JP4183461B2 - Process for producing 6-bromo-2-naphthalenecarboxylic acid - Google Patents

Process for producing 6-bromo-2-naphthalenecarboxylic acid Download PDF

Info

Publication number
JP4183461B2
JP4183461B2 JP2002257811A JP2002257811A JP4183461B2 JP 4183461 B2 JP4183461 B2 JP 4183461B2 JP 2002257811 A JP2002257811 A JP 2002257811A JP 2002257811 A JP2002257811 A JP 2002257811A JP 4183461 B2 JP4183461 B2 JP 4183461B2
Authority
JP
Japan
Prior art keywords
bromo
reaction
naphthalenecarboxylic acid
acid
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002257811A
Other languages
Japanese (ja)
Other versions
JP2004091428A (en
Inventor
毅 行方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2002257811A priority Critical patent/JP4183461B2/en
Publication of JP2004091428A publication Critical patent/JP2004091428A/en
Application granted granted Critical
Publication of JP4183461B2 publication Critical patent/JP4183461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、医薬、農薬の中間原料として好適な高純度の6−ブロモ−2−ナフタレンカルボン酸を、温和な条件下、高収率で製造する方法に関する。
【0002】
【従来の技術】
出願人は、特開平10−195018号公報において、6−ブロモ−2−メチルナフタレンを、低級脂肪族カルボン酸を含有する溶媒中、重金属化合物と臭素化合物からなる酸化触媒の存在下、分子状酸素により酸化して6−ブロモ−2−ナフタレンカルボン酸を製造する方法を開示している。6−ブロモ−2−ナフタレンカルボン酸は次いでメチルエステルとして医薬や農薬の原料として使用される。
【0003】
上記メチルエステルをこれらの原料として使用する場合には不純物の混入が嫌われており、そのためその原料である6−ブロモ−2−ナフタレンカルボン酸としてできるだけ高純度のものが望まれている。しかるに上記公報に具体的に記載されている条件において6−ブロモ−2−ナフタレンカルボン酸を製造するときには、無視できない量の不純物が生成し、その精製が容易でないという問題があった。すなわち上記公報においては、酸化反応の好適条件として120〜200℃の反応温度及び10〜30kg/cm(0.98〜2.94MPa)の反応圧力を採用することが推奨されており、具体例においては175℃、30kg/cmという反応条件が採用されている。このような反応条件は確かに生産性の点から言えば満足すべきものであったが、得られる製品の純度がそれほど高くなく、高純度化のためには高度な精製処理を行なう必要があった。また高圧下の反応であるため、特殊材質の設備が必要であり、コスト高となるという問題点もあった。
【0004】
【発明が解決しようとする課題】
本発明者は、上記のような酸化反応によって得られる反応液から回収される6−ブロモ−2−ナフタレンカルボン酸の精製が容易でないことを考慮し、また装置材質上の制約を緩和することによってコストダウンを図るべく、酸化の条件を工夫することにより、不純物の少ない6−ブロモ−2−ナフタレンカルボン酸を高収率で製造する方法について検討を行った。まず上記提案が推奨しているよりさらに低温度、低圧力での反応条件を採用したところ、特別な精製を施すことなく高純度の6−ブロモ−2−ナフタレンカルボン酸を製造することが可能であったが、反応収率が低下するということが大きな問題であった。そのためさらに検討を進めた結果、無水酢酸の添加条件下、好ましくは温和な温度及び圧力条件下で6−ブロモ−2−メチルナフタレンを酸化することにより、高純度の6−ブロモ−2−ナフタレンカルボン酸を高収率で製造できることを見出すに至った。したがって本発明の目的は、酸化触媒の存在下で6−ブロモ−2−メチルナフタレンを分子状酸素により酸化して、高純度の6−ブロモ−2−ナフタレンカルボン酸を工業的に有利に製造する方法を提供することにある。
【0005】
【課題を解決するための手段】
すなわち本発明は、6−ブロモ−2−メチルナフタレンを、炭素数1〜4の低級脂肪族カルボン酸を含有する溶媒中、重金属化合物と臭素化合物からなる酸化触媒及び無水酢酸の存在下、分子状酸素により酸化した反応物を冷却して析出物を分離することを特徴とする6−ブロモ−2−ナフタレンカルボン酸の製造方法である。
【0006】
【発明の実施の形態】
本発明の原料として使用される6−ブロモ−2−メチルナフタレンは、好ましくは上記公報記載のように、6−ヒドロキシ−2−メチルナフタレンの臭素化によって得ることができるが、このような製法に限定されるものではなく、いかなる製法で製造されたものであってよい。
【0007】
溶媒として使用される炭素数1〜4の低級脂肪族カルボン酸を含有する溶媒は、炭素数1〜4の低級脂肪族カルボン酸のみで構成されていてもよく、また低級脂肪族カルボン酸を主成分とし、これに反応に悪影響を及ぼさない他の溶媒を混合した混合溶媒であってもよい。炭素数1〜4の低級脂肪族カルボン酸としては、蟻酸、酢酸、プロピオン酸、酪酸、あるいはこれらの混合物を挙げることができるが、とくに酢酸の使用が好ましい。溶媒の使用量は、原料6−ブロモ−2−メチルナフタレンに対して、10〜40重量倍、とくに15〜30重量倍の割合で使用するのが好ましい。
【0008】
本発明において使用される重金属化合物と臭素化合物からなる酸化触媒は、すでに知られているように一般的には重金属化合物と臭素化合物を併用するものであるが、重金属化合物として臭化物を使用する場合には、これ単独で使用することもできる。重金属化合物としては反応系で溶解する金属化合物が好ましく、具体的には、コバルト、マンガン、セリウムなどの重金属のカルボン酸塩、例えば酢酸塩、プロピオン酸塩、ナフテン酸塩など、炭酸塩、臭化物、水酸化物などを挙げることができる。これらの中ではコバルト化合物を使用するか又はコバルト化合物とマンガン化合物を併用することが好ましく、また化合物としては酢酸塩や臭化物の使用が好ましい。また臭素化合物としては、反応系で溶解し、臭素イオンを発生するものであればいかなるものでもよく、例えばアルカリ金属臭素化物、アルカリ土類金属臭素化物、臭化水素、臭化水素酸などの無機臭素化合物あるいは臭化エチル、ブロモ酢酸などの有機臭素化合物を挙げることができるが、とくに無機臭素化合物の使用が好ましい。
【0009】
