JP2006194873A5 - - Google Patents

Download PDF

Info

Publication number
JP2006194873A5
JP2006194873A5 JP2005371381A JP2005371381A JP2006194873A5 JP 2006194873 A5 JP2006194873 A5 JP 2006194873A5 JP 2005371381 A JP2005371381 A JP 2005371381A JP 2005371381 A JP2005371381 A JP 2005371381A JP 2006194873 A5 JP2006194873 A5 JP 2006194873A5
Authority
JP
Japan
Prior art keywords
insulating layer
base
layer
deposition
precursor compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005371381A
Other languages
Japanese (ja)
Other versions
JP2006194873A (en
JP4943701B2 (en
Filing date
Publication date
Priority claimed from US11/024,952 external-priority patent/US8023609B2/en
Application filed filed Critical
Publication of JP2006194873A publication Critical patent/JP2006194873A/en
Publication of JP2006194873A5 publication Critical patent/JP2006194873A5/ja
Application granted granted Critical
Publication of JP4943701B2 publication Critical patent/JP4943701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (6)

原子炉内の冷却液流路の濡れ部分を画成する導電性表面(100a、100b)上の荷電微粒子堆積を減少させるために、
導電性表面を準備するステップと、
前記導電性表面を、第1の有機金属性前駆体化合物を分解し前記導電体表面上に実質的に連続なベース絶縁層を形成するに十分な条件下で、前記前駆体化合物に曝すことによってベース絶縁層(102)を形成するベース絶縁層形成ステップと、
前記導電性表面を、前記第1の有機金属性前駆体化合物と異なる第2の有機金属製前駆体化合物を分解し前記導電体表面上に実質的に連続な外側絶縁層を形成するに十分な条件下で、前記第2の有機金属製前駆体化合物に曝すことによって、前記ベース絶縁層(102)とは異なる外側絶縁層(104)を形成する外側絶縁層形成ステップとを、
具備する荷電微粒子堆積削減方法であって、
前記ベース絶縁層形成ステップは、
前記導電性表面を、約400℃と約500℃の間の第1の堆積温度と約20mTorrまたはそれ以下の第1の堆積圧力に維持するCVDプロセスを使用して前記ベース絶縁層(102)を形成するステップと、
前記ベース絶縁層を、約400℃と約500℃の間の第2の堆積温度と約20mTorrまたはそれ以下の第2の堆積圧力に維持するCVDプロセスを使用して外側絶縁層(104)を形成するステップと、
を含み、
前記ベース絶縁層(102)がTiO、Ta、SiO、Al、ZrO、Nb、SrBi、Ta、Y、HfO、BaO、SrO、SrTiO、PbTiOとPbZrOからなる群から選択される第1の絶縁材料から本質的に構成され、かつ、約0.1μmと約2μmの間のベース層厚さを有し、
前記外側絶縁層(104)がTiO、Ta、SiO、Al、ZrO、Nb、SrBi、Ta、Y、HfO2、BaO、SrO、SrTiO、PbTiOとPbZrOからなる群から選択される第2の絶縁材料から本質的に構成され、かつ、約0.5μmと約3μmの間の外側層厚さを有する、ことを特徴とする荷電微粒子堆積減少方法。
In order to reduce charged particulate deposition on the conductive surfaces (100a, 100b) that define the wetted portion of the coolant flow path in the reactor ,
Providing a conductive surface;
Said conductive surface, under conditions sufficient to form a first organometallic precursor compound substantially continuous base dielectric layer on the conductor surface by decomposing, exposing the precursor compound A base insulating layer forming step of forming a base insulating layer (102) by:
Said conductive surface, sufficient to form a substantially continuous outer dielectric layer on the first organometallic precursor compound different from the second to decompose the organic metal precursor compound the conductive surface An outer insulating layer forming step of forming an outer insulating layer (104) different from the base insulating layer (102) by exposing the second organometallic precursor compound to the second organometallic precursor compound under the following conditions :
A charged particle deposition reduction method comprising:
The insulating base layer forming step includes
The base insulating layer (102) is formed using a CVD process that maintains the conductive surface at a first deposition temperature between about 400 ° C. and about 500 ° C. and a first deposition pressure of about 20 mTorr or less. Forming step;
Forming an outer insulating layer (104) using a CVD process that maintains the base insulating layer at a second deposition temperature between about 400 ° C. and about 500 ° C. and a second deposition pressure of about 20 mTorr or less. And steps to
Including
Said base insulating layer (102) is TiO 2, Ta 2 O 5, SiO 2, Al 2 O 3, ZrO 2, Nb 2 O 5, SrBi 2, Ta 2 O 3, Y 2 O 3, HfO 2, BaO, Consisting essentially of a first insulating material selected from the group consisting of SrO, SrTiO 3 , PbTiO 3 and PbZrO 3 and having a base layer thickness between about 0.1 μm and about 2 μm;
It said outer insulating layer (104) is TiO 2, Ta 2 O 5, SiO 2, Al 2 O 3, ZrO 2, Nb 2 O 5, SrBi 2, Ta 2 O 3, Y 2 O 3, HfO2, BaO, SrO , Consisting essentially of a second insulating material selected from the group consisting of SrTiO 3 , PbTiO 3 and PbZrO 3 and having an outer layer thickness between about 0.5 μm and about 3 μm Charged particle deposition reduction method.
さらに、前記ベース絶縁層(102)と外側絶縁層(104)とをCVD処理法を用いて形成することを特徴とする請求項の減少方法 Further, the base insulating layer (102) and the outer insulating layer (104) are formed using a CVD process. 請求項1記載の減少方法であって、
ALDプロセスを使用して前記ベース絶縁層(102)を形成するステップと、
前記CVDプロセスを使用して前記外側絶縁層(104)を形成するステップとをさらに含むことを特徴とする減少方法。
The reduction method according to claim 1,
Forming the insulating base layer using an ALD process (102),
Reduction method characterized by further including the step of forming said outer insulating layer by using the CVD process (104).
請求項1記載の減少方法であって、
前記ベース絶縁層(102)が、原子層堆積(ALD)、化学気相成長(CVD)、物理的気相成長(PVD)、プラズマ強化物理的気相成長(PEPVD)、スパッタリング、プラズマスプレー被覆(APS、VPSおよびLPPS)および高速フレーム溶射(HVOF)プロセスからなる群から選択される方法を使用して形成され、
前記外側絶縁層(104)が、原子層堆積(ALD)、化学気相成長(CVD)、物理的気相成長(PVD)、プラズマ強化物理的気相成長(PEPVD)、スパッタリング、電気アークスプレー(EAS)、プラズマスプレー被覆(APS、VPSおよびLPPS)および高速フレーム溶射(HVOF)のプロセス群から選択される方法を使用して形成されることを特徴とする減少方法。
The reduction method according to claim 1,
The base insulating layer (102) is formed by atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma enhanced physical vapor deposition (PEPVD), sputtering, plasma spray coating ( Formed using a method selected from the group consisting of APS, VPS and LPPS) and high velocity flame spraying (HVOF) processes;
The outer insulating layer (104) is formed by atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma enhanced physical vapor deposition (PEPVD), sputtering, electric arc spray ( A reduction method characterized in that it is formed using a method selected from the process group of EAS), plasma spray coating (APS, VPS and LPPS) and high velocity flame spraying (HVOF).
前記ベース絶縁層(102)が本質的にTaからなり、かつ、約0.1μmと約2μmの間のベース層厚さを有し、
前記外側絶縁層(104)が本質的にTiOからなり、かつ、約0.5μmと約3μmの間の外側層厚さを有することを特徴とする請求項2に記載の減少方法。
The base insulating layer (102) consists essentially of Ta 2 O 5 and has a base layer thickness of between about 0.1 μm and about 2 μm;
The method of claim 2, wherein the outer insulating layer (104) consists essentially of TiO 2 and has an outer layer thickness of between about 0.5 μm and about 3 μm.
原子炉内の冷却液流路を画成する装置であって、
電気的に導電性であり、冷却液流路の部分を画成するように構成される表面(100a、100b)を有するベース材料(100)と、
前記表面上に形成される実質的に連続であるベース絶縁層(102)と、
前記ベース絶縁層上に実質的に連続に形成され前記冷却液流路の濡れ部分を画成する導電性表面外側絶縁層(104)とを備え、
前記ベース絶縁層(102)がTiO 、Ta 、SiO 、Al 、ZrO 、Nb 、SrBi 、Ta 、Y 、HfO2、BaO、SrO、SrTiO 、PbTiO とPbZrO からなる群から選択される第1の絶縁材料から本質的に構成され、かつ、約0.1μmと約2μmの間のベース層厚さを有し、前記外側絶縁層(104)がTiO 、Ta 、SiO 、Al 、ZrO 、Nb 、SrBi 、Ta 、Y 、HfO2、BaO、SrO、SrTiO 、PbTiO とPbZrO からなる群から選択される第2の絶縁材料から本質的に構成され、かつ、約0.5μmと約3μmの間の外側層厚さを有することを特徴とする装置。
An apparatus for defining a coolant flow path in a nuclear reactor,
A base material (100) having a surface (100a, 100b) that is electrically conductive and configured to define a portion of the coolant flow path;
A substantially continuous base insulating layer (102) formed on the surface;
A conductive outer surface insulating layer (104) formed substantially continuously on the insulating base layer and defining a wetted portion of the coolant flow path ;
It said base insulating layer (102) is TiO 2, Ta 2 O 5, SiO 2, Al 2 O 3, ZrO 2, Nb 2 O 5, SrBi 2, Ta 2 O 3, Y 2 O 3, HfO2, BaO, SrO , SrTiO 3 , PbTiO 3, and PbZrO 3 , consisting essentially of a first insulating material and having a base layer thickness between about 0.1 μm and about 2 μm, insulating layer (104) is TiO 2, Ta 2 O 5, SiO 2, Al 2 O 3, ZrO 2, Nb 2 O 5, SrBi 2, Ta 2 O 3, Y 2 O 3, HfO2, BaO, SrO, SrTiO 3, PbTiO 3 and consists essentially of a second insulating material selected from the group consisting of PbZrO 3, and, to characterized in that it has an outer layer thickness of between about 0.5μm and about 3μm Apparatus.
JP2005371381A 2004-12-30 2005-12-26 Charged particle deposition reduction method and apparatus for defining coolant flow path in nuclear reactor Active JP4943701B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/024,952 US8023609B2 (en) 2004-12-30 2004-12-30 Dielectric coating for surfaces exposed to high temperature water
US11/024,952 2004-12-30

Publications (3)

Publication Number Publication Date
JP2006194873A JP2006194873A (en) 2006-07-27
JP2006194873A5 true JP2006194873A5 (en) 2009-02-19
JP4943701B2 JP4943701B2 (en) 2012-05-30

Family

ID=36084383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005371381A Active JP4943701B2 (en) 2004-12-30 2005-12-26 Charged particle deposition reduction method and apparatus for defining coolant flow path in nuclear reactor

Country Status (7)

Country Link
US (2) US8023609B2 (en)
EP (1) EP1676936B1 (en)
JP (1) JP4943701B2 (en)
DE (1) DE602005020411D1 (en)
ES (1) ES2341783T3 (en)
MX (1) MXPA05013942A (en)
TW (1) TWI372398B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090046825A1 (en) * 2007-08-16 2009-02-19 Ge-Hitachi Nuclear Energy Americas Llc Protective coating applied to metallic reactor components to reduce corrosion products into the nuclear reactor environment
US20110122986A1 (en) * 2007-08-23 2011-05-26 Kabushiki Kaisha Toshiba Method of inhibiting adhesion of radioactive substance and apparatus inhibited from suffering adhesion thereof
US8349408B2 (en) * 2008-09-03 2013-01-08 Ge-Hitachi Nuclear Energy Americas, Llc Method of protecting reactor components from fouling
JP5513864B2 (en) * 2008-12-12 2014-06-04 株式会社東芝 Reactor internal structure and manufacturing method thereof
JP5361500B2 (en) * 2009-04-03 2013-12-04 株式会社東芝 Jet pump and vibration suppressing method thereof
KR101163999B1 (en) 2010-02-19 2012-07-18 한국원자력연구원 An underwater repairing method for damaged spots of water contacting surface and an apparatus for the method
JP4810617B1 (en) * 2010-07-27 2011-11-09 株式会社東芝 Plant corrosion control method and plant
US20130251087A1 (en) * 2012-02-17 2013-09-26 Massachusetts Institute Of Technology Surface modification of cladding material
DE102012220559A1 (en) * 2012-11-12 2014-05-15 Siemens Aktiengesellschaft Cooling for electric generators
US10847273B2 (en) 2014-01-17 2020-11-24 Ge-Hitachi Nuclear Energy Americas Llc Steam separator and nuclear boiling water reactor including the same
US10777328B2 (en) 2015-05-04 2020-09-15 Cerium Laboratories, Llc Enhanced surface treatments
CN112562944A (en) * 2020-12-11 2021-03-26 国网黑龙江省电力有限公司电力科学研究院 Selective coating method suitable for hardware surface coating in strong wind and sand area

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1064626A (en) * 1977-06-09 1979-10-16 Majesty (Her) In Right Of Canada As Represented By Atomic Energy Of Cana Da Limited Deposit suppression in the core of water-cooled nuclear reactors
US4297150A (en) * 1979-07-07 1981-10-27 The British Petroleum Company Limited Protective metal oxide films on metal or alloy substrate surfaces susceptible to coking, corrosion or catalytic activity
CA1232827A (en) * 1984-04-20 1988-02-16 Yasumasa Furutani Inhibition of deposition of radioactive substances on nuclear power plant components
JPS63274751A (en) * 1987-05-01 1988-11-11 Toyota Motor Corp Ceramic thermally sprayed member
DE69003479T2 (en) * 1989-07-21 1994-01-20 Cogema Process for producing a chromium oxide protective layer between the tablets and the cooling tube of a nuclear fuel element and nuclear fuel element with such a protective layer.
US5147597A (en) * 1991-04-09 1992-09-15 Electric Power Research Institute Prestabilized chromium protective film to reduce radiation buildup
US5510173A (en) * 1993-08-20 1996-04-23 Southwall Technologies Inc. Multiple layer thin films with improved corrosion resistance
JPH07228963A (en) * 1994-02-17 1995-08-29 Nuclear Fuel Ind Ltd Precipitation-hardened nickel-base alloy for atomic fuel
US5444747A (en) 1994-05-09 1995-08-22 General Electric Company Jet pump electro-nozzle
JP3605969B2 (en) * 1996-10-31 2004-12-22 石川島播磨重工業株式会社 Method of producing titanium oxide film for corrosion protection and titanium oxide film for corrosion protection
US6214473B1 (en) * 1998-05-13 2001-04-10 Andrew Tye Hunt Corrosion-resistant multilayer coatings
US6254341B1 (en) * 1998-11-13 2001-07-03 General Electric Company Engine having resistance to particle deposits
JP4043647B2 (en) 1999-06-23 2008-02-06 株式会社東芝 Reactor structure material and method for reducing corrosion of reactor structure material
JP4627830B2 (en) * 1999-12-20 2011-02-09 株式会社フルヤ金属 Reaction vessel for supercritical hydrolytic decomposition apparatus and method for producing reaction vessel
JP4334106B2 (en) * 2000-03-31 2009-09-30 株式会社東芝 Photocatalyst deposition method for nuclear reactor structural materials
US6633623B2 (en) * 2000-11-29 2003-10-14 General Electric Company Apparatus and methods for protecting a jet pump nozzle assembly and inlet-mixer
US6630202B1 (en) * 2002-09-30 2003-10-07 General Electric Company CVD treatment of hard friction coated steam line plug grips
JP4430372B2 (en) * 2003-04-15 2010-03-10 株式会社神戸製鋼所 Metal structure excellent in corrosion resistance, material for producing the metal structure, and method for producing the metal structure
US7001672B2 (en) * 2003-12-03 2006-02-21 Medicine Lodge, Inc. Laser based metal deposition of implant structures
US7666522B2 (en) * 2003-12-03 2010-02-23 IMDS, Inc. Laser based metal deposition (LBMD) of implant structures

Similar Documents

Publication Publication Date Title
JP2006194873A5 (en)
KR100884164B1 (en) Etching resistant member and method for producing etching resistant member
CN113652669B (en) Multilayer plasma resistant coating obtained by atomic layer deposition
JP2018190983A5 (en)
US7550222B2 (en) Fuel cell component having a durable conductive and hydrophilic coating
KR20050053629A (en) Plasma processing container internal member and production method therefor
US20200185203A1 (en) Corrosion resistant ground shield of processing chamber
JP4430594B2 (en) Deposition method of metal nitride film with multi-laminate structure
CN116092909A (en) Plasma etching reactor
KR20160064260A (en) Multi-Layer Ceramic Chip Component having Nano Thin Film Oxide Layer and Method of Manufacturing of the Same
KR20140132520A (en) Mask for Manufacturing OLED and Method thereof
CN102437101A (en) Improved method for integrating hard mask and porous material with low dielectric constant value
JP2012503303A (en) Electronic component and manufacturing method
JP2002222767A (en) Method of forming jig for vacuum device
TWI802264B (en) Anti-plasma corrosion film structure and manufacturing method thereof
CN116791086A (en) Plasma corrosion resistant coating structure and preparation method thereof
JP2010077020A (en) Process for forming ceramic oxide material with pyrochlore structure having high dielectric constant and implementation of the process for application in microelectronics
KR100503965B1 (en) Method of forming a diffusion barrier layer in a semiconductor device
JP2024061697A (en) Method for forming ruthenium-containing layer and laminate
JPS63189253A (en) Thermal head
KR20230016391A (en) Method of treating substrate
JPH04337083A (en) Composite multilayer film and its formation
JPH05217814A (en) Manufacture of laminated film
JPH04232248A (en) Multilayer insulating structural body and its manufacture
KR20160033824A (en) Mask using PECVD(Plasma-enhanced chemical vapor deposition) and method of generating a mask