JP2006195025A - High fluidity titanium oxide, method for manufacturing the same and toner for electrostatic latent image development to which the high fluidity titanium oxide has been added as external additive - Google Patents

High fluidity titanium oxide, method for manufacturing the same and toner for electrostatic latent image development to which the high fluidity titanium oxide has been added as external additive Download PDF

Info

Publication number
JP2006195025A
JP2006195025A JP2005004705A JP2005004705A JP2006195025A JP 2006195025 A JP2006195025 A JP 2006195025A JP 2005004705 A JP2005004705 A JP 2005004705A JP 2005004705 A JP2005004705 A JP 2005004705A JP 2006195025 A JP2006195025 A JP 2006195025A
Authority
JP
Japan
Prior art keywords
titanium oxide
fluidity
silica
toner
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005004705A
Other languages
Japanese (ja)
Inventor
Yukinobu Asada
幸伸 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP2005004705A priority Critical patent/JP2006195025A/en
Publication of JP2006195025A publication Critical patent/JP2006195025A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high fluidity titanium oxide suitable for obtaining toner for electrostatic latent image development having good fluidity, ensuring small environmental variation of charging performance and stably giving a high sharpness image, and to provide a toner for electrostatic latent image development having the above properties by adding the high fluidity titanium oxide as an external additive. <P>SOLUTION: The high fluidity titanium oxide is obtained by dry-mixing a titanium oxide having an average primary particle diameter of 5-100 nm hydrophobed with an organic substance and silica having an average primary particle diameter of 5-40 nm manufactured by a gas phase method in a silica to titanium oxide ratio of 0.5-20 mass%. The toner for electrostatic latent image development is obtained by adding the high fluidity titanium oxide as an external additive. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高流動性酸化チタン、その製造方法および上記高流動性酸化チタンを外添剤として添加した静電潜像現像用トナーに関するものであり、上記高流動性酸化チタンは、複写機やプリンターなどの複写画像を形成するための静電潜像現像用トナーの外添剤として有用であって、該高流動性酸化チタンを外添剤として添加することにより、流動性が良好で、帯電性能の環境変動が小さく、鮮鋭性の高い画像が安定して得られる静電潜像現像用トナーを提供することができる。   The present invention relates to high-fluidity titanium oxide, a method for producing the same, and a toner for developing an electrostatic latent image to which the high-fluidity titanium oxide is added as an external additive. Useful as an external additive for toner for developing an electrostatic latent image for forming a copy image such as a printer. By adding the high fluidity titanium oxide as an external additive, the fluidity is good and the It is possible to provide a toner for developing an electrostatic latent image in which an environmental fluctuation of performance is small and a sharp image can be stably obtained.

近年、複写機やプリンターなどにより得られる静電画像の高精細、高画質化への要求が市場で高まっており、トナーの小粒径化が進んでいる。しかしながら、トナーを小粒径化すると、トナーの帯電量が増加して、トナー同士の付着が強くなり流動性が低下するという問題があった。また、トナーの結着樹脂としてポリエステル系樹脂を用いることにより高画質化を達成しようとすることも行われているが、ポリエステル系樹脂を用いると湿度の影響を受けやすくなって、低湿度下においては帯電量が高くなりすぎ、画像濃度が低下して、画像欠限が生じやすくなり、逆に、高湿度下においては帯電量が不足し、現像性が悪化して、鮮鋭性の高い画像が得られなくなるという問題があった。   In recent years, demands for high definition and high image quality of electrostatic images obtained by copying machines, printers, and the like have increased in the market, and toner particle size has been reduced. However, when the particle size of the toner is reduced, there is a problem in that the charge amount of the toner increases, the adhesion between the toners becomes strong, and the fluidity decreases. In addition, attempts have been made to achieve high image quality by using a polyester resin as a binder resin for the toner. The charge amount becomes too high, the image density decreases, and the image deficiency tends to occur. Conversely, under high humidity, the charge amount is insufficient, the developability deteriorates, and an image with high sharpness is produced. There was a problem that it could not be obtained.

また、従来より静電潜像現像に用いられるトナーに対して、流動性付与や帯電性付与、あるいはクリーニング性向上などの目的で、シリカや酸化チタンなどの無機酸化物粉体を外添することが提案されている(例えば、特許文献1〜6)。   In addition, inorganic oxide powders such as silica and titanium oxide are externally added to toners conventionally used for developing electrostatic latent images for the purpose of imparting fluidity, imparting chargeability, or improving cleaning properties. Has been proposed (for example, Patent Documents 1 to 6).

これらの提案のように、トナーに無機酸化物粉体を外添することにより、ある程度の効果は得られるが、シリカは、流動性が優れているものの、帯電性能の環境安定性が充分でないという問題があり、また、酸化チタンは、帯電性能の環境安定性に優れているものの、流動性が充分ではないという問題を有している。従って、シリカ、酸化チタンなど、数種類の外添剤を併用して調整しているのが現状である。   Although some effects can be obtained by externally adding inorganic oxide powder to the toner as in these proposals, silica is excellent in fluidity, but the environmental stability of charging performance is not sufficient. There is a problem, and titanium oxide is excellent in environmental stability of charging performance, but has a problem that fluidity is not sufficient. Therefore, the current situation is that several types of external additives such as silica and titanium oxide are used in combination.

また、近年カラー化に伴い、帯電性能の環境安定性に優れた酸化チタンを外添剤としてトナーに添加するケースが増加しているが、前述したように酸化チタンは流動性が充分でないため、シリカに近い流動性を有した酸化チタンの出現が待たれている。
特開昭62−113158号公報 特開昭64−62667号公報 特開2000−128534号公報 特許第3018858号公報 特許第3038912号公報 特許第3168347号公報
In addition, in recent years, with the increase in color, there are an increasing number of cases where titanium oxide, which is excellent in environmental stability of charging performance, is added to the toner as an external additive, but as described above, because titanium oxide is not sufficiently fluid, The appearance of titanium oxide having fluidity close to silica is awaited.
JP-A-62-213158 JP-A 64-62667 JP 2000-128534 A Japanese Patent No. 3018858 Japanese Patent No. 3038912 Japanese Patent No. 3168347

本発明は、上記のような従来技術の問題点を解決し、流動性が良好で、かつ帯電性能の環境変動が小さく、鮮鋭性の高い画動が安定して得られる静電潜像現像用トナーを得るのに適した高流動性酸化チタンを提供し、また、その高流動性酸化チタンを外添剤として添加することによって上記特性を有する静電潜像現像用トナーを提供することを目的とする。   The present invention solves the problems of the prior art as described above, and for developing an electrostatic latent image that has good fluidity, has a small environmental fluctuation in charging performance, and can stably obtain a sharp image. An object of the present invention is to provide a high-fluidity titanium oxide suitable for obtaining a toner, and to provide a toner for developing an electrostatic latent image having the above characteristics by adding the high-fluidity titanium oxide as an external additive. And

本発明者は、上記課題を解決するため種々研究を重ねた結果、特定粒子径の酸化チタンを有機物で疎水化処理し、その疎水化処理した酸化チタンに、気相法で製造された特定粒子径のシリカを、酸化チタンに対してシリカが0.5〜20質量%の割合(すなわち、酸化チタン100質量部に対してシリカ0.5〜20質量部)で、乾式混合処理することによって、静電潜像現像用トナーの外添剤として用いたときに、流動性が良好で、帯電性能の環境変動が小さく、鮮鋭性の高い静電潜像現像用トナーを提供することができる高流動性酸化チタンが得られることを見出し、それに基づいて本発明を完成した。   As a result of repeating various studies to solve the above problems, the present inventor hydrophobized titanium oxide having a specific particle diameter with an organic substance, and the specific particles produced by the vapor phase method on the hydrophobized titanium oxide. By subjecting the silica having a diameter to a dry mixing treatment at a ratio of 0.5 to 20% by mass of silica with respect to titanium oxide (that is, 0.5 to 20 parts by mass of silica with respect to 100 parts by mass of titanium oxide), When used as an external additive for toner for electrostatic latent image development, high fluidity can provide a toner for electrostatic latent image development that has good fluidity, little environmental variation in charging performance, and high sharpness. The present invention was completed based on the finding that a soluble titanium oxide was obtained.

すなわち、本発明は、有機物で疎水化処理した平均一次粒子径が5〜100nmの酸化チタンに、気相法で製造された平均一次粒子径が5〜40nmのシリカを、酸化チタンに対してシリカが0.5〜20質量%の割合で、乾式混合処理したことを特徴とする高流動性酸化チタンと、その高流動性酸化チタンの製造方法に関するものであり、さらには、その高流動性酸化チタンを外添剤として添加したことを特徴とする静電潜像現像用トナーに関するものである。   That is, the present invention relates to titanium oxide having an average primary particle diameter of 5 to 100 nm hydrophobized with an organic substance, silica having an average primary particle diameter of 5 to 40 nm produced by a gas phase method, and silica with respect to titanium oxide. The present invention relates to a high fluidity titanium oxide characterized by having been dry-mixed at a ratio of 0.5 to 20% by mass, a method for producing the high fluidity titanium oxide, and further, its high fluidity oxidation. The present invention relates to a toner for developing an electrostatic latent image, characterized in that titanium is added as an external additive.

本発明によれば、複写機やプリンターなどの複写画像を形成するための静電潜像現像用トナーの外添剤として有用な高流動性酸化チタンを提供することができる。
そして、上記高流動性酸化チタンを外添剤として添加することにより、流動性が良好で、かつ帯電性能の環境変動が小さく、鮮鋭性の高い画像が安定して得られる静電潜像現像用トナーを提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the high fluidity titanium oxide useful as an external additive of the electrostatic latent image developing toner for forming copy images, such as a copying machine and a printer, can be provided.
Then, by adding the above high fluidity titanium oxide as an external additive, for electrostatic latent image development, which has good fluidity, small environmental fluctuations in charging performance, and can stably obtain a sharp image. Toner can be provided.

本発明の高流動性酸化チタンは、その代表的用途が静電潜像現像用トナーの外添剤であるが、その高流動性を利用して、上記静電潜像現像用トナーの外添剤以外にも、粉体塗料、樹脂用添加剤、化粧料などに利用することができる。   The typical application of the high-fluidity titanium oxide of the present invention is as an external additive for a toner for developing an electrostatic latent image. The high-fluidity is used to externally add the toner for developing an electrostatic latent image. In addition to the agent, it can be used for powder coatings, additives for resins, cosmetics and the like.

本発明の高流動性酸化チタンがその表現通り高流動性になる理由およびそれを外添剤として添加した静電潜像現像用トナーが、流動性が良好で、かつ帯電性能の環境変動が小さく、鮮鋭性の高い画像を安定して提供し得る理由は、以下の「発明を実施するための最良の形態」の項で本発明の高流動性酸化チタンを構成する材料などの説明と共に説明する。   The reason why the high-fluidity titanium oxide of the present invention is high-fluidity as expressed, and the toner for developing an electrostatic latent image to which it is added as an external additive has good fluidity and small environmental fluctuation of charging performance. The reason why the image with high sharpness can be stably provided will be described together with the description of the material constituting the high-fluidity titanium oxide of the present invention in the following “Best Mode for Carrying Out the Invention” section. .

本発明の高流動性酸化チタンを構成する酸化チタンは、その平均一次粒子径が5〜100nmであることが必要であり、得られる高流動性酸化チタンを静電潜像現像用トナーの外添剤として用いる観点からは、5〜50nmであることがより好ましい。酸化チタンの平均粒子径が5nmより小さいものは製造自体が困難であり、100nmより大きいものは流動性の点で好ましくない。なお、本発明において、酸化チタンとは、二酸化チタン(TiO)をいい、その平均一次粒子径はBET比表面積測定値より求めた球換算相当径であり、また、後に詳述するシリカの平均一次粒子径も上記酸化チタンの場合と同様にBET比表面積測定値より求めた球換算相当径である。 The titanium oxide constituting the high fluidity titanium oxide of the present invention needs to have an average primary particle diameter of 5 to 100 nm, and the obtained high fluidity titanium oxide is added to the toner for electrostatic latent image development. From the viewpoint of use as an agent, it is more preferably 5 to 50 nm. When the average particle diameter of titanium oxide is less than 5 nm, the production itself is difficult. In the present invention, titanium oxide refers to titanium dioxide (TiO 2 ), and the average primary particle diameter is a sphere equivalent equivalent diameter obtained from a measured BET specific surface area, and the average of silica described in detail later. The primary particle diameter is also a sphere equivalent diameter obtained from the measured BET specific surface area as in the case of titanium oxide.

本発明においては、上記酸化チタンを有機物で疎水化処理しているが、上記の0.5〜100nmという平均一次粒子径は酸化チタンそのものの平均一次粒子径である。ただし、有機物による疎水化処理によって酸化チタンの表面に形成される被膜は、非常に薄いものであって、酸化チタンの粒子径にほとんど影響を与えず、酸化チタンの粒子径は有機物による疎水化処理の前後でほとんど変わらない。   In the present invention, the titanium oxide is hydrophobized with an organic substance. The average primary particle size of 0.5 to 100 nm is the average primary particle size of titanium oxide itself. However, the coating formed on the surface of titanium oxide by the hydrophobic treatment with organic matter is very thin and has almost no effect on the particle size of titanium oxide. The particle size of titanium oxide is hydrophobic treatment with organic matter. There is almost no change before and after.

本発明においては、上記のように酸化チタンを有機物で疎水化処理しているが、これは、その疎水化処理によって、帯電性能の環境変動を小さくするためである。この疎水化処理にあたって用いる有機物は、疎水性を発現するものであれば特に限定されることなく各種のものを用い得るが、トナーにしたときの流動性、帯電性能の環境安定性を考慮すると、アルコキシシラン、シランカップリング剤、シラザン、シリコーンオイル、ステアリン酸金属塩などが好ましく、特にアルコキシシラン、シランカップリング剤、シラザン、シリコーンオイルなどの含ケイ素有機物が好ましく、とりわけ、アルコキシシラン、シランカップリング剤などが好ましい。上記アルコキシシランとしては、例えば、メチルトリメトキシシラン、イソブチルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、トリフルオロプロピルトリメトキシシランなどが挙げられ、シランカップリング剤としては、例えば、ビニルトリメトキシシランなどのビニル系シラン、3−グリシドキシプロピルトリメトキシシランなどのエポキシ系シラン、3−メタクリロキシプロピルトリメトキシシランなどのメタクリロキシ系シラン、3−アミノプロピルトリエトキシシランなどのアミノ系シランなどが挙げられる。また、シラザンとしては、例えば、ヘキサメチルジシラザンなどが挙げられ、シリコーンオイルとしては、例えば、ジメチルポリシロキサン、メチルハイドロジェンポリシロキサンなどのストレートシリコーンオイルや、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、フッ素変性シリコーンオイルなどの変性シリコーンオイルなどが挙げられ、ステアリン酸金属塩としては、例えば、ステアリン酸アルミニウム、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸カルシウムなどが挙げられる。そして、これらの有機物は、それぞれ単独で用いることもできるし、また、2種以上併用することもできる。   In the present invention, as described above, the titanium oxide is hydrophobized with an organic substance. This is because the hydrophobizing process reduces environmental fluctuations in charging performance. The organic substance used for the hydrophobization treatment is not particularly limited as long as it exhibits hydrophobicity, but various substances can be used. However, considering the environmental stability of fluidity and charging performance when used as a toner, Alkoxysilanes, silane coupling agents, silazanes, silicone oils, metal stearates, etc. are preferred, especially silicon-containing organic substances such as alkoxysilanes, silane coupling agents, silazanes, silicone oils, etc., especially alkoxysilanes, silane couplings. An agent or the like is preferable. Examples of the alkoxysilane include methyltrimethoxysilane, isobutyltrimethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, and trifluoropropyltrimethoxysilane. Examples of the silane coupling agent include vinyltrimethoxysilane. Vinyl silanes such as methoxysilane, epoxy silanes such as 3-glycidoxypropyltrimethoxysilane, methacryloxy silanes such as 3-methacryloxypropyltrimethoxysilane, amino silanes such as 3-aminopropyltriethoxysilane, etc. Is mentioned. Examples of silazane include hexamethyldisilazane, and examples of silicone oil include straight silicone oil such as dimethylpolysiloxane and methylhydrogenpolysiloxane, amino-modified silicone oil, epoxy-modified silicone oil, Examples thereof include modified silicone oils such as fluorine-modified silicone oil. Examples of the metal stearate include aluminum stearate, magnesium stearate, zinc stearate, calcium stearate and the like. These organic substances can be used alone or in combination of two or more.

上記有機物の酸化チタンに対する処理量としては、5〜50質量%(酸化チタン100質量部に対して有機物5〜50質量部)が好ましく、10〜30質量%がより好ましい。有機物による処理量が5質量%より少ない場合は、疎水性が充分に発現せず、そのため、流動性が悪く、かつ帯電性能の環境安定性が悪く、また、50質量%より多い場合には、酸化チタン粒子同士の凝集が強くなって、流動性が悪くなる傾向がある。   As a processing amount with respect to the titanium oxide of the said organic substance, 5-50 mass% (5-50 mass parts of organic substances with respect to 100 mass parts of titanium oxides) is preferable, and 10-30 mass% is more preferable. When the amount treated with an organic substance is less than 5% by mass, the hydrophobicity is not sufficiently developed. Therefore, the fluidity is poor and the environmental stability of the charging performance is poor, and when the amount is more than 50% by mass, There is a tendency that the aggregation of the titanium oxide particles becomes strong and the fluidity is deteriorated.

上記有機物で酸化チタンを疎水化処理する方法としては、乾式法、湿式法のいずれの方法も採用することができるが、処理の均一性という点からは湿式法が好ましい。湿式法には水系で行う方法と非水系で行う方法とがあるが、水系では処理剤(疎水化処理のための有機物)の溶解性の点から使用できる処理剤が制限されるため、処理剤選択の自由度が高い非水系での処理がより好ましい。また、酸化チタンの凝集を解し、処理の均一性を高める点から、強力な分散をかけながら処理することが好ましい。   As a method for hydrophobizing titanium oxide with the above organic substance, either a dry method or a wet method can be employed, but a wet method is preferable from the viewpoint of uniformity of treatment. There are two types of wet methods: an aqueous method and a non-aqueous method. In the aqueous method, the treatment agent that can be used is limited in view of the solubility of the treatment agent (organic substance for hydrophobization treatment). A non-aqueous treatment with a high degree of freedom in selection is more preferable. Moreover, it is preferable to perform the treatment while applying strong dispersion from the viewpoint of solving the aggregation of titanium oxide and improving the uniformity of the treatment.

本発明の流動性酸化チタンを構成するにあたって使用するシリカは、気相法で製造され、かつその平均一次粒子径が5〜40nmのものが必要であり、5〜30nmのものがより好ましい。本発明において、気相法や液相法で製造されたシリカのうち、特に気相法で製造されたシリカを用いるのは、気相法で製造されたシリカの方が液相法で製造されたシリカより流動性がよいからであり、液相法で製造されたシリカは、それ自体の流動性が不足していて、充分な流動性付与効果が得られない。また、本発明において、上記気相法で製造されたシリカのうち、特に平均一次粒子径が5〜40nmのものを用いるのは、シリカの平均一次粒子径が5nmより小さいものは製造困難であり、40nmより大きいものは流動性付与効果が小さいからである。   The silica used for constituting the fluid titanium oxide of the present invention is produced by a gas phase method and has an average primary particle size of 5 to 40 nm, more preferably 5 to 30 nm. In the present invention, among the silicas produced by the vapor phase method or the liquid phase method, the silica produced by the vapor phase method is particularly used because the silica produced by the vapor phase method is produced by the liquid phase method. This is because the fluidity is better than that of silica, and the silica produced by the liquid phase method lacks its own fluidity and cannot provide a sufficient fluidity-imparting effect. In the present invention, among silicas produced by the above gas phase method, silica having an average primary particle size of 5 to 40 nm is particularly difficult to produce when the average primary particle size of silica is less than 5 nm. This is because the effect of imparting fluidity is small when it is larger than 40 nm.

本発明において用いるシリカとは二酸化ケイ素(SiO)のことであり、本発明の高流動性酸化チタンがその表現どおり高流動性になるのは、酸化チタンにこのシリカを混合していることによるものである。そして、このシリカの混合量としては、酸化チタンに対して0.5〜20質量%(酸化チタン100質量部に対してシリカ5〜20質量部)であることが必要であり、5〜15質量%であることがより好ましい。酸化チタンに対するシリカの混合量が0.5質量%より少ない場合は、流動性付与効果が充分に得られず、20質量%より多い場合は、流動性付与効果は得られるものの、帯電性能の環境安定性が悪くなり、帯電性能の環境変動が大きくなる。なお、上記シリカは、その表面を有機物で疎水化処理したものであってもよいし、また、未処理のものであってもよい。 The silica used in the present invention is silicon dioxide (SiO 2 ), and the high fluidity titanium oxide of the present invention has high fluidity as expressed by the fact that this silica is mixed with titanium oxide. Is. And as a mixing amount of this silica, it is necessary to be 0.5-20 mass% with respect to titanium oxide (5-20 mass parts of silica with respect to 100 mass parts of titanium oxide), and 5-15 masses. % Is more preferable. When the amount of silica mixed with titanium oxide is less than 0.5% by mass, a sufficient fluidity-imparting effect cannot be obtained. When the amount exceeds 20% by mass, a fluidity-imparting effect can be obtained, but the charging performance environment. Stability deteriorates and environmental fluctuations in charging performance increase. The silica may have a surface hydrophobized with an organic material or may be untreated.

本発明において、疎水化処理した酸化チタンに対するシリカの混合処理は乾式で行うが、これは、シリカが有している粒子同士の緩やかに連なった状態を維持して、酸化チタンと混合することにより、酸化チタンに流動性を付与することができるという理由によるものである。そして、この乾式混合処理には、ヘンシェルミキサー、ナウターミキサー、ニーダー、V型ブレンダーなどの汎用の混合装置が使用できるが、特にV型ブレンダーによる混合が流動性付与効果が一番大きく好ましい。この理由は、現在のところ、必ずしも明確ではないが、ヘンシェルミキサー、ナウターミキサー、ニーダーなどはV型ブレンダーより混合力が強く、そのため、粒子の造粒、合一、凝集などが発生しやすいが、V型ブレンダーによる場合は、上記のような粒子の造粒、合一、凝集などが生じにくいことによるものと考えられる。   In the present invention, the silica is mixed with the hydrophobized titanium oxide in a dry manner, and this is achieved by maintaining the state where the silica particles are gently connected and mixing with titanium oxide. This is because fluidity can be imparted to titanium oxide. For this dry mixing treatment, a general-purpose mixing apparatus such as a Henschel mixer, a Nauter mixer, a kneader, or a V-type blender can be used. The reason for this is not necessarily clear at present, but Henschel mixers, Nauter mixers, kneaders, etc. have a stronger mixing force than V-type blenders, so they tend to cause granulation, coalescence, and aggregation of particles. In the case of using a V-type blender, it is considered that the above-described particle granulation, coalescence, aggregation and the like are less likely to occur.

本発明においては、酸化チタンに対するシリカの混合処理を上記のように乾式で行うが、それとは別に、酸化チタンを有機物で疎水化処理する工程中でシリカを混合する方法もある。ただし、この場合は充分な流動性が得られない。これは、酸化チタンを有機物で疎水化する工程においては、強力な分散力がかかるため、前述したようなシリカの有する緩やかな粒子同士の連なった状態を維持することができないためであると考えられる。   In the present invention, the silica is mixed with titanium oxide in a dry manner as described above. Alternatively, there is a method in which silica is mixed in the step of hydrophobizing titanium oxide with an organic substance. However, in this case, sufficient fluidity cannot be obtained. This is thought to be because, in the step of hydrophobizing titanium oxide with an organic substance, a strong dispersion force is applied, so that the state where the loose particles of silica as described above cannot be maintained cannot be maintained. .

本発明の高流動性酸化チタンは、疎水化処理されているので、温度や湿度などの環境変化に対する安定性が高く、従って、帯電性能の環境安定性が優れている。また、シリカを混合しているので、従来の酸化チタンより流動性が高く、静電潜像現像用トナーに外添した際、該トナーの流動性を向上させる効果も大きい。従って、本発明の高流動性酸化チタンは静電潜像現像用トナーの外添剤として最適なものといえる。   Since the high-fluidity titanium oxide of the present invention is hydrophobized, it has high stability against environmental changes such as temperature and humidity. Therefore, the environmental stability of charging performance is excellent. Further, since silica is mixed, the fluidity is higher than that of conventional titanium oxide, and the effect of improving the fluidity of the toner when added externally to the electrostatic latent image developing toner is great. Therefore, it can be said that the high-fluidity titanium oxide of the present invention is optimal as an external additive for the toner for developing an electrostatic latent image.

本発明の高流動性酸化チタンを外添剤とする静電潜像現像用トナーとしては、磁性一成分トナー、非磁性一成分トナー、2成分トナーなどのいずれのトナーにも使用でき、トナーの構成成分に関しては既知のものを任意に使用することができる。   The electrostatic latent image developing toner using the high-fluidity titanium oxide of the present invention as an external additive can be used for any toner such as magnetic one-component toner, non-magnetic one-component toner, and two-component toner. Known components can be arbitrarily used.

本発明の高流動性酸化チタンの静電潜像現像用トナーへの添加量は0.1〜3質量%(トナー樹脂100質量部に対して高流動性酸化チタン0.1〜3質量部)が好ましく、0.2〜2質量%が特に好ましい。本発明の高流動性酸化チタンの添加量が0.1質量%より少ない場合は、静電潜像現像用トナーの流動性が充分に向上せず、3質量%より多い場合は、トナーからの遊離粒子が増加する傾向がある。   The addition amount of the highly fluid titanium oxide of the present invention to the toner for developing an electrostatic latent image is 0.1 to 3% by mass (0.1 to 3 parts by mass of the highly fluid titanium oxide with respect to 100 parts by mass of the toner resin). Is preferable, and 0.2-2 mass% is especially preferable. When the addition amount of the high fluidity titanium oxide of the present invention is less than 0.1% by mass, the fluidity of the electrostatic latent image developing toner is not sufficiently improved. There is a tendency for free particles to increase.

以下に実施例を挙げて本発明をさらに詳細に説明する。ただし、以下に挙げる実施例は単に例示のために記すものであって、本発明の範囲がこれによって制限されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are described for illustrative purposes only, and the scope of the present invention is not limited thereby.

実施例1
平均一次粒子径15nmの酸化チタン(テイカ社製MT―150A)1000gをトルエン3000gに分散し、その酸化チタンに対し16質量%のイソブチルトリメトキシシランを添加した後、酸化チタン粒子が合一しないように強力な分散処理を行い、その後、乾燥、解砕して疎水性の酸化チタンを得た。
上記のようにして疎水化処理した酸化チタンに対して、平均一次粒子径7nmの気相法シリカ(アエロジル社製#300)を5質量%加え、V型ブレンダー(入江商会社製VK―5)にて20分間混合処理(回転数44rpm)を行い、高流動性酸化チタンを得た。なお、上記の気相法シリカとは気相法で製造されたシリカのことである。
Example 1
Disperse 1000 g of titanium oxide (MT-150A manufactured by Teika Co., Ltd.) having an average primary particle diameter of 15 nm in 3000 g of toluene and add 16% by mass of isobutyltrimethoxysilane to the titanium oxide, so that the titanium oxide particles do not merge Then, a strong dispersion treatment was performed, followed by drying and crushing to obtain hydrophobic titanium oxide.
Vitamin blender (Irie Trading Co., Ltd. VK-5) is added to the titanium oxide hydrophobized as described above by adding 5% by mass of vapor phase silica (Aerosil # 300) with an average primary particle size of 7 nm. Was mixed for 20 minutes (rotation speed: 44 rpm) to obtain highly fluid titanium oxide. In addition, said vapor phase method silica is the silica manufactured by the vapor phase method.

実施例2
酸化チタンの疎水化処理にあたり、イソブチルトリメトキシシランに代えてオクチルトリエトキシシランを用い、平均一次粒子径7μmの気相法シリカ(アエロジル社製♯300)に代えてジメチルジクロロシランで疎水化処理した平均一次粒子径12nmの気相法シリカ(アエロジル社製R974)を酸化チタンに対して1質量%混合した以外は、実施例1と同様にして高流動性酸化チタンを得た。
Example 2
In hydrophobizing titanium oxide, octyltriethoxysilane was used instead of isobutyltrimethoxysilane, and hydrophobized with dimethyldichlorosilane instead of gas phase method silica (# 300 manufactured by Aerosil) having an average primary particle size of 7 μm. High-fluidity titanium oxide was obtained in the same manner as in Example 1 except that 1% by mass of gas phase method silica having an average primary particle size of 12 nm (R974 manufactured by Aerosil Co., Ltd.) was mixed with respect to titanium oxide.

実施例3
酸化チタンの疎水化処理にあたり、イソブチルトリメトキシシランに代えてアミノプロピルトリエトキシシランとオクチルトリエトキシシランをそれぞれ8質量%ずつ用い、酸化チタンに対する気相法シリカの混合量を5質量%から10質量%に変更した以外は、実施例1と同様にして高流動性酸化チタンを得た。
Example 3
In hydrophobizing titanium oxide, aminopropyltriethoxysilane and octyltriethoxysilane were used in an amount of 8% by mass in place of isobutyltrimethoxysilane, respectively, and the amount of vapor phase silica mixed with titanium oxide was 5% by mass to 10% by mass. Except for the change to%, a highly fluid titanium oxide was obtained in the same manner as in Example 1.

実施例4
平均一次粒子径15μmの酸化チタン(テイカ社製MT−150A)に代えて平均一次粒子径35nmの酸化チタン(テイカ社製MT―500B)を用い、その疎水化処理にあたり、イソブチルトリメトキシシランに代えてデシルトリメトキシシランを用い、その使用量を16質量%から8質量%に変更した以外は、実施例1と同様にして高流動性酸化チタンを得た。
Example 4
In place of titanium oxide having an average primary particle diameter of 15 μm (MT-150A manufactured by Teica) and titanium oxide having an average primary particle diameter of 35 nm (MT-500B manufactured by Teica), the hydrophobization treatment was performed by replacing with isobutyltrimethoxysilane. A highly fluid titanium oxide was obtained in the same manner as in Example 1 except that decyltrimethoxysilane was used and the amount used was changed from 16% by mass to 8% by mass.

実施例5
平均一次粒子径7μmの気相法シリカ(アエロジル社製♯300)に代えて平均一次粒子径30nmの気相法シリカ(アエロジル社製♯50)を用い、その酸化チタンに対する混合量を15質量%に変更した以外は、実施例1と同様にして高流動性酸化チタンを得た。
Example 5
Instead of gas phase method silica having an average primary particle diameter of 7 μm (# 300 made by Aerosil), gas phase method silica having an average primary particle diameter of 30 nm (# 50 made by Aerosil) was used, and the mixing amount with respect to titanium oxide was 15% by mass. A highly fluid titanium oxide was obtained in the same manner as in Example 1 except that the change was changed to.

実施例6
酸化チタンの疎水化処理にあたり、イソブチルトリメトキシシランに代えて3−メタクリロキシプロピルトリメトキシシランを用いた以外は、実施例1と同様にして高流動性酸化チタンを得た。
Example 6
High-fluidity titanium oxide was obtained in the same manner as in Example 1 except that 3-methacryloxypropyltrimethoxysilane was used in place of isobutyltrimethoxysilane for the hydrophobic treatment of titanium oxide.

実施例7
酸化チタンの疎水化処理にあたり、イソブチルトリメトキシシランに代えてヘキサメチルジシラザンを用いた以外は、実施例1と同様にして高流動性酸化チタンを得た。
Example 7
High-fluidity titanium oxide was obtained in the same manner as in Example 1 except that hexamethyldisilazane was used in place of isobutyltrimethoxysilane for the hydrophobic treatment of titanium oxide.

実施例8
酸化チタンの疎水化処理にあたり、イソブチルトリメトキシシランに代えてジメチルポリシロキサンを用いた以外は、実施例1と同様にして高流動性酸化チタンを得た。
Example 8
High-fluidity titanium oxide was obtained in the same manner as in Example 1 except that dimethylpolysiloxane was used in place of isobutyltrimethoxysilane for hydrophobizing titanium oxide.

実施例9
酸化チタンの疎水化処理にあたり、イソブチルトリメトキシシランに代えてステアリン酸アルミニウムを用いた以外は、実施例1と同様にして高流動性酸化チタンを得た。
Example 9
A high-fluidity titanium oxide was obtained in the same manner as in Example 1 except that aluminum stearate was used in place of isobutyltrimethoxysilane for the hydrophobic treatment of titanium oxide.

比較例1
シリカを添加しなかった以外は、実施例1と同様に行った。
Comparative Example 1
The same procedure as in Example 1 was performed except that silica was not added.

比較例2
平均一次粒子径15nmの酸化チタン(テイカ社製MT−150A)に代えて平均一次粒子径270nmの酸化チタン(テイカ社製JR)を用い、イソブチルトリメトキシシランの添加量を16質量%から3質量%に変更した以外は、実施例1と同様に行った。
Comparative Example 2
Instead of titanium oxide having an average primary particle size of 15 nm (MT-150A manufactured by Teica), titanium oxide having an average primary particle size of 270 nm (JR manufactured by Teica) was used, and the addition amount of isobutyltrimethoxysilane was changed from 16% by mass to 3% by mass. The procedure was the same as Example 1 except that the percentage was changed to%.

比較例3
平均一次粒子径7nmの気相法シリカ(アエロジル社製♯300)に代えて平均一次粒子径80nmの液相法シリカ(東ソー・シリカ社製)を用いた以外は、実施例1と同様に行った。
Comparative Example 3
The same procedure as in Example 1 was conducted except that liquid phase silica (average Toso Silica) having an average primary particle size of 80 nm was used instead of vapor phase silica (Aerosil # 300) having an average primary particle size of 7 nm. It was.

比較例4
イソブチルトリメトキシシランによる酸化チタンの疎水化処理を行わず、未処理の親水性酸化チタン(テイカ社製MT―150A)をそのまま用いた以外は、実施例1と同様に行った。
Comparative Example 4
This was performed in the same manner as in Example 1 except that the hydrophobization treatment of titanium oxide with isobutyltrimethoxysilane was not performed, and untreated hydrophilic titanium oxide (MT-150A manufactured by Teika) was used as it was.

比較例5
気相法シリカの混合を酸化チタンの疎水化処理工程中で行う以外は、実施例1と同様に行った。
Comparative Example 5
It was carried out in the same manner as in Example 1 except that mixing of the vapor phase method silica was performed in the hydrophobizing step of titanium oxide.

比較例6
気相法シリカの混合量を5質量%から10質量%に変更した以外は、比較例5と同様に行った。
Comparative Example 6
The same procedure as in Comparative Example 5 was performed except that the mixing amount of the vapor phase method silica was changed from 5 mass% to 10 mass%.

試験例:
上記のようにして得られた実施例1〜9の高流動性酸化チタンおよび比較例1〜6の酸化チタンについて、疎水化度、流動性、ブローオフ帯電量を調べ、かつそれらを用いて擬似トナーを作製し、その流動性を調べた。その結果を表1に示す。
Test example:
The high fluidity titanium oxides of Examples 1 to 9 and the titanium oxides of Comparative Examples 1 to 6 obtained as described above were examined for hydrophobization degree, fluidity, and blow-off charge amount, and using them, pseudo toner And the fluidity thereof was examined. The results are shown in Table 1.

上記疎水化度、流動性、ブローオフ帯電量の測定方法および擬似トナーの作製方法、その流動性の測定方法は以下に示す通りである。   The method for measuring the degree of hydrophobicity, fluidity, and blow-off charge amount, the method for preparing the pseudo toner, and the method for measuring the fluidity are as follows.

疎水化度:
粉体濡れ性試験機「WET―100P(レスカ社製)」を使用して、下記の方法で測定した。
250mlのトールビーカーに純水70mlを入れ、測定サンプル(測定試料)0.03gを水面上に浮かべる。スターラーにより300rpmで攪拌しながら、定量ポンプでメタノールを2.6ml/minで滴下し、この溶液の透過率を測定する。この溶液の透過率が最小となった時点のメタノール濃度を疎水化度の測定値とする。
Hydrophobic degree:
Using a powder wettability tester “WET-100P (manufactured by Reska Co.)”, measurement was performed by the following method.
70 ml of pure water is put into a 250 ml tall beaker, and 0.03 g of a measurement sample (measurement sample) is floated on the water surface. While stirring at 300 rpm with a stirrer, methanol is added dropwise at 2.6 ml / min with a metering pump, and the transmittance of this solution is measured. The methanol concentration at the time when the transmittance of the solution is minimized is taken as the measured value of the degree of hydrophobicity.

流動性:
粉粒体流動性測定装置「API エアロフロー(TSI Incorporated 社製)」を使用して下記の方法で測定した。
測定サンプルを60ml計量カップに計り取り、専用の円筒容器中に静かに入れる。上記円筒容器の回転速度を1/240rpmに調節(円筒容器の回転速度を240秒で一回転するように調節)し、480秒間測定を行った。
本装置は円筒容器中の粉体の雪崩現象の時間間隔および雪崩回数を透過光の強度より算出するようになっており、測定結果は平均雪崩時間間隔(秒)と雪崩回数(回)で表示され、平均雪崩時間間隔が短く、雪崩回数が多いサンプル程、流動性が良いと判断できる。表1には雪崩回数のみ表示する。
Liquidity:
It measured by the following method using the granular material fluidity | liquidity measuring apparatus "API Aeroflow (made by TSI Incorporated)."
The measurement sample is weighed into a 60 ml measuring cup and gently placed in a special cylindrical container. The rotational speed of the cylindrical container was adjusted to 1/240 rpm (adjusted so that the rotational speed of the cylindrical container is rotated once in 240 seconds), and measurement was performed for 480 seconds.
The device calculates the time interval and the number of avalanches of powder in a cylindrical container from the intensity of transmitted light, and the measurement results are displayed as the average avalanche time interval (seconds) and the number of avalanches (times). Thus, it can be determined that the sample having a shorter average avalanche time interval and a larger number of avalanche times has better fluidity. Table 1 displays only the number of avalanches.

ブローオフ帯電量:
ブローオフ粉体帯電量測定装置「TB―200(東芝ケミカル社製)」を使用して下記の方法で測定した。
測定サンプル0.4gとフェライト96gをポリプロピレン製の容器に計り取り、2軸のローター上で100rpmの回転速度で15分間回転させたのち、その混合物0.05gを500メッシュの金網上に計り取り、下記条件でブローオフ帯電量を測定する。
(窒素ブロー圧:0.5kg/cm、ブロー時間:20秒)
なお、測定サンプルはそれぞれ3水準の環境下(L/L、M/M、H/H)に12時間暴露後に測定した。
表1中のL/L、M/M、H/Hの温・湿度は、それぞれ次の通りである。
L/L:10℃、20% M/M:20℃、50% H/H:30℃、80%
Blow-off charge amount:
Using a blow-off powder charge measuring device “TB-200 (manufactured by Toshiba Chemical Co.)”, the measurement was performed by the following method.
0.4 g of a measurement sample and 96 g of ferrite are weighed in a polypropylene container, rotated for 15 minutes at a rotation speed of 100 rpm on a biaxial rotor, and 0.05 g of the mixture is weighed on a 500 mesh wire mesh, The blow-off charge amount is measured under the following conditions.
(Nitrogen blow pressure: 0.5 kg / cm 2 , blow time: 20 seconds)
In addition, each measurement sample was measured after exposure for 12 hours in three levels of environment (L / L, M / M, H / H).
The temperature / humidity of L / L, M / M, and H / H in Table 1 is as follows.
L / L: 10 ° C, 20% M / M: 20 ° C, 50% H / H: 30 ° C, 80%

擬似トナーの作製:
スチレンアクリル系トナー樹脂「ハイマーSB305(三洋化成工業社製)」をジェット気流式の粉砕機で粉砕、分級してトナー樹脂を作製した。そのトナー樹脂100質量部に対し、実施例1〜9の高流動性酸化チタンおよび比較例1〜6の酸化チタンをそれぞれ別々に1質量%ずつ添加して擬似トナーを作製した。その擬似トナーの流動性を前記した実施例1〜9の高流動性酸化チタンなどの流動性の測定方法と同様の方法により測定した。
Preparation of pseudo toner:
A styrene acrylic toner resin “Hymar SB305 (manufactured by Sanyo Chemical Industries)” was pulverized and classified with a jet airflow type pulverizer to prepare a toner resin. A pseudo-toner was prepared by separately adding 1% by mass of the high fluidity titanium oxides of Examples 1 to 9 and the titanium oxides of Comparative Examples 1 to 6 to 100 parts by mass of the toner resin. The fluidity of the pseudo toner was measured by the same method as the fluidity measurement method such as the high fluidity titanium oxide of Examples 1 to 9 described above.

なお、表1には高流動性酸化チタンの製造にあたって使用した酸化チタンやシリカの粒子径、酸化チタンに対するシリカの混合量を示しているが、その粒子径は平均一次粒子径をスペース上の関係で簡略化して表示したものであり、そのシリカの混合量を示す%はスペース上の関係で質量%を簡略化して表示したものである。   Table 1 shows the particle diameters of titanium oxide and silica used in the production of high-fluidity titanium oxide, and the amount of silica mixed with titanium oxide. The particle diameter is related to the average primary particle diameter in terms of space. The% indicating the mixing amount of the silica is expressed by simplifying the mass% in terms of space.

Figure 2006195025
Figure 2006195025

表1に示すように、実施例1〜9の高流動性酸化チタンは、流動性評価の指標となる雪崩回数が70以上であって、比較例1〜6の酸化チタンに比べて、雪崩回数が多く、流動性が優れていた。また、擬似トナーを作製した場合も、実施例1〜9は、比較例1〜6に比べて、雪崩回数が多く、流動性が優れていた。このことから、実施例1〜9の高流動性酸化チタンは、静電潜像現像用トナーに外添剤として添加したときに、その流動性の向上に寄与することが明らかである。また、表1に示すように、実施例1〜9の高流動性酸化チタンは、ブローオフ帯電量でのL/L、M/M、H/H間の差が小さく、帯電性能の環境変動が小さいことを示していた。従って、実施例1〜9の高流動性酸化チタンは、静電潜像現像用トナーの外添剤として有用であると考えられる。なお、ブローオフ帯電量による帯電性能の環境安定性の判断は、L/Lのブローオフ帯電量値とH/Hのブローオフ帯電量値との差をM/Mのブローオフ帯電量値で割った値によって行われ、その値が小さい方が帯電性能の環境変動が小さく、帯電性能の環境安定性が優れていると判断される。   As shown in Table 1, the high fluidity titanium oxides of Examples 1 to 9 have an avalanche number of 70 or more, which is an index for fluidity evaluation, and the number of avalanches compared to the titanium oxides of Comparative Examples 1 to 6. Many fluidity was excellent. In addition, even when the pseudo toner was prepared, Examples 1 to 9 had more avalanche times and excellent fluidity than Comparative Examples 1 to 6. From this, it is clear that the high fluidity titanium oxides of Examples 1 to 9 contribute to improvement of fluidity when added as an external additive to the electrostatic latent image developing toner. In addition, as shown in Table 1, the high fluidity titanium oxides of Examples 1 to 9 have small differences in L / L, M / M, and H / H in the blow-off charge amount, and there are environmental fluctuations in charging performance. It was small. Therefore, it is considered that the high fluidity titanium oxides of Examples 1 to 9 are useful as external additives for toners for developing electrostatic latent images. The environmental stability of the charging performance by the blow-off charge amount is determined by the value obtained by dividing the difference between the L / L blow-off charge amount value and the H / H blow-off charge amount value by the M / M blow-off charge amount value. The smaller the value is, the smaller the environmental fluctuation of the charging performance is, and it is judged that the environmental stability of the charging performance is excellent.

また、表1に示す結果から明らかなように、シリカを混合しなかった比較例1、粒子径の大きい酸化チタンを用いた比較例2、粒子径の大きいシリカを用いた比較例3、疎水化処理をしていない比較例4、シリカの混合を酸化チタンの疎水化処理工程中で行った比較例5〜6は、いずれも流動性が悪く、また、比較例1、比較例2、比較例4は、ブローオフ帯電量の差が大きく、帯電性能の環境変動が大きいものと推定される。   Further, as is apparent from the results shown in Table 1, Comparative Example 1 in which silica was not mixed, Comparative Example 2 in which titanium oxide having a large particle size was used, Comparative Example 3 in which silica having a large particle size was used, hydrophobization Comparative Example 4 that was not treated, and Comparative Examples 5 to 6 in which silica was mixed in the hydrophobizing treatment process of titanium oxide were all poor in fluidity, and Comparative Example 1, Comparative Example 2, and Comparative Example No. 4 is estimated to have a large difference in blow-off charge amount and large environmental fluctuations in charging performance.

Claims (8)

有機物で疎水化処理した平均一次粒子径が5〜100nmの酸化チタンに、気相法で製造された平均一次粒子径が5〜40nmのシリカを、酸化チタンに対してシリカが0.5〜20質量%の割合で、乾式混合処理したことを特徴とする高流動性酸化チタン。 Titanium oxide having an average primary particle diameter of 5 to 100 nm hydrophobized with an organic substance is mixed with silica having an average primary particle diameter of 5 to 40 nm produced by a gas phase method, and silica is 0.5 to 20 with respect to titanium oxide. A high-fluidity titanium oxide that is dry-mixed at a rate of mass%. 前記有機物で疎水化処理した酸化チタンが、酸化チタンに対して5〜50質量%の有機物で疎水化処理されていることを特徴とする請求項1記載の高流動性酸化チタン。 The high-fluidity titanium oxide according to claim 1, wherein the titanium oxide hydrophobized with the organic substance is hydrophobized with an organic substance of 5 to 50% by mass with respect to titanium oxide. 前記有機物が、含ケイ素有機物であることを特徴とする請求項1または2記載の高流動性酸化チタン。 The highly fluid titanium oxide according to claim 1 or 2, wherein the organic substance is a silicon-containing organic substance. 含ケイ素有機物が、アルコキシシラン、シランカップリング剤、シラザンおよびシリコーンオイルから選ばれる少なくとも1種であることを特徴とする請求項3記載の高流動性酸化チタン。 The high-fluidity titanium oxide according to claim 3, wherein the silicon-containing organic substance is at least one selected from alkoxysilanes, silane coupling agents, silazanes, and silicone oils. 粉粒体流動性測定装置により1/240rpm、480秒間の条件下で測定した雪崩回数が、70以上であることを特徴とする請求項1〜4のいずれかに記載の高流動性酸化チタン。 The high-fluidity titanium oxide according to any one of claims 1 to 4, wherein the number of avalanches measured under a condition of 1/240 rpm and 480 seconds by a granular material fluidity measurement apparatus is 70 or more. 平均一次粒子径が5〜100nmの酸化チタンを非水系で有機物により疎水化処理を行う工程、疎水化処理した酸化チタンを解砕処理する工程、上記処理後の酸化チタンに、気相法で製造された平均一次粒子径が5〜40nmのシリカを、酸化チタンに対してシリカが0.5〜20質量%の割合で、乾式混合処理することを特徴とする高流動性酸化チタンの製造方法。 Manufactures titanium oxide with an average primary particle size of 5 to 100 nm in a non-aqueous system using a hydrophobizing process, a process of pulverizing the hydrophobized titanium oxide, and the above-treated titanium oxide by a gas phase method. A process for producing high-fluidity titanium oxide, comprising subjecting silica having an average primary particle diameter of 5 to 40 nm to dry mixing treatment at a ratio of 0.5 to 20% by mass of silica with respect to titanium oxide. V型ブレンダーにより乾式混合処理することを特徴とする請求項6記載の高流動性酸化チタンの製造方法。 7. The method for producing a highly fluid titanium oxide according to claim 6, wherein the dry mixing treatment is performed by a V-type blender. 請求項1〜5のいずれかに記載の高流動性酸化チタンを外添剤として添加したことを特徴とする静電潜像現像用トナー。 6. A toner for developing an electrostatic latent image, wherein the high-fluidity titanium oxide according to claim 1 is added as an external additive.
JP2005004705A 2005-01-12 2005-01-12 High fluidity titanium oxide, method for manufacturing the same and toner for electrostatic latent image development to which the high fluidity titanium oxide has been added as external additive Pending JP2006195025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005004705A JP2006195025A (en) 2005-01-12 2005-01-12 High fluidity titanium oxide, method for manufacturing the same and toner for electrostatic latent image development to which the high fluidity titanium oxide has been added as external additive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004705A JP2006195025A (en) 2005-01-12 2005-01-12 High fluidity titanium oxide, method for manufacturing the same and toner for electrostatic latent image development to which the high fluidity titanium oxide has been added as external additive

Publications (1)

Publication Number Publication Date
JP2006195025A true JP2006195025A (en) 2006-07-27

Family

ID=36801172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004705A Pending JP2006195025A (en) 2005-01-12 2005-01-12 High fluidity titanium oxide, method for manufacturing the same and toner for electrostatic latent image development to which the high fluidity titanium oxide has been added as external additive

Country Status (1)

Country Link
JP (1) JP2006195025A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008542847A (en) * 2005-06-06 2008-11-27 オセ−テクノロジーズ・ベー・ヴエー Duplex printing process combined with toner suitable for use in this process
JP2012088462A (en) * 2010-10-19 2012-05-10 Tayca Corp Electrostatic latent image development toner external additive
JP2017134157A (en) * 2016-01-26 2017-08-03 京セラドキュメントソリューションズ株式会社 Toner for electrostatic latent image development and external additive
WO2018216722A1 (en) 2017-05-25 2018-11-29 信越化学工業株式会社 Method for analyzing degree of hydrophobicity of powder, highly hydrophobized coloring pigment, and cosmetic containing said coloring pigment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008542847A (en) * 2005-06-06 2008-11-27 オセ−テクノロジーズ・ベー・ヴエー Duplex printing process combined with toner suitable for use in this process
JP2012088462A (en) * 2010-10-19 2012-05-10 Tayca Corp Electrostatic latent image development toner external additive
JP2017134157A (en) * 2016-01-26 2017-08-03 京セラドキュメントソリューションズ株式会社 Toner for electrostatic latent image development and external additive
WO2018216722A1 (en) 2017-05-25 2018-11-29 信越化学工業株式会社 Method for analyzing degree of hydrophobicity of powder, highly hydrophobized coloring pigment, and cosmetic containing said coloring pigment
KR20200014337A (en) 2017-05-25 2020-02-10 신에쓰 가가꾸 고교 가부시끼가이샤 Analysis method of hydrophobicity degree of powder, highly hydrophobicity-treated color pigment, and cosmetics containing this
US11639885B2 (en) 2017-05-25 2023-05-02 Shin-Etsu Chemical Co., Ltd. Method for analyzing degree of hydrophobicity of powder, highly hydrophobized coloring pigment, and cosmetic containing said coloring pigment

Similar Documents

Publication Publication Date Title
JP5982003B2 (en) Toner additive containing composite particles
JP4743845B2 (en) Hydrophobic positively charged silica fine powder, method for producing the same, and toner for developing electrostatic latent image to which it is added as an external additive
KR970002988B1 (en) Method for producing toner for developing electrostatic image
JPH0810341B2 (en) Magnetic toner
JP2015502567A5 (en)
JP2016006547A (en) Toner composition and method of preparing the same
JPH0551538B2 (en)
JP2014074811A (en) Electrostatic charge image developer, process cartridge, image forming apparatus, and image forming method
JP2006195025A (en) High fluidity titanium oxide, method for manufacturing the same and toner for electrostatic latent image development to which the high fluidity titanium oxide has been added as external additive
JP7091050B2 (en) Hydrophobic silica powder and its manufacturing method, and toner resin particles
EP3178887B1 (en) Hydrophobic silica for electrophotographic toner composition
TWI804672B (en) Positively charged hydrophobic spherical silica particles, method for producing same, and positively charged toner composition using the positively charged hydrophobic spherical silica particles
JP2004359476A (en) Hydrophobized silica composition
JP6607806B2 (en) Hydrophobic irregularly shaped silica powder, method for producing the same, and external additive for toner using the same
JP6328488B2 (en) Spherical silica fine powder and use thereof
WO2022181018A1 (en) Surface-treated sol-gel silica particle manufacturing method, surface-treated sol-gel silica particles, and toner external additive for electrostatic charge image development
JP2014136670A (en) Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image
JP2023164290A (en) toner
JP2015000830A (en) Spherical silica composition and use of the same
JP2012088462A (en) Electrostatic latent image development toner external additive
EP4371938A2 (en) Silica particle, toner for developing electrostatic charge image, electrostatic charge image developer, toner cartridge, image forming apparatus, and image forming method
JP2013257464A (en) Magnetic single component development toner
JP2023163893A (en) toner
JP2023163894A (en) toner
JP2023038908A (en) Fine particle, external additive for toner, and toner