酸化触媒における重金属化合物は、コバルト化合物あるいはコバルト化合物とマンガン化合物の混合物においては、重金属基準で酸化原料である6−ブロモ−2−メチルナフタレンに対して0.03〜2.0倍モル、とくに0.1〜1.0倍モルの範囲で使用するのが好ましい。またコバルト化合物とマンガン化合物を併用する場合には、Co/Mn(原子比)が0.1〜100、とくに0.3〜3となる割合で使用するのが好ましい。また臭素化合物の使用量は、臭素(Br)基準で原料6−ブロモ−2−メチルナフタレンに対し、0.015〜2.0倍モル、とくに0.05〜0.5倍モルとなる割合で使用するのが好ましい。
【0010】
本発明の酸化反応においては、無水酢酸が添加される。好適な無水酢酸の添加量は、原料6−ブロモ−2−メチルナフタレンに対し、0.01〜10倍モル、とくに0.1〜2.0倍モルとなる割合である。無水酢酸の添加により、温和な反応温度及び反応圧力において高収率で高純度の6−ブロモ−2−ナフタレンカルボン酸を製造することが可能となる。
【0011】
本発明の酸化反応は、上述した炭素数1〜4の低級脂肪族カルボン酸を含有する溶媒、原料6−ブロモ−2−メチルナフタレン、重金属化合物と臭素化合物からなる酸化触媒及び無水酢酸からなる混合物に分子状酸素を吹込むことによって行われる。分子状酸素を含むガスとしては、空気、純酸素、酸素と不活性ガスの任意割合の混合物などを挙げることができるが、工業的には空気の使用が好ましい。
【0012】
酸化反応は、回分式、半回分式、連続式などいずれの方式を採用してもよい。酸化反応の温度は80〜120℃、とくに95〜115℃の範囲が好ましく、また反応圧力は0.098〜0.98MPa、とくに0.098〜0.48MPaの範囲が好ましい。このような温和な条件を採用することにより、不純物の少ない6−ブロモ−2−ナフタレンカルボン酸を容易に製造することができる。酸化反応により得られる反応液を室温まで冷却することにより6−ブロモ−2−ナフタレンカルボン酸を析出させることができるので、これを濾別することにより純度の高い6−ブロモ−2−ナフタレンカルボン酸を回収することができる。また濾液中の重金属触媒は、回収して再使用することができる。
【0013】
【実施例】
[実施例1]
還流冷却器、ガス吹込み管及び排出管、温度測定管および電磁攪拌機を備えた500mlのガラス容器に、酢酸210g(3.5モル)、酢酸コバルト四水塩1.66g(6.66ミリモル)、酢酸マンガン四水塩1.65g(6.73ミリモル)、臭化カリウム1.06g(8.91ミリモル)、6−ブロモ−2−メチルナフタレン10.0g(45.2ミリモル)及び無水酢酸5.2g(51.0ミリモル)を仕込み、混合物を110℃に保ち、攪拌しながら常圧下で空気を0.2リットル/分の速度で吹込みながら8時間反応を行なった。
【0014】
反応終了後、反応液を30℃まで冷却し、析出物を濾別して乾燥し、純度99.1%の6−ブロモ−2−ナフタレンカルボン酸9.1gを得た。濾液中に溶解している6−ブロモ−2−ナフタレンカルボン酸の分析結果と併せて、6−ブロモ−2−メチルナフタレンに対する6−ブロモ−2−ナフタレンカルボン酸の収率は88.5モル%であった。
【0015】
[実施例2]
酸化剤の空気を純酸素に変え、反応時間を4.5時間とした以外は実施例1と同様にして反応を行なった。反応終了後、反応液を30℃まで冷却し、析出物を濾別して乾燥し、純度99.2%の6−ブロモ−2−ナフタレンカルボン酸8.3gを得た。濾液中に溶解している6−ブロモ−2−ナフタレンカルボン酸の分析結果と併せて、6−ブロモ−2−メチルナフタレンに対する6−ブロモ−2−ナフタレンカルボン酸の収率は96.0モル%であった。
【0016】
[比較例1]
酢酸210g(3.5モル)、酢酸コバルト四水塩3.34g(13.4ミリモル)、酢酸マンガン四水塩3.30g(13.5ミリモル)、臭化カリウム2.12g(17.8ミリモル)及び6−ブロモ−2−メチルナフタレン20.0g(90.4ミリモル)を仕込み、混合物を150℃の温度に保ち、攪拌しながら2.94MPaの加圧下で圧縮空気を1.0リットル/分の速度で吹込みながら30分間反応を行なった。反応終了後、反応液を30℃まで冷却し、析出物を濾別して乾燥し、純度97.6%の6−ブロモ−2−ナフタレンカルボン酸20.14gを得た。この6−ブロモ−2−ナフタレンカルボン酸をアルカリ水溶液に溶解し、酸析することにより精製を試みたが、純度は向上しなかった。濾液中に溶解している6−ブロモ−2−ナフタレンカルボン酸の分析結果と併せて、6−ブロモ−2−メチルナフタレンに対する6−ブロモ−2−ナフタレンカルボン酸の収率は92.4モル%であった
【0017】
【発明の効果】
本発明によれば、医薬用中間体として有用な高純度の6−ブロモ−2−ナフタレンカルボン酸を高収率で製造することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing high-purity 6-bromo-2-naphthalenecarboxylic acid, which is suitable as an intermediate material for pharmaceuticals and agricultural chemicals, in a high yield under mild conditions.
[0002]
[Prior art]
In Japanese Patent Application Laid-Open No. Hei 10-195018, the applicant applied molecular oxygen in the presence of an oxidation catalyst comprising a heavy metal compound and a bromine compound in a solvent containing a lower aliphatic carboxylic acid. Discloses a process for producing 6-bromo-2-naphthalenecarboxylic acid by oxidation. 6-Bromo-2-naphthalenecarboxylic acid is then used as a raw material for pharmaceuticals and agricultural chemicals as a methyl ester.
[0003]
When the above methyl ester is used as these raw materials, mixing of impurities is disliked, and therefore, as high purity as possible as 6-bromo-2-naphthalenecarboxylic acid as the raw material is desired. However, when 6-bromo-2-naphthalenecarboxylic acid is produced under the conditions specifically described in the above publication, there is a problem that a non-negligible amount of impurities are generated and the purification thereof is not easy. That is, in the above publication, it is recommended to adopt a reaction temperature of 120 to 200 ° C. and a reaction