JP2006198809A - Recycled molding material and its manufacturing method - Google Patents

Recycled molding material and its manufacturing method Download PDF

Info

Publication number
JP2006198809A
JP2006198809A JP2005010718A JP2005010718A JP2006198809A JP 2006198809 A JP2006198809 A JP 2006198809A JP 2005010718 A JP2005010718 A JP 2005010718A JP 2005010718 A JP2005010718 A JP 2005010718A JP 2006198809 A JP2006198809 A JP 2006198809A
Authority
JP
Japan
Prior art keywords
crushed
molding
pieces
crushed pieces
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005010718A
Other languages
Japanese (ja)
Other versions
JP4733396B2 (en
Inventor
Yasuhiro Saito
康宏 斉藤
Kyuichi Maruyama
久一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2005010718A priority Critical patent/JP4733396B2/en
Publication of JP2006198809A publication Critical patent/JP2006198809A/en
Application granted granted Critical
Publication of JP4733396B2 publication Critical patent/JP4733396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/0026Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting
    • B29B17/0042Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting for shaping parts, e.g. multilayered parts with at least one layer containing regenerated plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B17/0412Disintegrating plastics, e.g. by milling to large particles, e.g. beads, granules, flakes, slices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a recycled molding material enhanced in bending strength while enhanced in productivity, and its manufacturing method. <P>SOLUTION: The manufacturing method of the recycled molding material 17 comprises a process for crushing a structure produced from a fiber reinforced molding material, a process for bonding a binder to the obtained crushed matter 10, a process for shaping an aggregate of the crushed matter to which the binder is bonded to form a core material 15, a process for laminating and arranging a reinforcing fiber material 16 on one side or both sides of the formed core material 15, and a process for subjecting the laminated reinforcing fiber material 16 and the core material 15 to press molding to successively compactify and integrate them. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は繊維強化成形材で製された廃棄構造体をリサイクルして製される再生成形材、及び、その製造方法に関する。   The present invention relates to a recycled molding material manufactured by recycling a waste structure made of a fiber reinforced molding material, and a method for manufacturing the same.

繊維強化成形材で製された構造体を破砕して得られる破砕片を結合剤を用いて所定の形状にプレス成形して再利用する再生成形材の研究が進んでいる。
本願出願人は、特願2002−257959号(未公開)において、このような再生成形材を既に提案している。
Research has been progressing on reclaimed molding materials in which crushed pieces obtained by crushing structures made of fiber-reinforced molding materials are pressed into a predetermined shape using a binder and reused.
The present applicant has already proposed such a regenerated molded material in Japanese Patent Application No. 2002-257959 (unpublished).

このような再生成形材は、破砕した破砕物の中から細長いチップ状の破砕片を選別し、これらの破砕片に結合剤を付着させ、長手方向に引き揃えて配向した状態でプレス成形して製造される。   Such reclaimed molding material is obtained by selecting elongated chip-shaped fragments from the crushed fragments, attaching a binder to these fragments, and pressing them in a state of being aligned in the longitudinal direction. Manufactured.

ところで、前記した再生成形材の曲げ強度(曲げ弾性率)を向上させるには、再生成形材の内部で骨材として機能する破砕片を加圧して圧密化する必要があった。これは、圧密化が低いと破砕片同士の接合面積が減少して再生成形材の強度が低下するためであり、加圧によって破砕片を圧密化することで破砕片同士の接合面積を増大させて再生成形材の曲げ強度を確保する必要があった。
ところが、破砕片の圧密化を促進するためには高圧力を印加しなければならず、成形材の大型化に伴って大型のプレス機が必要となり、設備費が嵩むために改善が望まれていた。
By the way, in order to improve the bending strength (bending elastic modulus) of the above-mentioned regenerated molded material, it was necessary to press and compact the crushed pieces that function as aggregates inside the regenerated molded material. This is because if the compaction is low, the joint area between the crushed pieces decreases and the strength of the recycled molding material decreases, and by consolidating the crushed pieces by pressurization, the joint area between the crushed pieces is increased. Therefore, it was necessary to ensure the bending strength of the recycled molding material.
However, in order to promote the consolidation of the crushed pieces, a high pressure must be applied, and a large press machine is required as the molding material becomes larger. .

また、繊維強化成形材で製された構造体を粉砕した破砕片を結合剤を用いて成形した再生成形材では、再生成形材の曲げ強度を増加させようとすると、破砕片の最大長が大きい方が有利である。これは、長い破砕片が骨材として機能して再生成形材の曲げ強度の向上に寄与するからである。
ここで、繊維強化成形材を粉砕する際には、破砕片が細長いチップ状となるような破砕条件が設定される。例えば、破砕片の最大長が10mmを超え200mmまでの範囲となるように粉砕条件が設定される。しかし、このような粉砕条件を設定しても、粉砕で得られる破砕片には目的とする最大長を有するもの以外にも、例えば、最大長が10mm未満のものが多く含まれる。
Further, in a regenerated molded material obtained by molding a crushed piece obtained by pulverizing a structure made of a fiber reinforced molded material using a binder, the maximum length of the crushed piece is large when trying to increase the bending strength of the regenerated molded material. Is more advantageous. This is because the long crushed pieces function as aggregates and contribute to the improvement of the bending strength of the regenerated molded material.
Here, when the fiber-reinforced molding material is pulverized, the crushing conditions are set such that the crushed pieces are in the form of elongated chips. For example, the pulverization conditions are set so that the maximum length of the crushed pieces exceeds 10 mm and reaches 200 mm. However, even if such pulverization conditions are set, the crushed pieces obtained by pulverization include, for example, many crushed pieces having a maximum length of less than 10 mm, in addition to those having the target maximum length.

ところが、長い破砕片に短い破砕片が混在した集合体を結合剤で固めて成形すると、前記した理由により曲げ強度が低下する。一方、短い破砕片を除去するためには工程を追加する必要があり、手間が掛かるうえに除去した短い破砕片が廃棄物として排出されるという相反する問題があった。   However, when an aggregate in which short crushed pieces are mixed with long crushed pieces is hardened with a binder and molded, the bending strength is lowered for the reasons described above. On the other hand, in order to remove short crushed pieces, it is necessary to add a process, and there is a conflicting problem that the short crushed pieces are discharged as waste as well as time and effort.

本発明は、前記した事情に鑑みて提案されるもので、再生成形材の片面の引っ張り強度を向上させることにより、製造性を向上させつつ曲げ強度を向上させた再生成形材を提供することを目的としている。また、同時に提案される本発明は、その再生成形材の製造方法を提供することを目的としている。   The present invention is proposed in view of the above-described circumstances, and provides a reclaimed molded material having improved bending strength while improving manufacturability by improving the tensile strength of one side of the reclaimed molded material. It is aimed. Another object of the present invention proposed at the same time is to provide a method for producing the regenerated molded material.

前記目的を達成するために、本発明者らは次の技術的手段を講じた。
則ち、請求項1に記載の発明は、繊維強化成形材で製された構造体を破砕する工程と、得られた破砕物に結合剤を付着させる工程と、結合剤を付着させた破砕物の集合体を板状に整形して芯材を形成する工程と、形成された芯材の対向する一面または両面に補強繊維材を積層配置する工程と、積層された補強繊維材と芯材をプレス成形して圧密化しつつ一体化する工程とを備えた再生成形材の製造方法である。
In order to achieve the above object, the present inventors have taken the following technical means.
In other words, the invention described in claim 1 includes a step of crushing a structure made of fiber-reinforced molding material, a step of attaching a binder to the obtained crushed material, and a crushed material to which a binder is attached. Forming a core material by shaping the aggregate of the substrate, a step of laminating and arranging reinforcing fiber materials on one or both sides of the formed core material, and a laminated reinforcing fiber material and core material A method of manufacturing a regenerated molded material comprising a step of pressing and integrating while consolidation.

破砕物に結合剤を付着させる工程は、例えば、略水平の回転軸を有する回転槽に破砕物を入れ、回転槽を回転させつつ槽内に向けて結合剤を噴霧する方法や、攪拌羽根を備えた撹拌槽に破砕物を入れ、撹拌羽根を回転させて破砕物を移動させつつ槽内に向けて結合剤を噴霧する方法を採ることができる。   The step of attaching the binder to the crushed material is, for example, a method in which the crushed material is put in a rotating tank having a substantially horizontal rotating shaft, and the binder is sprayed toward the inside of the tank while rotating the rotating tank. A method of spraying the binder toward the inside of the tank while putting the crushed material into the equipped stirring tank and rotating the stirring blade to move the crushed material can be adopted.

結合剤としては、MDI(Methylene Diphenyl Isocyanate )などの樹脂接着剤を用いることができる。MDIの粘度は特に限定されないが、噴霧できる程度の粘度が好ましい。
MDIは水分と反応することで硬化しつつ接着力を発現する。このため、破砕物に水分を含有させるか、MDIに水分を含ませるか、あるいは、硬化時に水分を補給する必要がある。MDIを硬化させるための水の補給は、MDIの噴霧と同時に行う方法や、予め破砕物に水だけを付着させておく方法を採ることができる。
As the binder, a resin adhesive such as MDI (Methylene Diphenyl Isocyanate) can be used. Although the viscosity of MDI is not specifically limited, The viscosity which can be sprayed is preferable.
MDI reacts with moisture to develop adhesive force while curing. For this reason, it is necessary to add moisture to the crushed material, to add moisture to the MDI, or to supply moisture at the time of curing. The method of replenishing water for curing MDI can be performed simultaneously with the spraying of MDI, or the method in which only water is attached to the crushed material in advance.

破砕物に付着させるMDIの量は、破砕物の全表面積に依存するが、再生成形材の重量に対して3乃至50重量%が望ましい。結合剤の量が3重量%未満のときは、破砕物同士の接合が不充分となって再生成形材の強度が低下する。結合剤の量が50重量%を超えると、結合剤が溢れ出て見た目に悪く不経済である。   The amount of MDI attached to the crushed material depends on the total surface area of the crushed material, but is preferably 3 to 50% by weight with respect to the weight of the recycled molding material. When the amount of the binder is less than 3% by weight, the crushed materials are not sufficiently joined to each other, and the strength of the regenerated molded material is lowered. When the amount of the binder exceeds 50% by weight, the binder overflows and looks bad and uneconomical.

結合剤を付着させた破砕物の集合体を板状に整形して芯材を形成する工程、および、芯材の対向する一面または両面に補強繊維材を積層配置する工程は、連続成形方式あるいはバッチ成形方式によって行うことができる。
連続成形式では、連続的に補強繊維材を導きながら、MDIを付着させた破砕物を連続して定量ずつ供給していく方式が採られる。また、バッチ成形方式では、所定形状に裁断された補強繊維材を成形型に載置し、その補強繊維材の上にMDIを付着させた破砕物を均等にまく方法が採られる。
The step of forming the core material by shaping the aggregate of the crushed material with the binder attached thereto, and the step of laminating and arranging the reinforcing fiber material on one or both sides of the core material facing each other include a continuous molding method or It can be performed by a batch molding method.
In the continuous molding method, a method is used in which a crushed material to which MDI is attached is continuously supplied in a constant amount while guiding a reinforcing fiber material continuously. Further, in the batch molding method, a method is used in which a reinforcing fiber material cut into a predetermined shape is placed on a molding die and a crushed material in which MDI is adhered on the reinforcing fiber material is evenly spread.

