JP2007211330A - Electroplating method - Google Patents

Electroplating method Download PDF

Info

Publication number
JP2007211330A
JP2007211330A JP2006035403A JP2006035403A JP2007211330A JP 2007211330 A JP2007211330 A JP 2007211330A JP 2006035403 A JP2006035403 A JP 2006035403A JP 2006035403 A JP2006035403 A JP 2006035403A JP 2007211330 A JP2007211330 A JP 2007211330A
Authority
JP
Japan
Prior art keywords
graphite
insulator
electroplating
graphite particles
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006035403A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kubota
良博 久保田
Akio Koide
明生 小出
Polakovic Frank
ポラコビック、フランク
Takashi Saito
孝 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FM SCIENTIFIC LLC
Resonac Corp
Original Assignee
FM SCIENTIFIC LLC
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FM SCIENTIFIC LLC, Hitachi Powdered Metals Co Ltd filed Critical FM SCIENTIFIC LLC
Priority to JP2006035403A priority Critical patent/JP2007211330A/en
Publication of JP2007211330A publication Critical patent/JP2007211330A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroplating method having reduced environmental influence for forming an electrically conductive metal layer on the surface of a planar or cubic insulator such as glass and ceramics. <P>SOLUTION: The method for electroplating an electrically conductive metal layer on the surface of a planar or cubic insulator comprises: a step (a) where the surface of the insulator is coated with a graphite-dispersed liquid which comprises graphite particles with an average particle diameter of 0.05-20 μm in an amount of 1 to 20 mass%, a natural or synthetic organic matter or surfactant for dispersing the graphite particles into a water medium in an amount of 0.1 to 30 mass% to the graphite particles, and the water medium, and whose pH lies in the range of 5 to 12; a step (b) where the coated material on the insulator is dried to form a film mainly made up of the graphite particles; and a step (c) where, as an electrically conductive layer, a metal or an alloy is electroplated on the film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、絶縁物、とりわけガラス、プラスチックまたはセラミックス製の絶縁物の平面的または立体的な表面に導電性金属層を電気メッキする方法に関する。   The present invention relates to a method for electroplating a conductive metal layer on a planar or three-dimensional surface of an insulator, in particular an insulator made of glass, plastic or ceramics.

ガラスやセラミックスなどの絶縁物の表面に金属層を形成する方法としては、スクリーン印刷やドクターブレード法で金属を含有する塗料を絶縁物に塗布し、硬化処理して被膜とする方法、蒸着やスパッタリングで絶縁物上に被膜を形成する方法、メッキで被膜を形成する方法などが挙げられる。   As a method of forming a metal layer on the surface of an insulator such as glass or ceramic, a method of applying a metal-containing paint to the insulator by screen printing or a doctor blade method and curing it to form a film, vapor deposition or sputtering And a method of forming a film on an insulator and a method of forming a film by plating.

これらの中でも、メッキ法は、工業的に大量生産で導電性または装飾的な被膜を形成する方法として知られており、金属錯体を絶縁体に接触させた後、この金属錯体を熱分解して金属酸化物を形成し、その後、この金属酸化物被膜上にアルカリ触媒溶液中でパラジウムを付与し、さらに無電解メッキ液中で金属被膜を形成するメッキ方法が報告されている(例えば、特許文献1参照。)。
特開平8−144061号公報
Among these, the plating method is known as a method for forming a conductive or decorative film in industrial mass production. After contacting a metal complex with an insulator, the metal complex is thermally decomposed. There has been reported a plating method in which a metal oxide is formed, and then palladium is applied on the metal oxide film in an alkaline catalyst solution, and further a metal film is formed in an electroless plating solution (for example, Patent Documents). 1).
JP-A-8-144061

しかしながら、上記のようなメッキ方法は種々の薬剤や材料を使用し、工程も煩雑である。また、環境影響のある有害物質を使用するため、薬液管理が必要となる。   However, the plating method as described above uses various chemicals and materials, and the process is complicated. In addition, chemical solutions must be managed because harmful substances that have environmental impacts are used.

よって、本発明は、ガラスやセラミックスなどの平面または立体的な絶縁物表面への導電金属層を形成するために、環境影響の少ない電気メッキ方法を提供することを目的としている。   Therefore, an object of the present invention is to provide an electroplating method with little environmental influence in order to form a conductive metal layer on a planar or three-dimensional insulator surface such as glass or ceramics.

本発明の電気メッキ方法は、上記した課題を解決するためのもので、平面または立体的な絶縁物の表面に導電金属層を電気メッキする方法であって、(a)平均粒子径0.05〜20μmの黒鉛粒子1〜20質量%と、上記黒鉛粒子に対して0.1〜30質量%の、上記黒鉛粒子を水媒体中に分散させる天然または合成の有機物または界面活性剤と、媒体の水とからなり、pHが5〜12の範囲である黒鉛分散液を、上記絶縁物の表面に塗布する工程と、(b)上記絶縁物上の塗布物を乾燥させて、黒鉛粒子を主とする被膜を形成する工程と、(c)上記被膜上に、導電層として金属または合金を電気メッキする工程とを備えることを特徴としている。   The electroplating method of the present invention is for solving the above-described problems, and is a method of electroplating a conductive metal layer on the surface of a flat or three-dimensional insulator, and (a) an average particle diameter of 0.05 1 to 20% by mass of graphite particles of ˜20 μm, 0.1 to 30% by mass with respect to the graphite particles, natural or synthetic organic substances or surfactants for dispersing the graphite particles in an aqueous medium, A step of applying a graphite dispersion composed of water and having a pH in the range of 5 to 12 to the surface of the insulator; and (b) drying the coating on the insulator to mainly produce graphite particles. And (c) a step of electroplating a metal or alloy as a conductive layer on the coating.

本発明によれば、ガラスやセラミックスなどの絶縁物表面への導電金属層を形成するために、環境影響の少ない電気メッキ層による形成が可能になる。   According to the present invention, since the conductive metal layer is formed on the surface of an insulator such as glass or ceramics, it is possible to form the electroplating layer with little environmental influence.

本発明の電気メッキ方法は、図1に示すように、平面または立体的な絶縁物1の表面の不要部分にマスキング2をし、必要に応じて、ハジケ抑制処理剤3を塗布し、次いで、特定の黒鉛分散液を塗布し、黒鉛被膜4を形成し、その上に、導電層としての金属または合金を電気メッキし、マスキング2を除去して、平面または立体的な絶縁物の表面に導電金属層5を電気メッキする方法である。以下、本発明の電気メッキ方法に用いられる材料及び工程を説明する。   In the electroplating method of the present invention, as shown in FIG. 1, masking 2 is applied to an unnecessary portion of the surface of a planar or three-dimensional insulator 1, and a repellency suppressing agent 3 is applied if necessary, A specific graphite dispersion is applied to form a graphite film 4, and a metal or alloy as a conductive layer is electroplated thereon, masking 2 is removed, and the surface of a flat or three-dimensional insulator is electrically conductive. In this method, the metal layer 5 is electroplated. Hereinafter, materials and processes used in the electroplating method of the present invention will be described.

本発明における黒鉛分散液は、平均粒子径が0.05〜20μmの黒鉛粒子1〜20質量%と、黒鉛粒子に対して0.1〜30質量%の、この黒鉛粒子を水媒体中に分散させる天然または合成の有機物または界面活性剤と、媒体の水とからなることを基本構成とする、pHが5〜12の範囲の黒鉛分散液である。   In the present invention, the graphite dispersion is obtained by dispersing 1 to 20% by mass of graphite particles having an average particle diameter of 0.05 to 20 μm and 0.1 to 30% by mass of the graphite particles in an aqueous medium with respect to the graphite particles It is a graphite dispersion having a pH in the range of 5 to 12, which basically comprises a natural or synthetic organic substance or surfactant to be produced and water as a medium.

黒鉛粒子の平均粒子径は0.05〜20μm、好ましくは0.05〜10μm、特に好ましくは0.1μmである。黒鉛粒子の平均粒子径が20μmを超えると黒鉛粒子としては粗く、被膜表面に凹凸が発生し被膜上への電気メッキが不均一となってしまう。一方、平均粒子径が0.05μm未満、すなわち微細な平均粒子径の黒鉛粒子となると黒鉛粒子が分散液中で凝集しやすくなり、均一な厚さの被膜が得られないため好ましくない。   The average particle diameter of the graphite particles is 0.05 to 20 μm, preferably 0.05 to 10 μm, and particularly preferably 0.1 μm. When the average particle diameter of the graphite particles exceeds 20 μm, the graphite particles are coarse, and irregularities are generated on the surface of the coating, resulting in non-uniform electroplating on the coating. On the other hand, if the average particle diameter is less than 0.05 μm, that is, the graphite particles have a fine average particle diameter, the graphite particles tend to aggregate in the dispersion, and a coating with a uniform thickness cannot be obtained.

このような範囲の粒子径を有する黒鉛粒子の黒鉛分散液中含有量は1〜20質量%であることが必須である。この含有量が1質量%未満では、得られる被膜が薄くなり過ぎて充分でない、つまり黒鉛粒子含有量として過少な状態である。一方、黒鉛粒子含有量が20質量%を超える場合には、黒鉛粒子を分散させる分散剤成分を多量(黒鉛に対し30質量%超える含有量)に必要となる。ところが、分散剤成分は被膜に残存しても導電性に寄与するものではないので、被膜化した後では不要である。そのため、分散剤成分が有機物の場合は、被膜形成過程で揮発や焼成で被膜中には存在しなくなる(脱離する)。この脱離により、被膜の抵抗値が低減し電気メッキ被膜を形成することが可能になるが、有機物を多量に含有するとこの有機物が脱離する際に、被膜をポーラスにしたり、クラックを生じさせて、被膜の導電性を低下させることになる。  It is essential that the content of graphite particles having such a particle diameter in the graphite dispersion is 1 to 20% by mass. If the content is less than 1% by mass, the resulting coating is too thin and not sufficient, that is, the graphite particle content is too small. On the other hand, when the graphite particle content exceeds 20% by mass, a large amount of dispersant component for dispersing the graphite particles (content exceeding 30% by mass with respect to graphite) is required. However, even if the dispersant component remains in the coating, it does not contribute to conductivity, and thus is unnecessary after the coating. Therefore, when the dispersant component is an organic substance, it is not present (desorbed) in the film by volatilization or baking during the film formation process. This desorption reduces the resistance value of the film and makes it possible to form an electroplated film. However, when a large amount of organic matter is contained, the organic matter is desorbed, causing the film to become porous or cause cracks. As a result, the conductivity of the coating is lowered.

これに対して、分散剤成分が黒鉛粒子に対して1質量%未満では、媒体中で黒鉛粒子を分散することができない。これらの観点から分散剤成分の含有量は、黒鉛粒子に対して1〜30質量%である。   On the other hand, if the dispersant component is less than 1% by mass with respect to the graphite particles, the graphite particles cannot be dispersed in the medium. From these viewpoints, the content of the dispersant component is 1 to 30% by mass with respect to the graphite particles.

また、分散剤成分の天然または合成の有機物としてはセルロースやアクリルが、界面活性剤はアニオン系またはノニオン系のものが使用できる。   Moreover, cellulose or acrylic can be used as a natural or synthetic organic substance of the dispersant component, and an anionic or nonionic surfactant can be used.

さらに、本発明における黒鉛分散液は、黒鉛粒子が分散剤成分を含む水媒体中に分散したものを基本構成とし、pHは5〜12の範囲、すなわち、かなり弱い酸性からアルカリ性領域の水素イオン濃度とする。pHが5未満、すなわち弱酸性から強酸性領域のpHにすると黒鉛粒子が分散液中で凝集するので好ましくない。なお、黒鉛分散液の好ましいpHとしては8〜11の範囲である。   Furthermore, the graphite dispersion in the present invention has a basic structure in which graphite particles are dispersed in an aqueous medium containing a dispersant component, and the pH is in the range of 5 to 12, that is, the hydrogen ion concentration in the fairly weak acidic to alkaline region. And When the pH is less than 5, that is, from a weakly acidic to a strongly acidic region, graphite particles aggregate in the dispersion, which is not preferable. In addition, as preferable pH of a graphite dispersion liquid, it is the range of 8-11.

本発明のさらなる特徴は、黒鉛分散液にさらに無機または有機化合物を添加することにある。このような有機化合物としては、アクリル系樹脂、エポキシ系樹脂、フェノール系樹脂またはシラン化合物の何れか1つ以上、あるいはアニオン性またはノニオン性材料のどちらかである。また、無機化合物としては、水ガラスまたはコロイダルシリカのどちらかまたは両方を採用できる。これらの添加する有機または無機化合物の配合量は、黒鉛分散液中の固形物に対し1〜40質量%程度とすることが好ましく、適量を塗料中に添加することで塗料中の黒鉛分散状態が改善され、また、ガラス、プラスチック、セラミックスなどの絶縁物との濡れ状態や親和性も改善できるので、形成する黒鉛被膜の成膜性や密着力を向上させることができる。   A further feature of the present invention is that additional inorganic or organic compounds are added to the graphite dispersion. Such an organic compound is any one or more of an acrylic resin, an epoxy resin, a phenol resin, and a silane compound, or an anionic or nonionic material. Moreover, as an inorganic compound, either or both of water glass and colloidal silica can be employed. The amount of the organic or inorganic compound added is preferably about 1 to 40% by mass with respect to the solid in the graphite dispersion, and by adding an appropriate amount to the paint, the graphite dispersion state in the paint can be reduced. In addition, the wettability and affinity with insulators such as glass, plastic, and ceramics can be improved, so that the film formability and adhesion of the graphite film to be formed can be improved.

本発明においては、絶縁物上に電気メッキ層を形成するが、この絶縁物はガラス製、プラスチック製またはセラミックス製のいずれかである。ガラス製としては、平面表示装置のパネル、ガラス装飾品、建材用板ガラス、自動車のウインドシールド用ガラスなど、特段の制限はなく使用できる。また、プラスチック製としては、アクリル板、ABS板など、基本的に材質に制限はない。なお、プリント基板は、通常、フェノールやガラスエポキシ製であり、プリント基板もプラスチック製と言える。さらに、セラミックス製としては、窒化ケイ素やジルコニアのような構造用セラミックス、アルミナ、窒化チタン、チタン酸バリウム、ムライトのような電子デバイス用セラミックスを使用することができ、基本的に材質の制限はなく使用できる。   In the present invention, an electroplating layer is formed on an insulator, and this insulator is made of glass, plastic or ceramics. As a product made of glass, it can be used without any particular limitation, such as a panel of a flat display device, a glass ornament, a glass plate for building materials, a glass for automobile windshield. In addition, as a plastic product, there is basically no limitation on the material such as an acrylic plate or an ABS plate. The printed circuit board is usually made of phenol or glass epoxy, and the printed circuit board can be said to be made of plastic. Furthermore, as ceramics, structural ceramics such as silicon nitride and zirconia, and electronic device ceramics such as alumina, titanium nitride, barium titanate, and mullite can be used. Can be used.

このような平面または立体的な絶縁物表面の所望の場所に、上記の黒鉛分散液を塗布し、この塗布物を乾燥させて、或いはさらに400℃未満程度の焼成処理を行って黒鉛粒子を主とする被膜を形成する。黒鉛分散液の絶縁物への塗布としては、スプレー法、液滴塗布法、回転塗布法、スクリーン印刷法またはドクターブレード法など一般的に良く知られている塗布方法が採用できる。なお、絶縁物上での黒鉛分散液のハジケを抑制(濡れ状態を改善)するために、黒鉛分散液を適用する前段階にカチオン系界面活性剤を適用し、絶縁物表面の電荷を正の電荷に整えてから黒鉛分散液を塗布すると、絶縁物表面への黒鉛分散液の濡れ状態が改善できる。これは、分散液中の黒鉛粒子表面が負の電荷を有するためである。   The above graphite dispersion is applied to a desired place on the surface of such a planar or three-dimensional insulator, and the coated material is dried or further subjected to a baking treatment of less than about 400 ° C. to mainly produce graphite particles. To form a coating. As a method of applying the graphite dispersion to the insulator, a generally well-known coating method such as a spray method, a droplet coating method, a spin coating method, a screen printing method or a doctor blade method can be employed. In addition, in order to suppress the repelling of the graphite dispersion on the insulator (improve the wet state), a cationic surfactant is applied before the graphite dispersion is applied, and the charge on the insulator surface is positively charged. When the graphite dispersion is applied after the charge is adjusted, the wet state of the graphite dispersion on the insulator surface can be improved. This is because the surface of the graphite particles in the dispersion has a negative charge.

また、塗布物を被膜化するためには加熱乾燥が一般的であるが、送風乾燥や減圧乾燥などの方法も採用できる。   In order to form a coating on a coating, heat drying is generally used, but methods such as air drying and vacuum drying can also be employed.

黒鉛粒子を主な構成とする被膜は、黒鉛の導電性により、電気伝導性を有する。この導電性を利用することで、続く工程の電気メッキ処理により絶縁物の表面に電気メッキ層を形成できるのである。   The film mainly composed of graphite particles has electrical conductivity due to the conductivity of graphite. By utilizing this conductivity, an electroplating layer can be formed on the surface of the insulator by an electroplating process in a subsequent process.

本発明においては、この被膜の電気抵抗値が低いほど、電気メッキによるメッキ層の処理時間を短くできる。この観点から形成した黒鉛を主構成とする被膜のシート抵抗値は膜厚1μm換算で1000Ω/□未満、さらに好ましくは同膜厚で100Ω/□未満とする。   In this invention, the processing time of the plating layer by electroplating can be shortened, so that the electrical resistance value of this film is low. From this viewpoint, the sheet resistance value of the film mainly composed of graphite is less than 1000 Ω / □, more preferably less than 100 Ω / □ in terms of film thickness of 1 μm.

塗膜の乾燥により黒鉛被膜を作製することを上述したが、乾燥した黒鉛被膜をさらに180〜350℃程度の焼成処理を行うと、被膜中に残存する分散剤や有機添加物成分を焼失でき、これにより、黒鉛被膜の抵抗値を低減することができ、メッキ被膜形成の短時間化に寄与することになる。なお、シート抵抗値は、形成した被膜の導電性具合(電気の流れやすさ)を表示するもので、抵抗値が小さいほど電気が流れやすい被膜と言える。   As described above, the graphite film is prepared by drying the coating film. However, when the dried graphite film is further baked at about 180 to 350 ° C., the dispersant and organic additive components remaining in the coating film can be burned out. Thereby, the resistance value of a graphite film can be reduced and it contributes to shortening of plating film formation. The sheet resistance value indicates the conductivity (ease of electricity flow) of the formed film, and it can be said that the smaller the resistance value, the easier the electricity flows.

本発明においては、上述の電気メッキ層を第一のメッキ層として、この第一メッキ層の上に、さらに第一メッキ層の金属と同一または異なる別の金属または合金からなるメッキ層を少なくとも一層以上形成することも可能である。第一のメッキ層と同一の金属または合金でさらなるメッキ層を形成し、メッキ層の厚さを厚くすると、電子デバイス用途とした場合では大電流を流すことが可能になる。また、第一のメッキ層と異なる金属または合金を形成する場合では、例えば、第二(上層)のメッキ層を形成し、上層のメッキ層表面の硬度を向上させることにより、信頼性に優れた絶縁物上への電気メッキ層形成が可能になる。   In the present invention, the electroplating layer described above is used as a first plating layer, and a plating layer made of another metal or alloy that is the same as or different from the metal of the first plating layer is further formed on the first plating layer. It is also possible to form the above. If a further plating layer is formed of the same metal or alloy as the first plating layer and the thickness of the plating layer is increased, a large current can be passed in the case of an electronic device application. In the case of forming a metal or alloy different from the first plating layer, for example, a second (upper layer) plating layer is formed, and the hardness of the upper plating layer surface is improved, so that the reliability is excellent. An electroplated layer can be formed on the insulator.

以下、実施例を挙げてこの発明の有効性を明らかにするが、この発明は下記する実施例に限定されるものではない。
(1)黒鉛分散液の調製
700mlの蒸留水に分散剤成分のカルボキシメチルセルロース(ダイセル化学製)14gを投入して撹拌溶解させた後、黒鉛粒子(日立粉末冶金製)を300g投入して撹拌し、混合液を作製した。次いで、この混合液をボールミルで平均粒子径が0.1μmとなるまで黒鉛粒子の粉砕を行いながら分散処理し、黒鉛分散液を作製した。この黒鉛分散液に、表1に示す配合組成で有機または無機化合物を調合し、再度撹拌機を用いて混合処理し、各種黒鉛分散液(塗料A〜Qの17種)を調製した。ここで、配合比率は、黒鉛分散液の固形物量、すなわち黒鉛質量と分散剤成分質量の合計に対する比率である。
Hereinafter, the effectiveness of the present invention will be clarified by giving examples, but the present invention is not limited to the following examples.
(1) Preparation of Graphite Dispersion 14 g of carboxymethylcellulose (manufactured by Daicel Chemical) as a dispersant component was added to 700 ml of distilled water and dissolved by stirring, and then 300 g of graphite particles (manufactured by Hitachi Powdered Metals) were added and stirred. A mixed solution was prepared. Next, this mixed liquid was subjected to a dispersion treatment while pulverizing the graphite particles with a ball mill until the average particle diameter became 0.1 μm to prepare a graphite dispersion. To this graphite dispersion, an organic or inorganic compound having the composition shown in Table 1 was prepared and mixed again using a stirrer to prepare various graphite dispersions (17 types of paints A to Q). Here, the blending ratio is the ratio of the solid content of the graphite dispersion, that is, the total of the graphite mass and the dispersant component mass.

なお、黒鉛粒子の平均粒子径は、島津製作所社製の遠心沈降型粒度分布測定装置を用いて測定し、平均粒子径(D50)を求めた。また、黒鉛分散液のpH(水素イオン濃度)は、東亜ディーケーケー社製のpHメーターを用いて測定しつつ、10.0に調整した。   The average particle size of the graphite particles was measured using a centrifugal sedimentation type particle size distribution measuring device manufactured by Shimadzu Corporation, and the average particle size (D50) was determined. Moreover, the pH (hydrogen ion concentration) of the graphite dispersion was adjusted to 10.0 while measuring using a pH meter manufactured by Toa DKK Corporation.

Figure 2007211330
Figure 2007211330

(2)黒鉛被膜の形成
次に、絶縁物として、タテ178mm×横127mm×厚さ3mmの平面表示装置用のガラス板(商品名:PD200、旭硝子製)、及び、タテ178mm×横127mm×厚さ1mmのABS板(筒中プラスチック製)を用意した。ガラス板に対しては、被膜形成部以外をマスキングし、スプレー塗布法により、また、ABS板に対しては、ドクターブレード法により、これらの各絶縁物に、上記の黒鉛分散液を塗布し、70℃の温風乾燥機中に10分間保持して、黒鉛被膜を形成した。また、絶縁物に、より黒鉛分散液を付着させやすくする目的で、黒鉛分散液を塗布する前に、絶縁物にカチオン系界面活性剤(商品名:コータミン24P、花王製)によるハジケ抑制処理をした黒鉛被膜も作製した。
(2) Formation of graphite film Next, as an insulator, a vertical 178 mm × width 127 mm × thickness 3 mm glass plate for flat panel display (trade name: PD200, manufactured by Asahi Glass), and length 178 mm × width 127 mm × thickness A 1 mm thick ABS plate (made of plastic in the cylinder) was prepared. For the glass plate, masking other than the film forming portion, by spray coating method, and for the ABS plate, by applying the above-mentioned graphite dispersion liquid to each of these insulators by the doctor blade method, The graphite film was formed by holding in a hot air dryer at 70 ° C. for 10 minutes. In addition, for the purpose of facilitating adhesion of the graphite dispersion to the insulator, before applying the graphite dispersion, the insulator is subjected to a repellency suppression treatment with a cationic surfactant (trade name: Cotamine 24P, manufactured by Kao). A graphite coating was also produced.

上記のようにして作製した黒鉛被膜の抵抗値を、三菱化学社製の四端子四探針測定器を用いて測定し、その結果を表2及び3に示した。また、この黒鉛被膜の形成状態について、良好であったものを○、不良であったものを×として評価し、その結果も表2及び3に示した。なお、表2においては、ガラス基板を絶縁物として用いた試料について、また、表3においては、ABS基板を絶縁物として用いた試料について記載した。   The resistance value of the graphite film produced as described above was measured using a four-terminal four-probe measuring instrument manufactured by Mitsubishi Chemical Corporation, and the results are shown in Tables 2 and 3. Moreover, about the formation state of this graphite film, what was favorable was evaluated as (circle), and what was unsatisfactory was evaluated as x, and the result was also shown in Table 2 and 3. In Table 2, a sample using a glass substrate as an insulator is shown, and in Table 3, a sample using an ABS substrate as an insulator is shown.

(3)電気メッキ層の作製
750mlの純水に、硫酸銅を200g、硫酸を50g溶解した液を用い、電流密度を3A/dmとして10分間通電し、上記の各絶縁物上に形成された黒鉛被膜上に、電気メッキ法により銅メッキ層を形成した。このようにして作製した銅メッキ層の形成状態について、銅メッキ層厚さが1〜5μmであったものを○、0.5〜1μmであったものを△、銅メッキ層が形成できなかったものを×として評価し、その結果を表2及び3に示した。
(3) Production of electroplating layer Using a solution in which 200 g of copper sulfate and 50 g of sulfuric acid are dissolved in 750 ml of pure water, a current density of 3 A / dm 2 is applied for 10 minutes to form on each of the above insulators. A copper plating layer was formed on the graphite film by electroplating. Regarding the formation state of the copper plating layer thus produced, the copper plating layer thickness was 1 to 5 μm, ○, 0.5 to 1 μm was Δ, and the copper plating layer could not be formed. Those were evaluated as x, and the results are shown in Tables 2 and 3.

Figure 2007211330
Figure 2007211330

Figure 2007211330
Figure 2007211330

(4)評価
表2及び3から明らかなように、本発明の電気メッキ法を用いることにより、良好に黒鉛被膜及び銅メッキ層を形成することができることが示された。なお、黒鉛分散液に有機または無機化合物を含有していない塗料Aを用いた試料については、ハジケ抑制処理を施すことにより、また、黒鉛分散液に有機化合物を含有していない塗料E、G、H、J、M、N及びQを用いた試料については、絶縁物がABS樹脂の場合にはハジケ抑制処理を施すことにより、良好に黒鉛被膜及び銅メッキ層を形成することができることを明らかとした。さらに、黒鉛被膜のシート抵抗値が1000Ω/□以上である塗料O、P及びQを用いた試料については、銅メッキ層がやや薄くなることを明らかとした。
(4) Evaluation As is apparent from Tables 2 and 3, it was shown that a graphite film and a copper plating layer can be satisfactorily formed by using the electroplating method of the present invention. In addition, about the sample using the coating material A which does not contain the organic or inorganic compound in a graphite dispersion liquid, by performing a squeeze suppression process, the coating materials E, G, which do not contain an organic compound in a graphite dispersion liquid, For samples using H, J, M, N, and Q, it is clear that a graphite film and a copper plating layer can be satisfactorily formed by applying a haze suppression treatment when the insulator is an ABS resin. did. Furthermore, for the samples using the paints O, P and Q having a sheet resistance value of 1000 Ω / □ or more for the graphite film, it has been clarified that the copper plating layer becomes slightly thin.

実施例1における塗料E、M及びQの3種類の黒鉛分散液を用い、絶縁物である、タテ178mm×横127mm×厚さ3mmの平面表示装置用のガラス板(商品名:PD200、旭硝子製)に対して、被膜形成部以外をマスキングし、スプレー塗布法により、上記の黒鉛分散液を塗布し、70℃の温風乾燥機中に10分間保持し、さらに、300℃の大気中で1時間の熱処理を行って、有機物の含有しない黒鉛被膜を形成した。また、絶縁物に、より黒鉛分散液を付着させやすくする目的で、黒鉛分散液を塗布する前に、絶縁物にカチオン系界面活性剤(商品名:コータミン24P、花王製)によるハジケ抑制処理をした黒鉛被膜も作製した。   Using the three types of graphite dispersions of paints E, M, and Q in Example 1, a glass plate for a flat panel display device having a length of 178 mm, a width of 127 mm, and a thickness of 3 mm, which is an insulator (trade name: PD200, manufactured by Asahi Glass) ), Except for the coating forming part, and the above-mentioned graphite dispersion liquid is applied by a spray coating method, kept in a hot air dryer at 70 ° C. for 10 minutes, and further in air at 300 ° C. A heat treatment for a time was performed to form a graphite film containing no organic matter. In addition, for the purpose of facilitating adhesion of the graphite dispersion to the insulator, before applying the graphite dispersion, the insulator is subjected to a repellency suppression treatment with a cationic surfactant (trade name: Cotamine 24P, manufactured by Kao). A graphite coating was also produced.

上記のようにして作製した黒鉛被膜の抵抗値を、三菱化学社製の四端子四探針測定器を用いて測定し、その結果を表4に示した。また、この黒鉛被膜の形成状態について、良好であったものを○、不良であったものを×として評価し、その結果も表4に示した。   The resistance value of the graphite film produced as described above was measured using a four-terminal four-probe measuring instrument manufactured by Mitsubishi Chemical Corporation, and the results are shown in Table 4. Moreover, about the formation state of this graphite film, what was favorable was evaluated as (circle), and what was unsatisfactory was evaluated as x, and the result was also shown in Table 4.

次いで、750mlの純水に、硫酸銅を200g、硫酸を50g溶解した液を用い、電流密度を3A/dmとして5分間通電し、上記の各絶縁物上に形成された黒鉛被膜上に、電気メッキ法により銅メッキ層を形成した。このようにして作製した銅メッキ層の形成状態について、銅メッキ層厚さが1〜5μmであったものを○、1μm未満であったものを×として評価し、その結果を表4に示した。 Next, using a solution in which 200 g of copper sulfate and 50 g of sulfuric acid were dissolved in 750 ml of pure water, the current density was 3 A / dm 2 , and the current was applied for 5 minutes. On the graphite film formed on each of the above insulators, A copper plating layer was formed by electroplating. With respect to the state of formation of the copper plating layer thus produced, the copper plating layer thickness of 1 to 5 μm was evaluated as ○, and the thickness of less than 1 μm was evaluated as ×, and the results are shown in Table 4. .

Figure 2007211330
Figure 2007211330

表4から明らかなように、300℃で黒鉛被膜を焼成処理することによって、乾燥処理では被膜中に残っていた分散剤成分が消失したために、被膜のシート抵抗値を下げることができ、この効果により、70℃乾燥時(実施例1)には銅メッキが形成されなかった塗料Qでも銅メッキの被膜が形成できるようになったことが確認された。   As is apparent from Table 4, by firing the graphite film at 300 ° C., the dispersant component remaining in the film disappeared in the drying process, so that the sheet resistance value of the film can be lowered. Thus, it was confirmed that a coating of copper plating can be formed even with the paint Q in which copper plating was not formed when dried at 70 ° C. (Example 1).

絶縁物としてガラス板を用い、実施例1の塗料Jを用いた試料の銅メッキ層を第一層とし、この銅メッキ層上に、さらに第二層目としての銅メッキ層を電気メッキ法により形成した。この銅メッキ条件は、750mlの純水に、硫酸銅を200g、硫酸を50g溶解した液を用い、電流密度を3A/dmとして10分間通電した。 A glass plate is used as an insulator, and the copper plating layer of the sample using the paint J of Example 1 is used as a first layer. On this copper plating layer, a copper plating layer as a second layer is further formed by electroplating. Formed. As the copper plating conditions, a solution in which 200 g of copper sulfate and 50 g of sulfuric acid were dissolved in 750 ml of pure water was used, and the current density was 3 A / dm 2 and the current was applied for 10 minutes.

その結果、銅メッキ層の膜厚を50μmにすることができた。これにより、銅メッキ被膜には大電流を流すことが可能になり、例えば、発熱体のような用途への使用が可能となることを明らかとした。   As a result, the thickness of the copper plating layer could be 50 μm. As a result, it has been clarified that a large current can flow through the copper plating film, and that it can be used for applications such as a heating element.

絶縁物としてハジケ抑制処理を行わなかったABS板を用い、実施例1の塗料Cを用いた試料の銅メッキ層を第一層とし、この銅メッキ層上に、さらに第二層目としてのニッケルメッキ層を電気メッキ法により形成した。このニッケルメッキ条件は、590mlの純水に、硫酸ニッケルを330g、塩化ニッケルを45g、ホウ酸を35g溶解した液を用い、電流密度を3A/dmとして10分間通電した。 Using an ABS plate that has not been subjected to squeeze suppression treatment as an insulator, a copper plating layer of a sample using the paint C of Example 1 is used as a first layer, and nickel as a second layer is further formed on this copper plating layer A plating layer was formed by electroplating. The nickel plating conditions were such that a solution obtained by dissolving 330 g of nickel sulfate, 45 g of nickel chloride, and 35 g of boric acid in 590 ml of pure water was used for 10 minutes with a current density of 3 A / dm 2 .

その結果、銅メッキ層上にニッケルメッキ層の被覆を施すことにより、メッキ部分の耐食性を向上させることができ、これにより、衛星放送用アンテナや太陽電池パネルの電極部分などのように、屋外に設置される用途への使用が可能となることを明らかとした。   As a result, by coating the copper plating layer with a nickel plating layer, the corrosion resistance of the plated portion can be improved, thereby enabling outdoor use such as satellite broadcasting antennas and solar cell panel electrode portions. It was clarified that it can be used for installed purposes.

本発明の電気メッキ方法の工程を示した概念図である。It is the conceptual diagram which showed the process of the electroplating method of this invention.

符号の説明Explanation of symbols

1…絶縁物、2…マスキング、3…ハジケ抑制処理剤、4…黒鉛被膜、
5…導電金属層。
DESCRIPTION OF SYMBOLS 1 ... Insulator, 2 ... Masking, 3 ... Hajike suppression processing agent, 4 ... Graphite film,
5: Conductive metal layer.

Claims (9)

平面または立体的な絶縁物の表面に導電金属層を電気メッキする方法であって、
(a)平均粒子径0.05〜20μmの黒鉛粒子1〜20質量%と、
上記黒鉛粒子に対して0.1〜30質量%の、上記黒鉛粒子を水媒体中に分散させる天然または合成の有機物または界面活性剤と、
媒体の水とからなり、pHが5〜12の範囲である黒鉛分散液を、上記絶縁物の表面に塗布する工程と、
(b)上記絶縁物上の塗布物を乾燥させて、黒鉛粒子を主とする被膜を形成する工程と、
(c)上記被膜上に、導電層として金属または合金を電気メッキする工程と
を備えることを特徴とする電気メッキ方法。
A method of electroplating a conductive metal layer on the surface of a planar or three-dimensional insulator,
(A) 1-20% by mass of graphite particles having an average particle size of 0.05-20 μm;
0.1 to 30% by mass with respect to the graphite particles, natural or synthetic organic substances or surfactants for dispersing the graphite particles in an aqueous medium;
Applying a graphite dispersion having a pH of 5 to 12 to the surface of the insulator, the medium comprising water,
(B) drying the coating on the insulator to form a film mainly composed of graphite particles;
And (c) a step of electroplating a metal or alloy as a conductive layer on the coating.
前記絶縁物が、ガラス製、プラスチック製またはセラミックス製のいずれかである請求項1に記載の電気メッキ方法。   The electroplating method according to claim 1, wherein the insulator is made of glass, plastic, or ceramics. 前記黒鉛分散液に、さらに無機または有機化合物を前記黒鉛分散液中の固形分に対し1〜40質量%の範囲で添加する請求項1または2に記載の電気メッキ方法。   The electroplating method according to claim 1 or 2, wherein an inorganic or organic compound is further added to the graphite dispersion in an amount of 1 to 40% by mass with respect to a solid content in the graphite dispersion. 前記有機化合物が、アクリル系樹脂、エポキシ系樹脂、フェノール系樹脂またはシラン化合物の何れか1つ以上である請求項3に記載の電気メッキ方法。   The electroplating method according to claim 3, wherein the organic compound is one or more of an acrylic resin, an epoxy resin, a phenol resin, and a silane compound. 前記有機化合物が、アニオン性またはノニオン性材料のどちらかである請求項3に記載の電気メッキ方法。   The electroplating method according to claim 3, wherein the organic compound is either an anionic or nonionic material. 前記無機化合物が、水ガラスまたはコロイダルシリカのどちらかまたは両方である請求項3に記載の電気メッキ方法。   The electroplating method according to claim 3, wherein the inorganic compound is one or both of water glass and colloidal silica. 前記被膜のシート抵抗値が膜厚1μm換算で1000Ω/□未満である請求項1〜6のいずれかに記載の電気メッキ方法。   The electroplating method according to claim 1, wherein a sheet resistance value of the coating is less than 1000 Ω / □ in terms of a film thickness of 1 μm. 前記被膜のシート抵抗値が膜厚1μm換算で100Ω/□未満である請求項1〜6のいずれかに記載の電気メッキ方法。   The electroplating method according to claim 1, wherein a sheet resistance value of the coating is less than 100 Ω / □ in terms of a film thickness of 1 μm. 前記電気メッキ層を第の一メッキ層として、当該第一メッキ層上にさらに同一または他の金属または合金からなるメッキ層を少なくとも一層形成する請求項1〜8のいずれかに記載の電気メッキ方法。   The electroplating method according to claim 1, wherein the electroplating layer is a first plating layer, and at least one plating layer made of the same or other metal or alloy is further formed on the first plating layer. .
JP2006035403A 2006-02-13 2006-02-13 Electroplating method Pending JP2007211330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006035403A JP2007211330A (en) 2006-02-13 2006-02-13 Electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006035403A JP2007211330A (en) 2006-02-13 2006-02-13 Electroplating method

Publications (1)

Publication Number Publication Date
JP2007211330A true JP2007211330A (en) 2007-08-23

Family

ID=38490024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006035403A Pending JP2007211330A (en) 2006-02-13 2006-02-13 Electroplating method

Country Status (1)

Country Link
JP (1) JP2007211330A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021059A (en) * 2008-07-11 2010-01-28 Toyo Ink Mfg Co Ltd Aqueous system carbon material composition and composition for battery using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021059A (en) * 2008-07-11 2010-01-28 Toyo Ink Mfg Co Ltd Aqueous system carbon material composition and composition for battery using the same

Similar Documents

Publication Publication Date Title
JP5631910B2 (en) Silver coated copper powder
JP4759271B2 (en) Composite particle dispersion and method for producing composite particle dispersion
WO2012102304A1 (en) Electroconductive paste and method for manufacturing same
KR20170031215A (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
JP2004143325A (en) Electroconductive ink
JP5631841B2 (en) Silver coated copper powder
US20180354033A1 (en) Silver-coated copper powder
WO2012161201A1 (en) Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film
CN103137243B (en) Conductive paste and the preparation method of conductive paste
JP6278969B2 (en) Silver coated copper powder
JP4497491B2 (en) Silver colloid aqueous solution, method for producing silver colloid aqueous solution, conductive film and method for forming conductive film
JP2018022598A (en) Conductive paste
CN110167994B (en) Silver-coated silicone rubber particles, conductive paste containing the particles, and method for producing conductive film using the conductive paste
JP4641384B2 (en) Conductive ink and conductive film using the same
JP2016139598A (en) Silver coated copper powder, and copper paste, conductive coating and conductive sheet using the same
JP4881013B2 (en) Conductive powder, conductive paste and electrical circuit
US5158657A (en) Circuit substrate and process for its production
KR101759400B1 (en) A silver coating method for copper powder used circuit printing and adhesive conductive paste
JP2007211330A (en) Electroplating method
KR20140050534A (en) Conductive paste printed circuit board having plating layer and method for manufacturing the same
JP7455321B2 (en) Surface-treated steel sheet having a film containing reduced graphene and its manufacturing method
JP5410850B2 (en) Method for producing copper composite particles, method for producing composite metal copper particles, method for producing copper paste and metal copper conductor
TWI631160B (en) Conductive paste and substrate with conductive film
JP5711435B2 (en) Copper powder
KR20140049632A (en) Conductive paste printed circuit board having plating layer and method for manufacturing the same