pressure of 10 to 30 kg / cm 2 (0.98 to 2.94 MPa) as suitable conditions for the oxidation reaction. The reaction conditions of 175 ° C. and 30 kg / cm 2 are employed. Such reaction conditions were certainly satisfactory from the viewpoint of productivity, but the purity of the product obtained was not so high, and it was necessary to carry out advanced purification treatment for high purity. . In addition, since the reaction is performed under high pressure, a special material facility is required, which increases the cost.
[0004]
[Problems to be solved by the invention]
The present inventor considers that purification of 6-bromo-2-naphthalenecarboxylic acid recovered from the reaction solution obtained by the oxidation reaction as described above is not easy, and relaxes restrictions on apparatus materials. In order to reduce the cost, the inventors examined the method for producing 6-bromo-2-naphthalenecarboxylic acid with few impurities in high yield by devising the oxidation conditions. First, by adopting reaction conditions at lower temperature and lower pressure than recommended by the above proposal, it is possible to produce 6-bromo-2-naphthalenecarboxylic acid with high purity without any special purification. However, it was a big problem that the reaction yield was lowered. Therefore, as a result of further investigation, high-purity 6-bromo-2-naphthalenecarboxylic acid was obtained by oxidizing 6-bromo-2-methylnaphthalene under the conditions of addition of acetic anhydride, preferably under mild temperature and pressure conditions. It came to discover that an acid can be manufactured with a high yield. Accordingly, an object of the present invention is to oxidize 6-bromo-2-methylnaphthalene with molecular oxygen in the presence of an oxidation catalyst to produce highly pure 6-bromo-2-naphthalenecarboxylic acid industrially advantageously. It is to provide a method.
[0005]
[Means for Solving the Problems]
That is, the present invention relates to a molecular form of 6-bromo-2-methylnaphthalene in a solvent containing a lower aliphatic carboxylic acid having 1 to 4 carbon atoms in the presence of an oxidation catalyst composed of a heavy metal compound and a bromine compound and acetic anhydride. It is a method for producing 6-bromo-2-naphthalenecarboxylic acid, wherein a reaction product oxidized by oxygen is cooled to separate a precipitate .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
6-Bromo-2-methylnaphthalene used as a raw material of the present invention can be preferably obtained by bromination of 6-hydroxy-2-methylnaphthalene, as described in the above publication, It is not limited and may be manufactured by any manufacturing method.
[0007]
The solvent containing the lower aliphatic carboxylic acid having 1 to 4 carbon atoms used as the solvent may be composed only of the lower aliphatic carboxylic acid having 1 to 4 carbon atoms , and the lower aliphatic carboxylic acid is mainly used. It may be a mixed solvent in which other components that do not adversely affect the reaction are mixed. Examples of the lower aliphatic carboxylic acid having 1 to 4 carbon atoms include formic acid, acetic acid, propionic acid, butyric acid, and a mixture thereof, and the use of acetic acid is particularly preferable. The amount of the solvent used is preferably 10 to 40 times by weight, particularly 15 to 30 times by weight, based on the raw material 6-bromo-2-methylnaphthalene.
[0008]
The oxidation catalyst comprising a heavy metal compound and a bromine compound used in the present invention is generally a combination of a heavy metal compound and a bromine compound as already known, but in the case of using bromide as the heavy metal compound. Can also be used alone. As the heavy metal compound, a metal compound that dissolves in the reaction system is preferable, and specifically, carboxylates of heavy metals such as cobalt, manganese, cerium, for example, acetate, propionate, naphthenate, carbonate, bromide, A hydroxide etc. can be mentioned. In these, it is preferable to use a cobalt compound or to use a cobalt compound and a manganese compound together, and as a compound, use of acetate and bromide is preferable. The bromine compound may be any compound that dissolves in the reaction system and generates bromine ions. For example, inorganic compounds such as alkali metal bromide, alkaline earth metal bromide, hydrogen bromide, hydrobromic acid, etc. Examples of the bromine compound include organic bromine compounds such as ethyl bromide and bromoacetic acid. Inorganic bromine compounds are particularly preferred.
[0009]
The heavy metal compound in the oxidation catalyst is 0.03 to 2.0 times mol, especially 0 in the case of a cobalt compound or a mixture of a cobalt compound and a manganese compound with respect to 6-bromo-2-methylnaphthalene which is an oxidation raw material on a heavy metal basis. It is preferably used in the range of 1 to 1.0 mole. Moreover, when using a cobalt compound and a manganese compound together, it is preferable to use it in the ratio from which Co / Mn (atomic ratio) will be 0.1-100, especially 0.3-3. The amount of bromine compound used is 0.015 to 2.0 times mol, particularly 0.05 to 0.5 times mol, based on bromine (Br), relative to the raw material 6-bromo-2-methylnaphthalene. It is preferred to use.
[0010]
In the oxidation reaction of the present invention, acetic anhydride is added. A suitable addition amount of acetic anhydride is 0.01 to 10 times mol, particularly 0.1 to 2.0 times mol for the raw material 6-bromo-2-methylnaphthalene. The addition of acetic anhydride makes it possible to produce 6-bromo-2-naphthalenecarboxylic acid with high yield and high purity at a mild reaction temperature and pressure.
[0011]
The oxidation reaction of the present invention comprises a solvent comprising the above-mentioned lower aliphatic carboxylic acid having 1 to 4 carbon atoms , raw material 6-bromo-2-methylnaphthalene, an oxidation catalyst comprising a heavy metal compound and a bromine compound, and acetic anhydride. This is done by blowing molecular oxygen into the chamber. Examples of the gas containing molecular oxygen include air, pure oxygen, a mixture of oxygen and an inert gas in an arbitrary ratio, and the use of air is preferred industrially.
[0012]