積層された補強繊維材を芯材と共にプレス成形して一体化する工程は、バッチ成形方式の場合は、成形型に積層状態で配された補強繊維材と芯材をプレス機で加圧することにより行われる。また、連続成形方式の場合は、エンドレスベルトなどで補強繊維材と芯材を積層させつつ移動させながら、加圧ローラなどによって連続的に加圧成形する構成が採られる。   In the batch molding method, the process of integrating the laminated reinforcing fiber material with the core material by press molding is performed by pressing the reinforcing fiber material and the core material arranged in a laminated state on the mold with a press machine. Done. Further, in the case of the continuous molding method, a configuration in which pressure molding is continuously performed by a pressure roller or the like while the reinforcing fiber material and the core material are stacked and moved by an endless belt or the like is employed.

また、連続成形方式あるいはバッチ成形方式のいずれの成形方式を採る場合でも、プレス成形する際にはMDIの硬化を促進させるために加熱する必要がある。プレス成形に際しての加熱温度は、80乃至220℃の範囲が望ましい。加熱温度が80℃未満のときはMDIの硬化促進効果が低く、加熱温度が220℃を超えると再生成形材やMDIの変質や劣化が生じる。
加熱方法は、成形型を予め高温に加熱する方法や、プレス成形する際に、蒸気や電磁波などによって加熱する方法を採ることができる。
In addition, in the case of adopting either a continuous molding method or a batch molding method, it is necessary to heat in order to promote the hardening of MDI during press molding. The heating temperature during press molding is desirably in the range of 80 to 220 ° C. When the heating temperature is less than 80 ° C., the effect of accelerating the curing of MDI is low, and when the heating temperature exceeds 220 ° C., the regenerated molded material and the MDI are deteriorated and deteriorated.
As the heating method, a method in which the mold is heated to a high temperature in advance, or a method in which the mold is heated by steam or electromagnetic waves when press-molding can be employed.

本発明の製造方法によれば、プレス成形に際して、破砕物に付着させた結合剤(MDI)が滲み出て補強繊維材に付着しつつ硬化して一体化される。これにより、結合剤を不必要に付着させることなく再生成形材を製することが可能である。   According to the manufacturing method of the present invention, during press molding, the binder (MDI) adhered to the crushed material oozes out and is cured and integrated while adhering to the reinforcing fiber material. As a result, it is possible to produce a recycled molding material without unnecessarily adhering the binder.

請求項2に記載の発明は、請求項1に記載の発明において、構造体を破砕して得られる破砕物から細長いチップ状の破砕片を選別する工程を更に有する再生成形材の製造方法である。   Invention of Claim 2 is a manufacturing method of the recycle molding material which further has the process of classifying a slender chip-like fragment from the crushed material obtained by crushing a structure in the invention of Claim 1. .

本発明によれば、破砕物から細長いチップ状の破砕片を選別する工程により、最大長の短い破砕物や粉末状の破砕物を除去する。則ち、微細な破砕物や粉末状の破砕物を除去して細長いチップ状の破砕片だけを使用することにより、当該破砕片が芯材の内部で骨材として機能して再生成形材の曲げ強度を向上させることができる。
また、本発明によれば、細長いチップ状の破砕片を選別する際に、破砕片の長さに応じて分級する必要がなく、微細な破砕物や粉末状の破砕物を除去するだけで良いので、選別工程を簡略化することができ、しかも、残留廃材が少ない。
According to the present invention, a crushed material having a short maximum length or a crushed material in powder form is removed by a process of selecting elongated chip-shaped fragments from the crushed material. In other words, by removing fine crushed material and powdered crushed material and using only elongated chip-shaped crushed pieces, the crushed pieces function as aggregates inside the core material and bend the recycled molding material. Strength can be improved.
In addition, according to the present invention, when sorting the elongated chip-shaped fragments, it is not necessary to classify according to the length of the fragments, and only fine fragments and powdered fragments need to be removed. Therefore, the sorting process can be simplified, and the residual waste material is small.

請求項3に記載の発明は、請求項1または2に記載の発明において、補強繊維材に結合剤を含浸させる工程を更に有する再生成形材の製造方法である。   Invention of Claim 3 is a manufacturing method of the recycle molding material which further has the process of making the reinforcing fiber material impregnate a binder in the invention of Claim 1 or 2.

本発明によれば、補強繊維材に予め結合剤を含浸させることができ、再生成形材の表面の平滑さを向上させることができる。
補強繊維材に結合剤を含浸させるには、例えば、結合剤(MDI)の貯留槽に補強繊維材を浸した後に、当該補強繊維材を加圧ローラーを通過させて余分に付着した結合剤を搾り取る構成などを採ることにより、補強繊維材に均一に結合剤を含浸させることができる。
According to the present invention, the reinforcing fiber material can be impregnated with the binder in advance, and the smoothness of the surface of the recycled molded material can be improved.
In order to impregnate the reinforcing fiber material with the binder, for example, after immersing the reinforcing fiber material in a storage tank of the binder (MDI), the reinforcing fiber material is passed through the pressure roller, and the binder that has adhered extra is added. By adopting a squeezing configuration or the like, the reinforcing fiber material can be uniformly impregnated with the binder.

請求項4に記載の発明は、繊維強化成形材を破砕して得られるチップ状の破砕片を結合剤を用いて破砕片の集合体で成る所定の板状に形成した芯材と、当該芯材の対向する一面または両面に積層配置される結合剤を含浸した補強繊維材とを一体化して形成される再生成形材である。   According to a fourth aspect of the present invention, there is provided a core material in which a chip-shaped crushed piece obtained by crushing a fiber-reinforced molding material is formed into a predetermined plate shape composed of an aggregate of crushed pieces using a binder, and the core It is a regenerated molded material formed integrally with a reinforcing fiber material impregnated with a binder that is laminated on one or both sides of the material.

本発明によれば、芯材の一面に補強繊維材が積層された再生成形材では、補強繊維材が積層された側とは反対側の面に対して曲げ荷重を印加すると、再生成形材は補強繊維材が積層された面が凸となるように撓もうとする。このため、補強繊維材が積層された側の面には大きい引っ張り力が作用するが、補強繊維材の引っ張り応力によって撓みを阻止しつつ破断が防止され、再生成形材の曲げ強度、曲げ弾性率を向上させることができる。   According to the present invention, in the recycled molded material in which the reinforcing fiber material is laminated on one surface of the core material, when a bending load is applied to the surface opposite to the side on which the reinforcing fiber material is laminated, the recycled molded material is It tries to bend so that the surface on which the reinforcing fiber material is laminated becomes convex. For this reason, a large tensile force acts on the surface on which the reinforcing fiber material is laminated, but the tensile strength of the reinforcing fiber material prevents the bending while preventing the bending, and the bending strength and bending elastic modulus of the recycled molded material. Can be improved.

本発明の再生成形材は、例えば、鉄道のまくら木、あるいは、水槽や水路の覆い蓋などに適用可能である。補強繊維材を一面のみに積層した本発明の再生成形材を用いる際には、補強繊維材が積層された側とは反対側の面に曲げ荷重が印加されるように配することにより、前記したように、曲げ強度、曲げ弾性率を向上させることが可能となる。   The reclaimed molding material of the present invention can be applied to, for example, railway sleepers, water tanks, and water channel cover lids. When using the regenerated molding material of the present invention in which the reinforcing fiber material is laminated on only one side, by arranging the bending load to be applied to the surface opposite to the side on which the reinforcing fiber material is laminated, As described above, it is possible to improve the bending strength and the flexural modulus.

本発明において、破砕して再利用する繊維強化成形材(FRP)の素材は特に限定されないが、再生成形材を強度の要求される構造材として用いる場合は熱硬化性硬質樹脂が好ましい。
具体的には、ポリウレタン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、ビニルエステル樹脂、エポキシ樹脂、ユリア樹脂、メラミン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、アクリル樹脂などが挙げられ、これらの樹脂が助剤などを用いて発泡したものでも良い。特に軽量かつ高強度な再生成形材を得るためには硬質ポリウレタン樹脂の発泡体が好ましい。
In the present invention, the material of the fiber reinforced molding material (FRP) to be crushed and reused is not particularly limited. However, when the recycled molding material is used as a structural material requiring strength, a thermosetting hard resin is preferable.
Specific examples include polyurethane resins, phenol resins, unsaturated polyester resins, diallyl phthalate resins, vinyl ester resins, epoxy resins, urea resins, melamine resins, polyimide resins, polyamideimide resins, acrylic resins, and the like. May be foamed using an auxiliary agent. In particular, in order to obtain a light-weight and high-strength recycled molded material, a rigid polyurethane resin foam is preferred.

また、破砕する繊維強化成形材に含まれる繊維は、補強繊維としての機能を有していればその形状は限定されず、例えば、モノフィラメント、フィブリル化繊維素(髭状の繊維が突き出たもの)、織り糸などが挙げられる。また、補強繊維は、例えば、ガラス繊維だ
けでも良く、ガラス繊維に炭素繊維や合成繊維などの補強繊維が複合されたものでも良い。
In addition, the shape of the fiber contained in the fiber-reinforced molding material to be crushed is not limited as long as it has a function as a reinforcing fiber. For example, monofilaments and fibrillated fiber elements (those protruding from cocoon-like fibers) And weaving yarns. Further, the reinforcing fiber may be, for example, only glass fiber, or may be a composite of glass fiber and reinforcing fiber such as carbon fiber or synthetic fiber.

破砕する繊維強化成形材として、例えば、ガラス繊維で強化されたガラス繊維強化硬質合成樹脂発泡体で製された廃材を再利用する場合は、ガラス繊維の含有率が20乃至80重量%が望ましい。ガラス繊維の含有率が20重量%よりも低いものでは、破砕片の強度が低下して再生成形材の強度が不足するうえに、廃材の再利用率が低減する。ガラス繊維の含有率が80重量%を超えるものでは、破砕された破砕片の表面が硬質合成樹脂材で充分に覆われておらず、再生成形材の表面を平滑にするために多量の結合剤を要する。   As a fiber-reinforced molding material to be crushed, for example, when a waste material made of glass fiber-reinforced hard synthetic resin foam reinforced with glass fiber is reused, the glass fiber content is preferably 20 to 80% by weight. When the glass fiber content is lower than 20% by weight, the strength of the crushed pieces is reduced, the strength of the recycled molded material is insufficient, and the recycling rate of the waste material is reduced. When the glass fiber content exceeds 80% by weight, the surface of the crushed pieces is not sufficiently covered with the hard synthetic resin material, and a large amount of binder is used to smooth the surface of the recycled molding material. Cost.

芯材に積層する補強繊維材としては、例えば、ガラス繊維で強化されたガラスロービング、ガラスマット、ガラスクロスあるいはガラスチョップなどのいずれの形態の繊維材を用いても良い。また、ガラス繊維と有機繊維の複合マットや複合クロスなどを用いることもできる。更に、有機繊維だけのマットやクロスを用いることも可能である。   As the reinforcing fiber material laminated on the core material, any form of fiber material such as glass roving reinforced with glass fiber, glass mat, glass cloth or glass chop may be used. Further, a composite mat or composite cloth of glass fiber and organic fiber can be used. Furthermore, it is possible to use a mat or cloth made of only organic fibers.

請求項5に記載の発明は、請求項4に記載の発明において、芯材に含まれる破砕片の最大長の平均値が10乃至200mmである構成とされている。
破砕片の最大長の平均値が10mm未満のときは、前記したように、破砕片が芯材の内部で骨材として機能せず、芯材の引っ張り強度のみならず圧縮強度も不充分となる。また、破砕片の最大長の平均値が200mmを超えると、製造に際して破砕片の取り扱いが困難となり、製造効率が著しく低下する。芯材に用いる破砕片は、最大長の平均値が10乃至200mmのものを用いるのが望ましい。
According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the average value of the maximum lengths of the crushed pieces contained in the core material is 10 to 200 mm.
When the average maximum length of the crushed pieces is less than 10 mm, as described above, the crushed pieces do not function as aggregates inside the core material, and the compressive strength as well as the tensile strength of the core material is insufficient. . Moreover, when the average value of the maximum length of the crushed pieces exceeds 200 mm, handling of the crushed pieces becomes difficult during production, and the production efficiency is remarkably lowered. It is desirable to use a crushed piece used for the core material having an average maximum length of 10 to 200 mm.

また、本発明において、破砕片の最大幅の平均値は3乃至50mmが望ましく、破砕片の最大高さの平均値は1乃至20mmが望ましい。破砕片の最大幅あるいは最大高さの平均値が前記した値よりも短いと、破砕片の総表面積が増加して結合剤の必要量が増大する。破砕片の最大幅あるいは最大高さの平均値が前記した値を超えると、破砕片同士の総接合面積が減少して再生成形材の強度が低下する。   In the present invention, the average value of the maximum width of the crushed pieces is desirably 3 to 50 mm, and the average value of the maximum height of the crushed pieces is desirably 1 to 20 mm. If the average value of the maximum width or maximum height of the crushed pieces is shorter than the above-mentioned value, the total surface area of the crushed pieces increases and the required amount of binder increases. When the average value of the maximum width or the maximum height of the crushed pieces exceeds the above-described value, the total joint area between the crushed pieces is reduced and the strength of the regenerated molded material is lowered.

請求項6に記載の発明は、請求項4または5に記載の発明において、再生成形材に含まれる補強繊維材の重量が0.3乃至10重量%である構成とされている。
再生成形材に含まれる補強繊維材の重量が0.3重量%未満では、補強繊維材による引っ張り強度の向上が少なく曲げ強度の向上が見られない。また、再生成形材に含まれる補強繊維材の重量が10重量%を超えると、引っ張り強度の増大に伴って曲げ強度は向上するがコストが嵩む。
According to a sixth aspect of the present invention, in the invention according to the fourth or fifth aspect, the weight of the reinforcing fiber material contained in the recycled molded material is 0.3 to 10% by weight.
When the weight of the reinforcing fiber material contained in the regenerated molded material is less than 0.3% by weight, the tensile strength is not significantly improved by the reinforcing fiber material, and the bending strength is not improved. Moreover, when the weight of the reinforcing fiber material included in the regenerated molded material exceeds 10% by weight, the bending strength is improved with an increase in the tensile strength, but the cost is increased.

また、請求項3乃至5のいずれか1項に記載の発明において、芯材の比重は0.8乃至1.8であることが望ましい。
芯材の比重が0.8よりも低いときは、破砕片の圧密化の程度が低くなり、破砕片同士の接合面積が減少して再生成形材の強度が低下する。
また、芯材の比重が1.8を超えるときは、破砕片の圧密化が促進されて強度は向上するものの、大きな加圧力を要するために設備費が高騰する。則ち、芯材と補強繊維材とを積層した状態でプレス成形して圧密化するが、再生成形材の大型化に伴って大型でしかも高加圧力のプレス機を必要とし設備費が嵩む。
In the invention according to any one of claims 3 to 5, the specific gravity of the core material is desirably 0.8 to 1.8.
When the specific gravity of the core material is lower than 0.8, the degree of compaction of the crushed pieces becomes low, the joint area between the crushed pieces is reduced, and the strength of the recycled molded material is lowered.
Moreover, when the specific gravity of the core material exceeds 1.8, consolidation of the crushed pieces is promoted and the strength is improved, but a large pressing force is required, so that the equipment cost increases. That is, press molding is performed in a state where the core material and the reinforcing fiber material are laminated, and consolidation is performed. However, as the recycled molding material is increased in size, a large and high press machine is required, resulting in an increase in equipment costs.

請求項7に記載の発明は、繊維強化成形材で製された構造体を破砕する工程と、得られた破砕物に結合剤を付着させる工程と、破砕物の集合体に振動を加えて、最大長に応じて破砕物を集合体の高さ方向へ移動分布させつつ破砕物の長手方向を略同一方向へ配向させながら、破砕物による集合体が配向方向へ長尺となるように板状に整形する工程と、整形された破砕物の集合体をプレス成形して圧密化する工程とを備えた再生成形材の製造方法
である。
The invention according to claim 7 is a step of crushing a structure made of fiber reinforced molding material, a step of attaching a binder to the obtained crushed material, and applying vibration to the aggregate of crushed materials, While the crushed material is moved and distributed in the height direction of the aggregate according to the maximum length and the longitudinal direction of the crushed material is oriented in substantially the same direction, the aggregate of the crushed material is long in the orientation direction. And a step of press-molding a compacted aggregate of the crushed material and compacting the compacted material.

本発明において、破砕物に結合剤を付着させる工程は、前記請求項1に記載の発明と同様に、破砕物を入れた回転槽を回転させつつ槽内に結合剤を噴霧する方法や、撹拌槽に入れた破砕物を撹拌羽根で撹拌しつつ槽内に結合剤を噴霧する方法を採ることができる。   In the present invention, the step of adhering the binder to the crushed material is a method of spraying the binder into the tank while rotating the rotating tank containing the crushed material, as in the invention of claim 1, and stirring. A method of spraying the binder into the tank while stirring the crushed material in the tank with a stirring blade can be employed.

結合剤としては、MDI(Methylene Diphenyl Isocyanate )などの樹脂接着剤を用いることができ、る。MDIの粘度は特に限定されないが、噴霧できる程度の粘度が好ましい。
MDIは水分と反応することで硬化しつつ接着力を発現するので、破砕物に水分を含有させるか、MDIに水分を含ませるか、あるいは、硬化時に水分を補給する必要がある。MDIを硬化させるための水の補給は、MDIの噴霧と同時に行う方法や、予め破砕物に水だけを付着させておく方法を採ることができる。
As the binder, a resin adhesive such as MDI (Methylene Diphenyl Isocyanate) can be used. Although the viscosity of MDI is not specifically limited, The viscosity which can be sprayed is preferable.
Since MDI develops adhesive force while curing by reacting with moisture, it is necessary to contain moisture in the crushed material, to contain moisture in MDI, or to supply moisture at the time of curing. The method of replenishing water for curing MDI can be performed simultaneously with the spraying of MDI, or the method in which only water is attached to the crushed material in advance.

また、破砕物に付着させるMDIの量は、破砕物の全表面積に依存するが、再生成形材の重量に対して3乃至50重量%が望ましい。結合剤の量が3重量%未満のときは、破砕物同士の接合が不充分となって成形品の強度が低下する。結合剤の量が50重量%を超えると、結合剤が溢れ出て見た目に悪く不経済である。   The amount of MDI attached to the crushed material depends on the total surface area of the crushed material, but is preferably 3 to 50% by weight with respect to the weight of the regenerated molded material. When the amount of the binder is less than 3% by weight, the crushed materials are not sufficiently joined to each other and the strength of the molded product is lowered. When the amount of the binder exceeds 50% by weight, the binder overflows and looks bad and uneconomical.

本発明において、破砕物に振動を与える方法は種々の形態を採ることができる。例えば、破砕物の集合体を収容成形する成形型全体を振動させる方法や、成形型の内部に振動装置を配して、当該振動装置によって破砕物を振動させる方法などを採ることができる。
破砕物に振動を与えることにより、小さな破砕物はより大きな破砕物の隙間を通って下方へ移動する。これにより、破砕物の集合体の下方には最大長の短い破砕物を多く分布させ、上方には最大長の長い破砕物を多く分布させることが可能となる。
また、破砕物に振動を与えることによって、同時に、破砕物の長手方向を再生成形材の長手方向に引き揃えて配向させることも可能である。
In the present invention, the method of applying vibration to the crushed material can take various forms. For example, a method of vibrating the entire mold for accommodating and molding the aggregate of crushed materials, a method of arranging a vibration device inside the mold, and vibrating the crushed material by the vibration device can be employed.
By applying vibration to the crushed material, the small crushed material moves downward through the gaps of the larger crushed material. Thereby, it is possible to distribute many crushed materials having a short maximum length below the aggregate of crushed materials and to distribute many crushed materials having a long maximum length upward.
In addition, by applying vibration to the crushed material, it is possible to simultaneously align the longitudinal direction of the crushed material with the longitudinal direction of the recycled molded material.

本発明において、破砕物に印加される振動の周波数は0.1Hz乃至30Hzの範囲が良い。破砕物に印加する振動の周波数が0.1Hz未満、または、30Hzを超えると、振動によって破砕物を高さ方向へ移動させる効果が少なく、最大長の異なる破砕物を効果的に移動させることができない。破砕物に印加する振動の周波数は0.1Hz乃至30Hzの範囲が良く1Hz乃至10Hzの範囲が最適である。   In the present invention, the frequency of vibration applied to the crushed material is preferably in the range of 0.1 Hz to 30 Hz. If the frequency of vibration applied to the crushed material is less than 0.1 Hz or exceeds 30 Hz, there is little effect of moving the crushed material in the height direction due to vibration, and the crushed material having a different maximum length can be effectively moved. Can not. The frequency of vibration applied to the crushed material is preferably in the range of 0.1 Hz to 30 Hz, and the range of 1 Hz to 10 Hz is optimal.

整形された破砕物の集合体をプレス成形して圧密化する工程は、バッチ成形方式の場合は、成形型に配された破砕物の集合体をプレス機で加圧する構成が採られる。また、連続成形方式の場合は、エンドレスベルトで破砕物の集合体を移動させつつ、加圧ローラなどによって連続的に加圧する構成が採られる。   In the batch molding method, the step of pressing and compacting the shaped crushed material aggregate is configured to press the crushed material aggregate placed in the mold with a press. In the case of the continuous molding method, a configuration is adopted in which the aggregate of crushed materials is moved by an endless belt and is continuously pressurized by a pressure roller or the like.

また、連続成形方式あるいはバッチ成形方式のいずれの成形方式を採る場合でも、プレス成形する際に加熱してMDIの硬化を促進させる必要がある。プレス成形に際する加熱温度は、80乃至220℃の範囲が望ましい。加熱温度が80℃未満のときは、MDIの硬化促進効果が低く、加熱温度が220℃を超えると、再生成形材が変質したり劣化を呈する。
加熱方法は、成形金型を予め高温に加熱する方法や、プレス成形する際に、蒸気や電磁波などによって加熱する方法を採ることができる。
In addition, in the case of adopting either a continuous molding method or a batch molding method, it is necessary to promote the curing of MDI by heating at the time of press molding. The heating temperature for press molding is desirably in the range of 80 to 220 ° C. When the heating temperature is less than 80 ° C., the effect of accelerating the curing of MDI is low. When the heating temperature exceeds 220 ° C., the recycled molded material is altered or deteriorated.
As a heating method, a method of heating a molding die to a high temperature in advance, or a method of heating by steam or electromagnetic waves when press molding can be adopted.

請求項8に記載の発明は、請求項7に記載の発明において、構造体を破砕して得られる破砕物から細長いチップ状の破砕片を選別する工程を更に有する再生成形材の製造方法である。   The invention according to claim 8 is the method for producing a regenerated molding material further comprising the step of selecting elongated chip-shaped fragments from the crushed material obtained by crushing the structure in the invention according to claim 7. .

本発明によれば、破砕物から細長いチップ状の破砕片を選別する工程により、粉末状の破砕物や最大長の短い破砕物を除去する。則ち、微細な破砕物や粉末状の破砕物を除去して細長いチップ状の破砕片だけを使用することにより、当該破砕片が芯材において骨材として機能して再生成形材の曲げ強度を向上させることができる。
また、本発明によれば、細長いチップ状の破砕片を選別する際に、破砕片の長さに応じて分級する必要がない。これにより、微細な破砕物や粉末状の破砕物を除去するだけで良く、選別工程を簡略化しつつしかも残留廃材を減少させることが可能である。
According to the present invention, the powdered crushed material and the shortest crushed material of the maximum length are removed by the process of selecting elongated chip-shaped crushed pieces from the crushed material. In other words, by removing fine crushed material and powdered crushed material and using only elongated chip-shaped crushed pieces, the crushed pieces function as aggregates in the core material, and the bending strength of the recycled molded material is increased. Can be improved.
Further, according to the present invention, it is not necessary to classify according to the length of the crushed pieces when sorting the elongated chip-shaped crushed pieces. Thereby, it is only necessary to remove fine crushed material and powdered crushed material, and it is possible to reduce the residual waste while simplifying the sorting process.

請求項9に記載の発明は、繊維強化成形材を破砕した細長いチップ状の破砕片を結合剤を用いて破砕片の集合体で成る所定の板体に成形した再生成形材であって、破砕片は最大長が短い範囲に属する短破砕片の集合と最大長が長い範囲に属する長破砕片の集合で構成されると共に、破砕片はその長手方向を再生成形材の長手方向へ向けて引き揃えて配向されており、再生成形材の一方の面に近接する領域には短破砕片を多く分布させ、再生成形材の他方の面に近接する領域には短破砕片を少なく分布させた構成とされている。   The invention according to claim 9 is a regenerated molding material in which elongated chip-shaped crushed pieces obtained by pulverizing a fiber reinforced molding material are molded into a predetermined plate body composed of aggregates of crushed pieces using a binder. Each piece is composed of a set of short crushed pieces belonging to the shortest maximum length and a set of long crushed pieces belonging to the longest maximum length, and the crushed pieces are pulled in the longitudinal direction of the recycled molding material. A structure in which a large number of short crushed pieces are distributed in a region close to one surface of the regenerated molded material and a small amount of short crushed pieces are distributed in a region close to the other surface of the regenerated molded material. It is said that.

ここで、破砕片を結合剤で固めた成形材は、過大な曲げ荷重を印加すると、荷重を印加する面とは反対面の引っ張り応力によって破断が発生する。
長破砕片の集合体を加圧成形して得られる再生成形材では、短破砕片を用いる場合に比べて破砕片の骨材としての機能による引っ張り応力が高く、これにより、曲げ荷重に伴う引っ張りの弾性率及び引っ張り破断強度が大きい。
一方、曲げ荷重に伴う圧縮の弾性率及び圧縮の破壊強度については、短破砕片あるいは長破砕片のいずれを使用する場合でも大きな差は生じない。
Here, when an excessive bending load is applied to the molding material in which the crushed pieces are hardened with a binder, the fracture occurs due to the tensile stress on the surface opposite to the surface to which the load is applied.
Recycled molded material obtained by pressure-molding an assembly of long crushed pieces has a higher tensile stress due to the function of the crushed pieces as an aggregate than when short crushed pieces are used. The elastic modulus and tensile strength at break are large.
On the other hand, there is no significant difference between the elastic modulus of compression accompanying the bending load and the fracture strength of compression, regardless of whether short shredded pieces or long shredded pieces are used.

本発明によれば、再生成形材の一方の面側には短破砕片を多く分布させ、他方の面側には短破砕片を少なく分布させる。
これにより、再生成形材の長破砕片が多く分布する面では、大きな引っ張り弾性率及び引っ張りの破断強度を呈すると共に、再生成形材の短破砕片が多く分布する面では、圧縮の弾性率及び圧縮の破壊強度を維持することができる。
これにより、本発明の再生成形材を短破砕片が多く分布する面に曲げ荷重を印加させるように敷設して用いることにより、再生成形材の曲げ弾性率及び曲げ破壊強度を向上させることが可能となる。
According to the present invention, a large amount of short crushed pieces are distributed on one surface side of the regenerated molded material, and a small amount of short crushed pieces are distributed on the other surface side.
As a result, a large tensile elastic modulus and tensile breaking strength are exhibited on the surface where the long crushed pieces of the regenerated molded material are distributed, and a compression elastic modulus and a compressive force are exhibited on the surface where many of the short crushed pieces of the regenerated molded material are distributed. The breaking strength of can be maintained.
As a result, it is possible to improve the bending elastic modulus and bending fracture strength of the recycled molded material by laying and using the recycled molded material of the present invention so that a bending load is applied to the surface where many short fragments are distributed. It becomes.

本発明において、破砕される繊維強化成形材の廃材は、前記請求項4に記載の発明と同様に、繊維強化硬質合成樹脂発泡体を用いることができる。硬質合成樹脂材としては、特には問わないが、例えば、ウレタン樹脂やポリエステル樹脂、ビニルエステル樹脂などを用いた廃材を再利用することができる。
ガラス繊維強化硬質合成樹脂発泡体で製された廃材を再利用する場合は、ガラス繊維の含有率が20乃至80重量%が望ましい。
ガラス繊維の含有率が20重量%未満では、破砕片の強度が低下して再生成形材の強度が小さくなるうえに、廃材の再利用度が低下する。ガラス繊維の含有率が80重量%を超えると、破砕片の表面が硬質合成樹脂で充分に覆われていないために結合剤を多量に要する。
In the present invention, as the waste material of the fiber-reinforced molding material to be crushed, a fiber-reinforced hard synthetic resin foam can be used as in the invention described in claim 4. The hard synthetic resin material is not particularly limited. For example, waste materials using urethane resin, polyester resin, vinyl ester resin, etc. can be reused.
When the waste material made of glass fiber reinforced rigid synthetic resin foam is reused, the glass fiber content is preferably 20 to 80% by weight.
When the glass fiber content is less than 20% by weight, the strength of the crushed pieces is reduced, the strength of the recycled molded material is reduced, and the degree of reuse of the waste material is reduced. If the glass fiber content exceeds 80% by weight, a large amount of binder is required because the surface of the crushed pieces is not sufficiently covered with the hard synthetic resin.

請求項10に記載の発明は、請求項9に記載の再生成形材において、短破砕片は最大長の平均値が1乃至10mmであり、長破砕片は最大長の平均値が10mmを超え200mmまでであり、再生成形材の厚さの略中央から一方の面に至る領域は、短破砕片の分布量が全破砕片に対して30重量%以上であると共に、再生成形材の厚さの略中央から他方の面に至る領域は、短破砕片の分布量が全破砕片に対して10重量%以下である構成とされている。   According to a tenth aspect of the present invention, in the recycled molded material according to the ninth aspect, the short crushed piece has an average value of the maximum length of 1 to 10 mm, and the long crushed piece has an average value of the maximum length exceeding 10 mm and 200 mm. In the region from the approximate center of the thickness of the regenerated molded material to one side, the distribution amount of the short crushed pieces is 30% by weight or more with respect to the total crushed pieces, The region extending from the approximate center to the other surface is configured such that the distribution amount of the short crushed pieces is 10% by weight or less with respect to the entire crushed pieces.

本発明において、再生成形材の厚さの略中央から一方の面に至る領域において、短破砕片の分布量を全破砕片に対して30重量%以上としたのは、この領域において短破砕片の量が30重量%よりも低下すると、曲げ荷重に伴う圧縮強度が低下するためである。
また、再生成形材の厚さの略中央から他方の面に至る領域において、短破砕片の分布量を全破砕片に対して10重量%以下としたのは、この領域において短破砕片の量が10重量%を超えると、これに伴って、長破砕片の量が低下し、このために、曲げ荷重に伴う引っ張り弾性率及び引っ張り破断強度が低下するからである。この領域における短破砕片の量は低いほど良く、0%でも良い。
In the present invention, in the region from the approximate center of the thickness of the regenerated molded material to one surface, the distribution amount of the short crushed pieces is 30% by weight or more based on the total crushed pieces. This is because the compressive strength associated with the bending load is reduced when the amount is less than 30% by weight.
In addition, in the region from the approximate center of the thickness of the regenerated molded material to the other surface, the distribution amount of the short crushed pieces is 10% by weight or less with respect to the total crushed pieces. This is because if the amount exceeds 10% by weight, the amount of long crushed pieces decreases accordingly, and the tensile modulus and tensile breaking strength associated with the bending load decrease accordingly. The lower the amount of short fragments in this region, the better and may be 0%.

ここで、再生成形材の内部において、短破砕片の分布量を規制する厚さ方向の領域は、各面から厚さ方向に5乃至25%の領域とするのが望ましい。
この領域における短破砕片の量を前記した量に規制することにより、一方の面側には短破砕片を多く(重量的に多く)分布させ、逆に、他方の面側には長破砕片を多く(重量的に多く)分布させることができる。これにより、再生成形材の表面に破砕片が位置することを防止して表面の平滑性を維持しつつ、しかも、再生成形材の厚さ方向の中央からできるだけ離れた部位に破砕片を分布させることができ、再生成形材の断面二次モーメント及び曲げ剛性を効果的に増大させることが可能となる。
Here, it is desirable that the region in the thickness direction that regulates the distribution amount of the short crushed pieces in the recycled molded material is a region of 5 to 25% in the thickness direction from each surface.
By restricting the amount of short shredded pieces in this region to the above-mentioned amount, a large amount (short in weight) of short shredded pieces are distributed on one side, and conversely, long shredded pieces are placed on the other side. Can be distributed in a large amount (by weight). This prevents the fragments from being located on the surface of the regenerated molded material, maintains the smoothness of the surface, and distributes the fragments at a position as far as possible from the center in the thickness direction of the regenerated molded material. It is possible to effectively increase the cross-sectional second moment and the bending rigidity of the regenerated molded material.

本発明の再生成形材を、例えば、水槽の覆蓋あるいは鉄道用のまくら木や歩行板などに用いる場合、短破砕片が多く含まれる面が荷重の印加される側となるように、則ち、短破砕片が多く含まれる面が上面となるように配置して使用する。これにより、引っ張り弾性率及び引っ張り破断強度が増大し、再生成形材の曲げ強度、曲げ弾性率を向上させることができる。   When using the reclaimed molding material of the present invention for, for example, a water tank cover or a railroad sleeper or a walking board, a surface containing a large amount of short shredded pieces becomes a side to which a load is applied, that is, a short It is arranged and used so that the surface containing a lot of fragments is the upper surface. Thereby, a tensile elasticity modulus and a tensile breaking strength increase, and the bending strength and bending elastic modulus of a regenerated molding material can be improved.

本発明において、前記したMDIを結合剤として用いる場合に、MDIの破砕片への付着量は破砕片の表面積に依存するが、破砕片の重量に対して3乃至50重量%が望ましい。MDIの量が3重量%未満のときは接着が不十分で再生成形材の強度が低下し、MDIの量が50重量%を超えると、溢れ出て不経済的である。   In the present invention, when the above-mentioned MDI is used as a binder, the amount of MDI attached to the crushed pieces depends on the surface area of the crushed pieces, but is preferably 3 to 50% by weight with respect to the weight of the crushed pieces. When the amount of MDI is less than 3% by weight, the adhesion is insufficient and the strength of the recycled molding material is lowered, and when the amount of MDI exceeds 50% by weight, it overflows and is uneconomical.

本発明において、短破砕片の最大長の平均値を1乃至10mmとしたのは、短破砕片の最大長の平均値が1mm未満のときは、チップの表面積が大きくなりすぎ、結合剤(MDI)をより多く必要とするからである。また、長破砕片の最大長の平均値を10mmを超え200mmまでとしたのは、長破砕片の最大長の平均値が10mm以下のときは曲げ荷重に伴う引っ張り応力が不足するためであり、長破砕片の最大長の平均値が200mmを超えると、破砕片の扱いが困難となり製造効率が低下するためである。   In the present invention, the average value of the maximum length of the short crushed pieces is set to 1 to 10 mm. When the average value of the maximum length of the short crushed pieces is less than 1 mm, the surface area of the chip becomes too large, and the binder (MDI ) Is required more. Moreover, the reason why the average value of the maximum length of the long crushed pieces exceeds 200 mm and is up to 200 mm is that when the average value of the maximum length of the long crushed pieces is 10 mm or less, the tensile stress associated with the bending load is insufficient. This is because if the average value of the maximum lengths of the long crushed pieces exceeds 200 mm, handling of the crushed pieces becomes difficult and the production efficiency decreases.

また、本発明において、短破砕片及び長破砕片は、共に、破砕片の最大幅の平均値は0.5乃至50mmが望ましく、破砕片の最大高さ(厚さ)の平均値は0.5乃至20mmが望ましい。
破砕片の最大幅や最大高さの平均値が前記した値よりも短くなると、破砕片の表面積が増加して結合剤の必要量が増大する。破砕片の最大幅や最大高さの平均値が前記した値よりも長くなると、破砕片同士の接合面積が低下して再生成形材の強度が低減する。
In the present invention, for both the short crushed pieces and the long crushed pieces, the average value of the maximum width of the crushed pieces is preferably 0.5 to 50 mm, and the average value of the maximum height (thickness) of the crushed pieces is 0.00. 5 to 20 mm is desirable.
When the average value of the maximum width and maximum height of the crushed pieces becomes shorter than the above-described values, the surface area of the crushed pieces increases and the required amount of binder increases. When the average value of the maximum width and the maximum height of the crushed pieces is longer than the above-described values, the joint area between the crushed pieces is reduced, and the strength of the recycled molded material is reduced.

また、請求項9または10に記載の発明において、再生成形材の比重は0.8乃至1.8であることが望ましい。
再生成形材の比重が0.8よりも低いときは、破砕片の圧密化の程度が低くなり、破砕片同士の接合面積が減少して再生成形材の強度が低下する。
また、再生成形材の比重が1.8を超えるときは、破砕片の圧密化が促進されて強度は向上するものの、大きな加圧力を要するために設備費が高騰する。則ち、破砕片の集合体
をプレス成形して圧密化する際に大きな加圧力を必要とするために大型のプレス機を要し、設備費が嵩む。
In the invention according to claim 9 or 10, the specific gravity of the recycled molded material is preferably 0.8 to 1.8.
When the specific gravity of the recycled molded material is lower than 0.8, the degree of consolidation of the crushed pieces is reduced, the bonding area between the crushed pieces is reduced, and the strength of the recycled molded material is lowered.
Further, when the specific gravity of the regenerated molded material exceeds 1.8, consolidation of the crushed pieces is promoted and the strength is improved, but a large pressing force is required, so that the equipment cost increases. In other words, a large pressing machine is required in order to require a large pressing force when pressing and compacting an aggregate of crushed pieces, which increases equipment costs.

請求項11に記載の発明は、請求項9または10に記載の再生成形材同士を接合した再生成形材であって、短破砕片が多く分布する領域に近接する面同士を接合して形成される再生成形材である。
則ち、本発明は、請求項9または10に記載の再生成形材同士を接合して新たな再生成形材として使用するものである。
The invention described in claim 11 is a recycled molded material obtained by bonding the recycled molded materials according to claim 9 or 10, and is formed by bonding surfaces close to a region where a lot of short crushed pieces are distributed. Recycled molding material.
That is, this invention joins the reclaimed molding materials of Claim 9 or 10, and uses them as a new recycle molding material.

本発明によれば、短破砕片の分布量が多い面同士を貼り合わせることにより、新たな再生成形材は長破砕片の分布量が多い面が外方に位置する。従って、新たな再生成形材は対向する両面側に近接する領域の引っ張り弾性率及び引っ張り破断強度が増大し、新たな再生成形材の曲げ強度、曲げ弾性率を向上させることが可能となる。
再生成形材同士を貼り合わせる接着剤としては特に限定されないが、例えば、前記したMDI、あるいは、エポキシ系接着剤やウレタン系接着剤などが挙げられる。
According to the present invention, by sticking together the surfaces with a large amount of distribution of short crushed pieces, the surface of the new recycled molded material with a large amount of distribution of long crushed pieces is located outward. Therefore, the new regenerated molded material has an increased tensile elastic modulus and tensile breaking strength in a region close to both opposing sides, and can improve the bending strength and the flexural modulus of the new regenerated molded material.
Although it does not specifically limit as an adhesive agent which bonds reproduction | regeneration molding materials together, For example, an above-described MDI, an epoxy-type adhesive agent, a urethane type adhesive agent, etc. are mentioned, for example.

請求項1〜3に記載の発明によれば、破砕片の分級や配向および高圧による圧密化を行うことなく、曲げ強度を向上させた再生成形材を効率良く製造することが可能となる。
請求項4〜6に記載の発明によれば、補強繊維材を積層するだけで、曲げ強度、曲げ弾性率を著しく向上させた再生成形材を形成することが可能となる。
請求項7,8に記載の発明によれば、振動によって破砕片の分布や配向方向を整えることにより、曲げ強度を向上させた再生成形材を効率良く製造することが可能となる。
請求項9,10に記載の発明によれば、再生成形材の一方の面に長破砕片を多く分布させることによって引っ張り強度を向上させることができ、曲げ強度、曲げ弾性率を向上させた再生成形材を提供することが可能となる。
請求項11に記載の発明によれば、請求項9,10に記載の再生成形材同士を接合するだけで、一層曲げ強度を向上させた再生成形材とすることが可能となる。
According to the first to third aspects of the present invention, it is possible to efficiently produce a recycled molded material with improved bending strength without performing classification and orientation of the crushed pieces and consolidation by high pressure.
According to the inventions described in claims 4 to 6, it is possible to form a regenerated molded material having remarkably improved bending strength and bending elastic modulus simply by laminating reinforcing fiber materials.
According to the seventh and eighth aspects of the present invention, it is possible to efficiently manufacture a regenerated molded material with improved bending strength by adjusting the distribution and orientation direction of the crushed pieces by vibration.
According to the ninth and tenth aspects of the present invention, it is possible to improve the tensile strength by distributing a large number of long crushed pieces on one surface of the recycled molded material, and to improve the bending strength and the bending elastic modulus. It becomes possible to provide a molding material.
According to the eleventh aspect of the present invention, it is possible to obtain a reclaimed molding material having a further improved bending strength by simply joining the reclaimed molding materials of the ninth and tenth aspects.

以下に、図面を参照して本発明の実施形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1実施形態)
図1は本発明に係る第1実施形態の再生成形材17の製造工程を示す説明図、図2は再生成形材17に荷重を印加した状態を示す説明図である。本実施形態では、再生成形材をバッチ成形方式で製造するものであり、図1,2を参照して製造方法を説明する。
(First embodiment)
FIG. 1 is an explanatory view showing a manufacturing process of the regenerated molded material 17 according to the first embodiment of the present invention, and FIG. 2 is an explanatory view showing a state in which a load is applied to the regenerated molded material 17. In the present embodiment, the regenerated molded material is manufactured by a batch molding method, and the manufacturing method will be described with reference to FIGS.

本実施形態では、再利用する繊維強化成形材の廃材として、ウレタン樹脂発泡体をガラス長繊維で強化したガラス長繊維強化硬質ウレタン樹脂発泡体を素材とする合成木材(積水化学工業株式会社製 エスロンネオランバーFFU74)を用いた。この合成木材のウレタン樹脂発泡体とガラス長繊維との比率は、いずれも50重量%である。   In this embodiment, as a waste material of a fiber-reinforced molding material to be reused, synthetic wood (Sekisui Chemical Co., Ltd., made by Sekisui Chemical Co., Ltd.) made of a long glass fiber reinforced rigid urethane resin foam obtained by reinforcing a urethane resin foam with glass long fibers. Neo Lumber FFU 74) was used. The ratio between the synthetic resin urethane resin foam and the long glass fiber is 50% by weight.

まず、繊維強化成形材の廃材の破砕工程では、上記合成木材を2軸破砕機を用いて破砕した。そして、破砕物をウェーブローラ方式の分級機に投入して分級し、図1(a)に示すように、最大長が10〜80mm、最大幅が3〜10mm、最大高さが1〜5mmの細長いチップ状の破砕片10を選別した。選別した破砕片10の密度は0.5g/cm3 〜0.8g/cm3 であった。   First, in the step of crushing the waste material of the fiber reinforced molding material, the synthetic wood was crushed using a biaxial crusher. Then, the crushed material is put into a wave roller type classifier and classified, and as shown in FIG. 1 (a), the maximum length is 10 to 80 mm, the maximum width is 3 to 10 mm, and the maximum height is 1 to 5 mm. The elongated chip-shaped fragments 10 were selected. The density of the crushed pieces 10 thus selected was 0.5 g / cm 3 to 0.8 g / cm 3.

次に、破砕片10への結合剤の付着工程では、破砕片10に予め水を含ませ、図1(b)に示すように、ドラムブレンダー11内に破砕片10と共に結合剤(MDI:Methylen
e Diphenyl Isocyanate.住化バイエルウレタン株式会社製「スミジュール44V10」)を破砕片の総量に対して20重量%噴霧し、回転撹拌して破砕片10の表面に結合剤を均一に塗布した。破砕片10に予め含ませる水の量は、結合剤の重量の50重量%とした。
Next, in the step of attaching the binder to the crushed pieces 10, water is preliminarily included in the crushed pieces 10, and as shown in FIG. 1B, the binder (MDI: Methylen) together with the crushed pieces 10 in the drum blender 11.
e Diphenyl Isocyanate. “Sumijour 44V10” manufactured by Sumika Bayer Urethane Co., Ltd. was sprayed at 20 wt% with respect to the total amount of the crushed pieces, and the mixture was uniformly applied to the surface of the crushed pieces 10 by rotating and stirring. The amount of water previously contained in the crushed pieces 10 was 50% by weight of the weight of the binder.

芯材を形成する工程では、図1(c)に示すように、結合剤を付着させた破砕片10をベルトコンベア13を用いて金型12に供給して均一に敷き詰めた。金型12に敷き詰める破砕片10は特定の方向に配向させずにランダムとした。そして、図1(d)に示すように、金型12に敷き詰めた破砕片10の集合体をプレス装置14に挿入して、温度150℃、圧力10kg/cm2で15分間加熱しつつ加圧した。そして、図1(e)に示すように、破砕片10の集合体を予備成形した芯材15を得た。その後、予備成形された芯材15を金型12から脱型した。   In the step of forming the core material, as shown in FIG. 1 (c), the crushed pieces 10 with the binder attached thereto were supplied to the mold 12 using the belt conveyor 13 and spread uniformly. The crushed pieces 10 spread on the mold 12 were random without being oriented in a specific direction. And as shown in FIG.1 (d), the aggregate | assembly of the crushing piece 10 spread | laid on the metal mold | die 12 was inserted in the press apparatus 14, and it pressurized while heating at 150 degreeC and the pressure of 10 kg / cm2 for 15 minutes. . And as shown in FIG.1 (e), the core material 15 which preformed the aggregate | assembly of the crushing piece 10 was obtained. Thereafter, the preformed core material 15 was removed from the mold 12.

次に、補強繊維材16に結合剤を付着させる工程では、補強繊維材16を結合剤の貯留槽(不図示)に浸積した後、搾りローラー(不図示)で余分な結合剤を絞り取った。補強繊維材16は、コンティニュアスストランドマットの目付450g/m2 ものを使用した。 Next, in the step of attaching the binder to the reinforcing fiber material 16, after the reinforcing fiber material 16 is immersed in a binder storage tank (not shown), the excess binder is squeezed out by a squeezing roller (not shown). It was. The reinforcing fiber material 16 used was a continuous strand mat having a basis weight of 450 g / m 2 .

結合剤を含浸させた補強繊維材16を芯材15に積層配置する工程は次のように行った。則ち、図1(e)に示すように、芯材15の一面のみに補強繊維材16を積層する構成では、芯材15の上面に結合剤を含浸させた補強繊維材16を載置した。また、芯材15の両面に補強繊維材16を積層する構成では、結合剤を含浸させた補強繊維材16の上に芯材15を載置し、更に、芯材15の上に結合剤を含浸させた補強繊維材16をサンドイッチ状に載置した。   The step of laminating and arranging the reinforcing fiber material 16 impregnated with the binder on the core material 15 was performed as follows. That is, as shown in FIG. 1E, in the configuration in which the reinforcing fiber material 16 is laminated only on one surface of the core material 15, the reinforcing fiber material 16 impregnated with the binder is placed on the upper surface of the core material 15. . Further, in the configuration in which the reinforcing fiber material 16 is laminated on both surfaces of the core material 15, the core material 15 is placed on the reinforcing fiber material 16 impregnated with the binder, and further the binder is put on the core material 15. The impregnated reinforcing fiber material 16 was placed in a sandwich shape.

次いで、図1(f)に示すように、芯材15の一面または両面に補強繊維材16を積層配置したものをプレス装置14に挿入して加熱しつつ加圧して、図1(g)に示すように、芯材15に補強繊維材16を積層して一体化した再生成形材17を得た。
成形に際しては、補強繊維材16を芯材15の一面および両面に積層した各々について、プレス装置の加圧力を変えて比重が1.0と1.2の再生成形材17の試作例1〜4を得た。得られた再生成形材17の寸法は、長さ1000mm、幅200mm、厚さ30mmであった。
また、比較例として、補強繊維材16を積層しない再生成形材を比重が1.0と1.2となるように成形して比較例1,2を得た。
Next, as shown in FIG. 1 (f), the one in which the reinforcing fiber material 16 is laminated on one or both sides of the core material 15 is inserted into the press device 14 and pressurized while being heated. As shown, a regenerated molded material 17 was obtained by laminating a reinforcing fiber material 16 on the core material 15 and integrating them.
At the time of molding, each of the reinforcing fiber materials 16 laminated on one side and both sides of the core material 15 is produced by changing the pressing force of the pressing device and changing the specific gravity to 1.0 and 1.2. Got. The dimensions of the obtained recycled molding material 17 were 1000 mm in length, 200 mm in width, and 30 mm in thickness.
Further, as comparative examples, comparative examples 1 and 2 were obtained by molding a regenerated molded material not laminated with the reinforcing fiber material 16 so that the specific gravity was 1.0 and 1.2.

試作した再生成形材17の評価は、再生成形材17から長さ500mm、幅50mm、厚さ30mmの試験片を切り出して3点曲げ試験により実施した。3点曲げ試験は、図2(a)に示すように、芯材15の一方の面に補強繊維材16を積層した再生成形材17と、図2(b)に示すように、芯材15の両面に補強繊維材16を積層した再生形成材17について行った。また、三点曲げ試験における支点S,S間のスパンは、図2(a),(b)に示すように、420mm、荷重Fの印加速度は15mm/minで行った。尚、芯材の15の一方の面のみに補強繊維材16を積層した再生形成材17の試験に際しては、図2(a)に示すように、補強繊維材16が積層された面が荷重が印加される面とは逆となるようにした。試験結果は表1に示す通りである。   Evaluation of the prototype of the regenerated molded material 17 was carried out by cutting out a test piece having a length of 500 mm, a width of 50 mm, and a thickness of 30 mm from the regenerated molded material 17 by a three-point bending test. As shown in FIG. 2 (a), the three-point bending test includes a regenerated molding material 17 in which a reinforcing fiber material 16 is laminated on one surface of the core material 15, and a core material 15 as shown in FIG. 2 (b). The reproduction forming material 17 in which the reinforcing fiber material 16 was laminated on both sides was performed. Further, as shown in FIGS. 2A and 2B, the span between the fulcrums S and S in the three-point bending test was 420 mm, and the load F was applied at a speed of 15 mm / min. In the test of the regenerated material 17 in which the reinforcing fiber material 16 is laminated only on one surface of the core material 15, as shown in FIG. 2 (a), the surface on which the reinforcing fiber material 16 is laminated has a load. The surface to be applied was reversed. The test results are as shown in Table 1.

Figure 2006198809
Figure 2006198809

芯材15の下面に補強繊維材16を積層した再生成形材17では、表1および図2(a)から分かるように、上面に印加される荷重Fによって再生形成材17が撓もうとして下面側に大きな引っ張り力F1が生じる。しかし、表1の試作例1,2から分かるように、下面側に積層された補強繊維材16の引っ張り応力F1によって撓みや破断が阻止されて、比較例1,2に比べて曲げ弾性率、曲げ強度が略15%以上改善される。
同様に、芯材15の両面に補強繊維材16を積層した再生成形材17においても、図2(b)および表1の試作例3,4からわかるように、下面側の補強繊維材16による引っ張り抗力F2によって、比較例1,2に比べて曲げ弾性率、曲げ強度が略20%以上改善される。
In the regenerated molded material 17 in which the reinforcing fiber material 16 is laminated on the lower surface of the core material 15, as can be seen from Table 1 and FIG. 2A, the regenerated material 17 tries to bend due to the load F applied to the upper surface. A large pulling force F1 is generated. However, as can be seen from Prototype Examples 1 and 2 in Table 1, bending and breaking are prevented by the tensile stress F1 of the reinforcing fiber material 16 laminated on the lower surface side, and the bending elastic modulus compared to Comparative Examples 1 and 2, Bending strength is improved by about 15% or more.
Similarly, in the recycled molding material 17 in which the reinforcing fiber material 16 is laminated on both surfaces of the core material 15, as can be seen from the prototype examples 3 and 4 in FIG. By the tensile resistance F2, the bending elastic modulus and bending strength are improved by about 20% or more compared to Comparative Examples 1 and 2.

このように、本実施形態の再生成形材17によれば、補強繊維材16を積層することにより、破砕片10を配向することなく、しかも、プレス成形に際して加圧力を増大することなく曲げ弾性率および曲げ強度を効果的に増大することが可能である。これにより、製造性を向上させ設備費を削減しつつ強度を向上させた再生成形材を製することが可能となる。   Thus, according to the regenerated molding material 17 of the present embodiment, by laminating the reinforcing fiber material 16, the bending elastic modulus can be obtained without orienting the crushed pieces 10 and without increasing the pressing force during press molding. And it is possible to effectively increase the bending strength. As a result, it is possible to manufacture a recycled molded material having improved strength while improving manufacturability and reducing equipment costs.

(第2実施形態)
図3は本発明に係る第2実施形態の再生成形材の製造工程を示す説明図、図4(a)は、図3の製造工程によって製された再生成形材19の部分拡大図、図4(b)は、その再生成形材19に荷重を印加した状態を示す説明図である。本実施形態では、再生成形材をバッチ成形方式で製造するものであり、図3,4を参照して製造方法を説明する。
(Second Embodiment)
FIG. 3 is an explanatory view showing the production process of the regenerated molding material of the second embodiment according to the present invention, FIG. 4A is a partially enlarged view of the regenerated molding material 19 produced by the production process of FIG. (B) is an explanatory view showing a state in which a load is applied to the recycled molding material 19. In the present embodiment, the recycled molding material is manufactured by a batch molding method, and the manufacturing method will be described with reference to FIGS.

本実施形態では、再利用する繊維強化成形材の廃材として、ウレタン樹脂発泡体をガラス長繊維で強化したガラス長繊維強化硬質ウレタン樹脂発泡体を素材とする合成木材(積水化学工業株式会社製 エスロンネオランバーFFU74)を用いた。ウレタン樹脂発泡体とガラス長繊維との比率は、いずれも50重量%である。   In this embodiment, as a waste material of a fiber-reinforced molding material to be reused, synthetic wood (Sekisui Chemical Co., Ltd., ESLON) made of a long glass fiber reinforced rigid urethane resin foam obtained by reinforcing a urethane resin foam with glass long fibers. Neo Lumber FFU 74) was used. The ratio between the urethane resin foam and the long glass fiber is 50% by weight.

まず、繊維強化成形材の廃材の破砕工程では、上記合成木材を2軸破砕機を用いて破砕した。そして、図3(a)に示すように、破砕物をウェーブローラ方式の分級機に投入して、最大長の長い長破砕片10と最大長の短い短破砕片10に分級した。長破砕片10は、最大長の平均値が略80mm、最大幅の平均値が略10mm、最大高さの平均値が略5mmであり、短破砕片10は、最大長の平均値が略8mm、最大幅の平均値が略5mm、最大高さの平均値が略5mmであった。
また、得られた破砕片10のうち、長破砕片10は60重量%、短破砕片10は40重量%であった。また、選別した破砕片10の密度は0.5g/cm3 〜0.8g/cm3 であった。
First, in the step of crushing the waste material of the fiber reinforced molding material, the synthetic wood was crushed using a biaxial crusher. And as shown to Fig.3 (a), the crushed material was thrown into the classifier of a wave roller system, and was classified into the long crushed piece 10 with the longest maximum length, and the short crushed piece 10 with the shortest maximum length. The long crushed pieces 10 have an average maximum length of about 80 mm, an average maximum width of about 10 mm, and an average maximum height of about 5 mm. The short crushed pieces 10 have an average maximum length of about 8 mm. The average value of the maximum width was about 5 mm, and the average value of the maximum height was about 5 mm.
Of the obtained crushed pieces 10, the long crushed pieces 10 were 60% by weight, and the short crushed pieces 10 were 40% by weight. The density of the crushed pieces 10 selected was 0.5 g / cm 3 to 0.8 g / cm 3.

次に、破砕片10への結合剤の付着工程では、破砕片10に予め水を含ませ、図3(b)に示す様に、ドラムブレンダー11内に破砕片10と共に結合剤(MDI:Methylene Diphenyl Isocyanate.住化バイエルウレタン株式会社製「スミジュール44V10」を破砕片10の総量に対して10重量%投入し、回転撹拌して破砕片10の表面に結合剤を均一に塗布した。破砕片10に予め含ませる水の量は、結合剤の重量の50%の量とした。   Next, in the step of attaching the binder to the crushed pieces 10, water is preliminarily included in the crushed pieces 10, and as shown in FIG. 3B, the binder (MDI: Methylene: together with the crushed pieces 10 in the drum blender 11. 10% by weight of “Sumijoule 44V10” manufactured by Sumika Bayer Urethane Co., Ltd. was added to the total amount of the crushed pieces 10, and the mixture was uniformly applied to the surface of the crushed pieces 10 by rotating and stirring. The amount of water previously contained in 10 was 50% of the weight of the binder.

破砕片の集合体を板状に整形する工程では、図3(c),(d)に示すように、成形金型12の内部に振動装置18を挿入し、ベルトコンベア13から供給される破砕片10を振動装置18の間を通して金型12の内部に落とし込んだ。
ここで、振動装置18は複数の長尺薄板状の配向板18aを、その長手方向を金型12の長手方向と合わせて垂直に配列して側板18bに固定したものであり、振動装置18は金型12へ着脱自在である。
In the step of shaping the aggregate of the crushed pieces into a plate shape, as shown in FIGS. 3 (c) and 3 (d), the vibration device 18 is inserted into the molding die 12 and fed from the belt conveyor 13. The piece 10 was dropped into the mold 12 through the vibration device 18.
Here, the vibration device 18 is a plurality of long thin plate-like alignment plates 18a fixed vertically to the side plate 18b with the longitudinal direction thereof aligned with the longitudinal direction of the mold 12, and the vibration device 18 is It is detachable from the mold 12.

そして、配向板18aの間に破砕片10を落とし込んだ状態で、図3(e)に示すように、振動装置18を所定の周波数fで振動させた。これにより、図4(a)に示すように、破砕片10のうちの短破砕片10cは配向板18aの振動を受けて長破砕片10a,10bの隙間を通って金型12の下方へ移動しつつ、更に、破砕片10は配向板18aの長手方向に沿うように引き揃えられて配向される。そして、破砕片10による集合体が配向方向へ長尺となるように板状に整形した。
本実施形態では、破砕片の集合体を板状に整形する工程において、振動装置18による振動周波数fおよび破砕片10の形状を異ならせて、次に示す試作例5、試作例6および比較例3、比較例4を製作した。
Then, with the crushed pieces 10 dropped between the orientation plates 18a, the vibration device 18 was vibrated at a predetermined frequency f as shown in FIG. As a result, as shown in FIG. 4A, the short crushing piece 10c of the crushing pieces 10 receives the vibration of the orientation plate 18a and moves below the mold 12 through the gap between the long crushing pieces 10a and 10b. However, the shredded pieces 10 are further aligned and oriented along the longitudinal direction of the orientation plate 18a. And it shape | molded in plate shape so that the aggregate | assembly by the crushing piece 10 might become long in an orientation direction.
In the present embodiment, in the step of shaping the aggregate of crushed pieces into a plate shape, the vibration frequency f by the vibration device 18 and the shape of the crushed pieces 10 are changed, and the following prototype example 5, prototype example 6, and comparative example are shown. 3 and Comparative Example 4 were produced.

(試作例5)
振動装置18によって1Hzの振動を与えることにより、再生成形材の下面側における短破砕片が50重量%、長破砕片が50重量%であり、上面側の短破砕片が5重量%、長破砕片が95重量%の破砕片の集合体を整形した。
(試作例6)
振動装置18によって10Hzの振動を与えることにより、再生成形材の下面側における短破砕片が80重量%、長破砕片が20重量%であり、上面側の短破砕片が3重量%、長破砕片が97重量%の破砕片の集合体を整形した。
(Prototype example 5)
By applying vibration of 1 Hz by the vibration device 18, the short crushed piece on the lower surface side of the recycled molded material is 50 wt%, the long crushed piece is 50 wt%, the short crushed piece on the upper surface side is 5 wt%, and the long crushed piece is long. An aggregate of 95% by weight pieces was formed.
(Prototype example 6)
By applying vibration of 10 Hz by the vibration device 18, the short crushed piece on the lower surface side of the recycled molded material is 80 wt%, the long crushed piece is 20 wt%, the short crushed piece on the upper surface side is 3 wt%, and the long crushed piece is long. An aggregate of 97% by weight pieces was formed.

(比較例3)
振動を与えず、再生成形材の上面および下面共に長破砕片が60重量%、短破砕片が40重量%の集合体を整形した。
(比較例4)
振動を与えず、全て長破砕片を用いて集合体を整形した。
(Comparative Example 3)
Without giving vibration, an aggregate of 60% by weight of long crushed pieces and 40% by weight of short crushed pieces was formed on the upper and lower surfaces of the regenerated molded material.
(Comparative Example 4)
The assembly was shaped using all long fragments without applying vibration.

次に、図3(f)に示すように、振動装置18を金型12から抜き取り、金型12に敷き詰めた破砕片をプレス装置14に挿入して、温度150℃、圧力10kg/cm2で15分間加熱しつつ加圧して、図3(g)に示す再生成形材19を得た。
得られた再生成形材19の寸法は、長さ1000mm、幅200mm、厚さ30mmであり、成形品の比重は、1.1であった。
Next, as shown in FIG. 3 (f), the vibration device 18 is extracted from the mold 12, and the crushed pieces spread on the mold 12 are inserted into the press device 14, and the temperature is 150 ° C. and the pressure is 10 kg / cm 2. Pressurizing while heating for a minute, a regenerated molding material 19 shown in FIG.
The dimensions of the obtained recycled molded material 19 were 1000 mm in length, 200 mm in width, and 30 mm in thickness, and the specific gravity of the molded product was 1.1.

製された再生成形材19の評価は、再生成形材19から長さ500mm、幅50mm、厚さ30mmの試験片を切り出して3点曲げ試験により実施した。3点曲げ試験は、図4
(b)に示すように、再生成形材19の短破砕片10cが多く分布する面を荷重Fの印加する側(上面側)として配置し、支点S,S間のスパンは420mm、荷重Fの印加速度は15mm/minで行った。
試験結果は表2に示す通りである。
Evaluation of the manufactured regenerated molding material 19 was carried out by cutting a test piece having a length of 500 mm, a width of 50 mm, and a thickness of 30 mm from the regenerated molding material 19 by a three-point bending test. The three-point bending test is shown in FIG.
As shown in (b), the surface where the short crushed pieces 10c of the regenerated molding material 19 are distributed is arranged as the side to which the load F is applied (upper surface side), the span between the fulcrums S and S is 420 mm, and the load F The application speed was 15 mm / min.
The test results are as shown in Table 2.

Figure 2006198809
Figure 2006198809

本実施形態の再生成形材19によれば、図4(b)に示すように、再生成形材19の下面側に長破砕片10aを多く分布させることにより、再生成形材19の下面側の引っ張り応力を増大することができる。従って、再生成形材19に曲げ荷重Fが印加されたときの撓みや破断が阻止されて、曲げ弾性率および曲げ強度を向上させることが可能となる。
特に、表2に示した本実施形態の試作例5,6では、短破砕片と長破砕片の分布量を適宜に設定することにより、比較例4に示した長破砕片のみを用いた再生成形材と同等の曲げ弾性率および曲げ強度を発現することが分かる。
According to the regenerated molding material 19 of the present embodiment, as shown in FIG. 4 (b), the long crushing pieces 10 a are distributed on the lower surface side of the regenerated molding material 19, thereby pulling the lower surface side of the regenerated molding material 19. The stress can be increased. Therefore, the bending and breaking when the bending load F is applied to the regenerated molding material 19 are prevented, and the bending elastic modulus and bending strength can be improved.
In particular, in Prototype Examples 5 and 6 of this embodiment shown in Table 2, regeneration using only the long crushed pieces shown in Comparative Example 4 is performed by appropriately setting the distribution amount of the short crushed pieces and the long crushed pieces. It turns out that the bending elastic modulus and bending strength equivalent to a molding material are expressed.

このように、本実施形態の再生成形材19によれば、1乃至10Hzの振動を印加することによって破砕片10を効率良く偏位分布させることにより、再生成形材19の曲げ強度、曲げ弾性率を向上させることができ、製造性を向上させつつ再生成形材の強度を向上させることが可能となる。   Thus, according to the reclaimed molding material 19 of the present embodiment, the bending strength and the flexural modulus of the regenerated molding material 19 are obtained by efficiently distributing the fragment 10 by applying vibration of 1 to 10 Hz. It is possible to improve the strength of the recycled molded material while improving the productivity.

(第3実施形態)
更に、図5に示すように、前記第2実施形態で試作した試作例5,6および比較例3,4の再生成形材19を、各々接着剤で貼り合わせた再生成形材20の試作例7〜10と、比較例5,6を作成して強度評価を行った。接着剤は、エポキシ系接着剤を用いた。尚、試作例7〜10において、上面とは短破砕片10cを多く分布させた部位に近接する面を指している。
(Third embodiment)
Further, as shown in FIG. 5, prototype example 7 of recycled molding material 20 in which the recycled molding materials 19 of prototype examples 5 and 6 and comparative examples 3 and 4 prototyped in the second embodiment are bonded together with an adhesive, respectively. And Comparative Examples 5 and 6 were made and strength evaluation was performed. An epoxy adhesive was used as the adhesive. In the prototype examples 7 to 10, the upper surface refers to a surface close to a portion where a large number of short fragments 10c are distributed.

試作された再生成形材20の評価は、再生成形材から長さ1000mm、幅50mm、厚さ60mmの試験片を切り出して3点曲げ試験により実施した。3点曲げ試験は、図5に示すように、支点S,S間のスパンは840mm、荷重Fの印加速度は30mm/minで行った。試験結果は表3に示す通りである。   The prototype of the regenerated molded material 20 was evaluated by cutting a test piece having a length of 1000 mm, a width of 50 mm, and a thickness of 60 mm from the regenerated molded material and performing a three-point bending test. As shown in FIG. 5, the three-point bending test was performed at a span between the fulcrums S and S of 840 mm and an application speed of the load F of 30 mm / min. The test results are as shown in Table 3.

Figure 2006198809
Figure 2006198809

本実施形態の再生成形材20によれば、表3の試作例7,9および図5から分かるように、接合によって新たに製された再生成形材20の上面および下面に長破砕片10a,10bを多く分布させることにより、長破砕片のみを用いた比較例6と同等の曲げ強度および曲げ弾性率を有する極めて強化された再生成形材20とすることが可能となる。   According to the regenerated molding material 20 of the present embodiment, as can be seen from Prototype examples 7 and 9 in Table 3 and FIG. 5, long shredded pieces 10a and 10b are formed on the upper and lower surfaces of the regenerated molding material 20 newly produced by joining. It is possible to obtain a reinforced molded material 20 that has an extremely high bending strength and bending elastic modulus equivalent to those of Comparative Example 6 using only long crushed pieces.

尚、前記第1および第2実施形態では、再生成形材17,19の製造に際してバッチ成形方式を採用した構成として述べたが、連続成形方式を採用して製造することも可能である。   In the first and second embodiments, the recycle molding materials 17 and 19 have been described as being configured using a batch molding method, but can be manufactured using a continuous molding method.

(a)〜(g)は、本発明に係る第1実施形態の再生成形材の製造工程を示す説明図である。(A)-(g) is explanatory drawing which shows the manufacturing process of the reproduction | regeneration molding material of 1st Embodiment which concerns on this invention. (a)は、芯材の一方の面に補強繊維材を積層した再生成形材に印加する曲げ荷重に対して作用する抗力の説明図、(b)は、芯材の両面に補強繊維材を積層した再生成形材に印加する曲げ荷重に対して作用する抗力の説明図である。(A) is explanatory drawing of the drag which acts with respect to the bending load applied to the reproduction | regeneration molding material which laminated | stacked the reinforcement fiber material on one side of the core material, (b) is a reinforcement fiber material on both surfaces of a core material. It is explanatory drawing of the drag which acts with respect to the bending load applied to the laminated | stacked reproduction | regeneration molding material. (a)〜(g)は、本発明に係る第2実施形態の再生成形材の製造工程を示す説明図である。(A)-(g) is explanatory drawing which shows the manufacturing process of the reproduction | regeneration molding material of 2nd Embodiment which concerns on this invention. (a)は、図3に示す製造方法によって製された再生成形材の部分拡大図、(b)は、再生成形材に印加する曲げ荷重に対して作用する抗力の説明図である。(A) is the elements on larger scale of the reproduction | regeneration molding material manufactured by the manufacturing method shown in FIG. 3, (b) is explanatory drawing of the drag which acts with respect to the bending load applied to a reproduction | regeneration molding material. 図4に示す再生成形材同士を接合して新たに製される再生成形材の説明図である。It is explanatory drawing of the regenerated molding material newly manufactured by joining the regenerated molding materials shown in FIG.

符号の説明Explanation of symbols

10 破砕片
10a,10b 長破砕片
10c 短破砕片
15 芯材
16 補強繊維材
17,19,20 再生成形材
DESCRIPTION OF SYMBOLS 10 Crush piece 10a, 10b Long crush piece 10c Short crush piece 15 Core material 16 Reinforcement fiber material 17, 19, 20 Recycled molding material

Claims (11)

繊維強化成形材で製された構造体を破砕する工程と、得られた破砕物に結合剤を付着させる工程と、結合剤を付着させた破砕物の集合体を板状に整形して芯材を形成する工程と、形成された芯材の対向する一面または両面に補強繊維材を積層配置する工程と、積層された補強繊維材と芯材をプレス成形して圧密化しつつ一体化する工程とを備えた再生成形材の製造方法。 A step of crushing a structure made of fiber-reinforced molding material, a step of attaching a binder to the obtained crushed material, and a crushed material aggregate to which the binder is attached is shaped into a plate shape to form a core material Forming a reinforcing fiber material on one or both sides of the formed core material facing each other, and integrating the laminated reinforcing fiber material and the core material while pressing and compacting them. A method for producing a regenerated molding material comprising: 前記構造体を破砕して得られる破砕物から細長いチップ状の破砕片を選別する工程を更に有することを特徴とする請求項1に記載の再生成形材の製造方法。 The method for producing a regenerated molded material according to claim 1, further comprising a step of selecting elongated chip-shaped fragments from a crushed material obtained by crushing the structure. 前記補強繊維材に結合剤を含浸させる工程を更に有することを特徴とする請求項1または2に記載の再生成形材の製造方法。 The method for producing a regenerated molded material according to claim 1, further comprising a step of impregnating the reinforcing fiber material with a binder. 繊維強化成形材を破砕して得られるチップ状の破砕片を結合剤を用いて破砕片の集合体で成る所定の板状に形成した芯材と、当該芯材の対向する一面または両面に積層配置される結合剤を含浸した補強繊維材とを一体化して形成されることを特徴とする再生成形材。 A chip-shaped crushed piece obtained by crushing a fiber-reinforced molding material is laminated on one or both sides of the core material, which is formed into a predetermined plate shape made of an aggregate of crushed pieces using a binder. A regenerated molded material formed by integrating a reinforcing fiber material impregnated with a binder to be disposed. 前記芯材に含まれる破砕片は、最大長の平均値が10乃至200mmであることを特徴とする請求項4に記載の再生成形材。 The regenerated molded material according to claim 4, wherein the crushed pieces contained in the core material have an average maximum length of 10 to 200 mm. 再生成形材に含まれる補強繊維材の重量が0.3乃至10重量%であることを特徴とする請求項4または5に記載の再生成形材。 The regenerated molded material according to claim 4 or 5, wherein the weight of the reinforcing fiber material contained in the regenerated molded material is 0.3 to 10% by weight. 繊維強化成形材で製された構造体を破砕する工程と、得られた破砕物に結合剤を付着させる工程と、破砕物の集合体に振動を加えて、最大長に応じて破砕物を集合体の高さ方向へ移動分布させつつ破砕物の長手方向を略同一方向へ配向させながら、破砕物による集合体が配向方向へ長尺となるように板状に整形する工程と、整形された破砕物の集合体をプレス成形して圧密化する工程とを備えた再生成形材の製造方法。 A step of crushing a structure made of fiber reinforced molding material, a step of attaching a binder to the obtained crushed material, and applying vibration to the crushed material aggregate to collect the crushed material according to the maximum length A process of shaping the aggregate of the crushed material into a plate shape so as to be elongated in the orientation direction while orienting the longitudinal direction of the crushed material in substantially the same direction while moving and distributing in the height direction of the body, and shaping A method for producing a regenerated molding material comprising a step of pressing and compacting an aggregate of crushed materials. 前記構造体を破砕して得られる破砕物から細長いチップ状の破砕片を選別する工程を更に有することを特徴とする請求項7に記載の再生成形材の製造方法。 The method for producing a recycled molded material according to claim 7, further comprising a step of selecting elongated chip-shaped fragments from a crushed material obtained by crushing the structure. 繊維強化成形材を破砕した細長いチップ状の破砕片を結合剤を用いて破砕片の集合体で成る所定の板体に成形した再生成形材であって、破砕片は最大長が短い範囲に属する短破砕片の集合と最大長が長い範囲に属する長破砕片の集合で構成されると共に、破砕片はその長手方向を再生成形材の長手方向へ向けて引き揃えて配向されており、再生成形材の一方の面に近接する領域には短破砕片を多く分布させ、再生成形材の他方の面に近接する領域には短破砕片を少なく分布させたことを特徴とする再生成形材。 Recycled molding material obtained by molding elongated chip-shaped fragments obtained by crushing fiber-reinforced molding materials into a predetermined plate made of aggregates of fragments using a binder, and the fragments have a short maximum length. It is composed of a set of short shredded pieces and a set of long shredded pieces belonging to a long maximum length, and the shredded pieces are oriented with their longitudinal directions aligned in the longitudinal direction of the reclaimed molding material. A regenerated molded material characterized in that a large amount of short crushed pieces are distributed in a region close to one surface of the material, and a short crushed piece is distributed in a region close to the other surface of the regenerated molded material. 請求項9に記載の再生成形材において、前記短破砕片は最大長の平均値が1乃至10mmであり、前記長破砕片は最大長の平均値が10mmを超え200mmまでであり、再生成形材の厚さの略中央から一方の面に至る領域は、前記短破砕片の分布量が全破砕片に対して30重量%以上であると共に、再生成形材の厚さの略中央から他方の面に至る領域は、前記短破砕片の分布量が全破砕片に対して10重量%以下であることを特徴とする再生成形材。 The regenerated molded material according to claim 9, wherein the short crushed pieces have an average value of a maximum length of 1 to 10 mm, and the long crushed pieces have an average value of a maximum length of more than 10 mm and up to 200 mm. The region from the approximate center of the thickness to one surface has a distribution amount of the short crushed pieces of 30% by weight or more based on the total crushed pieces, and the other surface from the approximate center of the thickness of the regenerated molded material. In the re-formed material, the distribution amount of the short crushed pieces is 10% by weight or less based on the total crushed pieces. 請求項9または10に記載の再生成形材同士を接合した再生成形材であって、前記短破砕片が多く分布する領域に近接する面同士を接合して形成されることを特徴とする再生成形材。 A reclaimed molding material obtained by joining the reclaimed molding materials according to claim 9 or 10, wherein the surfaces near the region where the short crushed pieces are distributed are joined to each other. Wood.
JP2005010718A 2005-01-18 2005-01-18 Recycled molding material manufacturing method Active JP4733396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005010718A JP4733396B2 (en) 2005-01-18 2005-01-18 Recycled molding material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005010718A JP4733396B2 (en) 2005-01-18 2005-01-18 Recycled molding material manufacturing method

Publications (2)

Publication Number Publication Date
JP2006198809A true JP2006198809A (en) 2006-08-03
JP4733396B2 JP4733396B2 (en) 2011-07-27

Family

ID=36957228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005010718A Active JP4733396B2 (en) 2005-01-18 2005-01-18 Recycled molding material manufacturing method

Country Status (1)

Country Link
JP (1) JP4733396B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3130819A1 (en) * 2021-12-22 2023-06-23 Fairmat Part made of recycled composite material and manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115570A (en) * 1975-04-03 1976-10-12 Sato Katsuaki Manufacture of plasticizer
JPH05116228A (en) * 1991-08-13 1993-05-14 Kawasaki Steel Corp Manufacture of glass fiber reinforced plastic regenerated sheet and glass fiber reinforced plastic regeneration molded product
JP2004066644A (en) * 2002-08-07 2004-03-04 Sekisui Chem Co Ltd Method and apparatus for orienting/laminating woody material piece
JP2004148796A (en) * 2002-09-03 2004-05-27 Sekisui Chem Co Ltd Production method for recycled forming material, forming material, recycled structural material, synthetic railroad tie and lightweight synthetic wood
JP2004338226A (en) * 2003-05-15 2004-12-02 Sekisui Chem Co Ltd Method for molding fiber-reinforced resin crushed material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115570A (en) * 1975-04-03 1976-10-12 Sato Katsuaki Manufacture of plasticizer
JPH05116228A (en) * 1991-08-13 1993-05-14 Kawasaki Steel Corp Manufacture of glass fiber reinforced plastic regenerated sheet and glass fiber reinforced plastic regeneration molded product
JP2004066644A (en) * 2002-08-07 2004-03-04 Sekisui Chem Co Ltd Method and apparatus for orienting/laminating woody material piece
JP2004148796A (en) * 2002-09-03 2004-05-27 Sekisui Chem Co Ltd Production method for recycled forming material, forming material, recycled structural material, synthetic railroad tie and lightweight synthetic wood
JP2004338226A (en) * 2003-05-15 2004-12-02 Sekisui Chem Co Ltd Method for molding fiber-reinforced resin crushed material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3130819A1 (en) * 2021-12-22 2023-06-23 Fairmat Part made of recycled composite material and manufacturing method
WO2023118383A1 (en) * 2021-12-22 2023-06-29 Fairmat Part made from recycled composite material and production method thereof

Also Published As

Publication number Publication date
JP4733396B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
US5846357A (en) Method of making syntactic foam core material
KR100773209B1 (en) Manufacturing apparatus for plastic fiber molding
JPH02141211A (en) Molded form composed of foamed substance board and manufacture thereof
JP4733396B2 (en) Recycled molding material manufacturing method
US5662994A (en) Molded part and method of its production
JP4495407B2 (en) Recycled molded material manufacturing method, recycled molded material, recycled structure material, synthetic sleeper and lightweight synthetic wood
JPS63209810A (en) Post forming semimanufacture product
JP4653520B2 (en) Manufacturing method of fiber-reinforced resin molded product
EP3319924B1 (en) A method for manufacturing a slab
JP4213291B2 (en) Composite material, synthetic sleeper using the composite material, and method for producing composite material
JP4339734B2 (en) Recycled molded body and method for producing the same
JP2010208306A (en) Cushioning material containing parenchyma cell, and method for manufacturing it
JP2004338226A (en) Method for molding fiber-reinforced resin crushed material
US20120326349A1 (en) Method for producing a particle-based element
JP2005288898A (en) Method for manufacturing regenerated molded product
JP2004338227A (en) Method for manufacturing regenerated molding material
JP2000296572A (en) Composite material and continuous production thereof
JP2000167966A (en) Composite material and crosstie
JP7299699B2 (en) Fiber reinforced composite material and its manufacturing method
KR101444869B1 (en) Apparatus and manufacturing method for wood chip board and structure of wood chip board
JP2004338194A (en) Method for manufacturing regenerated molding material
JP4309793B2 (en) Recycled molded body
JP2004338228A (en) Method for manufacturing regenerated molding material
NL2018010B1 (en) A method for manufacturing a slab
JP2004338193A (en) Method for manufacturing regenerated molding material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4733396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3