JP2006199627A - Method for producing 9-fluorenone-2-carboxylic acid - Google Patents

Method for producing 9-fluorenone-2-carboxylic acid Download PDF

Info

Publication number
JP2006199627A
JP2006199627A JP2005013503A JP2005013503A JP2006199627A JP 2006199627 A JP2006199627 A JP 2006199627A JP 2005013503 A JP2005013503 A JP 2005013503A JP 2005013503 A JP2005013503 A JP 2005013503A JP 2006199627 A JP2006199627 A JP 2006199627A
Authority
JP
Japan
Prior art keywords
carboxylic acid
fluorenone
reaction
producing
acetylfluorene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005013503A
Other languages
Japanese (ja)
Inventor
Ryoichi Fujibayashi
良一 藤林
Fumio Konuma
文夫 小沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Chemical Inc filed Critical Air Water Chemical Inc
Priority to JP2005013503A priority Critical patent/JP2006199627A/en
Publication of JP2006199627A publication Critical patent/JP2006199627A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-purity 9-fluorenone-2-carboxylic acid useful as a raw material for medicines by using an inexpensive raw material which is readily industrially available. <P>SOLUTION: The method for producing the 9-fluorenone-2-carboxylic acid comprises oxidizing 2-acetylfluorene with molecular oxygen in an aliphatic carboxylic acid such as acetic acid in the presence of a catalyst containing a heavy metal component such as cobalt and manganese and a bromine component under conditions of 80-180°C reaction temperature and 0.5-5 MPa reaction pressure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、医薬原料として有用な9−フルオレノン−2−カルボン酸の製造方法に関する。   The present invention relates to a method for producing 9-fluorenone-2-carboxylic acid useful as a pharmaceutical raw material.

2−アセチルフルオレンを原料とする9−フルオレノン−2−カルボン酸の製造方法として、従来、重クロム酸ナトリウムによる酸化(非特許文献1)及び次亜塩素酸カリウムによる酸化(非特許文献2)が知られている。前者の方法では、反応の容積効率が悪く、また環境上問題のあるクロム廃液の処理を必要とするという問題点がある。後者の方法では比較的収率よく目的物を得ることができるという利点はあるが、酸化剤として使用される次亜塩素酸カリウムを工業的に入手することが困難であるという問題がある。   Conventionally, as a method for producing 9-fluorenone-2-carboxylic acid using 2-acetylfluorene as a raw material, oxidation with sodium dichromate (Non-patent Document 1) and oxidation with potassium hypochlorite (Non-patent Document 2) are available. Are known. In the former method, there is a problem in that the volumetric efficiency of the reaction is poor and it is necessary to treat a chromium waste solution that is environmentally problematic. Although the latter method has an advantage that the target product can be obtained with a relatively high yield, there is a problem that it is difficult to industrially obtain potassium hypochlorite used as an oxidizing agent.

Organic Synthesis, CODEN: ORSYAT, Coll. Vol. III, P23 (1955)Organic Synthesis, CODEN: ORSYAT, Coll. Vol. III, P23 (1955) Journal of American Chemical Society, Vol.70, P3958 (1948)Journal of American Chemical Society, Vol.70, P3958 (1948)

そこで本発明の目的は、工業的に入手が容易な原料を用いて、収率よく9−フルオレノン−2−カルボン酸を製造する方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing 9-fluorenone-2-carboxylic acid in a high yield by using raw materials that are industrially easily available.

すなわち本発明によれば、2−アセチルフルオレンを分子状酸素により酸化することを特徴とする9−フルオレノン−2−カルボン酸の製造方法が提供される。この酸化においては、重金属成分と臭素成分を含有する触媒を使用することが好ましく、また反応溶媒として脂肪族カルボン酸を使用するのが好ましい。   That is, according to the present invention, there is provided a method for producing 9-fluorenone-2-carboxylic acid, characterized in that 2-acetylfluorene is oxidized with molecular oxygen. In this oxidation, a catalyst containing a heavy metal component and a bromine component is preferably used, and an aliphatic carboxylic acid is preferably used as a reaction solvent.

本発明によれば、工業的に入手が容易で安価な原料を用いて、純度の高い9−フルオレノン−2−カルボン酸を収率よく製造することが可能である。   According to the present invention, it is possible to produce 9-fluorenone-2-carboxylic acid having a high purity with a high yield using industrially easily available and inexpensive raw materials.

本発明においては、2−アセチルフルオレンを分子状酸素により酸化して9−フルオレノン−2−カルボン酸を製造する。原料に用いられる2−アセチルフルオレンとしては、いかなる方法で製造されたものであってもよいが、工業的にはフルオレンに塩化アセチル又は無水酢酸を反応させる方法によって得るのが好ましい。   In the present invention, 2-acetylfluorene is oxidized with molecular oxygen to produce 9-fluorenone-2-carboxylic acid. The 2-acetylfluorene used as the raw material may be produced by any method, but industrially, it is preferably obtained by a method in which fluorene is reacted with acetyl chloride or acetic anhydride.

2−アセチルフルオレンの酸化反応においては、重金属成分と臭素成分を含有する触媒を使用するのが好ましい。重金属成分としては、コバルト、マンガン、セリウム、ニッケルなどの一種又は二種以上の金属成分を例示することができるが、とくにコバルト及びマンガンから選ばれる少なくとも一種の金属成分を用いることが好ましい。とりわけ好適な重金属成分は、コバルト又はコバルト1グラム原子に対しマンガン0.01〜2グラム原子の割合からなるコバルト・マンガン混合重金属成分である。重金属成分は化合物の形で使用するのが好ましく、例えば酸化物、水酸化物、炭酸塩、ハロゲン化物、カルボン酸塩、アセチルアセトナートなどを使用することができるが、とくに溶媒に可溶な化合物の形で用いるのが好ましく、とりわけ酢酸塩やナフテン酸塩のようなカルボン酸塩や臭化物の使用が好ましい。また臭素成分としては、臭素、臭化水素、臭化コバルト、臭化マンガン、臭化アンモニウム、臭化ナトリウム、臭化カリウムなどの無機臭素化合物、トリブロモエタン、テトラブロモエタン、ブロモ酢酸、臭化ベンジルなどの有機臭素化合物などを使用することができる。重金属成分と臭素成分を含有する触媒の具体例として、例えば酢酸コバルトと臭化カリウム、臭化コバルトと酢酸マンガン、酢酸コバルトと臭化マンガン、酢酸コバルトと酢酸マンガンと臭化アンモニウム、酢酸コバルトと酢酸マンガンと臭化ナトリウム、酢酸コバルトと酢酸マンガンと臭化カリウム、ナフテン酸コバルトとナフテン酸マンガンと臭化水素、コバルトアセチルアセトナートとマンガンアセチルアセトナートと臭化カリウムなどの組み合わせ触媒を挙げることができるが、これら組み合わせに限定されるものではない。   In the oxidation reaction of 2-acetylfluorene, it is preferable to use a catalyst containing a heavy metal component and a bromine component. Examples of the heavy metal component include one or two or more metal components such as cobalt, manganese, cerium, and nickel, but it is particularly preferable to use at least one metal component selected from cobalt and manganese. A particularly preferred heavy metal component is cobalt or a mixed manganese / metal heavy metal component having a ratio of 0.01 to 2 gram atoms of manganese to 1 gram atom of cobalt. The heavy metal component is preferably used in the form of a compound. For example, oxides, hydroxides, carbonates, halides, carboxylates, acetylacetonates and the like can be used. In particular, the use of carboxylates and bromides such as acetates and naphthenates is preferred. Bromine components include bromine, hydrogen bromide, cobalt bromide, manganese bromide, ammonium bromide, sodium bromide, potassium bromide and other inorganic bromine compounds, tribromoethane, tetrabromoethane, bromoacetic acid, bromide. Organic bromine compounds such as benzyl can be used. Specific examples of the catalyst containing a heavy metal component and a bromine component include, for example, cobalt acetate and potassium bromide, cobalt bromide and manganese acetate, cobalt acetate and manganese bromide, cobalt acetate, manganese acetate and ammonium bromide, cobalt acetate and acetic acid. Examples of the combined catalyst include manganese and sodium bromide, cobalt acetate, manganese acetate and potassium bromide, cobalt naphthenate, manganese naphthenate and hydrogen bromide, cobalt acetylacetonate, manganese acetylacetonate and potassium bromide. However, it is not limited to these combinations.

2−アセチルフルオレンの酸化反応はまた、溶媒中で行うのが好ましい。溶媒としては、操作性や反応収率を考慮すると、反応条件下で液状を呈する脂肪族カルボン酸、例えば酢酸、プロピオン酸、酪酸などを使用することが好ましい。これらは単独であるいは混合物として使用することができる。とくに好ましい溶媒は、酢酸、プロピオン酸、あるいはこれらの混合物であり、最も好ましいのは酢酸である。このような脂肪族カルボン酸を溶媒として用いる場合には、反応を大きく損なわない範囲において他の溶媒を併用することができる。例えば全溶媒中に5重量%以下程度の水を含有する脂肪族カルボン酸を溶媒として用いてもとくに問題になることはない。   The oxidation reaction of 2-acetylfluorene is also preferably performed in a solvent. In consideration of operability and reaction yield, it is preferable to use an aliphatic carboxylic acid that exhibits a liquid state under the reaction conditions, such as acetic acid, propionic acid, butyric acid, and the like. These can be used alone or as a mixture. A particularly preferred solvent is acetic acid, propionic acid, or a mixture thereof, and most preferred is acetic acid. When such an aliphatic carboxylic acid is used as a solvent, other solvents can be used in combination as long as the reaction is not significantly impaired. For example, there is no particular problem even if an aliphatic carboxylic acid containing about 5% by weight or less of water in the total solvent is used as the solvent.

溶媒は、2−アセチルフルオレンの3〜20重量倍程度、とくに5〜15重量倍程度使用するのが好ましい。また重金属成分は、金属換算で溶媒の0.01重量%以上、とくに0.05〜1重量%程度とするのが好ましく、また2−アセチルフルオレン1モル当たり、0.005〜0.5グラム原子、とくに0.01〜0.1グラム原子となるような割合で使用するのがよい。さらに臭素成分は、重金属1グラム原子に対して、臭素原子として0.1〜10グラム原子、とくに0.2〜5グラム原子となる割合で使用するのがよい。   The solvent is preferably used in an amount of about 3 to 20 times, especially about 5 to 15 times the weight of 2-acetylfluorene. Further, the heavy metal component is preferably 0.01% by weight or more, particularly 0.05 to 1% by weight of the solvent in terms of metal, and 0.005 to 0.5 gram atom per mole of 2-acetylfluorene. In particular, it should be used at a ratio of 0.01 to 0.1 gram atom. Further, the bromine component is preferably used at a ratio of 0.1 to 10 gram atoms, particularly 0.2 to 5 gram atoms, as bromine atoms with respect to 1 gram atom of heavy metal.

酸化剤である分子状酸素としては、純酸素、空気、燃焼排ガス等の任意濃度の酸素含有ガスを使用することができるが、通常は空気を使用する。   As molecular oxygen which is an oxidizing agent, an oxygen-containing gas having an arbitrary concentration such as pure oxygen, air, or combustion exhaust gas can be used, but air is usually used.

反応方式としては、原料である2−アセチルフルオレンと、酸化触媒を溶媒に溶解した触媒液とを予め反応器に装入しておき、分子状酸素のみを連続的に供給して反応させる回分式、触媒液のみを反応器に装入しておき、原料と分子状酸素を連続的に供給して反応させる半連続式、あるいは原料と、触媒液と、分子状酸素のそれぞれを反応器に連続的に供給して反応させ、かつ反応液を連続的に抜き出す連続方式のいずれの方式でも実施することができる。   As a reaction method, 2-acetylfluorene as a raw material and a catalyst solution in which an oxidation catalyst is dissolved in a solvent are charged in advance in a reactor, and only a molecular oxygen is continuously supplied to react. A semi-continuous system in which only the catalyst solution is charged into the reactor and the raw material and molecular oxygen are continuously supplied and reacted, or each of the raw material, catalyst solution, and molecular oxygen is continuously supplied to the reactor. It is possible to carry out any of the continuous systems in which the reaction solution is supplied and reacted, and the reaction solution is continuously extracted.

酸化反応における反応温度は、80〜180℃、とくに120〜150℃の範囲が好ましい。すなわち反応温度が低すぎると反応速度が遅くなる傾向となり、また反応温度が高くなりすぎると、生成物の着色度が高まる傾向となる。酸化反応における反応圧力は、反応液を液状に保持できる圧力であればよく、反応温度によっても異なるが、通常0.5〜5MPa程度、好ましくは1〜3MPa程度である。酸化反応における反応時間は、触媒量や反応温度などの反応条件によっても異なるが、一般的には1〜10時間程度、好ましくは1〜6時間程度である。   The reaction temperature in the oxidation reaction is preferably in the range of 80 to 180 ° C, particularly 120 to 150 ° C. That is, if the reaction temperature is too low, the reaction rate tends to be slow, and if the reaction temperature is too high, the degree of coloration of the product tends to increase. The reaction pressure in the oxidation reaction may be a pressure that can maintain the reaction liquid in a liquid state, and varies depending on the reaction temperature, but is usually about 0.5 to 5 MPa, preferably about 1 to 3 MPa. The reaction time in the oxidation reaction varies depending on the reaction conditions such as the amount of catalyst and reaction temperature, but is generally about 1 to 10 hours, preferably about 1 to 6 hours.

酸化反応によって生成した9−フルオレノン−2−カルボン酸は、反応終了後、反応液を冷却することによって析出してくるので、フィルタープレス、スクリュープレス、ベルトプレス等の圧力式濾過装置、回転円筒型濾過機、回転円板濾過機等の真空濾過装置、スクリュー型、バスケット型等の遠心濾過機などを用いて濾過、分離して回収することができる。このようにして回収される9−フルオレノン−2−カルボン酸結晶は、一般には水や脂肪族カルボン酸などで洗浄したのち、乾燥させることにより製品とすることができる。この場合、必要に応じ、酸析、晶析、抽出等の操作を加えることにより、精製することができる。   The 9-fluorenone-2-carboxylic acid produced by the oxidation reaction is precipitated by cooling the reaction solution after the reaction is completed, so pressure-type filtration devices such as filter presses, screw presses, belt presses, etc., rotating cylindrical types It can be recovered by filtration, separation, and the like using a vacuum filtration device such as a filter and a rotary disk filter, a centrifugal filter such as a screw type and a basket type. The 9-fluorenone-2-carboxylic acid crystal recovered in this manner can be generally made into a product by washing with water or aliphatic carboxylic acid and then drying. In this case, it can refine | purify by adding operation, such as acid precipitation, crystallization, extraction, as needed.

以下、実施例により本発明をさらに詳細に説明する。尚、9−フルオレノン−2−カルボン酸の分析は、下記条件の高速液体クロマトグラフィにより行い、定量はアルドリッチ(Aldrich)社製試薬を標準物質として絶対検量線法で実施した。
測定条件
カラム:ODS−2(ジーエルサイエンス社製)長さ150mm、内径4.6mm
移動相:A=アセトニトリル/テトラハイドロフラン(75/25容量比)
B=70%過塩素酸/水(2.0ml/L)
移動相比:A/B=(40/60容量比)
検出器:UV(254nm)
流速:1.0ml/分
カラム温度:40℃
Hereinafter, the present invention will be described in more detail with reference to examples. The analysis of 9-fluorenone-2-carboxylic acid was performed by high performance liquid chromatography under the following conditions, and quantification was performed by an absolute calibration curve method using a reagent manufactured by Aldrich as a standard substance.
Measurement conditions Column: ODS-2 (manufactured by GL Sciences) length 150 mm, inner diameter 4.6 mm
Mobile phase: A = acetonitrile / tetrahydrofuran (75/25 volume ratio)
B = 70% perchloric acid / water (2.0 ml / L)
Mobile phase ratio: A / B = (40/60 volume ratio)
Detector: UV (254 nm)
Flow rate: 1.0 ml / min Column temperature: 40 ° C

[実施例1]
攪拌機、ガス吹込み管、還流冷却器付き排ガス抜出し管、原料導入管及び温度計を取り付けた内容積500mlのチタン製オートクレーブに、純度99.8重量%の2−アセチルフルオレン25g、水分0.2重量%含有の氷酢酸250g、酢酸コバルト4水和物0.90g、酢酸マンガン4水和物0.88g及び臭化カリウム0.86gを仕込んだ。
[Example 1]
A titanium autoclave with an internal volume of 500 ml equipped with a stirrer, a gas blowing pipe, an exhaust gas extraction pipe with a reflux condenser, a raw material introduction pipe and a thermometer, 25 g of 2-acetylfluorene having a purity of 99.8% by weight and a water content of 0.2 250% by weight of glacial acetic acid, 0.90 g of cobalt acetate tetrahydrate, 0.88 g of manganese acetate tetrahydrate and 0.86 g of potassium bromide were charged.

雰囲気を窒素で置換した後、攪拌下に加熱して150℃まで昇温させてから、空気を排ガス流量が1.5リットル/分となるようにガス吹込み管を通じて導入し始め、反応系を温度150℃、圧力1.0MPaに保ち、酸素の吸収がなくなるまで約65分反応を継続した。   After replacing the atmosphere with nitrogen, the mixture was heated to 150 ° C. with stirring, and then air was introduced through the gas blowing tube so that the exhaust gas flow rate became 1.5 liters / minute, and the reaction system was The temperature was kept at 150 ° C. and the pressure was 1.0 MPa, and the reaction was continued for about 65 minutes until the absorption of oxygen disappeared.

空気の導入を停止した後、オートクレーブを冷却した。冷却後、内容物を取り出して結晶を濾別し、9−フルオレノン−2−カルボン酸のケーキと濾液を得た。得られたケーキを同体積の酢酸で洗浄した後、真空乾燥し、黄色の9−フルオレノン−2−カルボン酸17.9gを得た。液体クロマトグラフィにより求めた純度は99.2重量%であり、収率は65.9モル%であった。   After the introduction of air was stopped, the autoclave was cooled. After cooling, the contents were taken out and the crystals were separated by filtration to obtain a 9-fluorenone-2-carboxylic acid cake and filtrate. The obtained cake was washed with the same volume of acetic acid and then vacuum-dried to obtain 17.9 g of yellow 9-fluorenone-2-carboxylic acid. The purity determined by liquid chromatography was 99.2% by weight, and the yield was 65.9% by mole.

[実施例2]
実施例1において、反応温度を180℃に変更した以外は同様の操作を行い、やや褐色を帯びた黄色の9−フルオレノン−2−カルボン酸18.2gを得た。液体クロマトグラフィにより求めた純度は99.2重量%であり、収率は67.1モル%であった。
[Example 2]
The same operation as in Example 1 was carried out except that the reaction temperature was changed to 180 ° C., to obtain 18.2 g of a slightly brownish yellow 9-fluorenone-2-carboxylic acid. The purity determined by liquid chromatography was 99.2% by weight, and the yield was 67.1 mol%.

[実施例3]
攪拌機、ガス吹込み管、還流冷却器付き排ガス抜出し管、原料導入管及び温度計を取り付けた内容積50リットルのチタン製オートクレーブに、純度90.7重量%の2−アセチルフルオレン2.5kg、水分0.2重量%含有の氷酢酸25kg、酢酸コバルト4水和物0.90kg、酢酸マンガン4水和物0.88kg及び臭化カリウム0.86kgを仕込んだ。
[Example 3]
A titanium autoclave with an internal volume of 50 liters equipped with a stirrer, a gas blowing pipe, an exhaust gas extraction pipe with a reflux condenser, a raw material introduction pipe and a thermometer, 2.5 kg of 2-acetylfluorene having a purity of 90.7% by weight, moisture 25 kg of glacial acetic acid containing 0.2% by weight, 0.90 kg of cobalt acetate tetrahydrate, 0.88 kg of manganese acetate tetrahydrate and 0.86 kg of potassium bromide were charged.

雰囲気を窒素で置換した後、攪拌下に加熱して150℃まで昇温させてから、空気を排ガス流量が40リットル/分となるようにガス吹込み管を通じて導入し始め、反応系を温度150℃、圧力3.0MPaに保ち、酸素の吸収がなくなるまで約2時間反応を継続した。   After substituting the atmosphere with nitrogen, the mixture was heated to 150 ° C. with stirring, and then air was introduced through the gas blowing tube so that the exhaust gas flow rate was 40 liters / minute, and the reaction system was heated to 150 ° C. The reaction was continued for about 2 hours until the absorption of oxygen was stopped.

空気の導入を停止した後、オートクレーブを冷却した。冷却後、内容物を取り出して結晶を濾別し、9−フルオレノン−2−カルボン酸のケーキと濾液を得た。得られたケーキを同体積の酢酸で洗浄した後、真空乾燥し、黄色の9−フルオレノン−2−カルボン酸1.57kgを得た。液体クロマトグラフィにより求めた純度は97.9重量%であり、収率は63.1モル%であった。

After the introduction of air was stopped, the autoclave was cooled. After cooling, the contents were taken out and the crystals were separated by filtration to obtain a 9-fluorenone-2-carboxylic acid cake and filtrate. The obtained cake was washed with the same volume of acetic acid and then vacuum-dried to obtain 1.57 kg of yellow 9-fluorenone-2-carboxylic acid. The purity determined by liquid chromatography was 97.9 wt%, and the yield was 63.1 mol%.

Claims (3)

2−アセチルフルオレンを、分子状酸素で酸化することを特徴とする9−フルオレノン−2−カルボン酸の製造方法。   A process for producing 9-fluorenone-2-carboxylic acid, characterized in that 2-acetylfluorene is oxidized with molecular oxygen. 酸化を、重金属成分及び臭素成分を含有する触媒の存在下で行うことを特徴とする請求項1記載の9−フルオレノン−2−カルボン酸の製造方法。   The method for producing 9-fluorenone-2-carboxylic acid according to claim 1, wherein the oxidation is carried out in the presence of a catalyst containing a heavy metal component and a bromine component. 酸化を、脂肪族カルボン酸中で行うことを特徴とする請求項1又は2記載の9−フルオレノン−2−カルボン酸の製造方法。   The method for producing 9-fluorenone-2-carboxylic acid according to claim 1 or 2, wherein the oxidation is carried out in an aliphatic carboxylic acid.
JP2005013503A 2005-01-21 2005-01-21 Method for producing 9-fluorenone-2-carboxylic acid Pending JP2006199627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005013503A JP2006199627A (en) 2005-01-21 2005-01-21 Method for producing 9-fluorenone-2-carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005013503A JP2006199627A (en) 2005-01-21 2005-01-21 Method for producing 9-fluorenone-2-carboxylic acid

Publications (1)

Publication Number Publication Date
JP2006199627A true JP2006199627A (en) 2006-08-03

Family

ID=36957944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005013503A Pending JP2006199627A (en) 2005-01-21 2005-01-21 Method for producing 9-fluorenone-2-carboxylic acid

Country Status (1)

Country Link
JP (1) JP2006199627A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217639A (en) * 1990-12-18 1992-08-07 Iwaki Seiyaku Kk Production of 4,4'-biphenyldicarboxylic acid
JPH09221446A (en) * 1995-12-11 1997-08-26 Nippon Shokubai Co Ltd Production of fluorenone
JP2003080068A (en) * 2001-06-29 2003-03-18 Maruzen Petrochem Co Ltd Solid catalyst and method for oxidizing alkanes by using the same
WO2003028884A1 (en) * 2001-09-28 2003-04-10 Daicel Chemical Industries, Ltd. Catalysts comprised of n-substituted cyclic imides and processes for preparing organic compounds with the catalysts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217639A (en) * 1990-12-18 1992-08-07 Iwaki Seiyaku Kk Production of 4,4'-biphenyldicarboxylic acid
JPH09221446A (en) * 1995-12-11 1997-08-26 Nippon Shokubai Co Ltd Production of fluorenone
JP2003080068A (en) * 2001-06-29 2003-03-18 Maruzen Petrochem Co Ltd Solid catalyst and method for oxidizing alkanes by using the same
WO2003028884A1 (en) * 2001-09-28 2003-04-10 Daicel Chemical Industries, Ltd. Catalysts comprised of n-substituted cyclic imides and processes for preparing organic compounds with the catalysts

Similar Documents

Publication Publication Date Title
JP5252969B2 (en) Process for producing 2,5-furandicarboxylic acid
JP2006528682A (en) Method for heating crude carboxylic acid slurry in post-oxidation zone by adding steam
JPH02184652A (en) Preparation of aromatic polycarboxylic acid
JP2006199627A (en) Method for producing 9-fluorenone-2-carboxylic acid
US4754060A (en) Process for producing naphthalenedicarboxylic acid together with trimellitic acid
JP7007885B2 (en) Method for producing an aldehyde compound having an aromatic ring
JP4183461B2 (en) Process for producing 6-bromo-2-naphthalenecarboxylic acid
BE615596A (en)
JP5318596B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
RU2314301C2 (en) Method of producing and cleaning pyromellitic anhydrite
JP4352191B2 (en) Production of pyromellitic acid
JPH09227450A (en) Production of hydroxybenzanecarboxylic acid
JP2002069031A (en) Method for manufacturing high-purity pyromellitic acid and high-purity pyromellitic anhydride
EP0041778B1 (en) Oxidation of meta- or para-xylene to iso- or tere-phthalic acid
JPS62212345A (en) Continuous production of 2,6-naphthalenedicarboxylic acid
JP2729294B2 (en) Method for producing 4&#39;-isopropylbiphenyl-4-carboxylic acid
JP2004321889A (en) Method for recovering catalyst from slurry and method for producing aromatic carboxylic acid
RU2399610C2 (en) Method of producing highly pure terephthalic acid
JPH10195018A (en) Production of methyl 6-bromo-2-naphthalenecarboxylate
JPH02200656A (en) Production of aromatic carboxylic acid
US8940931B2 (en) Production method for refined 6-bromo-2-naphthalenecarboxylic acid product
JPH1192416A (en) Production of trimellitic acid
JP2003342228A (en) Method for producing biphenyltetracarboxylic acid
JPS62240646A (en) Production of cinnamic acid ester
JPH04279549A (en) Production of pure terephthalic acid

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20060529

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

A977 Report on retrieval

Effective date: 20101027

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308