The oxidation reaction may employ any system such as a batch system, a semi-batch system, or a continuous system. The temperature of the oxidation reaction is preferably in the range of 80 to 120 ° C., particularly 95 to 115 ° C., and the reaction pressure is preferably 0.098 to 0.98 MPa, particularly preferably 0.098 to 0.48 MPa. By adopting such mild conditions, 6-bromo-2-naphthalenecarboxylic acid with few impurities can be easily produced. Since 6-bromo-2-naphthalenecarboxylic acid can be precipitated by cooling the reaction solution obtained by the oxidation reaction to room temperature, 6-bromo-2-naphthalenecarboxylic acid having a high purity can be obtained by filtering it off. Can be recovered. The heavy metal catalyst in the filtrate can be recovered and reused.
[0013]
【Example】
[Example 1]
In a 500 ml glass container equipped with a reflux condenser, a gas blowing tube and a discharge tube, a temperature measuring tube and a magnetic stirrer, 210 g (3.5 mol) of acetic acid and 1.66 g (6.66 mmol) of cobalt acetate tetrahydrate Manganese acetate tetrahydrate 1.65 g (6.73 mmol), potassium bromide 1.06 g (8.91 mmol), 6-bromo-2-methylnaphthalene 10.0 g (45.2 mmol) and acetic anhydride 5 .2 g (51.0 mmol) was charged, the mixture was kept at 110 ° C., and the reaction was carried out for 8 hours while stirring and blowing air at a rate of 0.2 liters / minute under normal pressure.
[0014]
After completion of the reaction, the reaction solution was cooled to 30 ° C., and the precipitate was separated by filtration and dried to obtain 9.1 g of 6-bromo-2-naphthalenecarboxylic acid having a purity of 99.1%. Combined with the analysis result of 6-bromo-2-naphthalenecarboxylic acid dissolved in the filtrate, the yield of 6-bromo-2-naphthalenecarboxylic acid based on 6-bromo-2-methylnaphthalene was 88.5 mol%. Met.
[0015]
[Example 2]
The reaction was performed in the same manner as in Example 1 except that the oxidant air was changed to pure oxygen and the reaction time was 4.5 hours. After completion of the reaction, the reaction solution was cooled to 30 ° C., and the precipitate was filtered and dried to obtain 8.3 g of 6-bromo-2-naphthalenecarboxylic acid having a purity of 99.2%. Combined with the analysis result of 6-bromo-2-naphthalenecarboxylic acid dissolved in the filtrate, the yield of 6-bromo-2-naphthalenecarboxylic acid based on 6-bromo-2-methylnaphthalene was 96.0 mol%. Met.
[0016]
[Comparative Example 1]
210 g (3.5 mol) of acetic acid, 3.34 g (13.4 mmol) of cobalt acetate tetrahydrate, 3.30 g (13.5 mmol) of manganese acetate tetrahydrate, 2.12 g (17.8 mmol) of potassium bromide ) And 20.0 g (90.4 mmol) of 6-bromo-2-methylnaphthalene, the mixture is kept at a temperature of 150 ° C., and compressed air is supplied at a pressure of 2.94 MPa with stirring at 1.0 liter / min. The reaction was carried out for 30 minutes while blowing at a rate of. After completion of the reaction, the reaction solution was cooled to 30 ° C., and the precipitate was filtered and dried to obtain 20.14 g of 6-bromo-2-naphthalenecarboxylic acid having a purity of 97.6%. Although purification was attempted by dissolving this 6-bromo-2-naphthalenecarboxylic acid in an aqueous alkali solution and acidifying it, the purity was not improved. Combined with the analysis result of 6-bromo-2-naphthalenecarboxylic acid dissolved in the filtrate, the yield of 6-bromo-2-naphthalenecarboxylic acid with respect to 6-bromo-2-methylnaphthalene was 92.4 mol%. It was .
[0017]
【The invention's effect】
According to the present invention, high-purity 6-bromo-2-naphthalenecarboxylic acid useful as a pharmaceutical intermediate can be produced in high yield.

