JP2006200414A - Exhaust temperature control device for internal combustion engine - Google Patents

Exhaust temperature control device for internal combustion engine Download PDF

Info

Publication number
JP2006200414A
JP2006200414A JP2005011912A JP2005011912A JP2006200414A JP 2006200414 A JP2006200414 A JP 2006200414A JP 2005011912 A JP2005011912 A JP 2005011912A JP 2005011912 A JP2005011912 A JP 2005011912A JP 2006200414 A JP2006200414 A JP 2006200414A
Authority
JP
Japan
Prior art keywords
exhaust
cylinder
temperature
valve
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005011912A
Other languages
Japanese (ja)
Inventor
So Miura
創 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005011912A priority Critical patent/JP2006200414A/en
Publication of JP2006200414A publication Critical patent/JP2006200414A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To sufficiently increase an exhaust temperature by enhancing re-combustion effect in an exhaust passage in order to implement early activation of an exhaust emission purifying catalyst immediately after the start. <P>SOLUTION: When increasing the exhaust temperature, fuel cut or ignition cut is executed to a part of cylinders. At the same time, lift characteristic of an exhaust valve of the cylinder is changed to open the exhaust valve with in-cylinder pressure increased by the rise of a piston. High temperature/high pressure air or raw gas adiabatically compressed is exhausted to an exhaust passage from a combustion chamber of the cylinder. The opening timing of the exhaust valve can be in the latter stage of an exhaust stroke or of a compression stroke of the piston. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、始動直後の排気浄化触媒の早期活性化などに用いる内燃機関の排気温度制御装置に関する。   The present invention relates to an exhaust gas temperature control device for an internal combustion engine used for early activation of an exhaust purification catalyst immediately after starting.

特許文献1には、排気浄化触媒の早期活性化を図る際に、一部の気筒について燃料カットを行うことで、当該気筒からの排気(空気)を二次空気として排気通路に供給し、運転気筒の排気中の未燃成分を再燃焼させて、排気温度を上昇させることが開示されている。
特開平11−311119号公報
In Patent Document 1, when early activation of an exhaust purification catalyst is attempted, fuel is cut for some cylinders, so that exhaust (air) from the cylinders is supplied as secondary air to an exhaust passage and operated. It is disclosed that unburned components in the exhaust of the cylinder are reburned to raise the exhaust temperature.
JP-A-11-3111119

しかしながら、特許文献1に記載の技術では、休止気筒の排気弁の開時期はそのままであるので、圧縮行程にて1回圧縮し、膨張行程にて膨張させた空気を、排気行程にて排出することになるため、排出する空気は温度が低く、HC酸化の観点でいうと好ましいものではなく、排気通路での再燃焼効果を最大限には引き出せていなかった。
本発明は、このような実状に鑑み、休止気筒から空気又は生ガス(未燃焼混合気)を高温状態で排出できるようにして、排気通路での再燃焼効果を高め、排気温度をより十分に上昇させることのできる内燃機関の排気温度制御装置を提供することを目的とする。
However, in the technique described in Patent Document 1, since the opening timing of the exhaust valve of the idle cylinder remains the same, the air compressed once in the compression stroke and expanded in the expansion stroke is discharged in the exhaust stroke. Therefore, the discharged air has a low temperature and is not preferable from the viewpoint of HC oxidation, and the reburning effect in the exhaust passage cannot be maximized.
In view of such a situation, the present invention makes it possible to exhaust air or raw gas (unburned gas mixture) from a deactivated cylinder at a high temperature, thereby enhancing the recombustion effect in the exhaust passage, and making the exhaust temperature more sufficient. An object of the present invention is to provide an exhaust temperature control device for an internal combustion engine that can be raised.

このため、本発明では、排気温度を上昇させるときに、一部の気筒について燃料カット又は点火カットを行い、当該気筒の排気弁をピストンの上昇により筒内圧力が高くなった状態で開き、当該気筒の燃焼室から空気又は生ガスを排気通路に排出させる構成とする。   For this reason, in the present invention, when the exhaust temperature is raised, fuel cut or ignition cut is performed for some cylinders, and the exhaust valves of the cylinders are opened in a state where the in-cylinder pressure is increased by raising the piston, Air or raw gas is discharged from the combustion chamber of the cylinder to the exhaust passage.

本発明によれば、休止気筒の排気弁を筒内圧力が高くなったときに開弁するため、断熱圧縮された高温・高圧の空気又は生ガスを排気通路に供給でき、排気通路での再燃焼効果を向上させることができる。
また、点火カットにより排気通路に生ガスを供給する場合は、燃料が入っているため、更に高い再燃焼効果を得ることができる。
According to the present invention, since the exhaust valve of the idle cylinder is opened when the in-cylinder pressure becomes high, the adiabatic-compressed high-temperature and high-pressure air or raw gas can be supplied to the exhaust passage, The combustion effect can be improved.
Further, when the raw gas is supplied to the exhaust passage by the ignition cut, since the fuel is contained, a higher reburning effect can be obtained.

以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態を示すエンジンのシステム図である。
エンジン1の吸気通路2には、吸気マニホールド3の入口側に位置させて、吸入空気量を制御する電制スロットル弁4が設置されている。電制スロットル弁4は、エンジンコントロールユニット(以下ECUという)20からの信号により作動するステップモータ等により開度制御される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is an engine system diagram showing an embodiment of the present invention.
In the intake passage 2 of the engine 1, an electrically controlled throttle valve 4 that is positioned on the inlet side of the intake manifold 3 and controls the amount of intake air is installed. The opening degree of the electric throttle valve 4 is controlled by a step motor or the like that is operated by a signal from an engine control unit (hereinafter referred to as ECU) 20.

吸気マニホールド3の出口側のブランチ部には、各気筒の吸気ポート5に燃料を噴射する燃料噴射弁6が取付けられている。燃料噴射弁6は、ECU20からエンジン回転に同期して出力される噴射パルス信号により、そのパルス幅によって定められる時間、ソレノイドに通電されて開弁し、所定圧力に調圧された燃料を噴射する。
電制スロットル弁4の制御を受けた空気と、燃料噴射弁6から噴射された燃料は、吸気弁7が開いたときに、エンジン1のピストン8上方の燃焼室9に吸入される。
A fuel injection valve 6 for injecting fuel into the intake port 5 of each cylinder is attached to the branch portion on the outlet side of the intake manifold 3. The fuel injection valve 6 is opened by energizing the solenoid for a time determined by the pulse width based on the injection pulse signal output from the ECU 20 in synchronization with the engine rotation, and injects the fuel adjusted to a predetermined pressure. .
The air controlled by the electric throttle valve 4 and the fuel injected from the fuel injection valve 6 are sucked into the combustion chamber 9 above the piston 8 of the engine 1 when the intake valve 7 is opened.

燃焼室9内に吸入された空気と燃料は、混合気を形成し、ECU20により制御される点火時期にて、点火プラグ10により点火されて燃焼する。燃焼後の排気は、排気弁11を介して、排気通路12へ排出される。排気通路12の集合部には排気浄化触媒13が設けられている。
吸気弁7及び排気弁11のうち、少なくとも排気弁11には、気筒毎に、そのリフト特性(開時期など)を変更可能な可変動弁装置14が設けられている。
The air and fuel sucked into the combustion chamber 9 form an air-fuel mixture, and are ignited and burned by the spark plug 10 at the ignition timing controlled by the ECU 20. The exhaust after combustion is discharged to the exhaust passage 12 via the exhaust valve 11. An exhaust purification catalyst 13 is provided at a collecting portion of the exhaust passage 12.
Of the intake valve 7 and the exhaust valve 11, at least the exhaust valve 11 is provided with a variable valve device 14 that can change its lift characteristics (open timing, etc.) for each cylinder.

可変動弁装置14としては、カムプロフィルの異なる2つのカムを備え、これらを選択的に切換えることができるカム切換装置(VVL)を用いる。
又は、カム軸とカムとの間で両者を機械的に連携するリンクの姿勢を変化させることにより、バルブ作動角(開期間)及びリフト量を連続的に変化させることができるバルブ作動角及びリフト量可変装置(VEL)と、クランク軸とカム軸との回転位相を変化させることにより、バルブ作動角の中心角位相を連続的に変化させることができるバルブタイミング可変装置(VTC)とを用いる。
As the variable valve operating device 14, a cam switching device (VVL) that includes two cams having different cam profiles and can selectively switch between them is used.
Alternatively, the valve operating angle and lift that can continuously change the valve operating angle (open period) and the lift amount by changing the posture of the link that mechanically links the cam shaft and the cam. A variable amount device (VEL) and a variable valve timing device (VTC) capable of continuously changing the central angle phase of the valve operating angle by changing the rotational phase of the crankshaft and the camshaft are used.

排気通路12は、例えば図2に示すように、4気筒エンジンで、点火順序を#1→#3→#4→#2とすると、点火順序の連続しない気筒同士をペアにして、#1、#4気筒の排気通路(枝管)を上流側で(短い距離で)合流させ(G1)、同様に、#2、#3気筒の排気通路(枝管)を上流側で(短い距離で)合流させ(G2)、この後、全体を合流させてある(G3)。   For example, as shown in FIG. 2, when the ignition order is # 1 → # 3 → # 4 → # 2 in the four-cylinder engine, the exhaust passage 12 is paired with cylinders whose ignition order is not continuous. # 4 Cylinder exhaust passages (branch pipes) are merged upstream (at a short distance) (G1). Similarly, exhaust passages (branch pipes) of # 2 and # 3 cylinders are upstream (at a short distance). After joining (G2), the whole is joined (G3).

ECU20には、アクセルペダルセンサ21により検出されるアクセル開度APO、クランク角センサ22により検出されるエンジン回転数Ne、エアフローメータ23により検出される吸入空気量Qa、水温センサ24により検出されるエンジン冷却水温Tw、空燃比センサ25により検出される排気空燃比、触媒温度センサ26により検出される触媒温度Tcなどが入力されている。この他、図示しないが、イグニッションスイッチ及びスタートスイッチを有するエンジンキースイッチからも信号が入力されている。   The ECU 20 includes an accelerator opening APO detected by an accelerator pedal sensor 21, an engine speed Ne detected by a crank angle sensor 22, an intake air amount Qa detected by an air flow meter 23, and an engine detected by a water temperature sensor 24. The coolant temperature Tw, the exhaust air-fuel ratio detected by the air-fuel ratio sensor 25, the catalyst temperature Tc detected by the catalyst temperature sensor 26, and the like are input. In addition, although not shown, a signal is also input from an engine key switch having an ignition switch and a start switch.

ECU20は、これらの入力信号より検出されるエンジン運転条件に基づいて、電制スロットル弁4の開度、燃料噴射弁6の燃料噴射時期及び燃料噴射量、点火プラグ10の点火時期などを制御する。また、可変動弁装置14の作動を制御する。
次に、始動直後の排気浄化触媒13の早期活性化(暖機)のための制御について、図3のフローチャートにより説明する。
The ECU 20 controls the opening degree of the electric throttle valve 4, the fuel injection timing and fuel injection amount of the fuel injection valve 6, the ignition timing of the spark plug 10, and the like based on the engine operating conditions detected from these input signals. . Further, the operation of the variable valve operating device 14 is controlled.
Next, control for early activation (warming-up) of the exhaust purification catalyst 13 immediately after startup will be described with reference to the flowchart of FIG.

S1では、始動直後などで触媒昇温要求があるか否かを判定する。具体的には、触媒温度センサ26により触媒温度Tcを検出し、所定の活性温度より低いか否かを判定する。運転条件から触媒温度を予測して、活性・非活性を判定してもよい。始動直後などで触媒昇温要求がある場合、すなわち触媒13が非活性の場合は、S2、S3の処理へ進む。
S2では、部分気筒燃焼モードで運転する。具体的には、例えば、#1、#3気筒を運転気筒、#2、#4気筒を休止気筒とし、休止気筒である#2、#4気筒について、燃料カット(燃料噴射弁6による燃料噴射の停止)、又は、点火カット(点火プラグ10による点火の停止)を行う。尚、燃料カットを行う場合(空気を排出させる場合)は、点火についてはカットしても或いは行ってもいずれでもよいが、点火カットを行う場合(生ガスを排出させる場合)は、燃料を供給する。
In S1, it is determined whether there is a catalyst temperature increase request immediately after startup or the like. Specifically, the catalyst temperature sensor 26 detects the catalyst temperature Tc and determines whether it is lower than a predetermined activation temperature. The activity / inactivity may be determined by predicting the catalyst temperature from the operating conditions. If there is a catalyst temperature increase request immediately after startup, that is, if the catalyst 13 is inactive, the process proceeds to S2 and S3.
In S2, the engine is operated in the partial cylinder combustion mode. Specifically, for example, cylinders # 1 and # 3 are operating cylinders, cylinders # 2 and # 4 are deactivated cylinders, and fuel cut (fuel injection by fuel injection valve 6) is performed for cylinders # 2 and # 4 which are deactivated cylinders. Stop) or ignition cut (stop ignition by the spark plug 10). When performing fuel cut (when exhausting air), the ignition may be cut or performed, but when performing ignition cut (when exhausting raw gas), fuel is supplied. To do.

S3では、可変動弁装置14により、休止気筒である#2、#4気筒の排気弁11のリフト特性を図4の特性A(通常特性)から特性Bに変更する。すなわち、排気弁11の開時期を遅らせ、ピストン8の排気行程の後期(後半)に開弁するように設定する。この例では、排気行程の後期に排気TDC付近までの所定期間の間、開弁させている。
これにより、休止気筒である#2、#4気筒の排気弁11がピストン8の上昇により筒内圧力が高くなった状態で開き、燃料カットの場合は、当該気筒の燃焼室9から断熱圧縮された高温・高圧の空気を排気通路12に排出させることができる。排出された高温・高圧の空気は、運転気筒である#1、#3気筒の排気(既燃ガス)と混合し、排気中の未燃成分(HC)を効率良く再燃焼させて、排気温度を十分に上昇させ、触媒13の早期活性化に寄与する。
In S3, the lift characteristics of the exhaust valves 11 of the # 2 and # 4 cylinders, which are idle cylinders, are changed from the characteristic A (normal characteristics) in FIG. In other words, the opening timing of the exhaust valve 11 is delayed, and the exhaust valve 11 is set to open in the latter half (second half) of the exhaust stroke of the piston 8. In this example, the valve is opened for a predetermined period up to the vicinity of the exhaust TDC in the later stage of the exhaust stroke.
As a result, the exhaust valves 11 of the # 2 and # 4 cylinders, which are idle cylinders, open in a state where the in-cylinder pressure is increased due to the rise of the piston 8, and in the case of a fuel cut, adiabatically compressed from the combustion chamber 9 of the cylinder The high-temperature and high-pressure air can be discharged to the exhaust passage 12. The discharged high-temperature and high-pressure air is mixed with the exhaust (burned gas) of the # 1 and # 3 cylinders, which are the operating cylinders, and the unburned components (HC) in the exhaust are efficiently reburned, and the exhaust temperature Is sufficiently increased, contributing to the early activation of the catalyst 13.

点火カットの場合は、当該気筒の燃焼室9から断熱圧縮された高温・高圧の生ガス(未燃焼混合気)を排気通路12に排出させることができる。排出された高温・高圧の生ガスは、運転気筒である#1、#3気筒の排気と混合しつつ燃焼し、燃焼量が多くなることから、排気温度をより十分に上昇させ、触媒13の早期活性化に大きく寄与する。
尚、部分気筒運転を行う場合、休止気筒の排気弁開時期の変更により圧縮仕事が増大する分を含め、運転気筒のトルクアップを図る必要があるので、スロットル開度増大による空気量アップを前提に、運転気筒の燃料噴射量を設定する。
In the case of ignition cut, high-temperature and high-pressure raw gas (unburned gas mixture) adiabatically compressed from the combustion chamber 9 of the cylinder can be discharged to the exhaust passage 12. The exhausted high-temperature and high-pressure raw gas is combusted while being mixed with the exhaust of the operating cylinders # 1 and # 3, and the amount of combustion increases, so that the exhaust temperature is raised sufficiently, and the catalyst 13 Significantly contributes to early activation.
When performing partial cylinder operation, it is necessary to increase the torque of the operating cylinder, including the amount of compression work that increases due to the change in the exhaust valve opening timing of the idle cylinder. Next, the fuel injection amount of the operating cylinder is set.

また、燃料カットの場合は、排気通路にて、運転気筒からの未燃成分を、休止気筒からの空気で燃焼させるため、運転気筒の燃料噴射量は空燃比的には強リッチ設定にする。点火カットの場合は、排気通路にて、休止気筒からの生ガス中の燃料(及び運転気筒からの未燃成分)を、休止気筒からの生ガス中の空気で燃焼させるため、運転気筒の燃料噴射量は空燃比的にはストイキ又は弱リッチ設定にする。   Further, in the case of fuel cut, unburned components from the operating cylinder are burned with air from the idle cylinder in the exhaust passage, so that the fuel injection amount of the operating cylinder is set to a rich rich setting in terms of air-fuel ratio. In the case of the ignition cut, the fuel in the operating cylinder is burned with the air in the raw gas from the idle cylinder (and the unburned component from the operating cylinder) from the idle cylinder in the exhaust passage. The injection amount is set to stoichiometric or slightly rich in terms of air-fuel ratio.

S1での判定で、触媒昇温要求がなくなった場合、すなわち触媒13の暖機が終了した場合は、S4、S5の処理へ進む。
S4では、全気筒燃焼モードで運転する。すなわち、全ての気筒の燃料噴射量を通常設定とし、全ての気筒に点火を行う。
S5では、可変動弁装置14により、#2、#4気筒の排気弁11のリフト特性を図4の特性Bから特性A(通常特性)に戻す。尚、#1、#3気筒の排気弁11のリフト特性は常に特性A(通常特性)である。
If it is determined in S1 that there is no catalyst temperature increase request, that is, if the catalyst 13 has been warmed up, the process proceeds to S4 and S5.
In S4, the operation is performed in the all-cylinder combustion mode. That is, the fuel injection amounts of all the cylinders are set to the normal setting, and all the cylinders are ignited.
In S5, the variable valve device 14 returns the lift characteristics of the exhaust valves 11 of the # 2 and # 4 cylinders from the characteristic B of FIG. 4 to the characteristic A (normal characteristic). Note that the lift characteristics of the exhaust valves 11 of the # 1 and # 3 cylinders are always the characteristic A (normal characteristics).

次に本発明の他の実施形態について説明する。
上記の実施形態では、図4の排気弁リフト特性に従って、休止気筒の排気弁の開時期を遅らせて、排気行程の後期に設定することにより、当該気筒の燃焼室から高温・高圧の空気又は生ガスを排気通路へ排出しているが、他の実施形態として、図5の排気弁リフト特性を用いて、次のように制御してもよい。
Next, another embodiment of the present invention will be described.
In the above embodiment, according to the exhaust valve lift characteristics of FIG. 4, the opening timing of the exhaust valve of the idle cylinder is delayed and set to the latter stage of the exhaust stroke, so that high-temperature / high-pressure air or raw gas is generated from the combustion chamber of the cylinder. Although the gas is discharged to the exhaust passage, as another embodiment, the following control may be performed using the exhaust valve lift characteristic of FIG.

部分気筒燃焼モードで運転する際に、図3のフローのS2にて、可変動弁装置(特にVEL及びVTC)14により、休止気筒である#2、#4気筒の排気弁11のリフト特性を図5の特性A(通常設定)から特性Bに変更する。すなわち、排気弁11の開時期を大幅に早め、ピストン8の圧縮行程の後期に開弁するように設定する。この例では、圧縮行程から膨張行程にかけての圧縮TDC付近の所定期間の間、開弁させている。このようにしても、断熱圧縮された高温・高圧の空気又は生ガスを排気通路12に排出させることができ、同様の効果が得られる。   When operating in the partial cylinder combustion mode, the lift characteristics of the exhaust valves 11 of the # 2 and # 4 cylinders, which are idle cylinders, are controlled by the variable valve device (especially VEL and VTC) 14 in S2 of the flow of FIG. The characteristic A (normal setting) in FIG. In other words, the opening timing of the exhaust valve 11 is set to be greatly advanced so that it opens in the later stage of the compression stroke of the piston 8. In this example, the valve is opened for a predetermined period near the compression TDC from the compression stroke to the expansion stroke. Even in this case, adiabatic-compressed high-temperature and high-pressure air or raw gas can be discharged to the exhaust passage 12, and the same effect can be obtained.

尚、以上の実施形態では、#1、#3の気筒グループと、#2、#4の気筒グループとに分け、一方を運転気筒(燃焼気筒)、他方を休止気筒(空気又は生ガスの排出気筒)としている。
これは、図2に示したような排気系レイアウトを前提に、運転気筒と休止気筒とをペアにして、ペア気筒の排気通路を他の排気通路よりも上流側で(短い距離で)合流させることにより、高温度で燃焼させ、効果的に排温を上昇させるためである。
In the above embodiment, the cylinder groups are divided into # 1 and # 3 cylinder groups and # 2 and # 4 cylinder groups, one of which is an operating cylinder (combustion cylinder) and the other is an idle cylinder (exhaust of air or raw gas). Cylinder).
This is based on the exhaust system layout as shown in FIG. 2, and the operating cylinder and the non-operating cylinder are paired, and the exhaust passages of the paired cylinders are joined upstream (with a short distance) from the other exhaust passages. This is for burning at a high temperature and effectively raising the exhaust temperature.

しかし、このようにすると、点火順序が#1→#3→#4→#2の場合、燃焼−燃焼−休止−休止となって、安定性の面で不利と考えられるので、燃焼−休止−燃焼−休止となるように、#1、#4の気筒グループと、#2、#3の気筒グループとに分け、一方を運転気筒(燃焼気筒)、他方を休止気筒(空気又は生ガスの排出気筒)としてもよい。全気筒の排気通路が1点で合流する場合には、合流部に、排気と空気又は生ガスとが交互に流入するので、後燃えの点でも有利となる。   However, in this case, when the ignition order is # 1 → # 3 → # 4 → # 2, combustion-combustion-pause-pause is considered disadvantageous in terms of stability, so combustion-pause- The cylinder group of # 1, # 4 and the cylinder group of # 2, # 3 are divided so as to be combustion-pause, one is an operating cylinder (combustion cylinder), and the other is an idle cylinder (exhaust of air or raw gas) Cylinder). When the exhaust passages of all the cylinders merge at one point, exhaust and air or raw gas alternately flow into the junction, which is advantageous in terms of afterburning.

また、部分気筒運転の際に、全気筒の半数を休止させる必要はなく、少なくとも1気筒を休止させ、当該気筒から空気又は生ガスを排出させればよい。
また、排気通路への空気又は生ガスの排出による排気温度上昇のため制御は、限られた条件において実施するようにしてもよい。
すなわち、二次空気供給用の電動式エアポンプを備え、このポンプにより排気通路(特に排気ポート)に二次空気を供給できる場合は、クランキング中で、バッテリ消費の観点からエアポンプを作動させることができない期間、クランキング終了後に、バッテリ電圧が安定するまでの期間、エアポンプの作動開始後、吐出量が安定するまでの期間などに、限って、一部の気筒の燃料カット又は点火カットと、当該気筒の排気弁開時期の変更とを行って、当該気筒からの排出空気又は生ガスを利用するようにしてもよい。
In the partial cylinder operation, it is not necessary to deactivate half of all cylinders, and at least one cylinder may be deactivated and air or raw gas may be discharged from the cylinder.
Further, the control may be performed under limited conditions for increasing the exhaust temperature due to the discharge of air or raw gas into the exhaust passage.
That is, when an electric air pump for supplying secondary air is provided and secondary air can be supplied to the exhaust passage (especially the exhaust port) by this pump, the air pump can be operated from the viewpoint of battery consumption during cranking. In the period when the battery voltage is stabilized after the end of cranking, the period until the battery voltage is stabilized, the period until the discharge amount is stabilized after the start of the air pump operation, the fuel cut or ignition cut of some cylinders, The exhaust valve opening timing of the cylinder may be changed to use exhaust air or raw gas from the cylinder.

本発明の一実施形態を示すエンジンのシステム図Engine system diagram showing one embodiment of the present invention 排気系のレイアウト図Exhaust system layout 全気筒運転・部分気筒運転の切換制御のフローチャートFlow chart for switching control between full cylinder operation and partial cylinder operation 部分気筒運転時に用いる排気弁のリフト特性図Lift characteristics of exhaust valve used during partial cylinder operation 他の実施形態において部分気筒運転時に用いる排気弁のリフト特性図Lift characteristic chart of exhaust valve used during partial cylinder operation in another embodiment

符号の説明Explanation of symbols

1 エンジン
2 吸気通路
3 吸気マニホールド
4 電制スロットル弁
5 吸気ポート
6 燃料噴射弁
7 吸気弁
8 ピストン
9 燃焼室
10 点火プラグ
11 排気弁
12 排気通路
13 排気浄化触媒
14 可変動弁装置
20 ECU
21 アクセルペダルセンサ
22 クランク角センサ
23 エアフローメータ
24 水温センサ
25 空燃比センサ
26 触媒温度センサ
1 engine
2 Intake passage
3 Intake manifold
4 Electric throttle valve
5 Intake port
6 Fuel injection valve
7 Intake valve
8 Piston
9 Combustion chamber
10 Spark plug
11 Exhaust valve
12 Exhaust passage
13 Exhaust gas purification catalyst
14 Variable valve gear
20 ECU
21 Accelerator pedal sensor
22 Crank angle sensor
23 Air Flow Meter
24 Water temperature sensor
25 Air-fuel ratio sensor
26 Catalyst temperature sensor

Claims (4)

排気温度を上昇させるときに、一部の気筒について燃料カット又は点火カットを行い、当該気筒の排気弁をピストンの上昇により筒内圧力が高くなった状態で開き、当該気筒の燃焼室から空気又は生ガスを排気通路に排出させることを特徴とする内燃機関の排気温度制御装置。   When the exhaust temperature is raised, fuel cut or ignition cut is performed on some cylinders, and the exhaust valve of the cylinder is opened in a state where the cylinder pressure is increased by raising the piston, and air or air is discharged from the combustion chamber of the cylinder. An exhaust temperature control apparatus for an internal combustion engine, characterized in that raw gas is discharged into an exhaust passage. 燃料カット又は点火カットを行う気筒の排気弁の開時期をピストンの排気行程の後期に設定することを特徴とする請求項1記載の内燃機関の排気温度制御装置。   2. An exhaust temperature control apparatus for an internal combustion engine according to claim 1, wherein the opening timing of the exhaust valve of the cylinder for performing fuel cut or ignition cut is set in the latter stage of the exhaust stroke of the piston. 燃料カット又は点火カットを行う気筒の排気弁の開時期をピストンの圧縮行程の後期に設定することを特徴とする請求項1記載の内燃機関の排気温度制御装置。   2. An exhaust temperature control apparatus for an internal combustion engine according to claim 1, wherein the opening timing of the exhaust valve of the cylinder for performing fuel cut or ignition cut is set in the latter stage of the compression stroke of the piston. 排気通路に排気浄化触媒を備え、前記触媒の昇温要求があったときに、排気温度を上昇させることを特徴とする請求項1〜請求項3のいずれか1つに記載の内燃機関の排気温度制御装置。   The exhaust gas of the internal combustion engine according to any one of claims 1 to 3, wherein an exhaust gas purification catalyst is provided in the exhaust passage, and the exhaust gas temperature is raised when a temperature increase request is made for the catalyst. Temperature control device.
JP2005011912A 2005-01-19 2005-01-19 Exhaust temperature control device for internal combustion engine Pending JP2006200414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005011912A JP2006200414A (en) 2005-01-19 2005-01-19 Exhaust temperature control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005011912A JP2006200414A (en) 2005-01-19 2005-01-19 Exhaust temperature control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006200414A true JP2006200414A (en) 2006-08-03

Family

ID=36958636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005011912A Pending JP2006200414A (en) 2005-01-19 2005-01-19 Exhaust temperature control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006200414A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231923A (en) * 2006-03-03 2007-09-13 Toyota Motor Corp Internal combustion engine
JP2012219804A (en) * 2011-04-14 2012-11-12 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device of engine
JP2015017519A (en) * 2013-07-10 2015-01-29 ダイハツ工業株式会社 Control device for vehicle
JP2018091164A (en) * 2016-11-30 2018-06-14 株式会社Subaru Multi-cylinder engine cooling device
WO2018179836A1 (en) * 2017-03-30 2018-10-04 日立オートモティブシステムズ株式会社 Exhaust gas purification system
JP2019167901A (en) * 2018-03-23 2019-10-03 株式会社Subaru Engine system
WO2021024186A1 (en) * 2019-08-05 2021-02-11 Jacobs Vehicles Systems, Inc. Combined positive power and cylinder deactivation operation with secondary valve event

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4600316B2 (en) * 2006-03-03 2010-12-15 トヨタ自動車株式会社 Internal combustion engine
JP2007231923A (en) * 2006-03-03 2007-09-13 Toyota Motor Corp Internal combustion engine
JP2012219804A (en) * 2011-04-14 2012-11-12 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device of engine
JP2015017519A (en) * 2013-07-10 2015-01-29 ダイハツ工業株式会社 Control device for vehicle
JP2018091164A (en) * 2016-11-30 2018-06-14 株式会社Subaru Multi-cylinder engine cooling device
US11007480B2 (en) 2017-03-30 2021-05-18 Hitachi Automotive Systems, Ltd. Exhaust gas purification system
WO2018179836A1 (en) * 2017-03-30 2018-10-04 日立オートモティブシステムズ株式会社 Exhaust gas purification system
JP2018168752A (en) * 2017-03-30 2018-11-01 日立オートモティブシステムズ株式会社 Exhaust emission control system
JP7121511B2 (en) 2018-03-23 2022-08-18 株式会社Subaru engine system
JP2019167901A (en) * 2018-03-23 2019-10-03 株式会社Subaru Engine system
WO2021024186A1 (en) * 2019-08-05 2021-02-11 Jacobs Vehicles Systems, Inc. Combined positive power and cylinder deactivation operation with secondary valve event
CN114051556A (en) * 2019-08-05 2022-02-15 雅各布斯车辆系统公司 Combined positive power and cylinder deactivation operation with secondary valve event
KR20220030299A (en) * 2019-08-05 2022-03-10 자콥스 비히클 시스템즈, 인코포레이티드. Combined actuation of positive power and cylinder deactivation using a secondary valve event
US11434836B2 (en) 2019-08-05 2022-09-06 Jacobs Vehicle Systems, Inc. Combined positive power and cylinder deactivation operation with secondary valve event
JP2022541614A (en) * 2019-08-05 2022-09-26 ジェイコブス ビークル システムズ、インコーポレイテッド Combination of positive force and cylinder deactivation actions with secondary valve events
JP7368593B2 (en) 2019-08-05 2023-10-24 ジェイコブス ビークル システムズ、インコーポレイテッド Combination of positive force and cylinder deactivation actions with secondary valve events
KR102604965B1 (en) * 2019-08-05 2023-11-22 자콥스 비히클 시스템즈, 인코포레이티드. Combined operation of positive power and cylinder deactivation using secondary valve events
CN114051556B (en) * 2019-08-05 2024-03-08 雅各布斯车辆系统公司 Combined positive power and cylinder deactivation operation with secondary valve events

Similar Documents

Publication Publication Date Title
KR100394842B1 (en) Internal Combustion Engine and it&#39;s Controlling Method
JP4172340B2 (en) Control device for spark ignition engine
JP2006200414A (en) Exhaust temperature control device for internal combustion engine
JP2002161770A (en) Variable valve timing control device for internal combustion engine
JP2005105952A (en) Control device of spark ignition engine
JP2004124753A (en) Engine starter
JP2006177189A (en) Exhaust temperature controlling device for internal combustion engine
JP2001182601A (en) Early warm-up control device for exhaust emission control catalyst
JP2009243360A (en) Engine combustion control device
JP2006214272A (en) Starting time control device of internal combustion engine
JP2006250029A (en) Diesel engine and its combustion-controlling method
JP4096429B2 (en) Exhaust valve operation control device for internal combustion engine
JP2000054872A (en) Internal combustion engine
JP4102268B2 (en) Compression ignition internal combustion engine
JP2001073912A (en) Control device of direct injection spark ignition internal combustion engine
JP4123122B2 (en) Control device for spark ignition engine
JP4045867B2 (en) Operation mode detection device and control device for spark ignition engine
JP4186499B2 (en) Engine control device
JP3826850B2 (en) Control device for spark ignition engine
EP1705349B1 (en) Control apparatus of multi-cylinder engine
JP5942743B2 (en) Engine control device
JP2007262919A (en) Control device of internal combustion engine
JP2008057403A (en) Control device for internal combustion engine
JP4107180B2 (en) Control device for spark ignition engine
JP3951856B2 (en) Control device for spark ignition engine