symbols

(1) 吸気分配手段
(2) EGRガス
(3) 吸気
(4) シリンダ
(5) 吸気入口管
(6) EGRガス出口管
(6a) 吸気上流側部分
(6b) 両側部分
(6c) 吸気下流側部分
(7) EGRガス出口

(1) Intake distribution means
(2) EGR gas
(3) Inhalation
(4) Cylinder
(5) Intake inlet pipe
(6) EGR gas outlet pipe
(6a) Intake upstream part
(6b) Both sides
(6c) Intake downstream part
(7) EGR gas outlet

Claims (5)

吸気分配手段(1)にEGRガス(2)を供給し、吸気(3)とEGRガス(2)とを吸気分配手段(1)を介して複数のシリンダ(4)(4)に分配するようにした、多気筒エンジンにおいて、
吸気分配手段(1)の吸気入口管(5)内にEGRガス出口管(6)を横断状に架設し、このEGRガス出口管(6)の周壁にEGRガス出口(7)を設けた、ことを特徴とする多気筒エンジン。
The EGR gas (2) is supplied to the intake air distribution means (1), and the intake air (3) and the EGR gas (2) are distributed to the plurality of cylinders (4) and (4) through the intake air distribution means (1). In a multi-cylinder engine,
An EGR gas outlet pipe (6) is installed in a transverse manner in the intake inlet pipe (5) of the intake distribution means (1), and an EGR gas outlet (7) is provided on the peripheral wall of the EGR gas outlet pipe (6). This is a multi-cylinder engine.
請求項1に記載した多気筒エンジンにおいて、
EGRガス出口管(6)の周壁のうち、吸気(3)が吹き当たる吸気上流側部分(6a)に、EGRガス出口(7)を設けた、ことを特徴とする多気筒エンジン。
The multi-cylinder engine according to claim 1,
A multi-cylinder engine, wherein an EGR gas outlet (7) is provided in an intake upstream side portion (6a) where the intake air (3) blows in a peripheral wall of the EGR gas outlet pipe (6).
請求項1または請求項2に記載した多気筒エンジンにおいて、
EGRガス出口管(6)の周壁のうち、吸気(3)が脇を通過する両側部分(6b)(6b)に、EGRガス出口(7)を設けた、ことを特徴とする多気筒エンジン。
The multi-cylinder engine according to claim 1 or 2,
A multi-cylinder engine characterized in that an EGR gas outlet (7) is provided on both side portions (6b) and (6b) through which the intake air (3) passes by a side of the peripheral wall of the EGR gas outlet pipe (6).
請求項1から請求項3のいずれかに記載した多気筒エンジンにおいて、
EGRガス出口(7)を、EGRガス出口管(6)の管路方向に沿って長いスリット状に形成した、ことを特長とする多気筒エンジン。
The multi-cylinder engine according to any one of claims 1 to 3,
A multi-cylinder engine characterized in that the EGR gas outlet (7) is formed in a long slit shape along the pipe line direction of the EGR gas outlet pipe (6).
請求項1から請求項4のいずれかに記載した多気筒エンジンにおいて、
EGRガス出口管(6)を方形管で構成し、EGRガス出口管(6)の周壁のうち、吸気(3)が吹き当たる吸気上流側部分(6a)とは反対側の吸気下流側部分(6c)を、吸気入口管(5)の管路方向と直交する向きとした、ことを特徴とする多気筒エンジン。

The multi-cylinder engine according to any one of claims 1 to 4,
The EGR gas outlet pipe (6) is a square pipe, and the intake downstream side part (6a) opposite to the intake upstream part (6a) to which the intake (3) blows out of the peripheral wall of the EGR gas outlet pipe (6) ( A multi-cylinder engine characterized in that 6c) is oriented in a direction perpendicular to the pipe line direction of the intake inlet pipe (5).

JP2005017789A 2005-01-26 2005-01-26 Multicylinder engine Pending JP2006207411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005017789A JP2006207411A (en) 2005-01-26 2005-01-26 Multicylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005017789A JP2006207411A (en) 2005-01-26 2005-01-26 Multicylinder engine

Publications (1)

Publication Number Publication Date
JP2006207411A true JP2006207411A (en) 2006-08-10

Family

ID=36964552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005017789A Pending JP2006207411A (en) 2005-01-26 2005-01-26 Multicylinder engine

Country Status (1)

Country Link
JP (1) JP2006207411A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064073A (en) * 2009-09-15 2011-03-31 Kubota Corp Multi-cylinder diesel engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064073A (en) * 2009-09-15 2011-03-31 Kubota Corp Multi-cylinder diesel engine

Similar Documents

Publication Publication Date Title
JP4755034B2 (en) Spark ignition multi-cylinder engine
US10480378B2 (en) Engine exhaust structure
US8061138B2 (en) System for controlling contaminant deposition in exhaust gas recirculation coolers
JP2009517581A (en) Exhaust gas recirculation mixer for internal combustion engine with turbocharge
JP2011080396A (en) Egr device
JP4552663B2 (en) Engine intake system
JP2010144669A (en) Exhaust gas recirculation structure
JP2021161979A (en) Egr system of engine
JP2006207411A (en) Multicylinder engine
JP2006083814A (en) Multiple cylinder engine
JP2010223152A (en) Multicylinder engine
JP3937612B2 (en) Multi-cylinder engine EGR device
JP6447104B2 (en) Intake manifold
JP2007092706A (en) Engine
JP2008045491A (en) Engine
JP5800606B2 (en) EGR valve cooling structure
JP5310437B2 (en) EGR diffusion unit
JP2007085215A (en) Multicylinder engine
JP4520318B2 (en) Multi-cylinder engine intake system
JP2020002796A (en) Intake system for multiple cylinder engine
JP2014181647A (en) Internal combustion engine
JP2008150969A (en) Internal combustion engine
JP7371567B2 (en) engine intake system
JP5477484B2 (en) EGR diffusion unit
JP4431062B2 (en) Multi-cylinder diesel engine