Claims (1)

6−ブロモ−2−メチルナフタレンを、炭素数1〜4の低級脂肪族カルボン酸を含有する溶媒中、重金属化合物と臭素化合物からなる酸化触媒及び無水酢酸の存在下、分子状酸素により酸化した反応物を冷却して析出物を分離することを特徴とする6−ブロモ−2−ナフタレンカルボン酸の製造方法。A reaction in which 6-bromo-2-methylnaphthalene is oxidized with molecular oxygen in a solvent containing a lower aliphatic carboxylic acid having 1 to 4 carbon atoms in the presence of an oxidation catalyst composed of a heavy metal compound and a bromine compound and acetic anhydride. A method for producing 6-bromo-2-naphthalenecarboxylic acid, wherein the precipitate is separated by cooling the product .
JP2002257811A 2002-09-03 2002-09-03 Process for producing 6-bromo-2-naphthalenecarboxylic acid Expired - Fee Related JP4183461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002257811A JP4183461B2 (en) 2002-09-03 2002-09-03 Process for producing 6-bromo-2-naphthalenecarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002257811A JP4183461B2 (en) 2002-09-03 2002-09-03 Process for producing 6-bromo-2-naphthalenecarboxylic acid

Publications (2)

Publication Number Publication Date
JP2004091428A JP2004091428A (en) 2004-03-25
JP4183461B2 true JP4183461B2 (en) 2008-11-19

Family

ID=32062630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002257811A Expired - Fee Related JP4183461B2 (en) 2002-09-03 2002-09-03 Process for producing 6-bromo-2-naphthalenecarboxylic acid

Country Status (1)

Country Link
JP (1) JP4183461B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012056544A1 (en) * 2010-10-28 2012-05-03 エア・ウォーター株式会社 Production method for refined 6-bromo-2-naphthalenecarboxylic acid product
CN107586258A (en) * 2017-10-16 2018-01-16 黄石市利福达医药化工有限公司 A kind of composition, reaction system and method for being used to prepare 1 naphthoic acid
CN109438230B (en) * 2018-11-26 2022-04-22 深圳市第二人民医院 Synthetic method of adapalene intermediate 6-bromo-2-naphthoate

Also Published As

Publication number Publication date
JP2004091428A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
JP4183461B2 (en) Process for producing 6-bromo-2-naphthalenecarboxylic acid
US20080039653A1 (en) Process for Producing Adipic Acid
JP2940155B2 (en) Method for purifying 4,4'-biphenyldicarboxylic acid
JPH07116097B2 (en) Method for producing pyromellitic acid
JP5613256B2 (en) Method for producing 6-bromo-2-naphthalenecarboxylic acid purified product
JPH0531535B2 (en)
JP2611232B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
JPH07330755A (en) Production of piperonal
JPH06211740A (en) Production of 4,4'-biphenyldicarboxylic acid
JP4028612B2 (en) Method for producing 6-bromo-2-naphthalenecarboxylic acid methyl ester
JPH06172260A (en) Production of naphthalenecarboxylic acid
JP4678081B2 (en) Method for producing trimellitic acid
JPH06211733A (en) Production of 2,6-naphthalene dicarboxylic acid
JPH06211732A (en) Production of 2,6-naphthalene dicarboxylic acid
JPH06211739A (en) Production of 4,4'-biphenyldicarboxylic acid
JPH03279347A (en) Method for purifying 4,4'-diphenyldicarboxylic acid
JP2001172221A (en) Method for producing highly pure 4,4- biphenyldicarboxylic acid
JP2023152806A (en) Method for producing 4,4'-dihydroxybiphenyl-3,3'-dicarboxylic acid
JPH06211738A (en) Production of 4,4'-biphenyldicarboxylic acid
JPH06145101A (en) Production of phenoxybenzoic acid
JPH03240751A (en) Production of 2,6-naphthalenedicarboxylic acid
JPH05339202A (en) Production of naphthoic acid
JPH02200656A (en) Production of aromatic carboxylic acid
JPH05140033A (en) Production of 2,6-naphthalenedicarboxylic acid
JPH0873402A (en) Production of biphenylmonocarboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4183461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees