JP2006197688A - Charge control circuit of lithium-ion battery - Google Patents

Charge control circuit of lithium-ion battery Download PDF

Info

Publication number
JP2006197688A
JP2006197688A JP2005005036A JP2005005036A JP2006197688A JP 2006197688 A JP2006197688 A JP 2006197688A JP 2005005036 A JP2005005036 A JP 2005005036A JP 2005005036 A JP2005005036 A JP 2005005036A JP 2006197688 A JP2006197688 A JP 2006197688A
Authority
JP
Japan
Prior art keywords
voltage
charging
converter
current
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005005036A
Other languages
Japanese (ja)
Other versions
JP4207130B2 (en
Inventor
Tomomi Sano
佐野  友美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2005005036A priority Critical patent/JP4207130B2/en
Publication of JP2006197688A publication Critical patent/JP2006197688A/en
Application granted granted Critical
Publication of JP4207130B2 publication Critical patent/JP4207130B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To set a reference voltage of a charge control circuit by a simple constitution. <P>SOLUTION: In order to obtain a charging current or a charging voltage matched to a charging sequence, a current control means 12 or a voltage control means 13 that change pulse widths by feeding values of the current and the voltage back to an AC/DC converter so that the values reach target values. When charging a battery CE up to a charge limit voltage, the charging voltage appearing at a terminal T is used as a reference voltage of the A/D converter 16, meanwhile a reference voltage from a setting circuit 11 is determined whether it can be read as a voltage in a certain range, and when it can be read as the voltage in the certain range, the A/D converter 16 is determined to be normally operated, and the acquisition of variety of data can be made effective. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、各種携帯機器用電源として大量に使用されているリチウムイオン電池(単に、電池とも言う)の充電制御回路、特にその内部基準電圧の形成方法を改良した充電制御回路に関する。   The present invention relates to a charge control circuit for a lithium ion battery (also referred to simply as a battery) that is used in large quantities as a power source for various portable devices, and more particularly to a charge control circuit having an improved method for forming its internal reference voltage.

リチウムイオン電池の充電制御は充電電流,電圧を監視して行なわれる。特に、過電圧の印加は電池を劣化させるため、厳密な電圧管理が要求されており、満充電時の電圧は充電時の電圧が4.2Vタイプの電池で4.2V±25mV(変動率にすると±0.6%)が要求されている。電池はパックされた状態で製品化されており、1本(4.2V、n本の並列もあり)のものや、数本直列にしたタイプなどがある。以下では、電池1本で使用する場合について説明する。   The charging control of the lithium ion battery is performed by monitoring the charging current and voltage. In particular, the application of overvoltage deteriorates the battery, so strict voltage management is required. The voltage at full charge is 4.2 V ± 25 mV for a battery of 4.2 V type at charge (if the rate of change is ± 0.6%) is required. The battery is commercialized in a packed state, and there are one (4.2V, n parallel) and several in series. Below, the case where it uses with one battery is demonstrated.

従来の充電制御回路としては、例えば特許文献1の図1に示すものがある。その図1には、A/D(アナログ/ディジタル変換器)16aの基準電圧は図示されていないが、これを図示すると、図9のようになる。
図9に示す回路の動作は後述の図1に示す回路と同様のため、ここでは説明を省略するが、このような構成では充電電圧設定用基準電圧とA/D変換器用基準電圧との2つが必要で、ここでは充電電圧設定用基準電圧を基準電圧設定回路11で作り、A/D変換器用基準電圧を回路11の出力をA倍する増幅器Amにて作成するようにしている。
An example of a conventional charge control circuit is shown in FIG. Although the reference voltage of the A / D (analog / digital converter) 16a is not shown in FIG. 1, this is shown in FIG.
Since the operation of the circuit shown in FIG. 9 is the same as that of the circuit shown in FIG. 1 to be described later, the description thereof is omitted here. However, in such a configuration, the charging voltage setting reference voltage and the A / D converter reference voltage are 2 Here, the reference voltage for charging voltage setting is generated by the reference voltage setting circuit 11, and the reference voltage for A / D converter is generated by the amplifier Am that multiplies the output of the circuit 11 by A.

特開2004−248476号公報(第3−9頁、図1)JP 2004-248476 A (page 3-9, FIG. 1)

ところで、図9のような構成では、トリミング等による調整を、その出力電圧を基準として充電電圧の設定を行なう基準電圧設定回路11、およびその出力をA倍してA/D変換器の基準電圧を作る増幅器Amの両方に適用しなければならない。特に、A倍する増幅器Amについては、増幅器単体のオフセットおよびゲインを持たせるための抵抗値のばらつき等があるだけでなく、充電電圧を優先して設定回路11の充電電圧設定用回路のばらつきをまず調整することから、A/Dの基準電圧は益々ずれてしまうという問題が発生する。
この発明の課題は、回路内部の基準電圧の設定を簡単な構成で実現し得るようにすることにある。
By the way, in the configuration as shown in FIG. 9, the adjustment by trimming or the like is performed with reference voltage setting circuit 11 for setting the charging voltage with reference to the output voltage, and the output is multiplied by A to the reference voltage of the A / D converter. Must be applied to both amplifiers Am. In particular, the amplifier Am to be multiplied by A has not only variations in resistance values for providing offset and gain of the amplifier alone, but also variation in the charging voltage setting circuit of the setting circuit 11 in favor of the charging voltage. Since the adjustment is performed first, there arises a problem that the A / D reference voltage is gradually shifted.
An object of the present invention is to enable setting of a reference voltage in a circuit with a simple configuration.

このような課題を解決するため、請求項1の発明では、AC/DCコンバータの出力トランス二次側の整流・平滑された直流電圧を、リチウムイオン電池の充電電圧および制御器用電源として用い、充電シーケンスに応じた充電電流または充電電圧を得るために、これら電流または電圧値を目標値に一致させるように前記AC/DCコンバータにフィードバックする電流制御手段および電圧制御手段を備え、前記フィードバックされる出力トランス二次側の直流電圧を、最終的には電池の充電上限電圧に等しくなるように制御するリチウムイオン電池の充電制御回路において、
前記充電電圧を前記制御器内部の電圧,電流値の読み込みに使用するA/D変換器の基準電圧として入力するとともに、急速充電時に発生する充電電圧が低下する期間が発生するが、A/D変換器が内部基準電圧を所定の値と読み込めるときのみ、定電圧充電期間(予備充電を含む)と判断して、A/D変換器による各種制御データの読み込みを有効にすることを特徴とする。
In order to solve such a problem, the invention of claim 1 uses the rectified and smoothed DC voltage on the secondary side of the output transformer of the AC / DC converter as the charging voltage of the lithium ion battery and the power source for the controller. In order to obtain a charging current or a charging voltage corresponding to a sequence, the current / voltage value is fed back to the AC / DC converter so that the current or voltage value matches a target value, and the feedback output is provided. In the charge control circuit of the lithium ion battery, which controls the DC voltage on the secondary side of the transformer to be finally equal to the charge upper limit voltage of the battery,
While the charging voltage is input as a reference voltage of an A / D converter used for reading the voltage and current value inside the controller, there is a period in which the charging voltage generated during rapid charging decreases. Only when the converter can read the internal reference voltage as a predetermined value, the constant voltage charging period (including preliminary charging) is determined, and reading of various control data by the A / D converter is enabled. .

また、請求項2の発明では、AC/DCコンバータの出力トランス二次側の整流・平滑された直流電圧を、リチウムイオン電池の充電電圧および制御器用電源として用い、充電シーケンスに応じた充電電流または充電電圧を得るために、これら電流または電圧値を目標値に一致させるように前記AC/DCコンバータにフィードバックする電流制御手段および電圧制御手段を備え、前記フィードバックされる出力トランス二次側の直流電圧を、最終的には電池の充電上限電圧に等しくなるように制御するリチウムイオン電池の充電制御回路において、
前記電流制御手段と電圧制御手段の各出力電圧を比較する比較手段を設け、その比較結果から電流制御動作中であると判断したときは、前記A/D変換器による電圧,電流の読み込みを無効とすることを特徴とする。
In the second aspect of the invention, the rectified / smoothed DC voltage on the secondary side of the output transformer of the AC / DC converter is used as the charging voltage of the lithium ion battery and the power supply for the controller, In order to obtain a charging voltage, it is provided with current control means and voltage control means for feeding back the current or voltage value to the AC / DC converter so as to match a target value, and the DC voltage on the secondary side of the output transformer to be fed back In a charge control circuit for a lithium ion battery that ultimately controls the battery so as to be equal to the charge upper limit voltage of the battery,
Comparing means for comparing the output voltages of the current control means and the voltage control means is provided, and when the current control operation is judged from the comparison result, reading of the voltage and current by the A / D converter is invalidated It is characterized by.

この発明によれば、内部基準回路の設定対象を充電電圧に一本化することと、基準(充電)電圧変動を許容する構成とすることで、内部制御回路の簡素化と電源の共通化が可能となる。
外部に電池が接続されており、電源として大きなフィルタが付加された構成となるため、安定した基準電圧を得ることが期待される。
According to the present invention, by simplifying the internal control circuit and making the power supply common by setting the internal reference circuit to be set to the charging voltage and allowing the reference (charging) voltage fluctuation. It becomes possible.
Since a battery is connected to the outside and a large filter is added as a power source, it is expected to obtain a stable reference voltage.

図1はこの発明の実施の形態を示す回路図である。
図示のように、充電制御回路1は基準電圧設定回路11、コンパレータ12,13、電流検出用差動増幅器15、A/D変換器16、制御器17およびトリミング等の調整は特に必要としない基準電圧発生回路E等より構成される。制御器17は、例えばコンピュータから構成される。なお、コンパレータ12,13と電流検出用差動増幅器15は同じ回路シンボルで示されているが、コンパレータ12,13はシンボルのイメージ通りのオペアンプであるのに対して、電流検出用差動増幅器15はオペアンプに数個の抵抗を接続した引き算回路を想定している。また、コンデンサCは、AC/DCコンバータ(AC/DC)の出力または充電制御回路1への入力を安定化させるために接続されている。SW1〜3は電池CEの接続,開放を行なうためのスイッチである。
FIG. 1 is a circuit diagram showing an embodiment of the present invention.
As shown in the figure, the charging control circuit 1 has a reference voltage setting circuit 11, comparators 12 and 13, a current detection differential amplifier 15, an A / D converter 16, a controller 17, and a reference that does not particularly require adjustment of trimming and the like. The voltage generating circuit E is configured. The controller 17 is composed of, for example, a computer. Although the comparators 12 and 13 and the current detection differential amplifier 15 are indicated by the same circuit symbol, the comparators 12 and 13 are operational amplifiers according to the image of the symbol, whereas the current detection differential amplifier 15 Assumes a subtraction circuit with several resistors connected to an operational amplifier. The capacitor C is connected to stabilize the output of the AC / DC converter (AC / DC) or the input to the charge control circuit 1. SW1 to SW3 are switches for connecting and releasing the battery CE.

図1に示すように、充電電圧(電池充電用の電圧:充電電流検出抵抗Rの後の電圧=端子Tの電圧)をA/D変換器16の基準電圧端子に接続し、電圧設定を充電電圧またはA/D変換器基準電圧の設定だけで実現するとともに、A/D変換器16は基準電圧設定回路11からの電圧(公称1Vの基準電圧:A/D変換器の較正用)を必要に応じて随時読み込むものとする。   As shown in FIG. 1, the charging voltage (battery charging voltage: voltage after charging current detection resistor R = voltage at terminal T) is connected to the reference voltage terminal of A / D converter 16 to charge the voltage setting. The A / D converter 16 requires the voltage from the reference voltage setting circuit 11 (nominal 1V reference voltage: for calibration of the A / D converter). It will be read from time to time according to.

充電制御回路1は交流電源が投入されると起動され、充電電圧が4.2VとなるようにフォトカプラPCの発光量の制御が行なわれ、その時点で充電開始待ちの状態になる。この充電待ち状態では、充電用スイッチSW2,3はオフで充電電流は0、電流指令値は急速充電設定の1A程度を指示していて、その電流制御用コンパレータ12の出力は「H」に振り切っている。そのため、電圧制御用コンパレータ13の出力の方が電流制御用コンパレータ12の出力よりも低くなっていることから、電圧制御が支配的となり充電電圧が4.2Vとなるように優先的に制御される。つまり、図2に示すように電流制御と電圧制御との切換えはコンパレータ12,13の出力をダイオード接続し、各出力電圧の低いほうを優先して制御する構成になっている。   The charging control circuit 1 is activated when AC power is turned on, and the light emission amount of the photocoupler PC is controlled so that the charging voltage becomes 4.2 V. At that time, the charging control circuit 1 is in a waiting state for charging. In this charging waiting state, the charging switches SW2 and SW3 are off, the charging current is 0, the current command value indicates about 1A of the rapid charging setting, and the output of the current control comparator 12 swings to “H”. ing. Therefore, since the output of the voltage control comparator 13 is lower than the output of the current control comparator 12, the voltage control is dominant and the charge voltage is controlled preferentially to 4.2V. . That is, as shown in FIG. 2, switching between current control and voltage control has a configuration in which the outputs of the comparators 12 and 13 are diode-connected, and the lower one of the output voltages is controlled with priority.

充電開始は電池が取り付けられたことを検知して行なわれる。電池CEが接続されると、まずSW1をONにして電池の電圧を測定し、充電可能でかつ予備充電が必要な電池と判断すると、図3に点線で示すように予備充電として1/10C(Cは定格電流値を示す)程度の電流で充電するとともに、電池電圧を測定し一定時間内に電圧が上昇してきて急速充電へ移行する電圧になった時点で、急速充電動作を開始する。
図3は、最初は電池が未接続で、その後接続された電池の電圧を検出して予備充電は不要と判断し、急速充電する場合について示している。
急速充電動作では、充電電流を設定電流値(一定値)に調整するため、電流制御用コンパレータ12の出力が電圧制御用コンパレータ13の出力よりも低下していて、電流制御期間中は充電電圧が4.2Vより低い状態となる。
Charging is started by detecting that a battery is attached. When the battery CE is connected, first, SW1 is turned on and the voltage of the battery is measured. If it is determined that the battery can be charged and needs to be precharged, as shown by the dotted line in FIG. The battery is charged with a current of about C), and the battery voltage is measured. When the voltage rises within a certain period of time and reaches a voltage for shifting to the rapid charge, the rapid charge operation is started.
FIG. 3 shows a case where the battery is initially unconnected, the voltage of the connected battery is detected thereafter, and preliminary charging is determined to be unnecessary, and rapid charging is performed.
In the quick charging operation, the output of the current control comparator 12 is lower than the output of the voltage control comparator 13 in order to adjust the charging current to a set current value (a constant value), and the charging voltage is maintained during the current control period. It becomes a state lower than 4.2V.

図4はコンパレータ12と13の出力を示すもので、実線がコンパレータ12の出力を、点線がコンパレータ13の出力をそれぞれ示す。電流制御範囲ではコンパレータ12の出力の方がコンパレータ13の出力よりも小さく、また、電圧制御範囲ではコンパレータ13の出力の方がコンパレータ12の出力よりも小さくなっており、それに応じて電流制御,電圧制御が行なわれることが分かる。   FIG. 4 shows the outputs of the comparators 12 and 13. The solid line shows the output of the comparator 12, and the dotted line shows the output of the comparator 13, respectively. The output of the comparator 12 is smaller than the output of the comparator 13 in the current control range, and the output of the comparator 13 is smaller than the output of the comparator 12 in the voltage control range. It can be seen that control is performed.

電池の充電は図3に示すように、電池電圧が電池の充電終了の設定電圧よりも低い状態では定電流充電を行なう。このときの充電電圧は電池の充電終了電圧より低い電圧であり、その電圧が充電終了電圧に達すると(例えば電池1本の4.2Vタイプであればその4.2Vとなる。)、この電圧を上限にして固定され、定電圧充電に移行する。その定電圧充電状態で時間が経過するにつれて電池が充電されるとともに、充電電流は図3の点線で示すように徐々に低下してくる。その電流値が一定値(例えば定電流充電値の1/10)にまで低下したら、充電終了と判断する。   As shown in FIG. 3, the battery is charged at a constant current in a state where the battery voltage is lower than the set voltage at the end of battery charging. The charging voltage at this time is lower than the charging end voltage of the battery, and when that voltage reaches the charging end voltage (for example, 4.2V for a single battery of 4.2V type), this voltage. Is fixed at the upper limit and shifts to constant voltage charging. As time elapses in the constant voltage charging state, the battery is charged, and the charging current gradually decreases as shown by the dotted line in FIG. When the current value decreases to a constant value (for example, 1/10 of the constant current charge value), it is determined that the charging is finished.

図5を参照してより詳細に説明する。
予備充電は電池の1/10C程度の電流で充電する方式であるが、これは平均的にこの電流値で充電することで実用上問題がなく、本方式では電池未接続(=定電圧充電)時の電圧(4.2V)に充電電圧をセットしたまま、図1に示す抵抗Rbと直列に接続されたSW3のon/off期間を例えば図5(b)のように調整(パルス幅変調)して、充電電流がおおむね1/10Cの充電電流になるように調整している。予備充電が進むにつれて電池電圧が図5(a)のように上昇するが、電流のピーク値は図5(c)(Rbは上記抵抗、VCEは電池電圧を示す)のように低下するので、電池電圧の変化をA/D変換器で測定して、on/off期間を見直し、通電期間を調整して1/10Cに合うよう調整している。
This will be described in more detail with reference to FIG.
Pre-charging is a method of charging with a current of about 1 / 10C of the battery, but this is averagely charged with this current value, so there is no practical problem. In this method, the battery is not connected (= constant voltage charging) The on / off period of SW3 connected in series with the resistor Rb shown in FIG. 1 is adjusted as shown in FIG. 5B (pulse width modulation) while the charging voltage is set to the current voltage (4.2V). Thus, the charging current is adjusted to be approximately 1 / 10C. As the precharge proceeds, the battery voltage increases as shown in FIG. 5 (a), but the current peak value decreases as shown in FIG. 5 (c) (Rb indicates the resistance and V CE indicates the battery voltage). The change in the battery voltage is measured by an A / D converter, the on / off period is reviewed, and the energization period is adjusted to be adjusted to 1 / 10C.

図1に示すSW2は急速充電用スイッチで、予備充電期間には図5(d)のようにoffとなっており、急速充電時にonとなって図5(e)のような電流iQを電池CEに供給する。SW3は予備充電時にon/off期間の調整用スイッチとして使用している。
上記のようにすることにより、A/D変換器の基準電圧は予備充電期間中も確保されるため、この期間のA/D動作を保証することができる。
SW2 shown in FIG. 1 is a quick charge switch, which is off as shown in FIG. 5 (d) during the precharge period, and is turned on during the quick charge to generate a current i Q as shown in FIG. 5 (e). Supply to battery CE. SW3 is used as an on / off period adjustment switch during preliminary charging.
By doing as described above, the reference voltage of the A / D converter is ensured even during the preliminary charging period, so that the A / D operation during this period can be guaranteed.

予備充電は不良電池の場合、2時間経過しても電圧が上昇しない電池を不良と判断することから、この時間は短い保証はない。また、この期間中にSW3のon/off周期を調整(電池電圧が低いときは仮に30%の電圧が通電期間であったものを、電池電圧が上昇してくると、この通電期間を60〜80〜100%とアップさせる)できるようにするためには、電池電圧を測定する必要があり、その電池電圧の読み込みは正しく実施することが必要となる。
以上の各期間とSW1〜3のon,offとの関係をまとめると、下記のようになる。
予備充電 SW2……off
SW3……on/off(通電角調整:Rb(Ω)で通電)
SW1……on
急速充電 SW2……on
SW3……off
SW1……on
電池電圧読込 SW2……off
SW3……off
SW1……on(必要に応じて電池電圧読込)
In the case of a defective battery, the precharge is judged as a defective battery that does not increase in voltage even after 2 hours, so there is no guarantee that this time is short. Also, during this period, the SW3 on / off cycle is adjusted (if the battery voltage is low, if 30% of the voltage is the energization period, if the battery voltage rises, this energization period is changed to 60 to In order to be able to increase it to 80 to 100%), it is necessary to measure the battery voltage, and it is necessary to read the battery voltage correctly.
The relationship between the above periods and the on and off of SW1 to SW3 is summarized as follows.
Precharge SW2 …… off
SW3 ... on / off (energization angle adjustment: energization with Rb (Ω))
SW1 …… on
Quick charge SW2 …… on
SW3 …… off
SW1 …… on
Battery voltage reading SW2 …… off
SW3 …… off
SW1 ... on (battery voltage read if necessary)

以上のような一連の動作で、定電圧充電(予備充電および電池未接続状態を含む)期間の充電電圧をA/D変換器16の所定の基準電圧とすることができるが、充電(基準)電圧が変動している急速充電(定電流充電)期間は、A/D変換器として正しい変換ができない。そのため、A/D変換器16が基準電圧設定回路11の出力を読出し変換した値が、図6のように基準値から外れることにより急速充電中と判断し、データの取り込みを実行しないこととする。従って、急速充電期間は動作状況の監視ができないことになるが、この期間の時間監視を行なうなどするため、特に問題はない。   With the series of operations as described above, the charging voltage during the constant voltage charging (including the precharging and battery unconnected states) can be set as the predetermined reference voltage of the A / D converter 16, but charging (reference) During the quick charge (constant current charge) period in which the voltage fluctuates, correct conversion cannot be performed as an A / D converter. Therefore, the value obtained by reading and converting the output of the reference voltage setting circuit 11 by the A / D converter 16 deviates from the reference value as shown in FIG. . Therefore, although the operation status cannot be monitored during the quick charging period, there is no particular problem because time monitoring is performed during this period.

このような動作をフローで示すのが図7で、A/D変換器16が回路11から基準電圧を読み込み(ステップS1参照)、これを一定範囲として読めるかどうかをステップS2で判断し、読める場合(YES)のみA/D変換器16は正常動作できるものとして、データを取り込みこれに基く判断,処理を実行する(ステップS3,S4参照)。なお、ステップS2で一定範囲として読めない場合は、データを取り込まないこととする。   FIG. 7 shows such an operation as a flow. The A / D converter 16 reads the reference voltage from the circuit 11 (see step S1), and determines whether or not it can be read as a predetermined range in step S2. Only in the case (YES), it is assumed that the A / D converter 16 can operate normally, and data is taken in and judgment and processing are executed based on the data (see steps S3 and S4). It should be noted that if it cannot be read as a certain range in step S2, data is not taken in.

図8はこの発明の第2の実施の形態を示す回路図である。
図8からも明らかなように、図1に示すものに対し設定回路11からの基準電圧をA/D変換器16に入力しない構成とするとともに、コンパレータ12と13の各出力を導入してその比較を行なうコンパレータ14を付加した点が特徴である。コンパレータ12の出力がコンパレータ13の出力よりも低いときは、コンパレータ14により急速充電期間中と判断し、A/D変換器16のコードの読み出しを禁止するものである。
FIG. 8 is a circuit diagram showing a second embodiment of the present invention.
As is clear from FIG. 8, the reference voltage from the setting circuit 11 is not input to the A / D converter 16 with respect to that shown in FIG. A feature is that a comparator 14 for comparison is added. When the output of the comparator 12 is lower than the output of the comparator 13, the comparator 14 determines that the quick charging period is in progress, and prohibits reading of the code of the A / D converter 16.

この発明の実施の形態を示す回路図Circuit diagram showing an embodiment of the present invention 電圧制御回路および電流制御回路を示す回路図Circuit diagram showing voltage control circuit and current control circuit 電池の充電シーケンス例を説明する説明図Explanatory drawing explaining the charge sequence example of a battery 電流制御と電圧制御の切換え動作説明図Switching operation explanation of current control and voltage control 図1の動作を説明する動作説明図Operation explanatory diagram for explaining the operation of FIG. A/D変換コードとA/D変換基準電圧との関係説明図Explanatory diagram of relationship between A / D conversion code and A / D conversion reference voltage 図1の動作を説明するフローチャートFlowchart for explaining the operation of FIG. この発明の他の実施の形態を示す回路図Circuit diagram showing another embodiment of the present invention 充電制御回路の従来例を示す回路図Circuit diagram showing conventional example of charge control circuit

符号の説明Explanation of symbols

1…充電制御回路、11…基準電圧設定回路、12,13,14…コンパレータ、15…差動増幅器、16…A/D変換器、17…制御器、AC/DC…交流/直流コンバータ、E…基準電圧発生回路、Tr…トランス、PC…フォトカプラ、R…抵抗、T…端子、C…コンデンサ、SW1〜SW3…スイッチ、CE…電池。

DESCRIPTION OF SYMBOLS 1 ... Charge control circuit, 11 ... Reference voltage setting circuit, 12, 13, 14 ... Comparator, 15 ... Differential amplifier, 16 ... A / D converter, 17 ... Controller, AC / DC ... AC / DC converter, E Reference voltage generating circuit, Tr ... Transformer, PC ... Photocoupler, R ... Resistance, T ... Terminal, C ... Capacitor, SW1-SW3 ... Switch, CE ... Battery.

Claims (2)

AC/DCコンバータの出力トランス二次側の整流・平滑された直流電圧を、リチウムイオン電池の充電電圧および制御器用電源として用い、充電シーケンスに応じた充電電流または充電電圧を得るために、これら電流または電圧値を目標値に一致させるように前記AC/DCコンバータにフィードバックする電流制御手段および電圧制御手段を備え、前記フィードバックされる出力トランス二次側の直流電圧を、最終的には電池の充電上限電圧に等しくなるように制御するリチウムイオン電池の充電制御回路において、
前記充電電圧を前記制御器内部の電圧,電流値の読み込みに使用するA/D変換器の基準電圧として入力するとともに、急速充電時に発生する電圧低下期間には内部基準電圧をA/D変換器が所定値として読み込めるときのみ、A/D変換器が正常動作するものと判断して、A/D変換器による各種制御データの読み込みを有効にすることを特徴とするリチウムイオン電池の充電制御回路。
The rectified and smoothed DC voltage on the secondary side of the output transformer of the AC / DC converter is used as the charging voltage for the lithium ion battery and the power source for the controller, and these currents are obtained in order to obtain the charging current or charging voltage according to the charging sequence. Or a current control means and a voltage control means for feeding back the voltage value to the AC / DC converter so as to coincide with a target value, and the DC voltage on the secondary side of the output transformer to be fed back is finally charged to the battery. In a charge control circuit for a lithium ion battery that is controlled to be equal to the upper limit voltage,
The charging voltage is input as a reference voltage of an A / D converter used to read the voltage and current value inside the controller, and the internal reference voltage is used during a voltage drop period that occurs during rapid charging. The lithium ion battery charging control circuit is characterized in that only when the A / D converter can be read as a predetermined value, it is determined that the A / D converter operates normally, and reading of various control data by the A / D converter is enabled. .
AC/DCコンバータの出力トランス二次側の整流・平滑された直流電圧を、リチウムイオン電池の充電電圧および制御器用電源として用い、充電シーケンスに応じた充電電流または充電電圧を得るために、これら電流または電圧値を目標値に一致させるように前記AC/DCコンバータにフィードバックする電流制御手段および電圧制御手段を備え、前記フィードバックされる出力トランス二次側の直流電圧を、最終的には電池の充電上限電圧に等しくなるように制御するリチウムイオン電池の充電制御回路において、
前記電流制御手段と電圧制御手段の各出力電圧を比較する比較手段を設け、その比較結果から電流制御動作中であると判断したときは、前記A/D変換器による電圧,電流の読み込みを無効とすることを特徴とするリチウムイオン電池の充電制御回路。

The rectified and smoothed DC voltage on the secondary side of the output transformer of the AC / DC converter is used as the charging voltage for the lithium ion battery and the power source for the controller, and these currents are obtained in order to obtain the charging current or charging voltage according to the charging sequence. Or a current control means and a voltage control means for feeding back the voltage value to the AC / DC converter so as to coincide with a target value, and the DC voltage on the secondary side of the output transformer to be fed back is finally charged to the battery. In a charge control circuit for a lithium ion battery that is controlled to be equal to the upper limit voltage,
Comparing means for comparing the output voltages of the current control means and the voltage control means is provided, and when the current control operation is judged from the comparison result, reading of the voltage and current by the A / D converter is invalidated A charge control circuit for a lithium ion battery.

JP2005005036A 2005-01-12 2005-01-12 Lithium-ion battery charge control circuit Expired - Fee Related JP4207130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005005036A JP4207130B2 (en) 2005-01-12 2005-01-12 Lithium-ion battery charge control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005005036A JP4207130B2 (en) 2005-01-12 2005-01-12 Lithium-ion battery charge control circuit

Publications (2)

Publication Number Publication Date
JP2006197688A true JP2006197688A (en) 2006-07-27
JP4207130B2 JP4207130B2 (en) 2009-01-14

Family

ID=36803306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005005036A Expired - Fee Related JP4207130B2 (en) 2005-01-12 2005-01-12 Lithium-ion battery charge control circuit

Country Status (1)

Country Link
JP (1) JP4207130B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7793116B2 (en) 2006-09-01 2010-09-07 Compal Electronics, Inc. Power supply system with remote control circuit and power supply system operation method
JP2020205659A (en) * 2019-06-14 2020-12-24 ローム株式会社 Insulated dc/dc converter, ac/dc converter, power adapter, and electric device
US10998828B2 (en) 2018-11-22 2021-05-04 Rohm Co., Ltd. Insulation-type DC/DC converter, AC/DC converter, power adapter and electrical apparatus for enhancing synchronization between primary side and secondary side
US11316435B2 (en) 2019-06-14 2022-04-26 Rohm Co., Ltd. Insulated DC/DC converter, AC/DC converter, power adapter, and electric device
US11637489B2 (en) 2020-12-01 2023-04-25 Rohm Co., Ltd. Isolated DC/DC converter and AC/DC converter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7793116B2 (en) 2006-09-01 2010-09-07 Compal Electronics, Inc. Power supply system with remote control circuit and power supply system operation method
US10998828B2 (en) 2018-11-22 2021-05-04 Rohm Co., Ltd. Insulation-type DC/DC converter, AC/DC converter, power adapter and electrical apparatus for enhancing synchronization between primary side and secondary side
JP2020205659A (en) * 2019-06-14 2020-12-24 ローム株式会社 Insulated dc/dc converter, ac/dc converter, power adapter, and electric device
US11316435B2 (en) 2019-06-14 2022-04-26 Rohm Co., Ltd. Insulated DC/DC converter, AC/DC converter, power adapter, and electric device
JP7232130B2 (en) 2019-06-14 2023-03-02 ローム株式会社 Isolated DC/DC converters, AC/DC converters, power adapters and electrical equipment
US11637489B2 (en) 2020-12-01 2023-04-25 Rohm Co., Ltd. Isolated DC/DC converter and AC/DC converter

Also Published As

Publication number Publication date
JP4207130B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
US10951050B2 (en) Adaptive charger with input current limitation and controlling method for the same
JP5163283B2 (en) Power factor correction circuit
JP4637694B2 (en) Power factor correction circuit and output voltage control method thereof
TWI421662B (en) Method for improving voltage identification (vid) transient response and voltage regulator
JP2007221933A (en) Charger for capacitor storage power supply
JP2009136105A (en) Switching power supply and its initial setting method
TWI637579B (en) Charging device
JP4526453B2 (en) Charger
CN102958245A (en) Lighting device, headlamp lighting device and vehicle
JP4207130B2 (en) Lithium-ion battery charge control circuit
JP5974563B2 (en) Step-up switching power supply
US9190918B2 (en) Controllers and related control methods for generating signals representing an output current to a load in a switched mode power supply
JP2008090672A (en) Power conversion device and power conversion method
US20130307490A1 (en) Charge control circuit, charge circuit, and mobile device
JP2010110148A (en) Power supply device
JP2010057250A (en) Charging system and charging device
JP2005039997A (en) Circuit for controlling electric power
US20120032659A1 (en) Power supply device
US10243387B2 (en) Method and circuitry for battery charging using feedback voltages
JP6017183B2 (en) Charge control circuit, charging circuit
JP2006121797A (en) Charger
JP2018148654A (en) Charging apparatus
JP4066189B2 (en) AC adapter and charging method thereof
JPH0884438A (en) Battery charging device
US7436152B1 (en) Method and system for charge current control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081008

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees