JP2006196278A - Composite particle dispersion and its manufacturing method - Google Patents

Composite particle dispersion and its manufacturing method Download PDF

Info

Publication number
JP2006196278A
JP2006196278A JP2005005715A JP2005005715A JP2006196278A JP 2006196278 A JP2006196278 A JP 2006196278A JP 2005005715 A JP2005005715 A JP 2005005715A JP 2005005715 A JP2005005715 A JP 2005005715A JP 2006196278 A JP2006196278 A JP 2006196278A
Authority
JP
Japan
Prior art keywords
metal
compound
particles
composite
particle dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005005715A
Other languages
Japanese (ja)
Other versions
JP4759271B2 (en
Inventor
Kimiya Goto
公也 後藤
Toshikazu Taura
歳和 田浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP2005005715A priority Critical patent/JP4759271B2/en
Publication of JP2006196278A publication Critical patent/JP2006196278A/en
Application granted granted Critical
Publication of JP4759271B2 publication Critical patent/JP4759271B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite particle dispersion compatibly establishing expression of conductivity without hindering contact and sintering of metal particles, and adhesion of composite particles to a base material, and also to provide a manufacturing method of the composite particle dispersion. <P>SOLUTION: In this composite particle dispersion, when a hydrocarbon compound having a hydrocarbon unsaturated cyclic structure, a carbonyl group and a hydroxide group in each molecule is called a compound A, each of the composite particles has a structure where the metal particle obtained by reducing metal ions corresponding to the metal particle by the compound A is covered with a surface protection layer having the compound A as a constituent. A gallic acid is preferable for the compound A. It is preferable that it does not contain a substance having capability for reducing the metal ions or capability for being coordinated or adsorbed to the metal after the reduction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導電性を有する導電材料として利用可能な複合粒子分散体および複合粒子分散体の製造方法に関するものである。   The present invention relates to a composite particle dispersion that can be used as a conductive material having conductivity, and a method for producing the composite particle dispersion.

導電性に優れた材料が種々開発されている。具体的には、太陽電池パネル配線、フラットパネルディスプレイの電極、回路基板やICカードの配線、スルーホールまたは回路自体、ブラウン管の電磁波遮蔽用、建材または自動車の赤外線遮蔽用、電子機器や携帯電話の静電気帯電防止剤用、曇りガラスの熱線用、樹脂に導電性を付与するためのコーティング用等が挙げられ、特許文献1ないし5のように、これらに好適に用いられる導電材料や、そのための導電性被膜が種々開発されている。   Various materials having excellent conductivity have been developed. Specifically, solar panel wiring, electrodes for flat panel displays, wiring for circuit boards and IC cards, through holes or circuits themselves, electromagnetic wave shielding for cathode ray tubes, infrared shielding for building materials and automobiles, electronic devices and mobile phones Examples thereof include an electrostatic antistatic agent, a frosted glass heat wire, and a coating for imparting conductivity to a resin. As disclosed in Patent Documents 1 to 5, a conductive material suitably used for these materials and a conductive material therefor Various protective coatings have been developed.

導電性被膜の製造方法としては従来から、例えば金属の真空蒸着、化学蒸着、イオンスパッタリングなどが行われていた。しかしながら、これらの方法は真空系または密閉系での作業を必要とするため、操作が煩雑であり、また、装置が大がかりなためスペースを必要とし、投資に費用が掛かる上、量産性に乏しい等の問題があった。   Conventionally, for example, metal vacuum deposition, chemical vapor deposition, ion sputtering and the like have been performed as a method for producing a conductive coating. However, since these methods require work in a vacuum system or a closed system, the operation is complicated, and because the apparatus is large, space is required, investment is expensive, and mass productivity is poor. There was a problem.

また、メッキによって導電性被膜を形成する方法もあるが、この場合、多量の廃液を処理する必要があり、材料ロスが大きく余分なコストが掛かる上、環境に対する負荷が大きい問題があった。   In addition, there is a method of forming a conductive film by plating, but in this case, it is necessary to treat a large amount of waste liquid, resulting in a large material loss, an extra cost, and a large burden on the environment.

さらに、配線のパターニングを形成するときには、フォトリソグラフィー法が広く用いられているが、この場合、基材上に形成された導電性被膜の必要部分をマスクする工程が余分に必要である。用いられる感光性樹脂や除去された金属被膜、およびそれらを溶解させた廃液が多量に排出されるため、この点でも、処理費用がかさみ、環境負荷が大きい。   Furthermore, when forming the patterning of the wiring, a photolithography method is widely used. In this case, an extra step of masking a necessary portion of the conductive film formed on the substrate is necessary. Since a large amount of the photosensitive resin used, the removed metal coating, and the waste liquid in which they are dissolved are discharged, the processing cost is high in this respect as well, and the environmental load is large.

これらの方法に対して、導電性被膜を形成する液状材料からなるコーティング液を基材上に描画する方法では、特別な環境を設ける必要もなく簡単な設備で生産できるため、広いスペースを占有する必要もなく、投資も少なくてすむ。また、材料ロスや廃液もほとんどないことから、コスト面でも有利であり、環境負荷も小さくできる。   In contrast to these methods, the method of drawing a coating liquid made of a liquid material that forms a conductive film on a substrate can be produced with simple equipment without the need for a special environment, and therefore occupies a large space. It is not necessary and requires less investment. In addition, since there is almost no material loss or waste liquid, it is advantageous in terms of cost and the environmental load can be reduced.

上記コーティング液には、従来より、銀やその他の金属粒子を樹脂成分や有機溶媒で繰り込んだ金属ペーストや、導電性インクと称されるものを、ディスペンサーやスクリーン印刷で塗布することが多い。また、最近では粘度の低いコロイド状の金属分散液をインクジェット方式で描画し、配線パターンを形成する方法も試みられている。
特開2001−167647号公報(公開日平成13年6月22日) 特開2003−187640号公報(公開日平成15年7月4日) 特開2004−143325号公報(公開日平成16年5月20日) 特許第3162405号公報(公開日平成13年4月25日) 特許第3425645号公報(公開日平成15年7月14日)
Conventionally, a metal paste obtained by bringing silver or other metal particles into a resin component or an organic solvent, or a so-called conductive ink is often applied to the coating liquid by a dispenser or screen printing. Recently, a method of drawing a colloidal metal dispersion having a low viscosity by an ink jet method to form a wiring pattern has also been attempted.
JP 2001-167647 A (publication date June 22, 2001) JP 2003-187640 A (publication date July 4, 2003) JP 2004-143325 A (publication date May 20, 2004) Japanese Patent No. 3162405 (publication date April 25, 2001) Japanese Patent No. 3425645 (publication date: July 14, 2003)

このような導電性被膜を形成する手法では、形成した被膜の導電性と基材に対する密着性がその信頼性に直結することから、両立が非常に重要である。   In the method of forming such a conductive film, both the conductivity of the formed film and the adhesion to the base material are directly linked to the reliability, so that compatibility is very important.

これら金属ペーストや導電性インクでは、金属粒子表面の保護層やバインダー樹脂が強い吸着力・接着力を有すると、金属粒子と基材とをしっかりと固着させる一方で、金属粒子間の接触および焼結を阻害し、被膜の導電性を低下させる原因となる。   In these metal pastes and conductive inks, if the protective layer or binder resin on the surface of the metal particles has a strong adsorptive power / adhesive force, the metal particles and the substrate are firmly fixed, while the contact and firing between the metal particles are performed. It inhibits stagnation and causes a decrease in the conductivity of the coating.

逆に、被膜の導電性を優先させて、弱い吸着力・接着力の保護層やバインダー樹脂を用いる設計を行った場合、被膜の基材に対する密着性が不十分となり、両立が困難である。   On the other hand, when designing with the use of a protective layer or a binder resin having a weak adsorbing force / adhesive strength, giving priority to the conductivity of the film, the adhesion of the film to the substrate becomes insufficient, making it difficult to achieve both.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、金属粒子の接触および焼結を阻害せず導電性を発現させることと、金属粒子と基材を密着させることとを両立できる複合粒子分散体および複合粒子分散体の製造方法を実現することにある。   The present invention has been made in view of the above problems, and its purpose is to develop conductivity without inhibiting the contact and sintering of the metal particles, and to bring the metal particles and the substrate into close contact with each other. It is to realize a composite particle dispersion and a method for producing the composite particle dispersion that can satisfy both of these requirements.

上記の課題を解決するため、本発明に係る複合粒子分散体は、金属粒子を有する複合粒子を分散体中に分散させた複合粒子分散体において、分子内に炭化水素不飽和環状構造とカルボニル基および水酸基を有する炭化水素化合物を化合物Aと称するとき、上記複合粒子が、上記金属粒子に対応する金属イオンを上記化合物Aにて還元して得られる上記金属粒子が、上記化合物Aを成分として有する表面保護層で覆われた構造を有していることを特徴としている。   In order to solve the above problems, a composite particle dispersion according to the present invention is a composite particle dispersion in which composite particles having metal particles are dispersed in a dispersion, wherein a hydrocarbon unsaturated cyclic structure and a carbonyl group are present in the molecule. And the hydrocarbon compound having a hydroxyl group is referred to as Compound A, the metal particles obtained by reducing the metal ions corresponding to the metal particles with the compound A have the compound A as a component. It has a structure covered with a surface protective layer.

上記の構成により、上記複合粒子が、上記金属粒子に対応する金属イオンを上記化合物Aにて還元して得られる上記金属粒子が、上記化合物Aを成分として有する表面保護層で覆われた構造を有している。   With the above configuration, the composite particles have a structure in which the metal particles obtained by reducing metal ions corresponding to the metal particles with the compound A are covered with a surface protective layer having the compound A as a component. Have.

還元は例えば液相中で行う。   The reduction is performed in the liquid phase, for example.

金属は、例えば、金、銀、銅、白金、パラジウム、ロジウム、ルテニウム、イリジウム及びオスミウムからなる群より選ばれる1種以上の金属である。   The metal is, for example, one or more metals selected from the group consisting of gold, silver, copper, platinum, palladium, rhodium, ruthenium, iridium and osmium.

したがって、金属粒子の接触および焼結を阻害せず導電性を発現させることと、金属粒子と基材を密着させることとを両立させることができるという効果を奏する。   Therefore, there is an effect that it is possible to achieve both the development of conductivity without inhibiting the contact and sintering of the metal particles and the close contact between the metal particles and the substrate.

また、本発明に係る複合粒子分散体は、上記の構成に加えて、上記化合物Aには属さず、かつ、上記金属イオンを還元する能力、あるいは還元後の上記金属に配位または吸着する能力を有する物質を含有していないことを特徴としている。   Moreover, the composite particle dispersion according to the present invention does not belong to the above compound A and has the ability to reduce the metal ion, or the ability to coordinate or adsorb to the metal after the reduction, in addition to the above configuration. It is characterized by not containing a substance having

上記の構成により、上記化合物Aとは構造が異なり、かつ、上記金属イオンを還元する能力、あるいは還元後の上記金属に配位または吸着する能力を有する物質が含まれていない。なお、このような物質としては、例えば、グリシンやグリコール酸などを挙げることができる。したがって、上記の構成による効果に加えて、被膜導電性と基材密着性とをいっそう高めることができるという効果を奏する。   Due to the above configuration, the compound A has a different structure and does not contain a substance having the ability to reduce the metal ion or the ability to coordinate or adsorb to the metal after the reduction. Examples of such substances include glycine and glycolic acid. Therefore, in addition to the effect by said structure, there exists an effect that film electroconductivity and base-material adhesiveness can be improved further.

また、本発明に係る複合粒子分散体は、上記の構成に加えて、上記化合物Aが没食子酸であることを特徴としている。   The composite particle dispersion according to the present invention is characterized in that, in addition to the above configuration, the compound A is gallic acid.

上記の構成により、上記化合物Aが没食子酸である。したがって、上記の構成による効果に加えて、被膜導電性と基材密着性とをいっそう高めることができるという効果を奏する。   With the above configuration, the compound A is gallic acid. Therefore, in addition to the effect by said structure, there exists an effect that film electroconductivity and base-material adhesiveness can be improved further.

また、本発明に係る複合粒子分散体の製造方法は、金属粒子を有する複合粒子を分散体中に分散させた複合粒子分散体を製造する複合粒子分散体の製造方法において、分子内に炭化水素不飽和環状構造とカルボニル基および水酸基を有する炭化水素化合物を化合物Aと称するとき、金属イオンを上記化合物Aにて還元するとともに、その還元により得られる金属粒子を、上記化合物Aを成分として有する表面保護層にて覆うことを特徴としている。   Further, the method for producing a composite particle dispersion according to the present invention is a method for producing a composite particle dispersion in which composite particles having metal particles are dispersed in a dispersion. When a hydrocarbon compound having an unsaturated cyclic structure and a carbonyl group and a hydroxyl group is referred to as Compound A, the metal ion is reduced by the Compound A, and the metal particles obtained by the reduction are used as a component having the Compound A as a component. It is characterized by covering with a protective layer.

上記の構成により、上記金属粒子に対応する金属イオンを上記化合物Aにて還元するとともに、その還元により得られる金属粒子を、上記化合物Aを成分として有する表面保護層にて覆い、安定な分散体を作る。したがって、上記複合粒子が、上記金属粒子に対応する金属イオンを上記化合物Aにて還元して得られる上記金属粒子が、上記化合物Aを成分として有する表面保護層で覆われた構造のものを製造することができる。それゆえ、金属粒子の接触および焼結を阻害せず導電性を発現させることと、金属粒子と基材を密着させることとを両立させることができるという効果を奏する。   According to the above configuration, the metal ion corresponding to the metal particles is reduced with the compound A, and the metal particles obtained by the reduction are covered with a surface protective layer having the compound A as a component, thereby providing a stable dispersion. make. Therefore, the composite particles having a structure in which the metal particles obtained by reducing metal ions corresponding to the metal particles with the compound A are covered with a surface protective layer having the compound A as a component are manufactured. can do. Therefore, there is an effect that it is possible to achieve both the development of conductivity without inhibiting the contact and sintering of the metal particles and the close contact between the metal particles and the substrate.

以上のように、本発明に係る複合粒子分散体は、分子内に炭化水素不飽和環状構造とカルボニル基および水酸基を有する炭化水素化合物を化合物Aと称するとき、上記複合粒子が、上記金属粒子に対応する金属イオンを上記化合物Aにて還元して得られる上記金属粒子が、上記化合物Aを成分として有する表面保護層で覆われた構造を有している構成である。   As described above, when the composite particle dispersion according to the present invention refers to a hydrocarbon compound having a hydrocarbon unsaturated cyclic structure, a carbonyl group, and a hydroxyl group in the molecule as the compound A, the composite particle becomes the metal particle. The metal particles obtained by reducing the corresponding metal ions with the compound A have a structure covered with a surface protective layer having the compound A as a component.

また、本発明に係る複合粒子分散体の製造方法は、分子内に炭化水素不飽和環状構造とカルボニル基および水酸基を有する炭化水素化合物を化合物Aと称するとき、金属イオンを上記化合物Aにて還元するとともに、その還元により得られる金属粒子を、上記化合物Aを成分として有する表面保護層にて覆う構成である。   In the method for producing a composite particle dispersion according to the present invention, when a hydrocarbon compound having a hydrocarbon unsaturated cyclic structure, a carbonyl group and a hydroxyl group in the molecule is referred to as Compound A, the metal ion is reduced with Compound A above. In addition, the metal particles obtained by the reduction are covered with a surface protective layer having the compound A as a component.

これにより、金属粒子の接触および焼結を阻害せず導電性を発現させることと、金属粒子と基材を密着させることとを両立させることができるという効果を奏する。   Thereby, there exists an effect that it can be made to make electroconductivity expressed without inhibiting the contact and sintering of a metal particle, and to make a metal particle and a base material closely_contact | adhere.

本実施形態では、金属イオンが還元剤で還元されて金属原子(金属粒子)となるとともに、その複数の金属原子が、その還元剤のうちで還元反応に使われなかった分(分散剤)によって表面保護層として覆われる(配位または吸着される)ことで、コロイド粒子状の複合粒子となる。   In the present embodiment, the metal ions are reduced with a reducing agent to become metal atoms (metal particles), and the plurality of metal atoms are used by the amount of the reducing agent that is not used for the reduction reaction (dispersant). By being covered (coordinated or adsorbed) as a surface protective layer, colloidal particulate composite particles are obtained.

例えば、金属塩を溶解して生じる金属イオンを還元し、金属粒子の水分散体を得る際、未反応の還元剤を還元後の金属粒子の表面に付着被覆させて表面保護層を形成し、これによりコロイド粒子状の複合粒子の水分散体(複合粒子分散体)を得る。この水分散体を減圧乾燥などにより乾燥させると、コロイド粒子状の複合粒子を得ることができる。   For example, when reducing metal ions generated by dissolving a metal salt to obtain an aqueous dispersion of metal particles, an unreacted reducing agent is attached to the surface of the metal particles after reduction to form a surface protective layer, Thereby, an aqueous dispersion (composite particle dispersion) of the composite particles in the form of colloidal particles is obtained. When this aqueous dispersion is dried by vacuum drying or the like, colloidal particulate composite particles can be obtained.

また、この水分散体を基材に塗布することで被膜を形成し、その被膜を焼成することで、焼成被膜である導電性被膜を形成することができる。   Moreover, the electroconductive film which is a baked film can be formed by forming a film by apply | coating this aqueous dispersion to a base material, and baking the film.

この表面保護層により、金属粒子同士が分散媒(水など)中で接触して凝集するのを抑制できるので、長期にわたり沈降せず安定に分散させることができる。すなわち、複合粒子に、水分散体中での分散安定性(貯蔵安定性)を付与することができる。   This surface protective layer can suppress the metal particles from coming into contact with each other in a dispersion medium (water or the like) and agglomerating, so that they can be stably dispersed without being settled for a long time. That is, the dispersion stability (storage stability) in the aqueous dispersion can be imparted to the composite particles.

また、焼成時には、この表面保護層が接着層となることにより、基材と複合粒子とを接着する。ただし、金属粒子同士の接触や焼結により発現する導電性の阻害は軽度である。したがって、得られる水分散体等の複合粒子分散体を用いて形成した焼成被膜の、基材との接着性を良好にし、しかも、焼成被膜の導電性を損なわないようにすることができる。   Moreover, at the time of baking, this surface protective layer becomes an adhesive layer, thereby bonding the base material and the composite particles. However, the electrical conductivity inhibition caused by the contact and sintering of the metal particles is slight. Therefore, it is possible to improve the adhesion of the fired coating formed using the obtained composite particle dispersion such as an aqueous dispersion to the base material and not to impair the conductivity of the fired coating.

このような特性を有する物質のみを還元剤、あるいは還元後の上記金属に配位または吸着する分散剤として用いるようにすることができる。すなわち、このような特性を有する還元剤または分散剤があった場合に、それにより上記金属イオンの還元反応や分散剤の配位または吸着が起こる同じ条件において、このような特性を有さない還元剤または分散剤を複合粒子分散体中に含有させないようにすることができる。そのためには、複合粒子分散体を製造するときの金属塩溶液の液相中にこのような還元剤または分散剤を含有させないようにすればよい。   Only a substance having such characteristics can be used as a reducing agent or a dispersing agent that coordinates or adsorbs to the metal after reduction. That is, when there is a reducing agent or dispersant having such characteristics, reduction without such characteristics under the same conditions that cause the reduction reaction of the metal ions and the coordination or adsorption of the dispersant. An agent or a dispersant can be prevented from being contained in the composite particle dispersion. For this purpose, such a reducing agent or dispersant may be prevented from being contained in the liquid phase of the metal salt solution when the composite particle dispersion is produced.

本発明の複合粒子の金属成分は、例えば、金、銀、銅、白金、パラジウム、ロジウム、ルテニウム、イリジウムおよびオスミウムよりなる群より選ばれる1種以上の金属からなる。上記金属のなかでも、銀、銅、白金、パラジウムが好ましい。   The metal component of the composite particle of the present invention is made of, for example, one or more metals selected from the group consisting of gold, silver, copper, platinum, palladium, rhodium, ruthenium, iridium and osmium. Among the above metals, silver, copper, platinum, and palladium are preferable.

上記金属塩としては、適当な溶媒中に溶解できるものであれば特に限定されず、例えば、硝酸銀、硫酸銀、塩化銀、酸化銀、酢酸銀、亜硝酸銀、塩素酸銀、硫化銀等の銀塩;塩化金酸、塩化金カリウム、塩化金ナトリウム等の金塩;塩化白金酸、塩化白金、酸化白金、塩化白金酸カリウム等の白金塩;硝酸パラジウム、酢酸パラジウム、塩化パラジウム、酸化パラジウム、硫酸パラジウム等のパラジウム塩、その他の白金属塩等を挙げることができる。これらは単独で用いてもよく、2種類以上を併用してもよい。   The metal salt is not particularly limited as long as it can be dissolved in an appropriate solvent. For example, silver such as silver nitrate, silver sulfate, silver chloride, silver oxide, silver acetate, silver nitrite, silver chlorate, and silver sulfide. Salts: Gold salts such as chloroauric acid, potassium gold chloride, sodium gold chloride; platinum salts such as chloroplatinic acid, platinum chloride, platinum oxide, potassium chloroplatinate; palladium nitrate, palladium acetate, palladium chloride, palladium oxide, sulfuric acid Palladium salts such as palladium and other white metal salts can be mentioned. These may be used alone or in combination of two or more.

本発明において、これらの金属イオンを還元するとともに、微粒子化するときの表面保護層を形成する物質(還元剤または分散剤)として、分子内に炭化水素の不飽和環状構造とC=O基(カルボニル基)および水酸基を有する炭化水素化合物(化合物Aと称する)を用いる。この炭化水素化合物としては、没食子酸、2.ヒドロキシ−1,4−ナフトキノン、2,3−ジヒドロキシ−1,4−ナフトキノン、1,4−ジヒドロキシナフタレン−2−カルボン酸、3−アルキル−2−ヒドロキシ−1,4−ナフトキノン、2,2−ビス(3−ヒドロキシ−1,4−ナフトキノン)、5−ヒドロキシイソフタル酸、サリチル酸、タンニン酸、カテキン類、等が挙げられるが、これらに限定されるものではない。なかでも、没食子酸が被膜導電性と基材密着性の面で好適である。   In the present invention, as a substance (reducing agent or dispersant) for reducing these metal ions and forming a surface protective layer when making fine particles, an unsaturated cyclic structure of hydrocarbon and C═O group ( A hydrocarbon compound having a carbonyl group and a hydroxyl group (referred to as compound A) is used. As this hydrocarbon compound, gallic acid, 2. Hydroxy-1,4-naphthoquinone, 2,3-dihydroxy-1,4-naphthoquinone, 1,4-dihydroxynaphthalene-2-carboxylic acid, 3-alkyl-2-hydroxy-1,4-naphthoquinone, 2,2- Examples thereof include, but are not limited to, bis (3-hydroxy-1,4-naphthoquinone), 5-hydroxyisophthalic acid, salicylic acid, tannic acid, catechins, and the like. Among these, gallic acid is preferable in terms of film conductivity and substrate adhesion.

本発明に属さない還元剤または分散剤としては、上記本発明に属する還元剤または分散剤以外のものである。例えば、グリシンやグリコール酸などを挙げることができる。   The reducing agent or dispersant not belonging to the present invention is other than the reducing agent or dispersant belonging to the present invention. Examples include glycine and glycolic acid.

本発明において、上記複合粒子中の有機成分量としては、0.5〜30重量%が好ましい。なお、複合粒子中の有機成分とは、主として上記保護層の成分である。後述の添加剤も使用している場合は、その添加剤も含む。上記金属コロイド粒子中の有機成分量が1重量%未満であると、得られる金属コロイド液の貯蔵安定性が悪くなる傾向があり、30重量%を超えると、得られる金属コロイド液を用いてなる導電性被膜の導電率が悪くなる傾向がある。より好ましくは、1.0〜20重量%である。   In the present invention, the amount of the organic component in the composite particle is preferably 0.5 to 30% by weight. The organic component in the composite particles is mainly a component of the protective layer. When the additive mentioned later is also used, the additive is also included. When the amount of the organic component in the metal colloid particles is less than 1% by weight, the storage stability of the resulting metal colloid solution tends to deteriorate. When the amount exceeds 30% by weight, the obtained metal colloid solution is used. There exists a tendency for the electrical conductivity of a conductive film to worsen. More preferably, it is 1.0 to 20% by weight.

本発明の複合粒子の合成および分散媒に用いられる溶媒は、特に上記炭化水素化合物と相溶性のあるものであれば特に限定されないが、水、水溶性溶剤、またはそれら両方を用いることが好ましい。上記溶媒に水や水溶性溶剤を用いることにより、得られる金属コロイド液を用いて製造される導電性インクの乾燥時や焼成時に溶剤臭が強くなく、環境にも悪影響が少ない。   The solvent used for the synthesis and dispersion medium of the composite particles of the present invention is not particularly limited as long as it is compatible with the hydrocarbon compound, but it is preferable to use water, a water-soluble solvent, or both. By using water or a water-soluble solvent as the solvent, the solvent odor is not strong at the time of drying or baking the conductive ink produced using the obtained metal colloidal liquid, and there is little adverse effect on the environment.

本発明の複合粒子を用いて作製する導電ペーストあるいは導電インクは、上記複合粒子を主成分とする固形分(以下、単に固形分ともいう)の濃度が3〜70重量%であることが好ましい。ここで、上記固形分とは、微粒子以外の溶媒など揮発成分を、30℃以下でシリカゲル等を用いて乾燥したときに残留する固形分であり、通常、この固形分は、金属粒子と微粒子表面保護層とが主な成分である。   The conductive paste or conductive ink produced using the composite particles of the present invention preferably has a solid content concentration of the composite particles as a main component (hereinafter also simply referred to as solid content) of 3 to 70% by weight. Here, the solid content is a solid content that remains when a volatile component such as a solvent other than the fine particles is dried using silica gel or the like at 30 ° C. or less. Usually, the solid content is the surface of the metal particles and the fine particles. The protective layer is the main component.

上記固形分の濃度が3重量%未満であると、金属の含有量が少なすぎるので、得られる金属コロイド液を用いて導電性被膜を形成する際、厚みが不足したり、連続的な被膜形成ができなかったりする。上記固形分の濃度が70重量%を超えると、粘度が上昇したり、金属が析出しやすくなったりするなど、取り扱いにくくなる。上記固形分の濃度は、5〜60重量%がより好ましい。   If the solid content is less than 3% by weight, the metal content is too small, so when forming a conductive film using the resulting metal colloid liquid, the thickness is insufficient or a continuous film is formed. I cannot do it. When the concentration of the solid content exceeds 70% by weight, it becomes difficult to handle, for example, the viscosity increases or the metal easily precipitates. The concentration of the solid content is more preferably 5 to 60% by weight.

さらに、本発明の複合粒子の平均粒子径は、1〜400nmであることが好ましい。上記金属コロイド粒子の粒子径が1nm未満であっても、良好な導電性インクは得られるが、一般的にそのような微粒子の製造はコスト高で実用的でない。400nmを超えると、金属コロイド粒子の分散安定性が経時的に変化しやすい。上記金属コロイド粒子の平均粒子径は、より好ましくは、5〜80nmである。   Furthermore, the average particle size of the composite particles of the present invention is preferably 1 to 400 nm. Even if the particle diameter of the metal colloidal particles is less than 1 nm, a good conductive ink can be obtained, but in general, the production of such fine particles is expensive and impractical. If it exceeds 400 nm, the dispersion stability of the metal colloid particles tends to change over time. The average particle diameter of the metal colloid particles is more preferably 5 to 80 nm.

上記金属塩、および本発明において規定する上記炭化水素化合物(化合物A)を用いて金属コロイド粒子を含む溶液を製造する方法としては、例えば、上記金属塩と上記炭化水素化合物(化合物A)(本発明に属する還元剤または分散剤)をそれぞれ溶媒に溶かして溶液を調製し、その溶液を撹拌しながら混合する方法等を挙げることができる。   Examples of a method for producing a solution containing metal colloidal particles using the metal salt and the hydrocarbon compound (compound A) defined in the present invention include the metal salt and the hydrocarbon compound (compound A) (present A reducing agent or a dispersing agent belonging to the invention may be dissolved in a solvent to prepare a solution, and the solution may be mixed while stirring.

上記のようにして得られた金属コロイド粒子を含む溶液中には、金属コロイド粒子の他に、還元剤の残留物や不純物イオンが存在しており、複合粒子の分散安定性や被膜の導電性に影響を及ぼすため、除去することが望ましい。   In the solution containing the metal colloidal particles obtained as described above, the reducing agent residue and impurity ions are present in addition to the metal colloidal particles, and the dispersion stability of the composite particles and the conductivity of the coating film are present. It is desirable to remove it.

上記不純物の除去方法としては、例えば、得られた金属コロイド粒子を含む液を一定期間静置し、生じた上澄み液を取り除いた上で、純水を加えて再度撹拌し、さらに一定期間静置して生じた上澄み液を取り除く工程を幾度か繰り返す方法、上記の静置の代わりに遠心分離を行う方法、限外濾過膜や逆浸透膜によるろ過、イオン交換装置等により脱塩する方法等を挙げることができる。   As the method for removing the impurities, for example, the liquid containing the obtained metal colloid particles is allowed to stand for a certain period, and the resulting supernatant is removed, and then pure water is added and stirred again, and the liquid is further allowed to stand for a certain period. The method of repeating the process of removing the resulting supernatant liquid several times, the method of performing centrifugation instead of the above-mentioned standing, the filtration with an ultrafiltration membrane or a reverse osmosis membrane, the method of desalting with an ion exchange device, etc. Can be mentioned.

また、本発明の複合粒子を用いた導電ペーストや導電性インクは、塗工や描画のような加工特性を向上させるために、粘度調整剤、チキソ剤、表面張力調整剤、造膜助剤などの添加剤を含有してもよい。これらの添加剤は、導電性被膜を形成した場合には表面保護層とともに金属粒子間を満たすあるいは金属粒子表面を覆う。   In addition, the conductive paste or conductive ink using the composite particles of the present invention is a viscosity modifier, thixotropic agent, surface tension modifier, film-forming aid, etc. in order to improve processing characteristics such as coating and drawing. The additive may be contained. When these conductive additives are formed, these additives fill the space between the metal particles or cover the surface of the metal particles together with the surface protective layer.

上記粘度調整剤としては、特に限定されないが、ポリエステル系エマルジョン樹脂、アクリル系エマルジョン樹脂、ポリウレタン系エマルジョン樹脂、ブロックドイソシアネート等のエマルジョン、ポリエステル系樹脂、ポリアクリレート系樹脂、ポリアクリルアミド系樹脂、ポリエーテル系樹脂、メラミン系樹脂、セルロース系樹脂、アクリレート系樹脂、ポリビニルアルコール系樹脂、水性ポリアニリン系樹脂等を挙げることができる。これらは単独で用いてもよく、2種類以上を併用してもよい。   The viscosity modifier is not particularly limited, but is emulsion such as polyester emulsion resin, acrylic emulsion resin, polyurethane emulsion resin, blocked isocyanate, polyester resin, polyacrylate resin, polyacrylamide resin, polyether. Resin, melamine resin, cellulose resin, acrylate resin, polyvinyl alcohol resin, aqueous polyaniline resin, and the like. These may be used alone or in combination of two or more.

