JP2006198660A - Method for forming aluminum alloy billet - Google Patents

Method for forming aluminum alloy billet Download PDF

Info

Publication number
JP2006198660A
JP2006198660A JP2005013786A JP2005013786A JP2006198660A JP 2006198660 A JP2006198660 A JP 2006198660A JP 2005013786 A JP2005013786 A JP 2005013786A JP 2005013786 A JP2005013786 A JP 2005013786A JP 2006198660 A JP2006198660 A JP 2006198660A
Authority
JP
Japan
Prior art keywords
aluminum alloy
temperature
billet
heating
alloy billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005013786A
Other languages
Japanese (ja)
Inventor
Yamaji Kitaoka
山治 北岡
Katsumi Minoda
克観 箕田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Toyo Densan Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Toyo Densan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd, Toyo Densan Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2005013786A priority Critical patent/JP2006198660A/en
Publication of JP2006198660A publication Critical patent/JP2006198660A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming an Al-Si aluminum alloy billet serving as a material to be formed, which method can form the billet in a half-molten state by heating the billet uniformly with good temperature accuracy at low cost. <P>SOLUTION: The Al-Si aluminum alloy billet having a structure including an eutectic phase and an α-Al phase, which has been grown to be lumps after dividing the billet, is reheated up to a temperature between the eutectic temperature and the liquidus line of the Al-Si aluminum alloy by means of a ceramic infra-red heating source. After the Al-Si aluminum alloy billet has been made in a semi-molten state, a required press forming operation is carried out. Since the infrared heating source utilizing ceramics is used for heating, the temperature difference between the surface layer portion and the central portion of the billet is not caused, and the Al-Si aluminum alloy billet can be uniformly heated, and further, the temperature control can be easily carried out. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、アルミニウム合金ビレットを再加熱し、半溶融状態で加圧成形する、いわゆる半溶融成形方法に関する。   The present invention relates to a so-called semi-melt molding method in which an aluminum alloy billet is reheated and pressure-formed in a semi-molten state.

近年、アルミニウム合金を鋳造する際に電磁力や機械的な攪拌力により溶湯を強制的に攪拌して晶出したα−Al相のデンドライトを分断し、分断されたα−Al相を個々に成長させて塊状とし、その間を共晶相で埋めた組織をもつ鋳造ビレットを得た後、このビレットを高周波誘導加熱炉やガス燃焼炉等で当該合金の液相線と共晶線の間の温度まで再加熱して、半溶融状態とした状態で加圧成形する方法が、半溶融成形方法として多用されるようになっている。
加圧成形方法としては、ダイカスト法や鍛造法が一般的である。
In recent years, when casting an aluminum alloy, the melt is forcibly stirred by electromagnetic force or mechanical stirring force to split the α-Al phase dendrite and crystallize the split α-Al phase. After obtaining a cast billet having a structure filled with a eutectic phase between them, the billet is heated between the liquidus and eutectic lines of the alloy in a high-frequency induction heating furnace or a gas combustion furnace. The method of pressure molding in a state of reheating to a semi-molten state is often used as a semi-melt molding method.
As the pressure forming method, a die casting method or a forging method is generally used.

アルミニウム合金ビレットを液相線と共晶線の間の温度域まで再加熱すると、共晶は溶融しているが初晶は固体のままである、いわゆる半溶融状態となる。このとき、初晶がデンドライト(樹枝)形状であると、成形圧力を加えても樹枝状の初晶同士が絡み合って変形し難いが、デンドライトが分断されてα−Al相が個々に成長して塊状となった組織になっていると、塊状の初晶同士が互いに絡み合うことがないので加圧変形されやすい。加圧成形の際にあたかも液体のように流動して層流状態で成形型内に充満されるため、ガスの巻き込みが少ないばかりでなく偏析も少ない。また凝固組織も均一になるため、機械的特性のバラツキが小さく、肉厚による差も小さい鍛造品並の特性が得られると言う利点がある。さらに内蔵ガスが少ないために熱処理も可能である。   When the aluminum alloy billet is reheated to a temperature range between the liquidus line and the eutectic line, it becomes a so-called semi-molten state in which the eutectic is melted but the primary crystal remains solid. At this time, if the primary crystal has a dendrite (dendritic) shape, the dendritic primary crystals are entangled and hardly deformed even when molding pressure is applied, but the dendrites are divided and α-Al phases grow individually. If the structure is in the form of a lump, the lump-like primary crystals are not entangled with each other, so that they are easily deformed under pressure. During pressure molding, it flows as if it were a liquid and fills the molding die in a laminar flow state, so that not only gas entrainment is small, but also segregation is small. In addition, since the solidified structure becomes uniform, there is an advantage that characteristics similar to a forged product can be obtained with small variations in mechanical characteristics and small differences in thickness. Furthermore, heat treatment is also possible due to the small amount of built-in gas.

共晶相を有し、かつ分断したα−Al相を塊状に成長させた組織を有するAl−Si系アルミニウム合金ビレットを半溶融成形しようとする場合、当該ビレットを液相線と共晶線の間の温度域で加熱して半溶融状態にする必要がある。
この加熱は、例えば特許文献1,2等で紹介されているように、誘導加熱で行うのが一般的である。また、ガス等の燃料を用いた燃焼炉で加熱することも行われている。
特開2000−176622号公報 特開2001−355022号公報
When an Al—Si-based aluminum alloy billet having a eutectic phase and having a structure in which a divided α-Al phase is grown in a lump is to be semi-melt molded, the billet is formed between a liquidus line and a eutectic line. It is necessary to heat in the temperature range between to make a semi-molten state.
This heating is generally performed by induction heating as introduced in Patent Documents 1 and 2, for example. Heating is also performed in a combustion furnace using a fuel such as gas.
JP 2000-176622 A JP 2001-355022 A

ところで、加圧成形の前の加熱処理は、被成形体の表面から内部まで均一に温度精度良く行われる必要がある。温度分布にバラツキがあると、加圧成形品の組織が不均一になり、特性のバラツキを招くことがある。また温度精度は成形性に影響を及ぼし、不良品発生の原因となる。
特許文献1,2等でみられる誘導加熱は、加熱速度が速いためにアルミニウム合金ビレットの内部温度がバラツキやすく、加圧成形する際に材料流動が不均一になって、得られた成形品の組織が不均一になる。このため得られた製品の特性も不均一になりやすい。
By the way, the heat treatment before pressure molding needs to be performed uniformly with high temperature accuracy from the surface to the inside of the molded body. If the temperature distribution varies, the structure of the pressure-molded product becomes non-uniform, which may cause variations in characteristics. Also, temperature accuracy affects moldability and causes defective products.
Inductive heating found in Patent Documents 1 and 2, etc., because the heating rate is high, the internal temperature of the aluminum alloy billet is likely to vary, and the material flow becomes uneven during pressure molding, The tissue becomes uneven. For this reason, the characteristics of the obtained product tend to be non-uniform.

また、被加熱体中央部よりも表層部の方が誘導電流が流れやすいと言う誘導加熱の性質上、ビレットの表層部が高温になりやすいので、中央部が半溶融状態になるまで加熱すると、表層部に割れが発生する場合がある。逆に、ビレットの表層部が溶融しない程度に加熱すると、中央部は半溶融状態になっていない場合がある。
このように、誘導加熱で、内外部均一に半溶融状態に制御することは難しい。
さらに、誘導加熱炉は装置が大型化し、しかもランニングコストも高くなる。
In addition, the surface layer part of the billet is likely to flow at a higher temperature than the center part of the body to be heated. A crack may occur in the surface layer portion. Conversely, if the billet surface layer is heated to such an extent that it does not melt, the central portion may not be in a semi-molten state.
As described above, it is difficult to control the inside and outside uniformly in a semi-molten state by induction heating.
Furthermore, the induction heating furnace is large in size and has a high running cost.

ガス等の燃料を用いた燃焼炉は、気温等の外部要因によって炉内温度が変化しやすい。このため、半溶融状態を造りだすように微妙な温度制御を必要とされるものに対して、精度良く温度制御することは難しい。オペレータが頻繁に温度チェックを行いながら燃焼制御を行う必要がある。また、加熱に時間がかかるといった問題点もある。
本発明は、このような問題を解消すべく案出されたものであり、被成形素材を、安価に、かつ均一に、しかも温度精度良く加熱して半溶融成形する方法を提供することを目的とする。
In a combustion furnace using a fuel such as gas, the temperature in the furnace is likely to change due to external factors such as air temperature. For this reason, it is difficult to control the temperature accurately with respect to those that require delicate temperature control so as to create a semi-molten state. It is necessary for the operator to perform combustion control while frequently checking the temperature. There is also a problem that heating takes time.
The present invention has been devised to solve such problems, and an object of the present invention is to provide a method for semi-molten molding by heating a material to be molded at low cost, uniformly and with high temperature accuracy. And

本発明のアルミニウム合金ビレットの成形方法は、その課題を達成するため、共晶相と、分断して塊状に成長させたα−Al相を有する組織としたAl−Si系アルミニウム合金ビレットを、セラミックス赤外線加熱源により当該Al−Si系アルミニウム合金の共晶温度から液相線の間の温度に再加熱して前記Al−Si系アルミニウム合金ビレットを半溶融状態した後に、所定の加圧成形を施すことを特徴とする。
加圧成形としては、低速充填ダイカスト法、殊に金型温度を170℃以上とし、ラム速度0.6m/s以下とした低速充填ダイカスト法が用いられる。
In order to achieve the object, the method for forming an aluminum alloy billet according to the present invention comprises an Al-Si-based aluminum alloy billet having a structure having a eutectic phase and an α-Al phase divided and grown in a lump. After reheating from the eutectic temperature of the Al-Si-based aluminum alloy to a temperature between the liquidus lines by an infrared heating source to semi-molten the Al-Si-based aluminum alloy billet, a predetermined pressure forming is performed. It is characterized by that.
As the pressure molding, a low-speed filling die casting method, particularly a low-speed filling die casting method in which the mold temperature is 170 ° C. or more and the ram speed is 0.6 m / s or less is used.

本発明では、Al−Si系アルミニウム合金ビレットを、セラミックスを放熱面に利用した赤外線加熱源により加熱することにより、表層部及び中央部の温度差がなく、被加熱ビレットを均一に加熱することができる。しかも温度制御が行いやすい。このため、Al−Si系アルミニウム合金ビレットを表層部及び中央部は均一な半溶融状態になる。したがって、その後に行う加圧成形で材料流動を均等に行うことができ、組織及び特性が均一な加圧成形品を得ることができる。   In the present invention, by heating an Al—Si based aluminum alloy billet with an infrared heating source using ceramics as a heat dissipation surface, there is no temperature difference between the surface layer portion and the center portion, and the heated billet can be heated uniformly. it can. Moreover, temperature control is easy. For this reason, the surface layer portion and the central portion of the Al—Si based aluminum alloy billet are in a uniform semi-molten state. Therefore, material flow can be performed uniformly by subsequent pressure molding, and a pressure-molded product having a uniform structure and characteristics can be obtained.

本発明者等は、被加熱物、特に半溶融成形しようとするアルミニウム合金ビレットを再加熱する際に、表層部及び中央部の温度差を小さくする加熱方法について種々検討を重ねてきた。
その結果、従来、高くても300℃くらいまでの加熱にしか用いられなかったセラミックスを放熱面に利用した赤外線加熱源による加熱が、500℃を超える温度域までのアルミニウム合金ビレットの加熱に利用でき、しかも均一に精度良く温度制御できることを見出し、本発明に到った。
The present inventors have made various studies on a heating method for reducing the temperature difference between the surface layer portion and the center portion when reheating an object to be heated, particularly an aluminum alloy billet to be semi-molten.
As a result, heating by an infrared heating source using ceramics, which has been used only for heating up to about 300 ° C at the most, as a heat dissipation surface can be used for heating aluminum alloy billets up to a temperature range exceeding 500 ° C. In addition, the inventors have found that the temperature can be controlled uniformly and accurately and have arrived at the present invention.

赤外線は、アルミニウム合金に照射されると一部は反射されるものの、その他の大部分はアルミニウム合金内部に吸収される。吸収された赤外線はアルミニウム合金の原子を振動させる。その結果、アルミニウム合金が加熱される。
赤外線加熱は、誘導加熱のように被加熱物の表層部に過剰な誘導電流を発生させることがなく、また誘導加熱よりも加熱速度が遅い。このため、赤外線加熱をアルミニウム合金ビレットの加熱に利用すると、ビレットの表層部と中央部の温度差が小さく、全体を均一に加熱することができる。したがって、赤外線加熱により、当該アルミニウム合金の共晶線と液相線の間の温度に再加熱され、半溶融状態にされたアルミニウム合金ビレットに加圧成形を施すと、表層部及び中央部ともに均一な材料流動が起こり、組織が均一で結果的に特性も均一な加圧成形品が得られる。加熱の際に表面に割れが生じることもない。
Infrared rays are partially reflected when irradiated to the aluminum alloy, but most of the other infrared rays are absorbed inside the aluminum alloy. The absorbed infrared light vibrates atoms of the aluminum alloy. As a result, the aluminum alloy is heated.
Infrared heating does not generate excessive induction current in the surface layer portion of the object to be heated unlike induction heating, and the heating rate is slower than induction heating. For this reason, when infrared heating is used for heating an aluminum alloy billet, the temperature difference between the surface layer portion and the center portion of the billet is small, and the whole can be heated uniformly. Therefore, when the aluminum alloy billet is reheated to a temperature between the eutectic line and the liquidus line of the aluminum alloy by infrared heating and is made into a semi-molten state, the surface layer part and the central part are uniform. Material flow occurs, and a pressure-molded product having a uniform structure and uniform characteristics can be obtained. No cracks occur on the surface during heating.

放熱面にセラミックスを利用した赤外線加熱炉は、外部要因による温度のバラツキが少ないので、一旦加熱条件を決めてしまえば、所定の安定した温度が容易に得られる。ガス等の燃料を用いた燃焼加熱炉のように、頻繁に温度を看視しながら、制御する必要はない。さらに、赤外線加熱炉は、赤外線を放射するセラミックスと、当該セラミックスを加熱する発熱体を備えていればよく、装置自体が低コストで構築できるとともに、ランニングコストも安価である。そしてセラミックスと発熱体とは、セラミックスの温度分布や温度制御が可能な範囲で、できるだけ近接させることが好ましい。
赤外線を放射するセラミックスの材質としては、窒化ケイ素,炭化ケイ素質のもの等が好ましい。発熱体には、通常のニクロム線等を用いて電気エネルギーで発熱させたものが好ましい。ガス等の燃料を燃焼させてセラミックス製赤外線放射体を加熱する方法も想定されるが、細かな温度制御が難しくなる。
Infrared heating furnaces using ceramics on the heat dissipation surface have little temperature variation due to external factors, and once a heating condition is determined, a predetermined stable temperature can be easily obtained. Unlike a combustion heating furnace using a fuel such as gas, there is no need to control while frequently monitoring the temperature. Furthermore, the infrared heating furnace only needs to include ceramics that emit infrared rays and a heating element that heats the ceramics, and the apparatus itself can be constructed at low cost, and the running cost is also low. The ceramic and the heating element are preferably as close as possible within a range in which the temperature distribution and temperature control of the ceramic can be performed.
As a material of ceramics that emits infrared rays, silicon nitride, silicon carbide, or the like is preferable. The heating element is preferably one that is heated by electric energy using a normal nichrome wire or the like. Although a method of heating a ceramic infrared radiator by burning fuel such as gas is also assumed, fine temperature control becomes difficult.

セラミックスを利用した赤外線加熱は、誘導加熱よりも昇温速度が遅いために、共晶温度に達した直後に成形加工を行うと成形性が悪い場合がある。共晶相が十分に溶融していないために、材料の流動性が成形圧に対して十分でないためである。このため、共晶温度に達した後、しばらく保持して共晶相を十分に溶融させてから圧力成形することが好ましい。   Infrared heating using ceramics has a slower temperature rise rate than induction heating, and thus formability may be poor if forming is performed immediately after reaching the eutectic temperature. This is because the eutectic phase is not sufficiently melted so that the fluidity of the material is not sufficient with respect to the molding pressure. For this reason, after reaching the eutectic temperature, it is preferable to hold for a while and sufficiently melt the eutectic phase before pressure forming.

アルミニウム合金ビレットを、放熱面にセラミックスを利用した赤外線加熱炉に装入し、アルミニウム合金ビレットのセラミックス製放熱面に面した部位と中央部の温度変化を測定してみると、図1に示すように変化している。なお、図1は、放熱体として窒化ケイ素質のセラミックスを使用し、炉内温度を900℃に設定した加熱炉に、75φ×150mmのアルミニウム合金ビレットを装入した場合のデータである。
放熱面に面した部位と中央部の温度は、共晶相溶融領域ではほとんど差異はない。共晶相溶融領域に達するまでの間では若干の温度差はあるが、その差も例えば誘導加熱した場合と比較すると格段に小さくなっている。
When the aluminum alloy billet is placed in an infrared heating furnace using ceramics on the heat dissipation surface, and the temperature change of the aluminum alloy billet facing the ceramic heat dissipation surface and the central portion is measured, as shown in FIG. Has changed. FIG. 1 shows data when a 75φ × 150 mm aluminum alloy billet is charged into a heating furnace using silicon nitride ceramics as a heat radiator and setting the furnace temperature to 900 ° C.
There is almost no difference in temperature between the part facing the heat dissipation surface and the central part in the eutectic phase melting region. There is a slight temperature difference until the eutectic phase melting region is reached, but the difference is also much smaller than, for example, induction heating.

共晶相と、分断して塊状に成長させたα−Al相を有する組織としたAl−Si系アルミニウム合金ビレットの場合には、共晶温度に達すると共晶相の溶融が始まる。そして加熱を続けてもしばらく温度上昇が行われない時間がある。投入された熱が共晶相の溶融に費やされていると考えられる。共晶相の溶融が終了すると再び温度が上昇するようになる。α−Al相の溶融が始まったものと思われる。   In the case of an Al—Si-based aluminum alloy billet having a structure having an eutectic phase and an α-Al phase that is divided and grown in a lump, melting of the eutectic phase starts when the eutectic temperature is reached. And even if it continues heating, there is time when temperature rise is not performed for a while. It is considered that the input heat is consumed for melting the eutectic phase. When the eutectic phase is melted, the temperature rises again. It seems that the melting of the α-Al phase has begun.

そこで、共晶温度に達してから再び温度が上昇するまでの時間を予め測定しておき、共晶温度に達してから再び温度上昇を開始するまでの間の時点でビレットを取り出し、加圧成形すると、成形性良く成形することができる。再び温度上昇が始まった後では、溶融が進みすぎ、却って成形し難くなる。共晶温度に達した後の時間に応じて固液共存状況が変わるので、被成形品形状や成形圧力に応じて所望の固液共存割合を予め見極め、それに応じて加熱炉からの取り出し時を設定することが好ましい。このような温度制御、時間設定は、放熱面にセラミックスを利用した赤外線加熱炉では容易に行い得る。   Therefore, the time until the temperature rises again after reaching the eutectic temperature is measured in advance, and the billet is taken out at a time point between the eutectic temperature and the temperature rise again, and pressure molding is performed. Then, it can shape | mold with good moldability. After the temperature starts to rise again, melting proceeds too much, making it difficult to mold. Since the solid-liquid coexistence status changes according to the time after reaching the eutectic temperature, the desired solid-liquid coexistence ratio is determined in advance according to the shape of the molded product and the molding pressure, and the time of taking out from the heating furnace accordingly. It is preferable to set. Such temperature control and time setting can be easily performed in an infrared heating furnace using ceramics for the heat radiation surface.

セラミックスを利用した赤外線加熱の場合、誘導加熱よりも加熱に時間がかかるために、表面が酸化されやすい。成形の際に表面の酸化物が成形品の内部に入り込むと、破断する際に起点となるので、成形品の強度が低下してしまう。
成形品の内部への酸化物の巻き込みを抑制する成形法として、低速充填ダイカスト法が挙げられる。低速充填ダイカスト法は、キャビティ内への材料の圧入速度が通常のダイカスト法よりも遅いので、酸化した表面層が製品内部に入り込み難い。したがってセラミックスによる赤外線で加熱した半溶融材料の圧力成形に適していると言える。
In the case of infrared heating using ceramics, since the heating takes more time than induction heating, the surface is easily oxidized. If the surface oxide enters the inside of the molded product during molding, it becomes a starting point when it breaks, so that the strength of the molded product decreases.
A low-speed filling die casting method may be mentioned as a molding method that suppresses the oxide from being caught inside the molded product. In the low-speed filling die casting method, since the press-fitting speed of the material into the cavity is slower than the normal die casting method, the oxidized surface layer is difficult to enter the product. Therefore, it can be said that it is suitable for pressure forming of semi-molten material heated by infrared rays with ceramics.

次に本発明方法をより具体的に説明する。
本発明では、共晶相と、分断して塊状に成長させたα−Al相を有する組織としたAl−Si系アルミニウム合金ビレットを素材としている。半溶融状態にした際、溶融する共晶部が少ないと材料の十分な流動性は得られない。このため、Si含有量を3.0質量%以上としたAl−Si系アルミニウム合金とすることが好ましい。
Next, the method of the present invention will be described more specifically.
In the present invention, an Al—Si-based aluminum alloy billet having a structure having a eutectic phase and an α-Al phase divided and grown in a lump is used as a material. In the semi-molten state, if there are few eutectic parts to melt, sufficient fluidity of the material cannot be obtained. For this reason, it is preferable to set it as the Al-Si type aluminum alloy which made Si content 3.0 mass% or more.

上記所定の組織を備えたアルミニウム合金ビレットとしては、鋳造時に溶湯を電磁的若しくは機械的に強制攪拌し、晶出したα−Al相のデンドライトを分断させ、それぞれのα−Al相を個々に成長させて塊状となし、その間を共晶相が埋めている組織としたものが好ましい。また、Al−Si系アルミニウム合金ビレットに押出加工等の塑性加工を加えてデンドライト組織を破壊させた後、熱処理を施して再結晶させ、塊状のα−Al相とその間を生める共晶相からなる組織としたものでも良い。   As an aluminum alloy billet having the above-mentioned predetermined structure, the molten metal is forcibly stirred electromagnetically or mechanically during casting, the crystallized α-Al phase dendrite is divided, and each α-Al phase grows individually. It is preferable to use a structure in which the structure is made into a lump and the eutectic phase is filled in between. In addition, the Al-Si-based aluminum alloy billet is subjected to plastic processing such as extrusion to destroy the dendrite structure, and then subjected to heat treatment and recrystallized to form a massive α-Al phase and a eutectic phase that grows between them. It may be organized.

α−Al相を塊状にしたアルミニウム合金ビレットを、内面にセラミックス製の放熱体を貼り付けた赤外線加熱炉に装入する。赤外線加熱炉としては、加熱時の表面酸化を抑制するために、真空又は不活性ガス雰囲気にできる密閉型のものを用いても良いが、作業効率を考慮するとトンネル型の加熱炉を使用することが好ましい。
トンネル型の赤外線加熱炉を通過させる場合には、ビレットに均一に赤外線が照射されるように、ビレットを回転させながら通過させることが好ましい。また、加熱されるビレットを、所定温度で加熱しても軟化することのない缶等の容器に入れて加熱すると、成形装置への搬送が行いやすくなる。その際、容器として、赤外線を吸収しやすい材質のもの、或いは表面に赤外線を吸収しやすい塗料を塗布したものを利用すると、加熱効率が良くなる。
なお、赤外線加熱炉を通過させる前に、酸化した表面層を切削等により除去しておくことも有効である。
The aluminum alloy billet in which the α-Al phase is agglomerated is placed in an infrared heating furnace in which a ceramic radiator is attached to the inner surface. As an infrared heating furnace, in order to suppress surface oxidation during heating, a sealed type that can be in a vacuum or an inert gas atmosphere may be used, but in consideration of work efficiency, a tunnel type heating furnace should be used. Is preferred.
When passing through a tunnel type infrared heating furnace, it is preferable to pass the billet while rotating it so that the billet is uniformly irradiated with infrared rays. Moreover, when the billet to be heated is placed in a container such as a can that does not soften even when heated at a predetermined temperature, the billet is easily transported to a molding apparatus. At that time, if the container is made of a material that easily absorbs infrared rays, or has a surface coated with a paint that easily absorbs infrared rays, the heating efficiency is improved.
It is also effective to remove the oxidized surface layer by cutting or the like before passing through the infrared heating furnace.

所望の半溶融状態を得るには、共晶温度近傍でのセラミックス温度の制御と加熱時間を設定することが重要になってくる。
共晶温度に満たない、例えば500℃以下の温度領域は他の誘導加熱や燃焼ガス加熱を行っても良い。共晶温度近傍以降は、セラミックスを用いた赤外線加熱を行う。加熱時間は、前記したように、予め被成形品形状や成形圧力に応じて求められる固液共存割合を満たすように設定された時間とする。通常は、共晶相の溶融が開始して終了するまでの時間の1/2以上の時間、共晶温度域に保持した後、低圧充填ダイカストマシーンに搬送し、圧力成形する。
In order to obtain a desired semi-molten state, it is important to control the ceramic temperature near the eutectic temperature and set the heating time.
Other induction heating or combustion gas heating may be performed in a temperature range lower than the eutectic temperature, for example, 500 ° C. or lower. Infrared heating using ceramics is performed after the eutectic temperature. As described above, the heating time is a time set in advance so as to satisfy the solid-liquid coexistence ratio determined in accordance with the shape of the molded product and the molding pressure. Usually, after maintaining in the eutectic temperature range for a time of ½ or more of the time from the start to the end of melting of the eutectic phase, it is conveyed to a low pressure filling die casting machine and pressure-molded.

低速充填ダイカストする際、金型は予め170℃以上に余熱しておくことが好ましい。金型温度が低いと被成形材料の温度を低下させ、成形する際に材料の流動性が悪くなる。170℃以上であれば問題はない。しかし、金型温度が高くなりすぎると金型自身の損耗が大きくなるので、金型の温度は300℃を超えないようにすることが好ましい。   When performing low-speed filling die casting, the mold is preferably preheated to 170 ° C. or higher in advance. If the mold temperature is low, the temperature of the material to be molded is lowered, and the fluidity of the material becomes worse during molding. If it is 170 degreeC or more, there is no problem. However, if the mold temperature becomes too high, the wear of the mold itself increases, so it is preferable that the mold temperature does not exceed 300 ° C.

低速充填ダイカスト法とは、通常、金型への材料の供給速度が1m/s前後以下のダイカスト法を称している。例えば、特開2000−24768号公報や、特開2000−246417号公報に見られるように、方法自体は良く知られている。
本発明でも、金型内への空気の巻き込みや表層酸化物の巻き込みを抑制して所望の機械的特性を発揮させるため、ラム速度の遅い低速充填ダイカスト法を採用することが好ましい。空気の巻き込みを極力抑えるためには、ラム速度は0.6m/s以下に、さらに好ましくは0.3m/s以下にすることが好ましい。しかし、遅くしすぎると被成形材料の温度が低くなりすぎて半溶融状態を維持できなくなり、成形性を低下させることになるので、0.1m/sを超える速度とすることが好ましい。
The low-speed filling die casting method generally refers to a die casting method in which the material supply speed to the mold is about 1 m / s or less. For example, as seen in Japanese Patent Application Laid-Open No. 2000-24768 and Japanese Patent Application Laid-Open No. 2000-246417, the method itself is well known.
Also in the present invention, it is preferable to employ a low-speed filling die casting method with a slow ram speed in order to suppress the air entrainment and surface oxide entrainment in the mold and to exhibit desired mechanical properties. In order to suppress the entrainment of air as much as possible, the ram speed is preferably 0.6 m / s or less, more preferably 0.3 m / s or less. However, if it is too slow, the temperature of the material to be molded will be too low to maintain the semi-molten state, and the moldability will be reduced. Therefore, it is preferable to set the speed exceeding 0.1 m / s.

次に、実際にセラミックス赤外線加熱を行った後に低速充填ダイカストした例について説明する。
〔実施例1〕
JIS AC4CH合金(凝固時共晶温度約570℃)を、60Hzの商用高周波で電磁攪拌を行いながら半連続鋳造を行い、直径75φの円柱状鋳造材を得た。得られた鋳造材の金属組織は、図2に示すようにα−Al相が塊状化しているものであった。
Next, an example of low-speed filling die casting after actually performing ceramic infrared heating will be described.
[Example 1]
Semi-continuous casting was performed on a JIS AC4CH alloy (eutectic temperature at solidification of about 570 ° C.) with electromagnetic stirring at a commercial high frequency of 60 Hz to obtain a cylindrical cast material having a diameter of 75φ. The metal structure of the obtained cast material was an α-Al phase agglomerated as shown in FIG.

この鋳造材を長さ150mmに裁断し、その10個を窒化ケイ素製セラミックスを放熱体としたバッチ式赤外線加熱炉に入れた。共晶温度に達してから10分後に、金型を220℃に加熱・保持していた低速充填ダイカストマシーンを用い、ラム速度0.2m/sでJIS4号引張試験片形状に鋳造した。
得られた半溶融成形品の機械的強度,伸び及び密度を測定した。
その結果を表1に示す。
The cast material was cut into a length of 150 mm, and 10 pieces thereof were put into a batch type infrared heating furnace using a silicon nitride ceramic as a heat radiator. Ten minutes after the eutectic temperature was reached, a JIS No. 4 tensile specimen was cast at a ram speed of 0.2 m / s using a low-speed filling die casting machine in which the mold was heated and held at 220 ° C.
The mechanical strength, elongation and density of the obtained semi-molten molded product were measured.
The results are shown in Table 1.

比較例として、誘導加熱で半溶融状態にして、同じ条件で低速充填ダイカストを行った半溶融成形品の機械的強度,伸び及び密度を測定した。その結果も併せて表1に示す。
なお、誘導加熱したものは、低速充填ダイカストマシーンに搬送する際、表面を観察したところ、10個中4個に表面クラックが観察された。一方、本発明によりセラミックス赤外線加熱を行ったものにあっては、いずれも表面クラックは観察されなかった。
表1の結果より、セラミックス赤外線加熱を行った本発明例では、強度,伸び及び密度は高く、そのバラツキも小さいことがわかる。
As a comparative example, the mechanical strength, elongation and density of a semi-molten molded article which was made into a semi-molten state by induction heating and subjected to low-speed filling die casting under the same conditions were measured. The results are also shown in Table 1.
In addition, when the surface of the induction-heated product was observed when it was transported to a low-speed filling die casting machine, surface cracks were observed in 4 out of 10. On the other hand, no surface crack was observed in any of the ceramics heated by infrared rays according to the present invention.
From the results shown in Table 1, it can be seen that the inventive examples subjected to ceramic infrared heating have high strength, elongation and density, and small variations.

〔実施例2〕
実施例1と同じ条件で製造したα−Al相を塊状化した半溶融成形用材料を、実施例1で用いた炉と同じセラミックス赤外線加熱炉に入れた。共晶温度まで加熱し、共晶温度に達してから10分後に、表2に示す条件で、各条件毎に5個ずつ図3に示す試験片形状に低速充填ダイカストを行った。
得られた試験片について、実施例1と同じように、機械的強度,伸び及び密度を測定した。また外観も目視で検査した。
その結果を表3に示す。
[Example 2]
The semi-molten molding material obtained by agglomerating the α-Al phase produced under the same conditions as in Example 1 was placed in the same ceramic infrared heating furnace as that used in Example 1. Heating to the eutectic temperature and 10 minutes after reaching the eutectic temperature, low-speed filling die casting was performed on the test piece shape shown in FIG.
The mechanical strength, elongation, and density of the obtained test piece were measured in the same manner as in Example 1. The appearance was also visually inspected.
The results are shown in Table 3.

表3の結果からもわかるように、金型温度及びラム速度を適切に設定した低速充填ダイカストを行なうと、引張強度,伸び及び密度の高い半溶融成形品が得られている。
一方、ラム速度が速くなると(試験No.9)、引張強度や伸び及び密度が低くなっている。ラム速度が速いほど、ダイカストの際に空気の巻き込みが多くなったためと思われる。またラム速度が遅すぎたり(試験No.5)、金型温度が低すぎたりすると(試験No.4,6)、被成形材料の流入速度が遅すぎて十分な圧力が加わらなかったために湯まわり不良等の外観不良が増加する傾向にあることがわかった。ダイカスト時の材料流動が不十分であったためと思われる。
As can be seen from the results in Table 3, a semi-molten molded article with high tensile strength, elongation and density is obtained when low-speed filling die casting is performed with the mold temperature and ram speed appropriately set.
On the other hand, as the ram speed increases (Test No. 9), the tensile strength, elongation and density decrease. This is probably because the higher the ram speed, the more air was involved during die casting. If the ram speed is too slow (Test No. 5) or the mold temperature is too low (Test Nos. 4 and 6), the inflow speed of the molding material was too slow and sufficient pressure was not applied. It was found that there was a tendency for appearance defects such as poor surroundings to increase. This is probably due to insufficient material flow during die casting.

加熱時間と被加熱体の温度の関係を示す図Diagram showing the relationship between the heating time and the temperature of the heated object 実施例で使用したα−Al相が塊状化した組織を有するアルミニウム合金ビレットの組織を説明する図The figure explaining the structure | tissue of the aluminum alloy billet which has the structure | tissue which the alpha-Al phase used in the Example agglomerated. 実施例2でダイカストした成形品形状を示す図The figure which shows the shape of the molded article die-cast in Example 2

Claims (3)

共晶相と、分断して塊状に成長させたα−Al相を有する組織としたAl−Si系アルミニウム合金ビレットを、セラミックス赤外線加熱源により当該Al−Si系アルミニウム合金の共晶温度から液相線の間の温度に再加熱して前記Al−Si系アルミニウム合金ビレットを半溶融状態した後に、所定の加圧成形を施すことを特徴とするアルミニウム合金ビレットの成形方法。   An Al-Si-based aluminum alloy billet having a structure having an eutectic phase and an α-Al phase that has been divided and grown in a lump is liquid-phased from the eutectic temperature of the Al-Si-based aluminum alloy by a ceramic infrared heating source. A method for forming an aluminum alloy billet, wherein the aluminum alloy billet is subjected to predetermined pressure forming after the Al-Si aluminum alloy billet is semi-molten by reheating to a temperature between the wires. 加圧成形方法としては、低速充填ダイカスト法を用いる請求項1に記載のアルミニウム合金ビレットの成形方法。   2. The method for forming an aluminum alloy billet according to claim 1, wherein a low-speed filling die casting method is used as the pressure forming method. 金型温度:170℃以上,ラム速度:0.6m/s以下の条件で低速充填ダイカストする請求項2に記載のアルミニウム合金ビレットの成形方法。   The method for forming an aluminum alloy billet according to claim 2, wherein die casting is performed at low speed under conditions of mold temperature: 170 ° C or higher and ram speed: 0.6 m / s or lower.
JP2005013786A 2005-01-21 2005-01-21 Method for forming aluminum alloy billet Pending JP2006198660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005013786A JP2006198660A (en) 2005-01-21 2005-01-21 Method for forming aluminum alloy billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005013786A JP2006198660A (en) 2005-01-21 2005-01-21 Method for forming aluminum alloy billet

Publications (1)

Publication Number Publication Date
JP2006198660A true JP2006198660A (en) 2006-08-03

Family

ID=36957097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005013786A Pending JP2006198660A (en) 2005-01-21 2005-01-21 Method for forming aluminum alloy billet

Country Status (1)

Country Link
JP (1) JP2006198660A (en)

Similar Documents

Publication Publication Date Title
Maleki et al. Effects of squeeze casting parameters on density, macrostructure and hardness of LM13 alloy
JP4678373B2 (en) Method for producing magnesium alloy material
US7621315B2 (en) Method and apparatus for semi-solid material processing
EP0841406B1 (en) Method of shaping semisolid metals
EP0689485A1 (en) Semi-solid metal forming method
WO2015015142A1 (en) Metal component forming
CN106881353A (en) A kind of gold alloy foil solder preparation method
JP3246363B2 (en) Forming method of semi-molten metal
CN1311940C (en) Method for founding aluminium alloy slab ingot
JPH09137239A (en) Method for molding half-molten metal
CN100346904C (en) Process and apparatus for preparing a metal alloy
JP2006198660A (en) Method for forming aluminum alloy billet
WO2007139308A1 (en) Hot chamber die casting apparatus for semi-solid magnesium alloy and the manufacturing method using the same
CN105397050A (en) Semi-solid forming method for copper alloy
JP3246358B2 (en) Forming method of semi-molten metal
JP2003126950A (en) Molding method of semi-molten metal
JP3491468B2 (en) Method for forming semi-solid metal
Seo et al. The characteristics of grain size controlled microstructure and mechanical properties of Al-Si alloy by thixocasting and rheocasting process
JPH08325652A (en) Method for molding semisolid metal
JP2008540129A (en) How to form a sea cucumber and a sea cucumber
EP1900455A1 (en) Semi-solid casting method and charge
JP2005205478A (en) Method and apparatus for producing metal slurry, and method and apparatus for producing cast block
JPH08103859A (en) Formation of half-melting metal
JPH0987773A (en) Method for molding half-molten metal
JPH0987769A (en) Method for molding half-molten metal

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20070213

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070306

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070215

A521 Written amendment

Effective date: 20070307

Free format text: JAPANESE INTERMEDIATE CODE: A821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

A131 Notification of reasons for refusal

Effective date: 20090804

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091026