JP2006196043A - Laminated film for optical component, film wound body, optical component, and optical disk - Google Patents

Laminated film for optical component, film wound body, optical component, and optical disk Download PDF

Info

Publication number
JP2006196043A
JP2006196043A JP2005003729A JP2005003729A JP2006196043A JP 2006196043 A JP2006196043 A JP 2006196043A JP 2005003729 A JP2005003729 A JP 2005003729A JP 2005003729 A JP2005003729 A JP 2005003729A JP 2006196043 A JP2006196043 A JP 2006196043A
Authority
JP
Japan
Prior art keywords
film
layer
laminated film
light transmission
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005003729A
Other languages
Japanese (ja)
Inventor
Tetsuo Yamanaka
哲郎 山中
Kenji Kanamaru
健二 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005003729A priority Critical patent/JP2006196043A/en
Publication of JP2006196043A publication Critical patent/JP2006196043A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated film for an optical component having smooth optical characteristics without any defect and foreign matter, satisfactory surface smoothness and satisfactory operability in manufacture, wherein transfer of a bubble part to a light transmission layer and peeling difficulty in an interleaf insertion method or a winding method together with a base material for improving aggravation of re-feed-out properties due to mutual sticking of light transmission layers are further improved when the film-shaped light transmission layer having both characteristics of thermal resistance and toughness is made to be a wound body, also to provide a film wound body, to provide the optical component and to provide an optical disk. <P>SOLUTION: The light transmission layer having 20 to 250 μm film thickness, film thickness accuracy within ±2.0 μm and ≥90% light transmittance in 405 nm wavelength and a protection layer, whose surface in contact with the light transmission layer is subjected to peelable adhesion treatment, are separately formed and then laminated to form a two layered laminated film to be the laminated film for the optical component having 30 to 350 μm film thickness. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、大容量化した高密度DVD、有機EL、フレキシブルディスプレイ又は電子ペーパー等の光学用部品の部材として適用可能な光学部品用積層フィルム、フィルム巻層体、光学部品及び光ディスクに関する。   The present invention relates to a laminated film for an optical component, a film wound layer, an optical component, and an optical disc that can be applied as a member of an optical component such as a high-density DVD, organic EL, flexible display, or electronic paper having a large capacity.

光ディスクは、透明なプラスチック基盤よりなる支持基盤上に、微細な凹凸からなるビット列や溝からなる信号情報を記録した記録層を形成しており、記録層が形成された面と対向する面側からレーザー光等を照射し、支持基盤上の信号情報に応じて反射光量が変化することにより、情報を読み出すシステムである。
このような光ディスクの種類として、コンパクトディスク(CD:Compact Disk)、DVD( Digital Versatile Disk)または光磁気記録ディスク等が挙げられる。代表的な光ディスクであるCDにおいては、厚さが0.6mmである支持基盤上に情報を読み出す透明な光透過層が形成されており、光透過層は記録層を有する支持基盤を兼ねた構造である。CDでは、記録再生用として波長780nmのレーザー光を使用しており、光透過層側から記録再生用のレーザー光を照射し、支持基盤上の記録層に刻印されたビット列や溝からなる信号情報に応じて変化する反射光量に基づき記録層に記録された情報を再生する。
In an optical disc, a recording layer on which signal information consisting of bit strings and grooves consisting of fine irregularities is formed on a support base made of a transparent plastic base is formed from the side facing the surface on which the recording layer is formed. This is a system for reading out information by irradiating a laser beam or the like and changing the amount of reflected light according to the signal information on the support base.
Examples of such optical disks include compact disks (CDs), DVDs (Digital Versatile Disks), and magneto-optical recording disks. In a CD that is a typical optical disc, a transparent light-transmitting layer for reading information is formed on a support base having a thickness of 0.6 mm, and the light-transmitting layer also serves as a support base having a recording layer. It is. The CD uses laser light having a wavelength of 780 nm for recording / reproducing, and irradiates the recording / reproducing laser light from the light transmitting layer side, and signal information including bit strings and grooves engraved on the recording layer on the support substrate. The information recorded on the recording layer is reproduced based on the amount of reflected light that changes in accordance with.

CDよりも記録容量の高いDVDに代表される光ディスクにおいては、記録再生用のレーザー波長は635nmであり、基本的には、前述したCDと同様に、記録層にレーザー光を照射して信号情報の記録及び再生を行う。
図3は、DVDの構造を概略的に説明するためにDVDの一部を拡大した斜視図であり、図4はその断面図である。図3及び図4に示すように、DVD10は、支持基盤11と、支持基盤11上に形成された記録層12と、記録層12上に形成された光透過層13と、を備える。さらに、具体的に説明すると、単層板においては情報を読み出す透明な支持基盤11の厚さは0.6mmであり、この支持基盤11上にビット14列や記録用溝等の情報が記録された記録層12が形成され、記録層12上に支持基盤11と同厚さ(0.6mm)の透明支持基盤を張り合わせて光透過層13が形成される。なお、記録層12上に張り合わせて形成された光透過層13は、通常「ダミー」と呼ばれ、光ディスク自体の強度を向上させる役割を果たしている。上記図3及び図4に示すように、光透過層13側からレーザー光15を照射して、記録層の情報を記録及び再生する。
さらに、ここ数年、映像情報や動画情報等の発展に伴い、記録容量を大容量化したDVDが求められ、次世代ディスクと呼ばれる記録容量が20GBを超える大容量の高密度DVDの開発が進められている。高密度DVDは、直径12センチのサイズであり従来と同様のサイズであるため、記録層におけるトラックピッチを狭小化しあるいはビット長を縮小化する等により微細化し、高密度化を図ることが要求されている。
具体的には、厚さが1.1mm程度の支持基盤上にビット列や溝等により信号情報が記録された記録層が形成され、記録層の表面には透明な厚さ0.1mm程度のフィルムを接着して光透過層が形成される。そして、光透過層の面側から400nm程度の短波長の青色レーザーを照射して、信号情報の記録及び再生を行う。
上記CD、DVD及び次世代ディスク等の支持基盤及びダミー層である光透過層として、通常、ポリカーボネートが使用されており、次世代ディスクの光透過層としてもポリカーボネートが使用されているが、ポリカーボネートに替わる新たな高分子材料の開発が進められている。
In an optical disk typified by a DVD having a higher recording capacity than a CD, the laser wavelength for recording / reproducing is 635 nm. Basically, like the CD described above, the recording layer is irradiated with laser light to signal information. Recording and playback.
FIG. 3 is an enlarged perspective view of a part of the DVD for schematically explaining the structure of the DVD, and FIG. 4 is a sectional view thereof. As shown in FIGS. 3 and 4, the DVD 10 includes a support base 11, a recording layer 12 formed on the support base 11, and a light transmission layer 13 formed on the recording layer 12. More specifically, the thickness of the transparent support base 11 from which information is read out in a single layer plate is 0.6 mm, and information such as bits 14 and recording grooves are recorded on the support base 11. The recording layer 12 is formed, and a transparent support base having the same thickness (0.6 mm) as the support base 11 is laminated on the recording layer 12 to form a light transmission layer 13. The light transmission layer 13 formed on the recording layer 12 is generally called “dummy” and plays a role of improving the strength of the optical disc itself. As shown in FIGS. 3 and 4, the laser beam 15 is irradiated from the light transmission layer 13 side to record and reproduce information on the recording layer.
Furthermore, with the development of video information and video information in recent years, DVDs with a large recording capacity have been demanded, and the development of high-density DVDs with a recording capacity exceeding 20 GB called a next-generation disk has been promoted. It has been. A high-density DVD is 12 centimeters in diameter and is the same size as the conventional one. Therefore, it is required to reduce the track pitch in the recording layer or reduce the bit length so as to increase the density. ing.
Specifically, a recording layer on which signal information is recorded by a bit string or a groove is formed on a support base having a thickness of about 1.1 mm, and a transparent film having a thickness of about 0.1 mm is formed on the surface of the recording layer. Are bonded to form a light transmission layer. Then, signal information is recorded and reproduced by irradiating a blue laser with a short wavelength of about 400 nm from the surface side of the light transmission layer.
Polycarbonate is usually used as the light transmission layer which is the support base and dummy layer of the above-mentioned CD, DVD and next generation disc, etc., and polycarbonate is also used as the light transmission layer of the next generation disc. Development of new polymer materials to replace them is ongoing.

開発が進められている代表的な高分子材料として、例えば、アクリル系樹脂が挙げられるが、アクリル系樹脂は、比較的安価であり、透明性が高く、ゴム状物やガラス状ポリマ等の多様な特徴を有するポリマを比較的容易に製造でき、さらには、変性が容易である等の優れた特性を有している。しかし、優れた特性を備えている反面、アクリル系樹脂をフィルム形状とするためには、強度、耐熱性と靱性の相反する特性を両立させる必要があり、従来のアクリル樹脂では、上記特性を両立させることが困難であるため、大きな課題となっていた。アクリル樹脂全般に共通して靱性が低いことが課題であるが、例えば、樹脂中にゴム粒子を添加して、アクリル樹脂から形成されるフィルムの靭性を高める方法が幾つか報告されている(特許文献1、特許文献2参照)。しかし、樹脂中にゴム粒子を添加する等してフィルムの靭性を改善することが可能であるが、フィルムを折り曲げた際に白化現象が生じてしまい、フィルムの折り曲げ加工性が低下していた。このため、室温(25℃)以上のガラス転移点と靱性の必要な薄膜フィルムの形成能(折り曲げ加工性)を両立するアクリル樹脂は見出されていなかった。
そこで、例えば、1種又は2種以上の合成高分子を混合して分子間に水素結合を形成して擬似的な架橋構造を持たせ、従来の材料では実現できなかった新たな特性を導入した樹脂組成物が開発されている(特許文献3参照)。その一例として、ガラス転移温度が低い重合体としてプロトン供与性原子団である水酸基を含んだアクリル重合体と、ガラス転移温度が高い重合体としてプロトン受容性原子団であるアミン基を含んだアクリル重合体をブレンドし、分子間に水素結合を形成し擬似的な架橋構造として耐熱性と靱性との各特性を両立した光透過層用のフィルムが得られることが報告されている(特許文献4参照)。
Typical polymer materials that are being developed include, for example, acrylic resins. Acrylic resins are relatively inexpensive, have high transparency, and are diverse such as rubbery materials and glassy polymers. A polymer having various characteristics can be produced relatively easily, and further, it has excellent properties such as easy modification. However, while having excellent properties, in order to make acrylic resin into a film shape, it is necessary to make the properties of strength, heat resistance and toughness contradict each other. Conventional acrylic resins satisfy both of the above properties. Because it is difficult to do so, it has been a big problem. Although it is a problem that the toughness is low in common with all acrylic resins, for example, several methods for increasing the toughness of a film formed from an acrylic resin by adding rubber particles to the resin have been reported (patents) Reference 1 and Patent Reference 2). However, although it is possible to improve the toughness of the film by adding rubber particles to the resin, a whitening phenomenon occurs when the film is folded, and the folding processability of the film is lowered. For this reason, an acrylic resin that has both a glass transition point at room temperature (25 ° C.) or higher and a thin film film forming ability (folding workability) that requires toughness has not been found.
Therefore, for example, one or more synthetic polymers were mixed to form hydrogen bonds between molecules to give a pseudo-crosslinked structure, introducing new characteristics that could not be realized with conventional materials. A resin composition has been developed (see Patent Document 3). For example, an acrylic polymer containing a hydroxyl group that is a proton-donating atomic group as a polymer having a low glass transition temperature, and an acrylic polymer containing an amine group that is a proton-accepting atomic group as a polymer having a high glass transition temperature. It has been reported that a film for a light transmission layer having both heat resistance and toughness properties obtained as a pseudo-crosslinked structure by blending coalesces and forming hydrogen bonds between molecules can be obtained (see Patent Document 4). ).

特公昭58−167605号公報Japanese Patent Publication No. 58-167605 特開平3−52910号公報Japanese Patent Laid-Open No. 3-52910 特開2000−273319号公報JP 2000-273319 A 特開2002−38036号公報JP 2002-38036 A

上記方法により作製された光透過層用のフィルムは、耐熱性と靭性との両特性を得られるため、本フィルムを使用して、光ディスク等の光学部品を作製している。しかしこの方法で作製された光透過層は、単独で巻き取ると光透過層同士で貼り付いてしまい再繰り出しが難しいという問題が生じた。
そこで、この問題を解決するために、合紙などを挟むことや基材層から剥がさずにそのまま巻き取る方法が検討されたが、前者は張り合わす際、気泡などを巻き込み気泡部分が光透過層に転写する、後者は表面平滑性を維持しつつ巻き取ることが可能となったが、光透過層の表面平滑性が良い物を得るためには、使用する基材層は平滑でありかつ密着性も高い物を使用しなければならないため、加工後基材層を剥がす際、剥がすことが難しいため実用には至らず巻き取り形状の問題は解決されずにいた。
Since the film for a light transmission layer produced by the above method can obtain both characteristics of heat resistance and toughness, this film is used to produce an optical component such as an optical disk. However, the light transmissive layer produced by this method has a problem in that it is difficult to re-feed out because the light transmissive layers are stuck to each other when wound alone.
Therefore, in order to solve this problem, a method of winding the interleaf paper or the like without taking it off from the base material layer has been studied. The latter can be wound while maintaining the surface smoothness, but in order to obtain a light-transmitting layer with good surface smoothness, the base material layer used is smooth and adheres well. Since it is necessary to use a material having high properties, it is difficult to remove the base material layer after processing, so that the problem of the winding shape has not been solved since it is not practical.

大容量化した高密度DVD等の光ディスクでは、前述したようにフィルム表面に用いるレーザー光線の波長に比較して大きな欠点や異物が存在すると、読みとりエラーが発生する等の不具合が生じ、その結果、光学特性が低下してしまうという問題を有していた。このため、光学部品を構成するフィルムには、その表面が平滑であることが要求されている。
本発明は、上述した問題を解決するためのものであり、光学特性及び表面平滑性が良好であり、かつ、製造時における作業性が良好な光学部品用積層フィルム、フィルム巻層体、光学部品及び光ディスクを得ることを目的とする。
In optical disks such as high-density DVDs with increased capacity, as described above, if there are large defects or foreign objects compared to the wavelength of the laser beam used on the film surface, there will be problems such as reading errors. There was a problem that the characteristics deteriorated. For this reason, the film which comprises an optical component is requested | required that the surface should be smooth.
The present invention is for solving the above-described problems, and has a good optical property and surface smoothness, and a good laminated film for optical parts, a film wound layer, and an optical part with good workability during production. And to obtain an optical disc.

上記目的を達成すべく本発明者らは種々研究した結果、特定の特性を示す2層積層構造のフィルムを形成することにより、フィルム表面上に欠点や異物をなくすことを見出し、本発明を完成させたものである。また、軽剥離接着処理を行ったプロテクトフィルムを用いた2層積層フィルムとしたため、製造時の作業性をも改善できることを見出したものである。
すなわち、本発明は次の各項に関する。
[1] 膜厚が20〜250μm、膜厚精度が±2.0μm以内、かつ、405nmにおける光透過率が90%以上である光透過層と、使用時に剥離除去され、かつ、当該光透過層と接する面が剥離接着処理されたプロテクト層とが、別途形成された後、積層された2層積層フィルムであり、膜厚が30〜350μmである光学部品用積層フィルム体。
[2] 前記プロテクト層が、前記光透過層と接する面の膜厚精度が±2.0μm以内である[1]に記載の光学部品用積層フィルム。
[3] 前記プロテクト層が、剥離接着処理されていない面の膜厚精度が±2.0μm以内である[1]又は[2]記載の光学部品用積層フィルム。
[4] 前記光透過層が、主としてアクリル系重合体からなる[1]〜[3]のいずれかに記載の光学部品用積層フィルム。
[5] 前記光透過層は、分子内に少なくとも1種のプロトン供与性原子団を含むビニル系重合体Aと、分子内に少なくとも1種の受容性原子団を含むビニル系重合体Bとを含み、前記ビニル系重合体A及びビニル系重合体Bを混合することにより前記プロトン供与性原子団と前記プロトン受容性原子団との間に分子間水素結合による擬似的な架橋が形成された熱可塑性樹脂から主としてなる[1]〜[4]のいずれかに記載の光学部品用積層フィルム。
[6] 前記プロテクト層の厚さが、10〜200μmである[1]〜[5]のいずれかに記載の光学部品用積層フィルム。
[7] 前記プロテクト層の剥離接着処理は、プロテクト層上への高分子化合物の塗布による離型処理である[1]〜[6]のいずれかに記載の光学部品用積層フィルム。
[8] 前記プロテクト層は、主としてポリエチレン、ポリプロピレン、ポリエステル樹脂から成[1]〜[7]のいずれかに記載の光学部品用積層フィルム。
[9] [1]〜[8]のいずれかに記載の光学部品用積層フィルムをロール形状に巻き取り形成されたフィルム巻層体。
[10] [1]〜[8]のいずれかに記載の光学部品用積層フィルムのプロテクト層から剥離された光透過層を貼り付けて形成された光学部品。
[11] 光ディスクである[10]記載の光学部品。
[12] 支持基盤上に記録層、接着層及び光透過層が順次形成された光ディスクであって、前記光透過層が[1]〜[8]のいずれかに記載の光学部品用積層フィルムを用いて形成されたものである光ディスク。
As a result of various studies conducted by the present inventors in order to achieve the above object, it was found that forming a film having a two-layer laminated structure exhibiting specific characteristics eliminates defects and foreign matters on the film surface, thereby completing the present invention. It has been made. Moreover, since it was set as the two-layer laminated film using the protective film which performed the light peeling adhesion process, it discovered that workability | operativity at the time of manufacture could also be improved.
That is, the present invention relates to the following items.
[1] A light transmissive layer having a film thickness of 20 to 250 μm, a film thickness accuracy of within ± 2.0 μm, and a light transmittance at 405 nm of 90% or more, and peeled and removed during use, and the light transmissive layer A laminated film body for an optical component having a thickness of 30 to 350 μm, which is a two-layer laminated film obtained by separately forming a protective layer whose surface in contact with the surface is peeled and bonded.
[2] The laminated film for optical components according to [1], wherein the protective layer has a film thickness accuracy within ± 2.0 μm on the surface in contact with the light transmission layer.
[3] The laminated film for optical parts according to [1] or [2], wherein the protective layer has a film thickness accuracy of ± 2.0 μm or less on a surface that has not been peeled and bonded.
[4] The laminated film for optical components according to any one of [1] to [3], wherein the light transmission layer is mainly composed of an acrylic polymer.
[5] The light transmission layer includes a vinyl polymer A containing at least one proton-donating atomic group in the molecule and a vinyl polymer B containing at least one accepting atomic group in the molecule. In addition, by mixing the vinyl polymer A and the vinyl polymer B, heat in which pseudo-crosslinking due to intermolecular hydrogen bonding is formed between the proton-donating atomic group and the proton-accepting atomic group The laminated film for optical components according to any one of [1] to [4], which is mainly composed of a plastic resin.
[6] The laminated film for optical components according to any one of [1] to [5], wherein the protective layer has a thickness of 10 to 200 μm.
[7] The laminated film for an optical component according to any one of [1] to [6], wherein the protective layer peeling adhesion treatment is a mold release treatment by applying a polymer compound onto the protective layer.
[8] The laminated film for optical components according to any one of [1] to [7], wherein the protective layer is mainly made of polyethylene, polypropylene, and polyester resin.
[9] A film winding layer formed by winding the laminated film for optical components according to any one of [1] to [8] into a roll shape.
[10] An optical component formed by attaching a light transmission layer peeled off from the protective layer of the laminated film for optical components according to any one of [1] to [8].
[11] The optical component according to [10], which is an optical disk.
[12] An optical disc in which a recording layer, an adhesive layer, and a light transmission layer are sequentially formed on a support substrate, wherein the light transmission layer is the laminated film for optical components according to any one of [1] to [8]. An optical disc that is formed using.

本発明によれば、光学特性及び表面平滑性が良好であり、かつ、製造時における作業性が良好な光学部品用積層フィルム、フィルム巻層体、光学部品及び光ディスクが得られる。特に、特定の特性を示す2層積層構造のフィルムを形成することにより、フィルム表面上に欠点や異物をなくすことができ、軽剥離接着処理を行ったプロテクトフィルムを用いた2層積層フィルムとしたため、製造時の作業性をも改善できることができる。   According to the present invention, it is possible to obtain a laminated film for optical parts, a film wound layer, an optical part, and an optical disk that have good optical properties and surface smoothness and good workability during production. In particular, by forming a film with a two-layer laminate structure that exhibits specific characteristics, defects and foreign matter can be eliminated on the film surface, and a two-layer laminate film using a protective film that has been subjected to a light release adhesive treatment is used. In addition, workability during manufacturing can be improved.

本発明は、膜厚が20〜250μm、膜厚精度が±2.0μm以内、かつ、405nmにおける光透過率が90%以上である光透過層と、使用時に剥離除去され、かつ、当該光透過層と接する面が剥離接着処理されたプロテクト層とが積層された2層積層フィルムであり、膜厚が30〜350μmである光学部品用積層フィルムである。
本発明において、2層積層フィルムの膜厚を30μm〜350μmと規定したが、膜厚が30μm未満になると表面平滑性や作業性が悪くなり、膜厚が350μmを超えると表面平滑性や405nmの光透過率が悪くなるからである。2層積層フィルムの膜厚は35〜300μmであることが好ましく、より好ましくは40〜250μmの範囲である。また、光透過層の膜厚精度は±2.0μm以内であり、光透過率は90%以上である。なお、膜厚、膜厚精度及び光透過率の測定は、後述する実施例において説明する。
The present invention provides a light transmissive layer having a film thickness of 20 to 250 μm, a film thickness accuracy of within ± 2.0 μm, and a light transmittance of 90% or more at 405 nm, and is peeled and removed at the time of use. It is a two-layer laminated film in which a protective layer whose surface in contact with the layer is peeled and bonded is laminated, and is a laminated film for optical parts having a thickness of 30 to 350 μm.
In the present invention, the film thickness of the two-layer laminated film is defined as 30 μm to 350 μm, but when the film thickness is less than 30 μm, the surface smoothness and workability deteriorate, and when the film thickness exceeds 350 μm, the surface smoothness and 405 nm This is because the light transmittance is deteriorated. The film thickness of the two-layer laminated film is preferably 35 to 300 μm, more preferably 40 to 250 μm. Further, the film thickness accuracy of the light transmission layer is within ± 2.0 μm, and the light transmittance is 90% or more. In addition, the measurement of a film thickness, film thickness precision, and light transmittance is demonstrated in the Example mentioned later.

上記光学部品用積層フィルムは、光透過層の膜厚が20〜250μm、膜厚精度が±2.0μm以内、かつ、405nmにおける光透過率が90%以上である光透過層を有することを特徴とする。光透過層の膜厚が20μm未満であると表面平滑性や作業性が悪く、膜厚が250μmを超えると表面平滑性や405nmの光透過率が悪くなるからである。また、光透過層の膜厚は25〜200μmであることが好ましく、より好ましくは25〜150μmの範囲である。また、光透過層の膜厚精度は±2.0μm以内であり、光透過率は90%以上とする。   The laminated film for optical components has a light transmissive layer having a light transmissive layer thickness of 20 to 250 μm, a film thickness accuracy within ± 2.0 μm, and a light transmittance at 405 nm of 90% or more. And This is because when the thickness of the light transmission layer is less than 20 μm, the surface smoothness and workability are poor, and when the thickness exceeds 250 μm, the surface smoothness and the light transmittance of 405 nm are deteriorated. Moreover, it is preferable that the film thickness of a light transmissive layer is 25-200 micrometers, More preferably, it is the range of 25-150 micrometers. In addition, the film thickness accuracy of the light transmission layer is within ± 2.0 μm, and the light transmittance is 90% or more.

一方、プロテクト層の膜厚は15〜150μmであることが好ましく、より好ましくは20〜125μm、膜厚精度は±2.0μm以内、より好ましくは±1.0μm以内であり、表面平滑性は20μm以下であることが好ましい。なお、この膜厚精度は、前記光透過層と接する面の膜厚精度、光透過層と接しない面(剥離接着処理が必須ではない面)の膜厚精度ともに、±2.0μm以内であることが好ましい。
なお、本発明において膜厚の測定は、レーザーフォーカス変位計(キーエンス製、LT−8010)を用いて、任意の大きさ(例えば1cm〜10000cmの面内)について、全体から適切に(例えば25〜1000点)測定点を選択して測定し、その平均値を膜厚とすることができる。
On the other hand, the film thickness of the protective layer is preferably 15 to 150 μm, more preferably 20 to 125 μm, the film thickness accuracy is within ± 2.0 μm, more preferably within ± 1.0 μm, and the surface smoothness is 20 μm. The following is preferable. This film thickness accuracy is within ± 2.0 μm for both the film thickness accuracy of the surface in contact with the light transmission layer and the film thickness accuracy of the surface not in contact with the light transmission layer (surface that does not require the peel adhesion treatment). It is preferable.
The measurement of the film thickness in the present invention, a laser focus displacement meter (manufactured by Keyence Corporation, LT-8010) with, any size for (e.g. 1cm 2 ~10000cm 2 in the plane), from the whole appropriate (e.g. (25 to 1000 points) Measurement points can be selected and measured, and the average value can be taken as the film thickness.

本発明におけるプロテクト層は、光透過層と接する面が剥離接着処理されている。ここで剥離接着処理とは、剥離しやすい状態で、その層が光透過層に接着されていることをいい、具体的には、各種離型処理されたものがある。離型処理する方法としては、例えば、フッ素化マグネシウム、フッ素化酸化シリコン(SiOF)、窒化珪素等の無機薄膜を蒸着等により基材層上に成膜する方法や、溶剤に可溶なフッ化オレフィン系高分子やシクロヘキサン構造を有する高分子をディッピング等によりロールに塗布し、溶剤を乾燥して基材層上に成膜する等の方法が挙げられる。ここに示した基材層の離型処理方法は例示にすぎず、これらの方法に限定されるものではないが、高分子化合物の塗布による離型処理が好ましい。   In the protective layer according to the present invention, the surface in contact with the light transmission layer is peeled and bonded. Here, the peeling adhesion treatment means that the layer is adhered to the light transmission layer in a state where it is easy to peel off, and specifically, there are those subjected to various mold release treatments. Examples of the mold release treatment include a method of depositing an inorganic thin film such as fluorinated magnesium, fluorinated silicon oxide (SiOF), or silicon nitride on the base material layer by vapor deposition, or a solvent-soluble fluorination. Examples thereof include a method of applying an olefin polymer or a polymer having a cyclohexane structure onto a roll by dipping or the like, drying the solvent, and forming a film on the substrate layer. The mold release treatment method for the base material layer shown here is merely an example, and is not limited to these methods, but a mold release treatment by applying a polymer compound is preferable.

また、上記光学部品用積層フィルムにおいて、光透過層は、主としてアクリル系重合体からなることが好ましい。
さらに、上記光学部品用積層フィルムにおいて、光透過層は、分子内に少なくとも1種のプロトン供与性原子団を含むビニル系重合体Aと、分子内に少なくとも1種の受容性原子団を含むビニル系重合体Bとを含み、前記ビニル系重合体A及びビニル系重合体Bを混合することにより前記プロトン供与性原子団と前記プロトン受容性原子団との間に分子間水素結合による擬似的な架橋が形成された熱可塑性樹脂から主としてなることが好ましい。
In the laminated film for optical parts, the light transmission layer is preferably mainly composed of an acrylic polymer.
Furthermore, in the above laminated film for optical parts, the light transmission layer includes a vinyl polymer A containing at least one proton-donating atomic group in the molecule and a vinyl containing at least one accepting atomic group in the molecule. A polymer B, and by mixing the vinyl polymer A and the vinyl polymer B, an artificial hydrogen bond between the proton-donating atomic group and the proton-accepting atomic group is generated between the proton-donating atomic group and the proton-accepting atomic group. It is preferable to mainly consist of a thermoplastic resin in which cross-linking is formed.

この光透過層は、特性の異なる2種以上のビニル系重合体を混合し、分子内の相互間に擬似的な架橋を形成したビニル系重合体から形成したものであり、擬似的な架橋という表現を使用したが、これは、ビニル系重合体の架橋が、熱分解温度以下の熱や溶剤等により切断され、温度を下げるか、或いは溶剤を除去すると架橋構造が再形成されるためである。上記ビニル系重合体を使用してフィルムを形成することにより、1種のビニル系重合体からフィルムとした場合には得ることができない複数の特性を待たせることが可能となる。例えば、2種のビニル系重合体を混合する場合に、耐熱性が良好であり正複屈折である一方のビニル系重合体と、柔軟性を有し負複屈折である他方のビニル系重合体とを使用して、両者のビニル系重合体を混合して擬似架橋を形成する。擬似架橋を形成することにより、耐熱性及び柔軟性の特性を両立すると共に、正負複屈折を相殺しゼロ複屈折化して低複屈折とし、フィルムに相反する特性を持たせることが可能となる。また、2種以上のビニル系重合体を混合することにより相反する特性を導入することができる。   This light-transmitting layer is formed from a vinyl polymer in which two or more types of vinyl polymers having different characteristics are mixed and a pseudo-crosslink is formed between the molecules. Although the expression is used, this is because the crosslinking of the vinyl polymer is cut by heat or a solvent below the thermal decomposition temperature, and when the temperature is lowered or the solvent is removed, the crosslinked structure is re-formed. . By forming a film using the vinyl polymer, it becomes possible to wait for a plurality of characteristics that cannot be obtained when a film is formed from one vinyl polymer. For example, when two kinds of vinyl polymers are mixed, one vinyl polymer having good heat resistance and positive birefringence and the other vinyl polymer having flexibility and negative birefringence Are used to mix both vinyl polymers to form pseudo-crosslinks. By forming pseudo-crosslinks, it is possible to achieve both heat resistance and flexibility characteristics, cancel out positive and negative birefringence, make it zero birefringence, lower birefringence, and give the film opposite characteristics. Also, conflicting characteristics can be introduced by mixing two or more vinyl polymers.

また、上記発明においてプロトン供与性原子団は、カルボキシル基、スルホン酸基、リン酸基、水酸基、フェノール性水酸基、メルカプト基、チオフェノール性メルカプト基、1級アミノ基、2級アミノ基などの官能基を含む群から選ばれた物とすることが好ましく、プロトン受容性原子団は、カルボニル基、スルホニル基、ホスホリル基、シアノ基、2級アミノ基、3級アミノ基、含窒素複素環基などの官能基を含む群から選ばれた物とすることが好ましい。
さらに、上記発明において、プロトン供与性原子団は、カルボキシル基、水酸基、フェノール性水酸基などの官能基を含む群から選ばれた物とすることが好ましく、プロトン受容性原子団は、2級アミノ基、3級アミノ基、含窒素複素環基などの官能基を含む群から選ばれた物とすることが好ましい。
In the above invention, the proton-donating atomic group is a functional group such as carboxyl group, sulfonic acid group, phosphoric acid group, hydroxyl group, phenolic hydroxyl group, mercapto group, thiophenolic mercapto group, primary amino group, and secondary amino group. Preferably, the proton-accepting atomic group includes a carbonyl group, a sulfonyl group, a phosphoryl group, a cyano group, a secondary amino group, a tertiary amino group, a nitrogen-containing heterocyclic group, and the like. It is preferable to use a material selected from the group containing the functional group.
Furthermore, in the above invention, the proton-donating atomic group is preferably selected from the group containing a functional group such as a carboxyl group, a hydroxyl group, and a phenolic hydroxyl group, and the proton-accepting atomic group is a secondary amino group A material selected from the group containing functional groups such as tertiary amino groups and nitrogen-containing heterocyclic groups is preferred.

また、上記発明において、2層積層フィルムの表面平滑性、具体的には、15ミクロン幅における凹凸が20nm以下であることが好ましい。
本発明の上記光学部品用積層フィルムは、光ディスクの光透過層用として好適である。
Moreover, in the said invention, it is preferable that the surface smoothness of a two-layer laminated film, specifically, the unevenness | corrugation in 15 micron width is 20 nm or less.
The laminated film for optical components of the present invention is suitable for a light transmission layer of an optical disc.

以下、本発明の光学部品用積層フィルムを使用して光ディスクを構成し、20GBを超える大容量の高密度DVDとした例を挙げて説明する。
図1は、高密度DVDの一部の構造を示す斜視図であり、図2はその断面図である。図1及び図2に示すように、高密度DVD1は、支持基盤2上に記録層3を備え、記録層3上に粘着層4を介して光透過層5が形成される。
DVDは、405nmの短波長レーザー光7を光透過層5側から照射し、光透過層5を介して記録層3の信号情報を再生及び記録するものであり、高密度DVD1は、光透過層5を薄肉化している。
Hereinafter, an example in which an optical disk is constructed using the laminated film for optical components of the present invention and a large-capacity high-density DVD exceeding 20 GB will be described.
FIG. 1 is a perspective view showing a partial structure of a high-density DVD, and FIG. 2 is a cross-sectional view thereof. As shown in FIGS. 1 and 2, the high-density DVD 1 includes a recording layer 3 on a support base 2, and a light transmission layer 5 is formed on the recording layer 3 via an adhesive layer 4.
The DVD irradiates a short wavelength laser beam 7 of 405 nm from the light transmission layer 5 side to reproduce and record the signal information of the recording layer 3 through the light transmission layer 5, and the high density DVD 1 is a light transmission layer. 5 is thinned.

本発明の光学部品用積層フィルムは、プロテクト層と光透過層との2層が積層されたフィルムであり、このフィルムの光透過層は剥離されて、上記構成の高密度DVDの光透過層として使用される。
上記高密度DVDを構成する各層は、例えば、支持基盤2の膜厚を0.90mm〜1.15mm、記録層3の膜厚を10μm〜60μm、より好ましくは支持基盤2の膜厚を1.00mm〜1.10mm、記録層3の膜厚を15μm〜50μmとすることが好ましい。
The laminated film for optical parts of the present invention is a film in which two layers of a protective layer and a light transmissive layer are laminated, and the light transmissive layer of this film is peeled off as a light transmissive layer of a high-density DVD having the above structure. used.
In each layer constituting the high-density DVD, for example, the thickness of the support base 2 is 0.90 mm to 1.15 mm, the thickness of the recording layer 3 is 10 μm to 60 μm, and more preferably the thickness of the support base 2 is 1. It is preferable that the recording layer 3 has a thickness of 15 μm to 50 μm.

上記高密度DVDを構成する各層の構成材料について説明する。なお、光透過層5は、本発明の光学部品用積層フィルムを使用したものであり、また、支持基盤2及び記録層3は、従来と同様の材料から形成されるものを適用することができ、例えば、支持基盤2は、ポリカーボネート等のプラスチック基板から構成される。
粘着層4は、粘着剤を使用してフィルムを作製して形成することができ、粘着層3を形成する粘着剤として、例えば、アクリル系粘着剤、天然ゴム系粘着剤、エチレン−酢酸ビニル共重合体系粘着剤、シリコーン系粘着剤、エステル系粘着剤等を選択することができる。特に、粘着剤としてアクリル系粘着剤を使用することが好ましい。但し、ここに示した粘着剤は一例を示したものであり、これらに制限されるものではない。
The constituent materials of each layer constituting the high-density DVD will be described. The light transmission layer 5 uses the laminated film for optical parts of the present invention, and the support base 2 and the recording layer 3 can be made of the same material as the conventional one. For example, the support base 2 is made of a plastic substrate such as polycarbonate.
The pressure-sensitive adhesive layer 4 can be formed by producing a film using a pressure-sensitive adhesive. Examples of the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 3 include an acrylic pressure-sensitive adhesive, a natural rubber pressure-sensitive adhesive, and ethylene-vinyl acetate. Polymer-based adhesives, silicone-based adhesives, ester-based adhesives, and the like can be selected. In particular, it is preferable to use an acrylic adhesive as the adhesive. However, the pressure-sensitive adhesive shown here is only an example, and is not limited thereto.

上記粘着層としてフィルムを作製する際、粘着剤を基材に予め塗布したフィルムを使用することができる。粘着剤を塗布するための基材として、例えば、ポリエチレンフィルム、ポリプロピレン系エラストマーフィルム、ポリオレフィン系エラストマーフィルム、ポリエステルフィルム、ポリ塩化ビニルフィルム、ポリカーボネートセロハンフィルム、アセテートフィルム、各種フッ素フィルム、ポリイミドフィルム等を選択することができる。但し、ここに示した粘着剤を塗布するための基材は一例であり、これらに制限されるものではない。
また、フィルムに粘着層をラミネート処理する時期は、フィルムを塗工、乾燥した後とすることが特に好ましい。但し、ここに示したフィルムに粘着層をラミネート処理する時期は、一例であり、これらに制限されるものではない。
When producing a film as the adhesive layer, a film in which an adhesive is previously applied to a substrate can be used. For example, polyethylene film, polypropylene-based elastomer film, polyolefin-based elastomer film, polyester film, polyvinyl chloride film, polycarbonate cellophane film, acetate film, various fluorine films, polyimide film, etc. are selected as the base material for applying the adhesive. can do. However, the base material for applying the pressure-sensitive adhesive shown here is an example, and is not limited thereto.
Further, it is particularly preferable that the adhesive layer is laminated on the film after the film is applied and dried. However, the time when the adhesive layer is laminated on the film shown here is an example, and is not limited thereto.

本発明におけるプロテクト層は、剥離接着処理された面を、光透過層側の面に設けたものであり、必要に応じて同様の処理を反対側の面に設けることもできる。2層積層構造のフィルムのプロテクト層として、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、PETフィルム、PENフィルム、ステンレス、テフロン(登録商標)フィルム、ポリエステルフィルム、ポリスルホンフィルム、ポリエーテルスルホンフィルム、ポリエーテルエーテルケトンフィルム、ポリエーテルフィルム、ポリアミドイミドフィルム、ポリイミドフィルム、ポリカーボネートフィルム、アクリル樹脂フィルム、エポキシ樹脂フィルム、ノルボルネン系高分子およびこれをブレンドした樹脂等が選択できる。なお、ここに示したプロテクト層は、一例を示したものであり、上述したフィルムに限定されるものではない。   The protective layer according to the present invention has a peel-bonded surface provided on the light-transmitting layer side, and the same treatment can be provided on the opposite surface as necessary. As a protective layer for a film having a two-layer structure, for example, polyethylene film, polypropylene film, PET film, PEN film, stainless steel, Teflon (registered trademark) film, polyester film, polysulfone film, polyethersulfone film, polyetheretherketone film A polyether film, a polyamideimide film, a polyimide film, a polycarbonate film, an acrylic resin film, an epoxy resin film, a norbornene-based polymer and a resin blended with these can be selected. The protect layer shown here is an example, and is not limited to the above-described film.

上記方法により得られたフィルムは、強靱かつ柔軟性を有しており、機械特性に優れ、形状を維持することが容易である。
光透過層5は、主として熱可塑性樹脂から形成されたフィルムであり、この熱可塑性樹脂は、分子内に少なくとも1種のプロトン供与性原子団を含むビニル系重合体Aと分子内に少なくとも1種の受容性原子団を含むビニル系重合体Bと、を含むビニル系重合体であると好ましい。このビニル系重合体は、ビニル系重合体A及びビニル系重合体Bの両者を混合することにより、プロトン供与性原子団とプロトン受容性原子団との間に分子間水素結合による擬似的な架橋が形成されているものであることが好ましい。
The film obtained by the above method has toughness and flexibility, is excellent in mechanical properties, and can easily maintain its shape.
The light transmission layer 5 is a film mainly formed of a thermoplastic resin, and this thermoplastic resin is composed of a vinyl polymer A containing at least one proton-donating atomic group in the molecule and at least one type in the molecule. It is preferable that it is a vinyl polymer containing the vinyl polymer B containing the said receptive atom group. This vinyl polymer is obtained by mixing both the vinyl polymer A and the vinyl polymer B so that pseudo-crosslinking is caused by intermolecular hydrogen bonding between the proton-donating atomic group and the proton-accepting atomic group. It is preferable that is formed.

分子内に少なくとも1種のプロトン供与性原子団を含むビニル系重合体Aを作製するためのビニル系単量体としては、例えば、アクリル酸、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、2−ヒドロキシブチルアクリレート、2−アクリロイロキシエチルコハク酸、2−アクリロイロキシエチルヘキサヒドロフタル酸、2−アクリロイロキシエチル−2−ヒドロキシプロピルフタレート、2−アクリロイロキシエチルアシッドホスフェート、2−ヒドロキシ−3−アクリロイロキシプロピルアクリレート、メタクリル酸、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレート、2−ヒドロキシブチルメタクリレート、2−メタクリロイロキシエチルコハク酸、2−メタクリロイロキシエチルヘキサヒドロフタル酸、2−メタクリロイロキシエチル−2−ヒドロキシプロピルフタレート、2−メタクリロイロキシエチルアシッドホスフェート、2−ヒドロキシ−3−メタクリロイロキシプロピルアクリレート、ビニル安息香酸、安息香酸ビニル及びその誘導体等が挙げられる。但し、ここに示した化合物は一例であり、これらに制限されるものではない。   Examples of the vinyl monomer for producing the vinyl polymer A containing at least one proton donating atomic group in the molecule include acrylic acid, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2 -Hydroxybutyl acrylate, 2-acryloyloxyethyl succinic acid, 2-acryloyloxyethyl hexahydrophthalic acid, 2-acryloyloxyethyl-2-hydroxypropyl phthalate, 2-acryloyloxyethyl acid phosphate, 2-hydroxy -3-acryloyloxypropyl acrylate, methacrylic acid, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, 2-methacryloyloxyethyl succinic acid, 2-methacryloyloxy Tylhexahydrophthalic acid, 2-methacryloyloxyethyl-2-hydroxypropyl phthalate, 2-methacryloyloxyethyl acid phosphate, 2-hydroxy-3-methacryloyloxypropyl acrylate, vinyl benzoic acid, vinyl benzoate and derivatives thereof Etc. However, the compound shown here is an example and is not limited thereto.

また、分子内に少なくとも1種のプロトン受容性原子団を含むビニル系重合体Bを作製するためのビニル系単量体としては、例えば、ジメチルアミノエチルアクリレート、ジエチルアミノエチルアクリレート、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、ジメチルアミノエチルメタクリレート、アクリルアミド、メタクリルアミド、N−ジメチルアクリルアミド、N−ジエチルアクリルアミド、N−ジメチルメタクリルアミド、N−ジエチルメタクリルアミド等の(メタ)アクリルアミド類、ビニルピリジン及びその誘導体等が挙げられる。但し、ここに示した化合物は一例であり、これらに制限されるものではない。   Examples of the vinyl monomer for producing the vinyl polymer B containing at least one proton-accepting atomic group in the molecule include dimethylaminoethyl acrylate, diethylaminoethyl acrylate, dimethylaminoethyl acrylate, (Meth) acrylamides such as dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, dimethylaminoethyl methacrylate, acrylamide, methacrylamide, N-dimethylacrylamide, N-diethylacrylamide, N-dimethylmethacrylamide, N-diethylmethacrylamide, vinylpyridine And derivatives thereof. However, the compound shown here is an example and is not limited thereto.

さらに、分子内に少なくとも1種のプロトン供与性原子団を含むビニル系重合体Aと、分子内に少なくとも1種のプロトン受容性原子団を含むビニル系重合体Bとのそれぞれに対して、後述する他のビニル系重合体とを共重合することができる。使用できる単量体としては、得られる共重合体の透明性を損なわない物であれば特に限定されず、具体例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n−ブチル、アクリル酸i−ブチル、アクリル酸t−ブチル、アクリル酸ペンチル、アクリル酸n−ヘキシル、アクリル酸2−エチルヘキシル、アクリル酸n−オクチル、アクリル酸ドデシル、アクリル酸オクタデシル、アクリル酸ブトキシエチル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸ナフチル、アクリル酸グリシジル、アクリル酸2−ヒドロキシエチル、アクリル酸シクロヘキシル、アクリル酸メチルシクロヘキシル、アクリル酸トリメチルシクロヘキシル、アクリル酸ノルボルニル、アクリル酸ノルボルニルメチル、アクリル酸シアノノルボルニル、アクリル酸イソボルニル、アクリル酸ボルニル、アクリル酸メンチル、アクリル酸フェンチル、アクリル酸アダマンチル、アクリル酸ジメチルアダマンチル、アクリル酸トリシクロ〔5.2.1.02,6〕デカ−8−イル、アクリル酸トリシクロ〔5.2.1.02,6〕デカ−4−メチル、アクリル酸シクロデシル等のアクリル酸エステル類、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸i−ブチル、メタクリル酸t−ブチル、メタクリル酸ペンチル、メタクリル酸n−ヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸n−オクチル、メタクリル酸ドデシル、メタクリル酸オクタデシル、メタクリル酸ブトキシエチル、メタクリル酸フェニル、メタクリル酸ナフチル、メタクリル酸グリシジル、メタクリル酸シクロペンチル、メタクリル酸シクロヘキシル、メタクリル酸メチルシクロヘキシル、メタクリル酸トリメチルシクロヘキシル、メタクリル酸ノルボルニル、メタクリル酸ノルボルニルメチル、メタクリル酸シアノノルボルニル、メタクリル酸フェニルノルボルニル、メタクリル酸イソボルニル、メタクリル酸ボルニル、メタクリル酸メンチル、メタクリル酸フェンチル、メタクリル酸アダマンチル、メタクリル酸ジメチルアダマンチル、メタクリル酸トリシクロ〔5.2.1.02,6〕デカ−8−イル、メタクリル酸トリシクロ〔5.2.1.02,6〕デカ−4−メチル、メタクリル酸シクロデシル等のメタクリル酸エステル類、α−メチルスチレン、α−エチルスチレン、α−フルオロスチレン、α−クロルスチレン、α−ブロモスチレン、フルオロスチレン、クロロスチレン、ブロモスチレン、メチルスチレン、メトキシスチレン等の芳香族ビニル化合物、アクリル酸カルシウム、アクリル酸バリウム、アクリル酸鉛、アクリル酸すず、アクリル酸亜鉛、メタクリル酸カルシウム、メタクリル酸バリウム、メタクリル酸鉛、メタクリル酸すず、メタクリル酸亜鉛等の(メタ)アクリル酸金属塩、アクリル酸、メタクリル酸等の不飽和脂肪酸、アクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物、N−メチルマレイミド、N−エチルマレイミド、N−プロピルマレイミド、N−i−プロピルマレイミド、N−ブチルマレイミド、N−i−ブチルマレイミド、N−t−ブチルマレイミド、N−ラウリルマレイミド、N−シクロヘキシルマレイミド、N−ベンジルマレイミド、N−フェニルマレイミド、N−(2−クロロフェニル)マレイミド、N−(4−クロロフェニル)マレイミド、N−(4−ブロモフェニル)フェニルマレイミド、N−(2−メチルフェニル)マレイミド、N−(2−エチルフェニル)マレイミド、N−(2−メトキシフェニル)マレイミド、N−(2,4,6−トリメチルフェニル)マレイミド、N−(4−ベンジルフェニル)マレイミド、N−(2,4,6−トリブロモフェニル)マレイミド等が挙げられる。また、これらは1種又は2種以上で使用してもよい。但し、ここに示した化合物は一例であり、これらに制限されるものではない。 Furthermore, for each of the vinyl polymer A containing at least one proton-donating atomic group in the molecule and the vinyl polymer B containing at least one proton-accepting atomic group in the molecule, a description will be given later. It is possible to copolymerize with other vinyl polymers. The monomer that can be used is not particularly limited as long as it does not impair the transparency of the resulting copolymer. Specific examples include methyl acrylate, ethyl acrylate, propyl acrylate, and n-butyl acrylate. , I-butyl acrylate, t-butyl acrylate, pentyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, dodecyl acrylate, octadecyl acrylate, butoxyethyl acrylate, acrylic acid Phenyl, benzyl acrylate, naphthyl acrylate, glycidyl acrylate, 2-hydroxyethyl acrylate, cyclohexyl acrylate, methyl cyclohexyl acrylate, trimethyl cyclohexyl acrylate, norbornyl acrylate, norbornyl methyl acrylate, acrylic acid Anonoruboruniru, isobornyl acrylate, bornyl acrylate, menthyl acrylate, fenchyl acrylate, adamantyl acrylate, dimethyl adamantyl, acrylic acid tricyclo [5.2.1.0 2,6] dec-8-yl, acrylic acid Acrylic esters such as tricyclo [5.2.1.0 2,6 ] dec-4-methyl, cyclodecyl acrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, methacryl T-butyl acid, pentyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, dodecyl methacrylate, octadecyl methacrylate, butoxyethyl methacrylate, phenyl methacrylate, naphthyl methacrylate, Glycidyl tacrylate, cyclopentyl methacrylate, cyclohexyl methacrylate, methyl cyclohexyl methacrylate, trimethyl cyclohexyl methacrylate, norbornyl methacrylate, norbornyl methyl methacrylate, cyano norbornyl methacrylate, phenyl norbornyl methacrylate, isobornyl methacrylate Boronyl methacrylate, menthyl methacrylate, fentyl methacrylate, adamantyl methacrylate, dimethyladamantyl methacrylate, tricyclo [5.2.1.0 2,6 ] deca-8-yl methacrylate, tricyclomethacrylate [5.2 .1.0 2,6] dec-4-methyl, methacrylic acid esters such as methacrylic acid cyclodecyl, alpha-methyl styrene, alpha-ethylstyrene, alpha-fluoro styrene, alpha- Aromatic vinyl compounds such as roll styrene, α-bromostyrene, fluorostyrene, chlorostyrene, bromostyrene, methylstyrene, methoxystyrene, calcium acrylate, barium acrylate, lead acrylate, tin acrylate, zinc acrylate, methacrylic acid (Meth) acrylic acid metal salts such as calcium, barium methacrylate, lead methacrylate, tin methacrylate, zinc methacrylate, unsaturated fatty acids such as acrylic acid and methacrylic acid, vinyl cyanide compounds such as acrylonitrile and methacrylonitrile, N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, Ni-propylmaleimide, N-butylmaleimide, Ni-butylmaleimide, Nt-butylmaleimide, N-laurylmaleimide, N-cyclohex Rumaleimide, N-benzylmaleimide, N-phenylmaleimide, N- (2-chlorophenyl) maleimide, N- (4-chlorophenyl) maleimide, N- (4-bromophenyl) phenylmaleimide, N- (2-methylphenyl) maleimide N- (2-ethylphenyl) maleimide, N- (2-methoxyphenyl) maleimide, N- (2,4,6-trimethylphenyl) maleimide, N- (4-benzylphenyl) maleimide, N- (2, 4,6-tribromophenyl) maleimide and the like. Moreover, you may use these by 1 type (s) or 2 or more types. However, the compound shown here is an example and is not limited thereto.

また、本発明において、分子内に少なくとも1種のプロトン供与性原子団を含むビニル系重合体Aと、分子内に少なくとも1種以上のプロトン受容性原子団を含むビニル系重合体Bとを混合する方法は、溶融混練法、ワニスブレンド法等を適用することができ、特に方法は問わない。
また、光透過層用のフィルムを形成する樹脂組成物を製造するための重合方法としては、塊状重合、懸濁重合、乳化重合、溶液重合等の既存の方法を使用することができる。
重合を行う際には、重合開始剤を用いることができる。具体的には、過酸化ベンゾイル、過酸化ラウロイル、ジ−t−ブチルパーオキシヘキサヒドロテレフタレート、t−ブチルパーオキシ−2−エチルヘキサノエート、1,1−t−ブチルパーオキシ−3,3,5−トリメチルシクロヘキサン等の有機過酸化物、アゾビスイソブチロニトリル、アゾビス−4−メトキシ−2,4−ジメチルバレロニトリル、アゾビスシクロヘキサノン−1−カルボニトリル、アゾジベンゾイル等のアゾ化合物、過硫酸カリウム、過硫酸アンモニウム等の水溶性触媒及び過酸化物あるいは過硫酸塩と還元剤の組み合わせによるレドックス触媒等、通常のラジカル重合に使用できるものはいずれも使用可能である。
In the present invention, the vinyl polymer A containing at least one proton-donating atomic group in the molecule and the vinyl polymer B containing at least one proton-accepting atomic group in the molecule are mixed. As a method of performing, a melt-kneading method, a varnish blending method, or the like can be applied, and any method can be used.
Moreover, as a polymerization method for producing a resin composition for forming a film for a light transmission layer, existing methods such as bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization can be used.
When performing the polymerization, a polymerization initiator can be used. Specifically, benzoyl peroxide, lauroyl peroxide, di-t-butylperoxyhexahydroterephthalate, t-butylperoxy-2-ethylhexanoate, 1,1-t-butylperoxy-3,3 Organic peroxides such as 1,5-trimethylcyclohexane, azo compounds such as azobisisobutyronitrile, azobis-4-methoxy-2,4-dimethylvaleronitrile, azobiscyclohexanone-1-carbonitrile, azodibenzoyl, Any water-soluble catalyst such as potassium persulfate and ammonium persulfate, and a redox catalyst based on a combination of peroxide or persulfate and a reducing agent can be used.

分子量調整剤として、メルカプタン系化合物、チオグリコール、四塩化炭素、α−メチルスチレンダイマー等を必要に応じて添加することもできる。なお、ここに示した分子量調整剤は、一種または二種以上を必要により使用しても良いものであるが、ここに示した分子量調整剤は一例を示したにすぎず、例示した分子量調整剤に制限されるものではない。
重合方法として熱重合を使用する場合には、重合温度は、0〜200℃の間で適宜選択することができ、より好ましい重合温度は50〜120℃の範囲である。
重合体(光透過層)には、その使用にあたって、劣化防止、熱的安定性、成形性及び加工性などの観点から、フェノール系、ホスファイト系、チオエーテル系などの抗酸化剤、脂肪族アルコール、脂肪酸エステル、フタル酸エステル、トリグリセライド類、フッ素系界面活性剤、高級脂肪酸金属塩などの離型剤、その他滑剤、可塑剤、帯電防止剤、紫外線吸収剤、難燃剤、重金属不活性化剤などを添加して使用しても良い。
本発明では、得られた重合体から、溶融混練法や溶媒キャスト法により有機溶媒を揮発させてフィルムを得ることができる。係るキャストの条件は特に限定されるものではないが、例えば、空気中や不活性ガス中において50℃〜160℃の温度条件下で行うことが可能である。また、これら条件を用いて予備乾燥した後、フィルムを剥がし、さらに、これを160〜350℃の高温で乾燥して乾燥時間を短縮することが可能である。
As a molecular weight modifier, a mercaptan compound, thioglycol, carbon tetrachloride, α-methylstyrene dimer or the like can be added as necessary. The molecular weight modifiers shown here may be used alone or in combination of two or more if necessary, but the molecular weight modifiers shown here are merely examples, and the exemplified molecular weight modifiers It is not limited to.
When thermal polymerization is used as the polymerization method, the polymerization temperature can be appropriately selected between 0-200 ° C, and the more preferable polymerization temperature is in the range of 50-120 ° C.
Polymers (light-transmitting layers) must be protected from deterioration, thermal stability, moldability and processability, and other antioxidants such as phenols, phosphites and thioethers, aliphatic alcohols. , Fatty acid esters, phthalate esters, triglycerides, release agents such as fluorosurfactants, higher fatty acid metal salts, other lubricants, plasticizers, antistatic agents, UV absorbers, flame retardants, heavy metal deactivators, etc. May be used.
In the present invention, a film can be obtained by volatilizing an organic solvent from the obtained polymer by a melt-kneading method or a solvent casting method. The casting conditions are not particularly limited. For example, the casting can be performed in air or in an inert gas at a temperature of 50 ° C. to 160 ° C. Moreover, after pre-drying using these conditions, it is possible to peel off a film, and also to dry this at high temperature of 160-350 degreeC, and to shorten drying time.

上記材料を使用して光透過層としてのフィルムを作製する場合には、基材層を選択すると良い。基材層としては、具体的に、PETフィルム、PENフィルム、ステンレス、テフロン(登録商標)フィルム、ポリエステルフィルム、ポリスルホンフィルム、ポリエーテルスルホンフィルム、ポリエーテルエーテルケトンフィルム、ポリエーテルフィルム、ポリアミドイミドフィルム、ポリイミドフィルム、ポリカーボネートフィルム、アクリル樹脂フィルム、エポキシ樹脂フィルム、ノルボルネン系高分子およびこれをブレンドした樹脂等が選択でき、特に、PETフィルム、PENフィルムを使用するのが好ましく、より好ましくはPETフィルムを使用すると良い。なお、ここに示した基材層は、一例を示したものであり、基材層は表面平滑性が良好であれば良く、上述したフィルムに限定されるものではない。   In the case of producing a film as a light transmission layer using the above material, a base material layer is preferably selected. Specifically, as the base material layer, PET film, PEN film, stainless steel, Teflon (registered trademark) film, polyester film, polysulfone film, polyethersulfone film, polyetheretherketone film, polyether film, polyamideimide film, A polyimide film, a polycarbonate film, an acrylic resin film, an epoxy resin film, a norbornene-based polymer and a resin blended with the same can be selected. In particular, it is preferable to use a PET film or a PEN film, more preferably a PET film. Good. In addition, the base material layer shown here shows an example, The base material layer should just have favorable surface smoothness, and is not limited to the film mentioned above.

本発明では、この光透過層と、プロテクト層を、ラミネートして2層フィルムとするが、ラミネートする時期は、前記基材層をはがす前、はがした後のいずれでもよい。はがした後の方が、ラミネート後に基材層を剥がす操作により2層フィルムを損傷することがないので好ましい。   In the present invention, the light-transmitting layer and the protective layer are laminated to form a two-layer film, but the lamination may be performed either before or after the substrate layer is peeled off. The direction after peeling is preferable because the two-layer film is not damaged by the operation of peeling the substrate layer after lamination.

(実施例1)
本実施例では、光透過層として、ポリマAとポリマBとを混合した溶液を使用して基材層のフィルム上に光透過層用のフィルムを作製し、基材フィルムを剥がした後、プロテクトフィルムを積層し、光透過層用のフィルムとプロテクト用のフィルムから2層積層フィルムに形成した。
Example 1
In this example, as the light transmissive layer, a solution for polymer A and polymer B was used to prepare a film for the light transmissive layer on the film of the base layer, and after the substrate film was peeled off, the protective film was protected. A film was laminated and formed into a two-layer laminated film from a light transmitting layer film and a protective film.

(ポリマA) 耐圧2.3kg/cmGの4リットルのステンレス鋼製オートクレーブに重合溶媒としてアセトン1279gを投入し、アクリル酸ブチル(BA、和光純薬(株)製)994g、アクリル酸(AA、和光純薬(株)製)86g、イソプロピルアルコール(IPA、トクヤマ(株)製)160gを秤取した。その後、室温(25℃)にて窒素ガスを約1時間通し、溶存酸素を置換した後、重合開始剤としてラウロイルパーオキシド(LPO、日本油脂(株)製)0.72g、t−ブチルパーオキシ2−エチルヘキサネート(PBO、日本油脂(株)製)0.24g、分子量調整剤としてα−メチルスチレンダイマー0.054gをアセトン40gに溶解して、室温にて窒素ガスを約10分間通し、溶存酸素を置換した混合溶液を添加した。その後、オートクレーブ内を加圧・密閉にして、60℃まで昇温し、同温度で約20時間保持した後、90℃まで昇温した。その後同温度で約10時間保持して高分子溶液を得た。得られた高分子溶液の重合率は97%以上であった。 (Polymer A) Into a 4 liter stainless steel autoclave having a pressure resistance of 2.3 kg / cm 2 G, 1279 g of acetone as a polymerization solvent was charged, 994 g of butyl acrylate (BA, manufactured by Wako Pure Chemical Industries, Ltd.), acrylic acid (AA 86 g of Wako Pure Chemical Industries, Ltd. and 160 g of isopropyl alcohol (IPA, Tokuyama Corporation) were weighed. Thereafter, nitrogen gas was passed at room temperature (25 ° C.) for about 1 hour to replace dissolved oxygen, and then lauroyl peroxide (LPO, manufactured by NOF Corporation) 0.72 g as a polymerization initiator, t-butylperoxy 0.24 g of 2-ethylhexanate (PBO, manufactured by NOF Corporation), 0.054 g of α-methylstyrene dimer as a molecular weight regulator were dissolved in 40 g of acetone, and nitrogen gas was passed at room temperature for about 10 minutes. A mixed solution in which dissolved oxygen was replaced was added. Thereafter, the inside of the autoclave was pressurized and sealed, and the temperature was raised to 60 ° C., kept at the same temperature for about 20 hours, and then heated to 90 ° C. Thereafter, the polymer solution was obtained by maintaining at the same temperature for about 10 hours. The polymerization rate of the obtained polymer solution was 97% or more.

(ポリマB) 耐圧2.3kg/cmGの4リットルのステンレス鋼製オートクレーブに重合溶媒としてアセトン1279gを投入し、メタクリル酸メチル(MMA、旭化成(株)製)810g、メタクリル酸トリシクロ〔5.2.1.02,6〕デカ−8−イル(TCDMA、日立化成(株)製)205g、アクリル酸ブチル(BA)32g、2,2,6,6−テトラメチル−4−ピペリジルメタクリレート(FA712HM、日立化成(株)製)32gを秤取した。その後、室温にて窒素ガスを約1時間通し、溶存酸素を置換した後、重合開始剤としてアゾビスイソブチロニトリル(AIBN、和光純薬(株)製)2.88g、アゾビスシクロヘキサノン−1−カルボニトリル(ACHN、和光純薬(株)製)0.96gをアセトン40gに溶解して、室温にて窒素ガスを約10分間通し、溶存酸素を置換した混合溶液を添加した。その後、オートクレーブ内を加圧・密閉にして60℃まで昇温し、同温度を約20時間保持した。さらに、90℃まで昇温した後、同温度で約10時間保持し、高分子溶液を得た。得られた高分子溶液の重合率は97%以上であった。
得られたポリマAワニスとポリマBワニスを4:6の固形分の重量比率で混合して混合溶液を得た。
(Polymer B) Into a 4 liter stainless steel autoclave having a pressure resistance of 2.3 kg / cm 2 G, 1279 g of acetone as a polymerization solvent was charged, 810 g of methyl methacrylate (MMA, manufactured by Asahi Kasei Co., Ltd.), tricyclomethacrylate [5. 2.1.0 2,6 ] Deca-8-yl (TCDMA, manufactured by Hitachi Chemical Co., Ltd.) 205 g, butyl acrylate (BA) 32 g, 2,2,6,6-tetramethyl-4-piperidyl methacrylate ( 32 g of FA712HM (manufactured by Hitachi Chemical Co., Ltd.) was weighed. Thereafter, nitrogen gas was passed at room temperature for about 1 hour to replace dissolved oxygen, and then 2.88 g of azobisisobutyronitrile (AIBN, manufactured by Wako Pure Chemical Industries, Ltd.) as a polymerization initiator, azobiscyclohexanone-1 -0.96 g of carbonitrile (ACHN, manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 40 g of acetone, nitrogen gas was passed at room temperature for about 10 minutes, and a mixed solution in which dissolved oxygen was replaced was added. Thereafter, the inside of the autoclave was pressurized and sealed, the temperature was raised to 60 ° C., and the temperature was maintained for about 20 hours. Furthermore, after heating up to 90 degreeC, it hold | maintained at the same temperature for about 10 hours, and obtained the polymer solution. The polymerization rate of the obtained polymer solution was 97% or more.
The obtained polymer A varnish and polymer B varnish were mixed at a solid weight ratio of 4: 6 to obtain a mixed solution.

<2層積層フィルムの作製>
上記ポリマA及びポリマBの混合溶液を使用し、ヒラノテクシード製コンマコータヘッドの塗工機を用い、コスモシャインA−4100(東洋紡(株))の基材層上に塗工し、乾燥した。その後、基材層であるコスモシャインA−4100を剥がした後、トレテック#7531(東レ(株)、高分子化合物による離型処理がされたもの)のプロテクト層を用いて、離型処理側を光透過層とラミネートし、これを試料とした。この時の2層積層フィルムの厚さは111μmであった。また、光透過層の単独のフィルムにおける波長405nmの光透過率は92.5%であり、膜厚精度は±1.6μmであった。
<Production of two-layer laminated film>
Using the mixed solution of the polymer A and the polymer B, coating was performed on a base material layer of Cosmo Shine A-4100 (Toyobo Co., Ltd.) using a coating machine of a comma coater head manufactured by Hirano Techseed, and dried. Then, after peeling off the base material layer Cosmo Shine A-4100, using the protection layer of Tretec # 7531 (Toray Industries, Inc., which has been subjected to release treatment with a polymer compound), the release treatment side is This was laminated with a light transmission layer and used as a sample. At this time, the thickness of the two-layer laminated film was 111 μm. Further, the light transmittance at a wavelength of 405 nm in the single film of the light transmissive layer was 92.5%, and the film thickness accuracy was ± 1.6 μm.

(実施例2)
実施例1で用いたトレテック#7531をヒタレックスL−8110(日立化成(株)、高分子による離型処理がされたもの)に変えた以外は同様の操作を行った。この時の2層積層フィルムの厚さは130μmであった。また、光透過層の単独のフィルムにおける波長405nmの光透過率は92.3%であり、膜厚精度は±1.8μmであった。
(Example 2)
The same operation was performed except that Tretec # 7531 used in Example 1 was changed to Hitarex L-8110 (Hitachi Chemical Co., Ltd., which was subjected to release treatment with a polymer). At this time, the thickness of the two-layer laminated film was 130 μm. Further, the light transmittance at a wavelength of 405 nm in the single film of the light transmissive layer was 92.3%, and the film thickness accuracy was ± 1.8 μm.

(比較例1)
実施例1で用いたトレテック#7531をサニテクトPAC−2(サンエー化研(株)、離型処理がされていないもの)に変えた以外は同様の操作を行った。この時の2層積層フィルムの厚さは152μmであった。また、光透過層の単独のフィルムにおける波長405nmの光透過率は91.9%であり、膜厚精度は±2.1μmであった。
(Comparative Example 1)
The same operation was performed except that Tretec # 7531 used in Example 1 was changed to Sanitect PAC-2 (San-A Kaken Co., Ltd., which was not subjected to mold release treatment). The thickness of the two-layer laminated film at this time was 152 μm. Further, the light transmittance at a wavelength of 405 nm in the single film of the light transmissive layer was 91.9%, and the film thickness accuracy was ± 2.1 μm.

上記実施例1、実施例2および比較例1より作製されたサンプルについて、以下に示す測定方法を用いて各種の特性を評価し、評価結果を表1に示した。
[405nmの光透過率]
光透過層の光透過率は、JASCO社製V−570の分光光度計を用いて測定し、測定条件は、室温(25℃)で波長405nmの領域とした。
[膜厚(μm)、膜厚精度(μm)]
膜厚は、レーザーフォーカス変位計(キーエンス製、LT−8100)を使用し、サイズ12cm×12cmの正方形フィルムについて測定した。
正方形フィルムの4つの辺を、それぞれ直線A、直線B、直線C、直線Dとし、直線Aに対向する辺を直線Cとし、直線Bに対向する辺を直線Dとした。直線Aから直線Cに向かって3cmの間隔を空けた3本の平行直線を各々直線A1、直線A2、直線A3とし、これら3本の平行直線(直線A1、直線A2、直線A3)と、直線Aと、直線Cとの合計5本について、以下の手順により直線上の各点におけるフィルムの膜厚を測定した。まず、直線Aの一端部から正方形内側の1cmの点を基準点とし、基準点から直線Aの他端部に向かい1mmの間隔を空けた各点について、他端部から正方形内側1cmの点までの長さ10cmに亘る合計101個の各点についてフィルムの膜厚を測定した。次に、直線Aと同様の方法を用いて、直線A1、直線A2、直線A3及び直線Cについての各点の膜厚を測定し、5本の直線について合計505個の各点の膜厚を測定した。さらに、前述した直線Aから直線Cまでの各直線と同様に、直線Bから直線Dに向かう5本の直線(直線B、直線B1、直線B2、直線B3、直線D)の合計505個の各点について膜厚を測定した。最後に、前述した方法により測定された正方形フィルム内の総計1010個についての膜厚の平均値をフィルムの膜厚とした。
また、膜厚の最大値から平均膜厚を差し引いた値、及び平均膜厚から膜厚の最小値を差し引いた値を各々算出し、算出した値のうち大きい値を膜厚精度とした。
[ガラス転移温度(Tg)]
DVAで測定した。測定装置として、(株)ユービーエム製レオスペクトラーDVE−V4を使用した。測定条件は、昇温速度3.0℃/min、周波数10.0hzとして引張り弾性率を測定し、得られたデータのうちtanδのピークトップをガラス転移温度(Tg)とした。
Various characteristics of the samples prepared from Example 1, Example 2, and Comparative Example 1 were evaluated using the measurement methods shown below, and the evaluation results are shown in Table 1.
[405 nm light transmittance]
The light transmittance of the light-transmitting layer was measured using a JASCO V-570 spectrophotometer, and the measurement conditions were room temperature (25 ° C.) and a wavelength of 405 nm.
[Film thickness (μm), film thickness accuracy (μm)]
The film thickness was measured on a square film having a size of 12 cm × 12 cm using a laser focus displacement meter (manufactured by Keyence, LT-8100).
The four sides of the square film were defined as a straight line A, a straight line B, a straight line C, and a straight line D, respectively, a side facing the straight line A was a straight line C, and a side facing the straight line B was a straight line D. Three parallel straight lines spaced from each other by a distance of 3 cm from the straight line A to the straight line C are defined as a straight line A1, a straight line A2, and a straight line A3, respectively, and these three parallel straight lines (straight line A1, straight line A2, straight line A3) and straight line With respect to a total of five lines A and straight line C, the film thickness at each point on the straight line was measured by the following procedure. First, a point 1 cm inside the square from one end of the straight line A is used as a reference point, and for each point spaced 1 mm from the reference point to the other end of the straight line A, from the other end to a point 1 cm inside the square. The film thickness of the film was measured for a total of 101 points over a length of 10 cm. Next, using the same method as that for the straight line A, the film thickness at each point for the straight line A1, the straight line A2, the straight line A3, and the straight line C is measured. It was measured. Further, like each of the straight lines from the straight line A to the straight line C described above, a total of 505 each of five straight lines from the straight line B to the straight line D (straight line B, straight line B1, straight line B2, straight line B3, straight line D). The film thickness was measured for the points. Finally, the average value of the film thicknesses for a total of 1010 square films measured by the method described above was taken as the film thickness.
Further, a value obtained by subtracting the average film thickness from the maximum value of the film thickness and a value obtained by subtracting the minimum value of the film thickness from the average film thickness were calculated, and the larger value among the calculated values was defined as the film thickness accuracy.
[Glass transition temperature (Tg)]
Measured with DVA. As a measuring device, UBM Co., Ltd. Leospectra DVE-V4 was used. The measurement conditions were as follows: the tensile modulus was measured at a heating rate of 3.0 ° C./min and a frequency of 10.0 hz, and the peak top of tan δ in the obtained data was defined as the glass transition temperature (Tg).

Figure 2006196043
Figure 2006196043

本発明の光透過層と接する面が剥離接着処理されたプロテクト層とが、別途形成された後、積層された2層積層フィルムである光学部品用積層フィルムは、耐熱性と靭性の両特性を有し、再繰り出し性が良好で、製造時における作業性が良い。一方、比較例のプロテクト層のない2層積層フィルムは、再繰り出し性に劣り作業性が悪化した。   The laminated film for optical components, which is a two-layer laminated film that is laminated after the protective layer whose surface in contact with the light-transmitting layer of the present invention is peeled and bonded separately is formed, has both heat resistance and toughness characteristics. It has good re-feeding property and good workability during manufacturing. On the other hand, the two-layer laminated film without the protective layer of the comparative example was inferior in re-drawing property and deteriorated workability.

本発明の実施形態における、高密度DVDの一部の構造を示す斜視図。The perspective view which shows the structure of a part of high-density DVD in embodiment of this invention. 図1に示した高密度DVDの一部の構造を示す断面図。Sectional drawing which shows the structure of a part of high-density DVD shown in FIG. 従来例における、DVDの構造を概略的に説明するためにDVDの一部を拡大した斜視図。The perspective view which expanded a part of DVD in order to demonstrate roughly the structure of DVD in a prior art example. 図3に示したDVDの断面図。Sectional drawing of DVD shown in FIG.

符号の説明Explanation of symbols

1 高密度DVD
2 支持基盤
3 記録層
4 粘着層
5 光透過層
6 ハードコート層
7 レーザー光
10 DVD
11 支持基盤
12 記録層
13 光透過層
14 ビット
15 レーザー光

1 High-density DVD
2 Support base 3 Recording layer 4 Adhesive layer 5 Light transmission layer 6 Hard coat layer 7 Laser beam 10 DVD
11 Support base 12 Recording layer 13 Light transmission layer 14 Bit 15 Laser light

Claims (12)

膜厚が20〜250μm、膜厚精度が±2.0μm以内、かつ、405nmにおける光透過率が90%以上である光透過層と、使用時に剥離除去され、かつ、当該光透過層と接する面が剥離接着処理されたプロテクト層とが、別途形成された後、積層された2層積層フィルムであり、膜厚が30〜350μmである光学部品用積層フィルム。 A light transmitting layer having a film thickness of 20 to 250 μm, a film thickness accuracy within ± 2.0 μm, and a light transmittance of 90% or more at 405 nm, and a surface that is peeled and removed during use and is in contact with the light transmitting layer A laminated film for an optical component having a thickness of 30 to 350 μm, which is a two-layer laminated film laminated after a protective layer having been peeled and bonded is separately formed. 前記プロテクト層が、前記光透過層と接する面の膜厚精度が±2.0μm以内である請求項1に記載の光学部品用積層フィルム。 2. The laminated film for optical components according to claim 1, wherein the protective layer has a film thickness accuracy within ± 2.0 μm on the surface in contact with the light transmission layer. 前記プロテクト層が、剥離接着処理されていない面の膜厚精度が±2.0μm以内である請求項1又は2記載の光学部品用積層フィルム。 3. The laminated film for optical components according to claim 1, wherein the protective layer has a film thickness accuracy of ± 2.0 μm or less on a surface that is not peeled and bonded. 前記光透過層が、主としてアクリル系重合体からなる請求項1〜3のいずれか1項に記載の光学部品用積層フィルム。 The laminated film for optical components according to any one of claims 1 to 3, wherein the light transmission layer is mainly composed of an acrylic polymer. 前記光透過層は、分子内に少なくとも1種のプロトン供与性原子団を含むビニル系重合体Aと、分子内に少なくとも1種の受容性原子団を含むビニル系重合体Bとを含み、前記ビニル系重合体A及びビニル系重合体Bを混合することにより前記プロトン供与性原子団と前記プロトン受容性原子団との間に分子間水素結合による擬似的な架橋が形成された熱可塑性樹脂から主としてなる請求項1〜4のいずれか1項に記載の光学部品用積層フィルム。 The light transmission layer includes a vinyl polymer A containing at least one proton-donating atomic group in the molecule, and a vinyl polymer B containing at least one accepting atomic group in the molecule, By mixing a vinyl polymer A and a vinyl polymer B, from a thermoplastic resin in which a pseudo-crosslink due to intermolecular hydrogen bonding is formed between the proton donating atomic group and the proton accepting atomic group The laminated film for optical components according to any one of claims 1 to 4, which is mainly used. 前記プロテクト層の厚さが、10〜200μmである請求項1〜5のいずれか1項に記載の光学部品用積層フィルム。 The laminated film for optical components according to claim 1, wherein the protective layer has a thickness of 10 to 200 μm. 前記プロテクト層の剥離接着処理は、プロテクト層上への高分子化合物の塗布による離型処理である請求項1〜6のいずれか1項に記載の光学部品用積層フィルム。 The laminated film for an optical component according to any one of claims 1 to 6, wherein the protective layer is peeled and bonded to the protective layer by releasing a polymer compound. 前記プロテクト層は、主としてポリエチレン、ポリプロピレン、ポリエステル樹脂からなる請求項1〜7のいずれか1項に記載の光学部品用積層フィルム。 The laminated film for optical components according to claim 1, wherein the protective layer is mainly made of polyethylene, polypropylene, or polyester resin. 請求項1〜8のいずれか1項に記載の光学部品用積層フィルムをロール形状に巻き取り形成されたフィルム巻層体。 A film winding layer formed by winding the laminated film for optical components according to any one of claims 1 to 8 into a roll shape. 請求項1〜8のいずれか1項に記載の光学部品用積層フィルムのプロテクト層から剥離された光透過層を貼り付けて形成された光学部品。 The optical component formed by affixing the light transmission layer peeled off from the protective layer of the laminated | multilayer film for optical components of any one of Claims 1-8. 光ディスクである請求項10記載の光学部品。 The optical component according to claim 10, which is an optical disc. 支持基盤上に記録層、接着層及び光透過層が順次形成された光ディスクであって、前記光透過層が請求項1〜8のいずれか1項に記載の光学部品用積層フィルムを用いて形成されたものである光ディスク。

An optical disc in which a recording layer, an adhesive layer, and a light transmission layer are sequentially formed on a support base, wherein the light transmission layer is formed using the laminated film for optical components according to any one of claims 1 to 8. An optical disc.

JP2005003729A 2005-01-11 2005-01-11 Laminated film for optical component, film wound body, optical component, and optical disk Pending JP2006196043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005003729A JP2006196043A (en) 2005-01-11 2005-01-11 Laminated film for optical component, film wound body, optical component, and optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005003729A JP2006196043A (en) 2005-01-11 2005-01-11 Laminated film for optical component, film wound body, optical component, and optical disk

Publications (1)

Publication Number Publication Date
JP2006196043A true JP2006196043A (en) 2006-07-27

Family

ID=36802011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005003729A Pending JP2006196043A (en) 2005-01-11 2005-01-11 Laminated film for optical component, film wound body, optical component, and optical disk

Country Status (1)

Country Link
JP (1) JP2006196043A (en)

Similar Documents

Publication Publication Date Title
TWI596179B (en) Pressure-sensitive adhesive composition
JP5124406B2 (en) Adhesive for polarizing plate, polarizing plate, method for producing the same, optical film, and image display device
JP2006107599A (en) Optical disk
JP4669897B2 (en) Ultraviolet curable resin composition and use thereof
KR20020005711A (en) Optical storage medium
TW202413075A (en) Optical layered film having adhesive layer and image display device
JP2007017521A (en) Resin sheet for manufacturing planar optical waveguide
US8541087B2 (en) Pressure-sensitive adhesive, sheet for manufacturing an optical recording medium and optical recording medium
JP2006318578A (en) Photocurable transfer sheet, method for manufacturing optical information recording medium using the same, and optical information recording medium
KR20050089026A (en) Film for optical component, winding laminate of film, optical component, and optical disc
US9028941B2 (en) Sheet for producing multilayer optical recording medium, multilayer optical recording medium, and adhesive
JP4621191B2 (en) Multilayer structure for optical recording medium, method for producing the same, and multilayer optical recording medium
JP2006196043A (en) Laminated film for optical component, film wound body, optical component, and optical disk
JP2006044007A (en) Laminated film for optical component, film winding layer body, optical component, and optical disk
JP2006192591A (en) Laminated film for optical element, film wound layer body, optical element and optical disk
JP2005231046A (en) Laminated film for optical part, film wound body, optical part and optical disk
US8691357B2 (en) Pressure-sensitive adhesive sheet for optical data recording medium, optical data recording medium, and method and device for reproducing data from optical data recording medium
JP2004288349A (en) Laminated film for optical component, optical component, and optical disk
JP3429954B2 (en) Optical information recording medium
JP5016368B2 (en) Photocurable transfer sheet, method for producing optical information recording medium using the same, and optical information recording medium
JP2004230882A (en) Laminate film for optical component, wound film, optical component and optical disk
JP2004199855A (en) Film for optical component, and optical component and optical disk obtained by using the film
JP2005165188A (en) Lamination film for optical component, lamination film roll, optical component and optical disk
JP2004195974A (en) Laminated film for optical parts, rolled film layer product, optical parts, and optical disk
JP2004216873A (en) Laminated film for optical component, film wound laminate, optical component and optical disk