上記粘度調整剤の添加量としては、上記複合粒子100重量部に対して、0.1〜10重量部であることが好ましい。上記粘度調整剤の添加量が、上記複合粒子100重量部に対して10重量部を超えると、導電性が悪化することがある。0.1重量部未満であると、粘度調整剤を添加した効果がみられない。より好ましくは、1〜6重量部である。   The addition amount of the viscosity modifier is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the composite particles. When the addition amount of the viscosity modifier exceeds 10 parts by weight with respect to 100 parts by weight of the composite particles, the conductivity may be deteriorated. If it is less than 0.1 part by weight, the effect of adding a viscosity modifier is not observed. More preferably, it is 1 to 6 parts by weight.

上記チキソ剤としては、クレイ、ベントナイト、ヘクトライト等の粘度鉱物、ポリエステル系エマルジョン樹脂、アクリル系エマルジョン樹脂、ポリウレタン系エマルジョン樹脂、ブロックドイソシアネート等のエマルジョン等を挙げることができる。これらは単独で用いてもよく、2種類以上を併用してもよい。   Examples of the thixotropic agent include clay minerals such as clay, bentonite, and hectorite, emulsions such as polyester emulsion resins, acrylic emulsion resins, polyurethane emulsion resins, and blocked isocyanates. These may be used alone or in combination of two or more.

上記チキソ剤の添加量としては、上記複合粒子100重量部に対して、0.1〜10重量部であることが好ましい。上記チキソ剤の添加量が、上記複合粒子100重量部に対して10重量部を超えると、導電性が悪化することがある。0.1重量部未満であると、チキソ剤を添加した効果がみられない。より好ましくは、1〜6重量部である。   The addition amount of the thixotropic agent is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the composite particles. If the amount of the thixotropic agent added exceeds 10 parts by weight with respect to 100 parts by weight of the composite particles, the conductivity may deteriorate. If it is less than 0.1 part by weight, the effect of adding a thixotropic agent is not observed. More preferably, it is 1 to 6 parts by weight.

上記表面張力調整剤としては、各種界面活性能を有するものであれば、特に限定されない。   The surface tension adjusting agent is not particularly limited as long as it has various surface activity capabilities.

上記表面張力調整剤の添加量としては、溶媒100重量部に対して、0.01〜0.5重量部であることが好ましい。上記表面張力調整剤の添加量が、上記溶媒100重量部に対して0.5重量部を超えると、導電性が悪化することがある。0.01重量部未満であると、表面張力調整剤を添加した効果がみられない。より好ましくは、0,03〜0.1重量部である。   The addition amount of the surface tension adjusting agent is preferably 0.01 to 0.5 parts by weight with respect to 100 parts by weight of the solvent. When the addition amount of the surface tension adjusting agent exceeds 0.5 parts by weight with respect to 100 parts by weight of the solvent, conductivity may be deteriorated. If it is less than 0.01 part by weight, the effect of adding the surface tension adjusting agent is not observed. More preferably, it is 0.03 to 0.1 parts by weight.

上記造膜助剤としては、特に限定されないが、ポリエステル系エマルジョン樹脂、アクリル系エマルジョン樹脂、ポリウレタン系エマルジョン樹脂、ブロックドイソシアネート等のエマルジョン、ポリエステル系樹脂、ポリアクリレート系樹脂、ポリアクリルアミド系樹脂、ポリエーテル系樹脂、メラミン系樹脂、セルロース系樹脂、アクリレート系樹脂、ポリビニルアルコール系樹脂、水性ポリアニリン系樹脂等を挙げることができる。これらは単独で用いてもよく、2種類以上を併用してもよい。   The film-forming aid is not particularly limited, but emulsions such as polyester emulsion resins, acrylic emulsion resins, polyurethane emulsion resins, blocked isocyanates, polyester resins, polyacrylate resins, polyacrylamide resins, Examples thereof include ether resins, melamine resins, cellulose resins, acrylate resins, polyvinyl alcohol resins, and aqueous polyaniline resins. These may be used alone or in combination of two or more.

上記造膜助剤の添加量としては、上記複合粒子100重量部に対して、0.1〜10重量部であることが好ましい。上記造膜助剤の添加量が、上記複合粒子100重量部に対して10重量部を超えると、導電性が悪化することがある。0.1重量部未満であると、造膜助剤を添加した効果がみられない。より好ましくは、1〜6重量部である。   The amount of the film-forming aid added is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the composite particles. If the amount of the film-forming aid added exceeds 10 parts by weight with respect to 100 parts by weight of the composite particles, the conductivity may deteriorate. If it is less than 0.1 part by weight, the effect of adding a film-forming aid is not observed. More preferably, it is 1 to 6 parts by weight.

本発明において、被膜を形成させる基材としては特に限定されず、例えば、アルミナ焼結体、フェノール樹脂、ガラスエポキシ樹脂、ガラス等からなる基板;ガラス、樹脂、セラミック等からなる建材;樹脂やセラミック等で表面が形成された電子機器等を挙げることができる。また、その形状としては、例えば、板状、フイルム状等を挙げることができる。   In the present invention, the base material on which the film is formed is not particularly limited. For example, a substrate made of an alumina sintered body, a phenol resin, a glass epoxy resin, glass or the like; a building material made of glass, resin, ceramic, or the like; An electronic device having a surface formed by, for example, can be given. Examples of the shape include a plate shape and a film shape.

本発明の複合粒子を利用した導電性被膜は、上記基材に対して良好な密着性を発現するが、なかでも、ガラスなどの表面にITO(インジウム錫酸化物)処理した基材のように密着性を発現しにくい基材に対しても密着性を発現させることができる。   The conductive coating using the composite particles of the present invention expresses good adhesion to the above-mentioned base material. Especially, like a base material in which the surface of glass or the like is treated with ITO (indium tin oxide). Adhesion can be expressed even on a substrate that does not easily exhibit adhesion.

上記基材上に本発明を利用した導電ペーストや導電インクを塗布する方法としては特に限定されないが、例えば、ディッピング、スクリーン印刷、スプレー方式、バーコート法、スピンコート法、刷毛による方法等を挙げることができる。   The method for applying the conductive paste or conductive ink using the present invention on the substrate is not particularly limited, and examples thereof include dipping, screen printing, spray method, bar coating method, spin coating method, and brush method. be able to.

本発明では、金属粒子の接触および焼結を阻害せず導電性を発現させることと、複合粒子と基材を密着させることの両立が可能となる。特に、密着が困難なITO基材上での密着性と導電性とを両立させることができる。   In the present invention, it is possible to achieve both electrical conductivity without interfering with contact and sintering of metal particles and adhesion between composite particles and a substrate. In particular, it is possible to achieve both adhesion and conductivity on an ITO base material that is difficult to adhere.

その結果、各種基材に対する密着性、とりわけ密着性の発現しにくいITO基材に対する密着性に優れるとともに、同時に高い導電性を両立した導電ペースト・導電インク設計を可能にする銀微粒子などを含有する複合粒子を開発することが可能になる。本技術は、エレクトロニクス、通信、医療機器などの分野で用いる材料として、幅広く応用できる。   As a result, it has excellent adhesion to various substrates, especially adhesion to ITO substrates that are difficult to exhibit adhesion, and at the same time contains silver fine particles that enable designing of conductive paste and conductive ink that achieve both high conductivity. It becomes possible to develop composite particles. This technology can be widely applied as a material used in fields such as electronics, communication, and medical equipment.

本発明の複合粒子は、金属成分が金、銀、銅、白金、パラジウム、ロジウム、ルテニウム、イリジウムおよびオスミウムからなる群より選ばれる1種以上の金属からなり、分子内に炭化水素不飽和環状構造とC=O基および水酸基を有する炭化水素化合物によって、これらの金属イオンを液相中において還元するとともに、粒子表面保護層を形成することにより微粒子化する構成とすることができる。   The composite particle of the present invention is composed of one or more metals selected from the group consisting of gold, silver, copper, platinum, palladium, rhodium, ruthenium, iridium and osmium, and has a hydrocarbon unsaturated cyclic structure in the molecule. These metal ions can be reduced in the liquid phase by a hydrocarbon compound having a C═O group and a hydroxyl group, and a particle surface protective layer can be formed to form fine particles.

本発明の複合粒子は、上記構成において、分子内に炭化水素の不飽和環状構造とC=O基および水酸基を有する炭化水素が没食子酸である構成とすることができる。   The composite particle of the present invention may have a structure in which the hydrocarbon having an unsaturated cyclic structure of hydrocarbon, C═O group and hydroxyl group in the molecule is gallic acid.

本発明の複合粒子は、上記構成において、30℃以下で乾燥させた固形分について、窒素雰囲気下、10℃/分の昇温速度で500℃まで昇温する条件で、熱重量分析を行ったときの重量減少が10重量%以下である構成とすることができる。これは、分散体を低温(30℃以下)で減圧乾燥または常圧乾燥させたものである。このように、重量減少が10重量%以下であるくらいにまで水分が抜けた固形分であることにより、被膜にしたときに、金属粒子間に存在して導電性を阻害する成分が少なくなることになる。したがって、複合粒子同士が接触して焼成する率が高くなり、良好な導電性を示すようにすることができる。   The composite particles of the present invention were subjected to thermogravimetric analysis in the above-described configuration, with the solid content dried at 30 ° C. or lower being heated to 500 ° C. at a temperature increase rate of 10 ° C./min in a nitrogen atmosphere. The weight loss at the time may be 10% by weight or less. This is obtained by drying the dispersion at a low temperature (30 ° C. or lower) under reduced pressure or atmospheric pressure. In this way, the solid content from which moisture has been removed to such an extent that the weight reduction is 10% by weight or less reduces the amount of components that impede conductivity and exist between metal particles when formed into a film. become. Therefore, the rate at which the composite particles are brought into contact with each other and fired is increased, and good conductivity can be exhibited.

本発明の導電材料は、上記構成の複合粒子を用いた構成とすることができる。   The conductive material of the present invention may be configured using the composite particles having the above configuration.

〔実施例〕
(A)硝酸銀1.97gをイオン交換水100mLに溶解し、硝酸銀水溶液を調整した。次に没食子酸0.8gをイオン交換水100mLに加えて撹拌しながら、先に調製した硝酸銀水溶液とpH調整用の1規定水酸化ナトリウム水溶液10mLを添加し、1時間撹拌することで、銀コロイド溶液を得た。得られた銀コロイド溶液は、分画分子量5万の限外濾過膜(アドバンテック東洋製)を用いてろ過し、不純物イオンを除去した。ろ過は、100mLのイオン交換水を20回、計2000ccイオン交換水を通して行った。結果を表1のAに示す。
〔Example〕
(A) 1.97 g of silver nitrate was dissolved in 100 mL of ion exchange water to prepare an aqueous silver nitrate solution. Next, while adding 0.8 g of gallic acid to 100 mL of ion exchange water and stirring, the silver nitrate aqueous solution prepared previously and 10 mL of 1N sodium hydroxide aqueous solution for pH adjustment were added and stirred for 1 hour, thereby colloiding silver. A solution was obtained. The obtained silver colloid solution was filtered using an ultrafiltration membrane (Advantech Toyo) with a molecular weight cut off of 50,000 to remove impurity ions. Filtration was performed 20 times with 100 mL of ion-exchanged water through a total of 2000 cc of ion-exchanged water. The results are shown in A of Table 1.

(B)硝酸銀1.97gをイオン交換水100mLに溶解し、硝酸銀水溶液を調整した。次にタンニン酸0.8gをイオン交換水100mLに加えて撹拌しながら、先に調製した硝酸銀水溶液とpH調整用の1規定水酸化ナトリウム水溶液10mLを添加し、1時間撹拌することで、銀コロイド溶液を得た。得られた銀コロイド溶液は、分画分子量5万の限外濾過膜(アドバンテック東洋製)を用いてろ過し、不純物イオンを除去した。ろ過は、100mLのイオン交換水を20回、計2000ccイオン交換水を通して行った。結果を表1のBに示す。   (B) 1.97 g of silver nitrate was dissolved in 100 mL of ion exchange water to prepare an aqueous silver nitrate solution. Next, while adding 0.8 g of tannic acid to 100 mL of ion-exchanged water and stirring, the silver nitrate aqueous solution prepared previously and 10 mL of 1N sodium hydroxide aqueous solution for pH adjustment were added, and the mixture was stirred for 1 hour. A solution was obtained. The obtained silver colloid solution was filtered using an ultrafiltration membrane (Advantech Toyo) having a molecular weight cut off of 50,000 to remove impurity ions. Filtration was performed 20 times with 100 mL of ion-exchanged water through a total of 2000 cc of ion-exchanged water. The results are shown in Table 1B.

(C)硝酸銀1.97gをイオン交換水100mLに溶解し、硝酸銀水溶液を調整した。次にタンニン酸0.8gとグリシン0.35gをイオン交換水100mLに加えて撹拌しながら、先に調製した硝酸銀水溶液とpH調整用の1規定水酸化ナトリウム水溶液10mLを添加し、1時間撹拌することで、銀コロイド溶液を得た。得られた銀コロイド溶液は、分画分子量5万の限外濾過膜(アドバンテック東洋製)を用いてろ過し、不純物イオンを除去した。ろ過は、100mLのイオン交換水を20回、計2000ccイオン交換水を通して行った。結果を表1のCに示す。   (C) 1.97 g of silver nitrate was dissolved in 100 mL of ion-exchanged water to prepare an aqueous silver nitrate solution. Next, while adding 0.8 g of tannic acid and 0.35 g of glycine to 100 mL of ion-exchanged water and stirring, the previously prepared silver nitrate aqueous solution and 10 mL of 1N aqueous sodium hydroxide solution for pH adjustment are added and stirred for 1 hour. Thus, a silver colloid solution was obtained. The obtained silver colloid solution was filtered using an ultrafiltration membrane (Advantech Toyo) having a molecular weight cut off of 50,000 to remove impurity ions. Filtration was performed 20 times with 100 mL of ion-exchanged water through a total of 2000 cc of ion-exchanged water. The results are shown in C of Table 1.

(D)硝酸銀1.97gをイオン交換水100mLに溶解し、硝酸銀水溶液を調整した。次にタンニン酸0.8gとグリコール酸5.2gをイオン交換水100mLに加えて撹拌しながら、先に調製した硝酸銀水溶液とpH調整用の1規定水酸化ナトリウム水溶液10mLを添加し、1時間撹拌することで、銀コロイド溶液を得た。得られた銀コロイド溶液は、分画分子量5万の限外濾過膜(アドバンテック東洋製)を用いてろ過し、不純物イオンを除去した。ろ過は、100mLのイオン交換水を20回、計2000ccイオン交換水を通して行った。結果を表1のDに示す。   (D) 1.97 g of silver nitrate was dissolved in 100 mL of ion exchange water to prepare an aqueous silver nitrate solution. Next, while adding 0.8 g of tannic acid and 5.2 g of glycolic acid to 100 mL of ion-exchanged water and stirring, the previously prepared silver nitrate aqueous solution and 10 mL of 1N aqueous sodium hydroxide solution for pH adjustment were added and stirred for 1 hour. As a result, a colloidal silver solution was obtained. The obtained silver colloid solution was filtered using an ultrafiltration membrane (Advantech Toyo) having a molecular weight cut off of 50,000 to remove impurity ions. Filtration was performed 20 times with 100 mL of ion-exchanged water through a total of 2000 cc of ion-exchanged water. The results are shown in D of Table 1.

〔評価方法〕
被膜加熱処理を行った。すなわち、まず、基材に塗布した。被膜幅は5mmである。その後、乾燥・焼結させる処理を行った。
〔Evaluation methods〕
A coating heat treatment was performed. That is, first, it was applied to a substrate. The coating width is 5 mm. Then, the process to dry and sinter was performed.

被膜厚みを、三次元表面形状測定装置(日本ビーコ(株)/WYKO製)NT1100にて測定した。   The film thickness was measured with a three-dimensional surface shape measuring device (Nihon Beco Co., Ltd./WYKO) NT1100.

電気抵抗を、直流精密測定器であるダブルブリッジ2769−10(横河M&C(株)製)にて測定した。測定端子間距離と被膜厚みとから体積抵抗率に換算した。換算式は次の通りである。すなわち、
(体積抵抗率)=(抵抗値)×(被膜幅)×(被膜厚み)/(端子間距離)
である。
The electrical resistance was measured with a double bridge 2769-10 (manufactured by Yokogawa M & C Co.) which is a DC precision measuring instrument. The volume resistivity was converted from the distance between the measurement terminals and the film thickness. The conversion formula is as follows. That is,
(Volume resistivity) = (resistance value) × (film width) × (film thickness) / (distance between terminals)
It is.

また、剥離試験を、JIS K5600−5−6記載の方法に準拠して行った。表1中、「分類」は、この方法に記載の剥離レベルを示すものである。   Moreover, the peeling test was performed based on the method described in JIS K5600-5-6. In Table 1, “Category” indicates the peeling level described in this method.

なお、結果を示す表1中、判断基準は、「○:剥離少なく、問題なし ×:剥離多く、問題あり」である。   In Table 1 showing the results, the criterion is “◯: little peeling, no problem ×: many peeling, problematic”.

Figure 2006196278
Figure 2006196278

A、Bでは、還元剤または分散剤として、没食子酸またはタンニン酸のみを用いた。一方、C、Dでは、タンニン酸とグリシン、あるいはタンニン酸とグリコール酸、とのように、タンニン酸以外にも、グリシンやグリコール酸などの還元剤または分散剤をも使用した。その結果、基材との接着性で、A、Bは、C、Dと比べて、より優れていることがわかる。   In A and B, only gallic acid or tannic acid was used as the reducing agent or dispersant. On the other hand, in C and D, reducing agents or dispersants such as glycine and glycolic acid were used in addition to tannic acid, such as tannic acid and glycine, or tannic acid and glycolic acid. As a result, it can be seen that A and B are superior to C and D in terms of adhesion to the substrate.

本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.

導電性と密着性とに優れており、回路基板に導電性を付与するためのコーティングのような用途にも適用できる。   It is excellent in conductivity and adhesion, and can be applied to uses such as coating for imparting conductivity to a circuit board.

Claims (4)

金属粒子を有する複合粒子を分散体中に分散させた複合粒子分散体において、
分子内に炭化水素不飽和環状構造とカルボニル基および水酸基を有する炭化水素化合物を化合物Aと称するとき、
上記複合粒子が、
上記金属粒子に対応する金属イオンを上記化合物Aにて還元して得られる上記金属粒子が、上記化合物Aを成分として有する表面保護層で覆われた構造を有していることを特徴とする複合粒子分散体。
In a composite particle dispersion in which composite particles having metal particles are dispersed in a dispersion,
When a hydrocarbon compound having a hydrocarbon unsaturated cyclic structure, a carbonyl group and a hydroxyl group in the molecule is referred to as compound A,
The composite particles are
A composite characterized in that the metal particles obtained by reducing metal ions corresponding to the metal particles with the compound A have a structure covered with a surface protective layer having the compound A as a component. Particle dispersion.
上記化合物Aには属さず、かつ、上記金属イオンを還元する能力、あるいは還元後の上記金属に配位または吸着する能力を有する物質を含有していないことを特徴とする請求項1に記載の複合粒子分散体。   2. The substance according to claim 1, which does not belong to the compound A and does not contain a substance having the ability to reduce the metal ion, or the ability to coordinate or adsorb to the metal after reduction. Composite particle dispersion. 上記化合物Aが没食子酸であることを特徴とする請求項1または2に記載の複合粒子分散体。   The composite particle dispersion according to claim 1 or 2, wherein the compound A is gallic acid. 金属粒子を有する複合粒子を分散体中に分散させた複合粒子分散体を製造する複合粒子分散体の製造方法において、
分子内に炭化水素不飽和環状構造とカルボニル基および水酸基を有する炭化水素化合物を化合物Aと称するとき、
金属イオンを上記化合物Aにて還元するとともに、その還元により得られる金属粒子を、上記化合物Aを成分として有する表面保護層にて覆うことを特徴とする複合粒子分散体の製造方法。
In the method for producing a composite particle dispersion for producing a composite particle dispersion in which composite particles having metal particles are dispersed in a dispersion,
When a hydrocarbon compound having a hydrocarbon unsaturated cyclic structure, a carbonyl group and a hydroxyl group in the molecule is referred to as compound A,
A method for producing a composite particle dispersion, wherein metal ions are reduced with the compound A, and metal particles obtained by the reduction are covered with a surface protective layer having the compound A as a component.
JP2005005715A 2005-01-12 2005-01-12 Composite particle dispersion and method for producing composite particle dispersion Expired - Fee Related JP4759271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005005715A JP4759271B2 (en) 2005-01-12 2005-01-12 Composite particle dispersion and method for producing composite particle dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005005715A JP4759271B2 (en) 2005-01-12 2005-01-12 Composite particle dispersion and method for producing composite particle dispersion

Publications (2)

Publication Number Publication Date
JP2006196278A true JP2006196278A (en) 2006-07-27
JP4759271B2 JP4759271B2 (en) 2011-08-31

Family

ID=36802185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005005715A Expired - Fee Related JP4759271B2 (en) 2005-01-12 2005-01-12 Composite particle dispersion and method for producing composite particle dispersion

Country Status (1)

Country Link
JP (1) JP4759271B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128864A (en) * 2005-10-07 2007-05-24 Ishihara Sangyo Kaisha Ltd Fluid composition, and electrode, wiring pattern, as well as coating film formed by using it, and decoration goods forming the coating film
JP2009091621A (en) * 2007-10-09 2009-04-30 Ishihara Sangyo Kaisha Ltd Metal particulate, metal colloidal liquid obtained by dispersing the same into solvent and methods for producing them
JP2009138243A (en) * 2007-12-07 2009-06-25 Dowa Electronics Materials Co Ltd Silver fine powder with excellent affinity for polar medium, silver ink, and method for producing silver particle
WO2009087919A1 (en) * 2008-01-06 2009-07-16 Dowa Electronics Materials Co., Ltd. Silver micropowder having excellent affinity for polar medium, and silver ink
JP2009215619A (en) * 2008-03-11 2009-09-24 Dowa Electronics Materials Co Ltd Silver fine particle excellent in affinity with ketone, and silver ink
JP2009221505A (en) * 2008-03-14 2009-10-01 Dowa Electronics Materials Co Ltd Silver nanoparticle coated with gallic acid or its derivative
JP2010069465A (en) * 2008-09-22 2010-04-02 Noritake Co Ltd Platinum catalyst and its manufacturing method
WO2012147945A1 (en) * 2011-04-28 2012-11-01 Dowaエレクトロニクス株式会社 Tabular silver particle, manufacturing method therefor, paste using same, and printed circuit using paste
JP2013151753A (en) * 2013-03-04 2013-08-08 Dowa Electronics Materials Co Ltd Silver micropowder excellent in affinity for polar medium, and silver ink
JP2017002364A (en) * 2015-06-11 2017-01-05 古河電気工業株式会社 Dispersion solution of surface-coated metal particulate, and methods of producing sintered electrical conductor and electrically conductive connection member, including steps of applying and sintering the dispersion solution
JP2017002409A (en) * 2014-07-31 2017-01-05 Dowaエレクトロニクス株式会社 Silver powder and manufacturing method therefor
CN106573301A (en) * 2014-07-31 2017-04-19 同和电子科技有限公司 Silver powder, method for producing same, and conductive paste
JP2018147658A (en) * 2017-03-03 2018-09-20 三菱マテリアル株式会社 Conductive composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167647A (en) * 1999-12-07 2001-06-22 Bando Chem Ind Ltd Silver colloidal aqueous solution, method of preparing silver colloidal aqueous solution, conductive film and method of forming conductive film
JP2002239372A (en) * 2001-02-20 2002-08-27 Bando Chem Ind Ltd Colloidal metal solution
JP2002241813A (en) * 2001-02-20 2002-08-28 Bando Chem Ind Ltd Method for producing metallic colloidal liquid
JP2002245854A (en) * 2001-02-20 2002-08-30 Bando Chem Ind Ltd Colloidal solution of metal, and manufacturing method of the same
JP2003187640A (en) * 2001-12-18 2003-07-04 Bando Chem Ind Ltd Metal colloid liquid and conductive film
JP2003213311A (en) * 2002-01-22 2003-07-30 Sumitomo Osaka Cement Co Ltd Method for manufacturing metal nanoparticle
JP2004143325A (en) * 2002-10-25 2004-05-20 Bando Chem Ind Ltd Electroconductive ink
JP2004169162A (en) * 2002-11-22 2004-06-17 Bando Chem Ind Ltd Metallic colloidal liquid, its preparation process and use
JP2006097086A (en) * 2004-09-29 2006-04-13 Dowa Mining Co Ltd Spherical silver powder and its producing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167647A (en) * 1999-12-07 2001-06-22 Bando Chem Ind Ltd Silver colloidal aqueous solution, method of preparing silver colloidal aqueous solution, conductive film and method of forming conductive film
JP2002239372A (en) * 2001-02-20 2002-08-27 Bando Chem Ind Ltd Colloidal metal solution
JP2002241813A (en) * 2001-02-20 2002-08-28 Bando Chem Ind Ltd Method for producing metallic colloidal liquid
JP2002245854A (en) * 2001-02-20 2002-08-30 Bando Chem Ind Ltd Colloidal solution of metal, and manufacturing method of the same
JP2003187640A (en) * 2001-12-18 2003-07-04 Bando Chem Ind Ltd Metal colloid liquid and conductive film
JP2003213311A (en) * 2002-01-22 2003-07-30 Sumitomo Osaka Cement Co Ltd Method for manufacturing metal nanoparticle
JP2004143325A (en) * 2002-10-25 2004-05-20 Bando Chem Ind Ltd Electroconductive ink
JP2004169162A (en) * 2002-11-22 2004-06-17 Bando Chem Ind Ltd Metallic colloidal liquid, its preparation process and use
JP2006097086A (en) * 2004-09-29 2006-04-13 Dowa Mining Co Ltd Spherical silver powder and its producing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128864A (en) * 2005-10-07 2007-05-24 Ishihara Sangyo Kaisha Ltd Fluid composition, and electrode, wiring pattern, as well as coating film formed by using it, and decoration goods forming the coating film
JP2009091621A (en) * 2007-10-09 2009-04-30 Ishihara Sangyo Kaisha Ltd Metal particulate, metal colloidal liquid obtained by dispersing the same into solvent and methods for producing them
JP2009138243A (en) * 2007-12-07 2009-06-25 Dowa Electronics Materials Co Ltd Silver fine powder with excellent affinity for polar medium, silver ink, and method for producing silver particle
KR101526234B1 (en) * 2008-01-06 2015-06-05 도와 일렉트로닉스 가부시키가이샤 Silver micropowder having excellent affinity for polar medium, and silver ink
WO2009087919A1 (en) * 2008-01-06 2009-07-16 Dowa Electronics Materials Co., Ltd. Silver micropowder having excellent affinity for polar medium, and silver ink
TWI395624B (en) * 2008-01-06 2013-05-11 Dowa Electronics Materials Co Silver fine powder and silver ink with excellent affinity to polar media
US8486307B2 (en) 2008-01-06 2013-07-16 Dowa Electroncis Materials Co., Ltd. Silver micropowder having excellent affinity for polar medium, and silver ink
JP2009215619A (en) * 2008-03-11 2009-09-24 Dowa Electronics Materials Co Ltd Silver fine particle excellent in affinity with ketone, and silver ink
JP2009221505A (en) * 2008-03-14 2009-10-01 Dowa Electronics Materials Co Ltd Silver nanoparticle coated with gallic acid or its derivative
JP2010069465A (en) * 2008-09-22 2010-04-02 Noritake Co Ltd Platinum catalyst and its manufacturing method
JP5969988B2 (en) * 2011-04-28 2016-08-17 Dowaエレクトロニクス株式会社 Flat silver fine particles, method for producing the same, paste using the same, and method for producing a printed circuit using the paste
JPWO2012147945A1 (en) * 2011-04-28 2014-07-28 Dowaエレクトロニクス株式会社 Flat silver fine particles, method for producing the same, paste using the same, and printed circuit using the paste
WO2012147945A1 (en) * 2011-04-28 2012-11-01 Dowaエレクトロニクス株式会社 Tabular silver particle, manufacturing method therefor, paste using same, and printed circuit using paste
JP2013151753A (en) * 2013-03-04 2013-08-08 Dowa Electronics Materials Co Ltd Silver micropowder excellent in affinity for polar medium, and silver ink
JP2017002409A (en) * 2014-07-31 2017-01-05 Dowaエレクトロニクス株式会社 Silver powder and manufacturing method therefor
CN106573301A (en) * 2014-07-31 2017-04-19 同和电子科技有限公司 Silver powder, method for producing same, and conductive paste
JP2017002364A (en) * 2015-06-11 2017-01-05 古河電気工業株式会社 Dispersion solution of surface-coated metal particulate, and methods of producing sintered electrical conductor and electrically conductive connection member, including steps of applying and sintering the dispersion solution
JP2018147658A (en) * 2017-03-03 2018-09-20 三菱マテリアル株式会社 Conductive composition

Also Published As

Publication number Publication date
JP4759271B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4759271B2 (en) Composite particle dispersion and method for producing composite particle dispersion
JP5838541B2 (en) Silver paste for conductive film formation
JP4482930B2 (en) Conductive paste
EP2880105B1 (en) Ink composition and circuit board and method for producing the same
KR102023374B1 (en) Copper paste composition for printing and the forming method for metal pattern using the same
JP2010505230A (en) Metal paste for conductive film formation
JP2016164312A (en) Silver fine particle dispersoid, silver fine particle, and production method thereof
JP5606439B2 (en) Conductive ink and method for producing substrate with conductive film using the same
KR102035115B1 (en) Conductive coated composite body and method for producing same
JP2004143325A (en) Electroconductive ink
JP5001944B2 (en) Silver organosol ink for conductive line pattern formation
WO2018056052A1 (en) Electroconductive film composite and method for manufacturing same
JP2017527943A (en) Conductive composition
JP2007200775A (en) Metal fine particle-dispersed body and conductive material using metal fine particle-dispersed body
JP4641384B2 (en) Conductive ink and conductive film using the same
WO2018080090A1 (en) Surface-treated silver powder and method for producing same
JP2011082025A (en) Conductive paste
JP2005174824A (en) Metal paste, and film forming method using same
WO2017159537A1 (en) Nanowire, process for producing nanowires, nanowire dispersion, and transparent electroconductive film
JP5371454B2 (en) Electroless plating pretreatment agent and method for forming electrode on ceramic substrate
CN114121338B (en) Organic ligand modified micron gold, preparation method thereof and conductive gold paste
TWI790326B (en) Method of manufacturing conductive film and conductive film
JP2008208285A (en) Conductive ink composition
JP5542272B2 (en) Conductive paste
JP2007211330A (en) Electroplating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees