JP2006193482A - Method and apparatus for treating organohalogen compound - Google Patents

Method and apparatus for treating organohalogen compound Download PDF

Info

Publication number
JP2006193482A
JP2006193482A JP2005007581A JP2005007581A JP2006193482A JP 2006193482 A JP2006193482 A JP 2006193482A JP 2005007581 A JP2005007581 A JP 2005007581A JP 2005007581 A JP2005007581 A JP 2005007581A JP 2006193482 A JP2006193482 A JP 2006193482A
Authority
JP
Japan
Prior art keywords
reaction
alkali metal
tank
water
hydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005007581A
Other languages
Japanese (ja)
Other versions
JP5190174B2 (en
Inventor
Kenji Ushigoe
憲治 牛越
Masayuki Wada
雅之 和田
Hideaki Uwaki
英明 浮氣
Makoto Yanagihara
誠 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2005007581A priority Critical patent/JP5190174B2/en
Publication of JP2006193482A publication Critical patent/JP2006193482A/en
Application granted granted Critical
Publication of JP5190174B2 publication Critical patent/JP5190174B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating an organohalogen compound by which the treatment is smoothly carried out without risks of increase of a distillation cost and loss of metallic sodium, and without the risk of blocking of solution sending by an alkali metal salt formed by the reaction of an alkali metal with the organohalogen compound; and to provide an apparatus for treating the compound. <P>SOLUTION: The method for treating the organohalogen compound comprises a reaction step for mixing a liquid to be treated, formed by dissolving the organohalogen compound in a hydrocarbon solvent, with the alkali metal to react the organohalogen compound with the alkali metal and to decompose the organohalogen compound to afford a reacted and treated liquid, a hydration step for feeding the reacted and treated liquid to a hydration vessel without distillation and adding water to the reacted and treated liquid in the hydration vessel to extract the alkali metal halide formed by the reaction with the water, an oil-water separation step for separating and removing the water from the reacted and treated liquid having passed the hydration step in the oil-water separation vessel, and a distillation step for distilling the reacted and treated liquid having passed the oil-water separation step in a distillation vessel to recover the hydrocarbon solvent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、炭化水素系溶剤中の有機ハロゲン化合物にアルカリ金属を添加して、当該炭化水素系溶剤を回収する有機ハロゲン化合物の処理方法及びその処理装置に関する。   The present invention relates to a method for treating an organic halogen compound and an apparatus for treating the same, in which an alkali metal is added to an organic halogen compound in a hydrocarbon solvent, and the hydrocarbon solvent is recovered.

ポリ塩化ビフェニル(PCB)類、ダイオキシン類等の有機ハロゲン化合物は、環境汚染物質として知られており、近年、これらの有機ハロゲン化合物に汚染されたコンデンサ、トランス等の汚染物を如何に安全に処理するかが大きな問題となっている。例えば、コンデンサやトランス等の絶縁材料や熱媒体等に用いられているPCBは、非常に化学的に安定しているため分解され難く、現在では環境上の理由から製造、使用が禁止されており、従前から使用されていたものに対してその処理方法が問題となっている。   Organohalogen compounds such as polychlorinated biphenyls (PCBs) and dioxins are known as environmental pollutants. In recent years, how to safely treat contaminants such as capacitors and transformers contaminated with these organohalogen compounds. How to do is a big problem. For example, PCBs used for insulating materials such as capacitors and transformers and heat media are very chemically stable and difficult to be decomposed. At present, their production and use are prohibited for environmental reasons. The processing method has become a problem with respect to what has been used in the past.

そこで、この種の有機ハロゲン化合物の処理方法として、ハイブリッド方法が採用されている(例えば、特許文献1参照)。ハイブリッド方法とは、炭化水素系溶剤に溶解された有機ハロゲン化合物(例えば、PCB)の分解を行った後に、当該炭化水素系溶剤を再利用のために回収するものである。   Therefore, a hybrid method is adopted as a method for treating this type of organic halogen compound (see, for example, Patent Document 1). In the hybrid method, an organic halogen compound (for example, PCB) dissolved in a hydrocarbon solvent is decomposed, and then the hydrocarbon solvent is recovered for reuse.

図3に、従来の有機ハロゲン化合物の処理方法を説明するための概略フロー図を示す。
即ち、従来のハイブリッド方法によれば、まず、コンデンサ等からPCBが抜き取られ(S201)、該PCBに炭化水素系溶剤が溶解された被処理液が反応工程(S202)に移行される。そして、該被処理液に、反応促進剤及びアルカリ金属が添加され、PCBとアルカリ金属とを反応させ、脱ハロゲン化処理が行われる(S202)。そして、脱ハロゲン化された反応処理液が蒸留により留出液と缶出液とに分離され、炭化水素系溶剤がPCBの溶剤として再利用するために回収される(S203)。そして、缶出液として排出された反応処理液に水を供給して水和処理が行われ(S204)、静置分離により、水相と油相とに油水分離される(S205)。油水分離により分離された処理済油は蒸留されて(S206)、初期留出分としての水が水和工程に供給され、後期留出分がPCBの溶剤として回収される(S207)。また、缶出液は廃油として廃棄される。
FIG. 3 shows a schematic flow diagram for explaining a conventional method for treating an organic halogen compound.
That is, according to the conventional hybrid method, first, the PCB is extracted from the capacitor or the like (S201), and the liquid to be treated in which the hydrocarbon solvent is dissolved in the PCB is transferred to the reaction step (S202). Then, a reaction accelerator and an alkali metal are added to the liquid to be treated, and the PCB and the alkali metal are reacted to perform a dehalogenation process (S202). The dehalogenated reaction treatment liquid is separated into a distillate and a bottoms by distillation, and the hydrocarbon solvent is recovered for reuse as a PCB solvent (S203). Then, hydration is performed by supplying water to the reaction processing liquid discharged as the bottoms (S204), and oil-water separation is performed into a water phase and an oil phase by stationary separation (S205). The treated oil separated by oil-water separation is distilled (S206), water as an initial distillate is supplied to the hydration process, and the late distillate is recovered as a solvent for PCB (S207). The bottoms are discarded as waste oil.

特開2003−226658号公報JP 2003-226658 A

ところが、上述のハイブリッド方法によれば、例えば、有機ハロゲン化合物であるPCBに金属ナトリウムを反応させた場合、脱塩素化された反応処理液を蒸留すると、反応促進剤及び炭化水素系溶剤が先に分離除去されるので、蒸留槽にナトリウム塩濃度の高い反応処理液が残る。従って、ナトリウム塩濃度の高い反応処理液が缶出液として排出されると、析出した塩(NaCl)が配管に堆積し、PCBの処理が繰り返されることにより、堆積した塩が、水和工程への送液を困難にするという問題が生じる。そこで、水和工程への送液を円滑に行わせるためには、塩の堆積を防止すべく反応工程で反応処理液中のPCB濃度を低く設定(10%以内)して、送液しなければならなかった。   However, according to the above-described hybrid method, for example, when metallic sodium is reacted with PCB, which is an organic halogen compound, when the dechlorinated reaction treatment liquid is distilled, the reaction accelerator and the hydrocarbon solvent are first introduced. Since it is separated and removed, a reaction treatment solution having a high sodium salt concentration remains in the distillation tank. Therefore, when the reaction treatment liquid having a high sodium salt concentration is discharged as the bottoms, the deposited salt (NaCl) is deposited on the pipe, and the PCB treatment is repeated, so that the deposited salt is transferred to the hydration process. This causes a problem of making it difficult to feed liquid. Therefore, in order to smoothly feed the liquid to the hydration process, the PCB concentration in the reaction processing liquid must be set low (within 10%) in the reaction process to prevent salt deposition and the liquid must be fed. I had to.

また、このような配管に堆積される塩の問題を解決する別の方法として、特殊なスラリーポンプの設置や、蒸留槽と水和槽とを繋ぐ配管の径を大きくすることなどが考えられるが、多大な設備投資が必要になり好ましくない。
さらに別の方法として、蒸留槽に直接水を供給し、ナトリウムを水和させることも考えられる。しかし、蒸留槽に水を供給すると、槽内が冷却されるため再び稼働させるには多大なエネルギーコストがかかり、蒸留コストが増大するという問題がある。また、反応槽に水を供給することも考えられる。しかしながら、反応槽内に水が残っていると、次のサイクルで添加される金属ナトリウムが水と反応し、水素を発生して水酸化ナトリウムになり、金属ナトリウムが浪費される問題も生じる。
In addition, as another method for solving the problem of salt accumulated in such a pipe, it is conceivable to install a special slurry pump or increase the diameter of the pipe connecting the distillation tank and the hydration tank. This is not preferable because a large capital investment is required.
As another method, it is conceivable to supply water directly to the distillation tank to hydrate sodium. However, when water is supplied to the distillation tank, the inside of the tank is cooled, so that enormous energy costs are required to operate again, and there is a problem that the distillation cost increases. It is also conceivable to supply water to the reaction vessel. However, if water remains in the reaction vessel, the metal sodium added in the next cycle reacts with water to generate hydrogen to sodium hydroxide, resulting in a problem of wasting metal sodium.

本発明は、上記問題を鑑みてなされたもので、蒸留コストが増大したり、金属ナトリウムが浪費される虞がなく、しかも、有機ハロゲン化合物にアルカリ金属を反応させたときに生成されるアルカリ金属塩によって、送液が阻害される虞もほとんどなく円滑に行うことが可能な有機ハロゲン化合物の処理方法及びその処理装置を提供することを課題とする。   The present invention has been made in view of the above problems, and there is no possibility that distillation cost increases or metal sodium is wasted, and an alkali metal produced when an alkali metal is reacted with an organic halogen compound. It is an object of the present invention to provide a method for treating an organic halogen compound and a treatment apparatus thereof that can be smoothly carried out with almost no risk of liquid feeding being inhibited by salt.

有機ハロゲン化合物が炭化水素系溶剤に溶け込んだ被処理液とアルカリ金属とを混合して、有機ハロゲン化合物とアルカリ金属とを反応槽にて反応させ、有機ハロゲン化合物を分解して反応処理液とする反応工程と、該反応処理液を蒸留することなく水和槽に供給し、該水和槽にて反応処理液に水を添加し、反応により生成したハロゲン化アルカリ金属塩を水に抽出させる水和工程と、該水和工程を経た反応処理液から前記水を油水分離槽にて分離除去する油水分離工程と、該油水分離工程を経た反応処理液を蒸留槽にて蒸留し、前記炭化水素系溶剤を回収する蒸留工程とを備えることを特徴とする有機ハロゲン化合物の処理方法を提供する。   A liquid to be treated in which an organic halogen compound is dissolved in a hydrocarbon solvent and an alkali metal are mixed, the organic halogen compound and the alkali metal are reacted in a reaction vessel, and the organic halogen compound is decomposed to obtain a reaction treatment liquid. Water for supplying the reaction treatment liquid to the hydration tank without distilling, adding water to the reaction treatment liquid in the hydration tank, and extracting the alkali metal halide salt produced by the reaction into water. Summing step, oil-water separation step of separating and removing the water from the reaction treatment liquid that has undergone the hydration step in an oil-water separation tank, and distillation of the reaction treatment liquid that has undergone the oil-water separation step in the distillation tank, And a distillation method for recovering the system solvent. A method for treating an organic halogen compound is provided.

上記構成からなる有機ハロゲン化合物の処理方法によれば、蒸留工程の前に、水和工程を行うことから、反応工程で生成されるアルカリ金属塩が蒸留時に濃縮され、配管に堆積されることなく、送液を円滑に行うことができる。また、水和を水和槽にて行うことから、反応槽や蒸留槽に水を添加した場合の如く、蒸留コストが増大したり、金属ナトリウムが浪費される虞もない。   According to the method for treating an organic halogen compound having the above structure, since the hydration step is performed before the distillation step, the alkali metal salt produced in the reaction step is concentrated during the distillation and is not deposited on the pipe. , Liquid feeding can be performed smoothly. Further, since hydration is performed in a hydration tank, there is no possibility that the distillation cost increases or metal sodium is wasted, as in the case where water is added to the reaction tank or distillation tank.

本発明における有機ハロゲン化合物としては、例えば、PCB、ダイオキシン類、ハロゲンを有するジベンゾフラン類、ポリ塩化ベンゼン、塩化メチレン或いはこれらに含まれる塩素原子が臭素原子に置換された臭素化物等の有害な有機ハロゲン化合物を挙げることができる。また、アルカリ金属としては、ナトリウム、リチウム、カリウム、ルビジウム等を挙げることができ、中でも反応速度、取扱いの容易さからナトリウムが好ましく、特に、トランスオイル等の分散媒中にアルカリ金属を分散させたアルカリ金属分散体として利用するのが好ましい。また、分散媒としてはPCBを含有しているトランスオイルや、洗浄溶剤として利用するノルマルパラフィンを好適に使用することができる。   Examples of the organic halogen compounds in the present invention include harmful organic halogens such as PCBs, dioxins, dibenzofurans having halogen, polychlorobenzene, methylene chloride, or bromides in which chlorine atoms contained therein are substituted with bromine atoms. A compound can be mentioned. Examples of the alkali metal include sodium, lithium, potassium, rubidium, etc. Among them, sodium is preferable from the viewpoint of reaction rate and ease of handling, and in particular, the alkali metal is dispersed in a dispersion medium such as trans oil. It is preferable to use it as an alkali metal dispersion. As the dispersion medium, trans-oil containing PCB and normal paraffin used as a cleaning solvent can be preferably used.

また、本発明において、炭化水素系溶剤としては、アルカリ金属と反応する−OH基、−O−基を有しないパラフィン系、ナフテン系、イソパラフィン系等のものを採用できるが、特に、低価格で且つ有機ハロゲン化合物を充分に溶け込ませやすいという観点から、ノルマルパラフィンが好ましい。また、ノルマルパラフィンを用いると、反応工程における有機ハロゲン化合物とアルカリ金属との反応性が良好となり、従来の絶縁油を用いた場合に、反応に必要な化学当量よりも3倍程度必要とされていたアルカリ金属量を、例えば、2.4〜2.8倍程度に低減することもできる。さらに、ノルマルパラフィンは、酸化されにくく、水和槽において水を取り込む虞も少なく再利用可能なため、汚染物を洗浄する洗浄用有機溶媒の使用量を低減させることもできる。ノルマルパラフィンの炭素数としては、9〜13が好ましく、炭素数が9以上であると、通常130℃以下で行われるPCBの処理工程において、反応時にノルマルパラフィンが沸騰することなく、安全に反応を行うことができ、炭素数が13以下であると、電気絶縁油よりも低粘度であり、取扱いが容易で、反応時のアルカリ金属の分散性も良好である。   In the present invention, the hydrocarbon solvent may be a paraffinic, naphthenic, isoparaffinic or the like having no —OH group or —O— group that reacts with an alkali metal. In addition, normal paraffin is preferable from the viewpoint of easily dissolving the organic halogen compound. In addition, when normal paraffin is used, the reactivity between the organic halogen compound and the alkali metal in the reaction step is improved, and when a conventional insulating oil is used, about 3 times the chemical equivalent required for the reaction is required. Further, the amount of alkali metal can be reduced to, for example, about 2.4 to 2.8 times. Furthermore, normal paraffins are less likely to be oxidized and are less likely to take up water in the hydration tank and can be reused, so that the amount of organic solvent used for cleaning contaminants can be reduced. The number of carbon atoms of normal paraffin is preferably 9 to 13, and if the carbon number is 9 or more, the normal paraffin does not boil during the reaction in the PCB treatment step usually performed at 130 ° C. or lower, and the reaction is safely performed. When the carbon number is 13 or less, the viscosity is lower than that of the electrical insulating oil, the handling is easy, and the dispersibility of the alkali metal during the reaction is also good.

前記反応工程は、前記有機ハロゲン化合物とアルカリ金属とを反応槽にて反応させる第一の反応工程と、さらに、所定のアルカリ金属濃度に調整すべく添加される前記アルカリ金属と、前記被処理液とを添加することにより反応処理液とする第二の反応工程とを備えることが好ましい。これにより、有機ハロゲン化合物とアルカリ金属とを反応させて脱ハロゲン化反応を行う際に、残存するアルカリ金属の残存量を削減することができる。   The reaction step includes a first reaction step in which the organic halogen compound and the alkali metal are reacted in a reaction vessel, the alkali metal added to adjust the alkali metal concentration to a predetermined concentration, and the liquid to be treated. It is preferable to provide the 2nd reaction process which makes a reaction processing liquid by adding. Thereby, when the dehalogenation reaction is performed by reacting the organic halogen compound and the alkali metal, the remaining amount of the remaining alkali metal can be reduced.

前記水和工程に於いて、前記反応工程を経た前記反応槽中の反応処理液の一部を供給することが好ましい。これにより、反応槽の容量を増大させることなく、脱ハロゲン化反応を繰り返し行うことができる。   In the hydration step, it is preferable to supply a part of the reaction treatment liquid in the reaction tank that has undergone the reaction step. As a result, the dehalogenation reaction can be repeated without increasing the capacity of the reaction vessel.

前記アルカリ金属は、平均粒子径が7μm以下のアルカリ金属分散体であることが好ましい。これにより、脱ハロゲン化反応を数回繰り返すことにより、脱ハロゲン化化合物を好適に分解することができる。   The alkali metal is preferably an alkali metal dispersion having an average particle diameter of 7 μm or less. Thus, the dehalogenated compound can be suitably decomposed by repeating the dehalogenation reaction several times.

また、本発明は、有機ハロゲン化合物が炭化水素系溶剤に溶け込んだ被処理液とアルカリ金属とを混合して、有機ハロゲン化合物とアルカリ金属とを反応槽にて反応させ、有機ハロゲン化合物を分解して反応処理液とする反応手段(1)と、前記反応槽から反応処理液を蒸留することなく水和槽(2a’)に供給し、該水和槽(2a’)にて反応処理液に水を添加し、反応により生成したハロゲン化アルカリ金属塩を水に抽出させる水和手段(2a)と、前記水和槽(2a’)から供給された反応処理液から前記水を油水分離槽にて分離除去する油水分離手段(2b)と、前記油水分離槽で分離された反応処理液を蒸留槽にて蒸留し、前記炭化水素系溶剤を回収する蒸留手段(2c)とを備えることを特徴とする有機ハロゲン化合物の処理装置を提供する。かかる構成からなる有機ハロゲン化合物の処理装置によれば、請求項1記載の処理方法を好適に実施することができる。   In the present invention, the liquid to be treated in which an organic halogen compound is dissolved in a hydrocarbon solvent is mixed with an alkali metal, and the organic halogen compound and the alkali metal are reacted in a reaction vessel to decompose the organic halogen compound. The reaction means (1) as a reaction treatment liquid is supplied to the hydration tank (2a ′) without distilling the reaction treatment liquid from the reaction tank, and the reaction treatment liquid is supplied to the hydration tank (2a ′). Hydration means (2a) for adding water to extract the alkali metal halide salt produced by the reaction into water, and the water from the reaction treatment solution supplied from the hydration tank (2a ′) to the oil-water separation tank And an oil / water separation means (2b) for separating and removing, and a distillation means (2c) for distilling the reaction treatment liquid separated in the oil / water separation tank in the distillation tank and recovering the hydrocarbon solvent. Treatment equipment for organic halogen compounds To provide. According to the organic halogen compound processing apparatus having such a configuration, the processing method according to claim 1 can be suitably carried out.

以上の通り、本発明は、蒸留コストが増大したり、金属ナトリウムが浪費される虞がなく、しかも、有機ハロゲン化合物にアルカリ金属を反応させたときに生成されるアルカリ金属塩によって、送液が阻害される虞もほとんどなく円滑に行うことが可能な利点を有する。   As described above, according to the present invention, there is no possibility that the distillation cost increases or metal sodium is wasted, and the liquid is fed by the alkali metal salt produced when the alkali metal is reacted with the organic halogen compound. There is an advantage that it can be carried out smoothly with almost no risk of obstruction.

以下、本発明の好ましい実施形態として、有機ハロゲン汚染物として、コンデンサやトランス等の汚染物に含まれるPCBを、炭化水素系溶剤としてノルマルパラフィンを、そして、アルカリ金属として金属ナトリウムを例に取り、その処理方法及びその処理装置について図面を参酌しつつ説明する。   Hereinafter, as a preferred embodiment of the present invention, as an organic halogen contaminant, PCB contained in a contaminant such as a capacitor and a transformer, normal paraffin as a hydrocarbon solvent, and metallic sodium as an alkali metal are taken as examples. The processing method and the processing apparatus will be described with reference to the drawings.

図1は、本実施形態に係るPCBの処理装置を説明するための概略ブロック図である。図1に示すように、まず、コンデンサ等は、充填された油(PCB)を抜き取って高濃度PCB槽に回収し、本体を解体する。そして、解体後にノルマルパラフィンで洗浄し、洗浄後の溶剤油を低濃度PCB槽に回収し、洗浄後の解体物を乾燥後に廃棄又は再利用する。   FIG. 1 is a schematic block diagram for explaining a PCB processing apparatus according to the present embodiment. As shown in FIG. 1, first, a capacitor or the like removes filled oil (PCB) and collects it in a high-concentration PCB tank, and disassembles the main body. And it wash | cleans with normal paraffin after dismantling, collect | recovers solvent oil after washing | cleaning in a low concentration PCB tank, and discards or reuses the dismantlement after washing | cleaning after drying.

続いて、PCBの処理装置は、反応槽にて被処理液たるPCB及びノルマルパラフィンに、金属ナトリウムを反応させる反応手段1と、該反応手段1を経て金属ナトリウムにより脱塩素化された反応処理液からノルマルパラフィンを回収する溶剤回収手段2とを備えて構成されている。以下に、各手段について具体的に説明する。   Subsequently, the PCB processing apparatus includes a reaction means 1 for reacting metallic sodium with PCB and normal paraffin to be treated in a reaction tank, and a reaction treatment liquid dechlorinated with metallic sodium via the reaction means 1. And a solvent recovery means 2 for recovering normal paraffin from the solvent. Each means will be specifically described below.

反応手段1は、コンデンサ、トランス等から抜き取られた高濃度のPCB、及びコンデンサ、トランス等を解体後に、ノルマルパラフィンで洗浄された低濃度のPCBを貯留するPCB汚染油貯留部1aと、該PCB汚染油貯留部1aに反応促進剤を供給する促進剤供給部1dと、前記PCB汚染油貯留部1aから供給された被処理液にアルカリ金属として金属ナトリウム(ここではトランスオイル中にナトリウム金属が分散されたナトリウム分散体)が供給されて脱塩素化反応を行う反応槽からなる脱塩素化部1cと、該脱塩素化部1cに前記金属ナトリウムを供給するナトリウム供給部1bとを備えて構成されている。前記反応促進剤は、脱塩素化されたビフェニルに水素を供与してPCBの分解を促進すると共にビフェニルの高分子化を防止するためのものであり、本実施形態においては、反応促進剤としてイソプロピルアルコールが使用されている。尚、イソプロピルアルコールに替えて、水が使用されても構わない。   The reaction means 1 includes a PCB-contaminated oil reservoir 1a for storing a high-concentration PCB extracted from a condenser, a transformer, etc., and a low-concentration PCB washed with normal paraffin after dismantling the condenser, the transformer, etc. Accelerator supply unit 1d for supplying a reaction accelerator to the contaminated oil reservoir 1a, and metal sodium as an alkali metal in the liquid to be treated supplied from the PCB contaminated oil reservoir 1a (here, sodium metal is dispersed in trans oil) And a sodium supply unit 1b for supplying the metallic sodium to the dechlorination unit 1c. ing. The reaction accelerator is for donating hydrogen to dechlorinated biphenyl to promote the decomposition of PCB and to prevent the polymerization of biphenyl. In this embodiment, isopropyl is used as the reaction accelerator. Alcohol is used. Note that water may be used instead of isopropyl alcohol.

溶剤回収手段2は、前記反応槽にて脱塩素化反応が行われた反応処理液に水を添加する水和部(水和手段)2aと、該水和部2aを経て反応処理液を静置分離する油水分離部(油水分離手段)2bと、該油水分離部2bを経た反応処理液の蒸留を行う蒸留部(蒸留手段)2cとを備えて構成されている。   The solvent recovery means 2 includes a hydration part (hydration means) 2a for adding water to the reaction treatment liquid subjected to the dechlorination reaction in the reaction tank, and the reaction treatment liquid after passing through the hydration part 2a. An oil / water separation part (oil / water separation means) 2b for separation and separation, and a distillation part (distillation means) 2c for distilling the reaction processing solution that has passed through the oil / water separation part 2b are provided.

前記水和部2aは、脱塩素化部1cから供給された反応処理液に水を供給して水和処理を施す、反応槽や蒸留槽とは別槽の水和槽2a’と、該水和槽2a’に水を供給する水供給部2a’’とを備えている。水和部2aにおいては、反応処理液に水を添加することにより、反応処理液中に存在する塩化ナトリウム等は水に溶解し、未反応のナトリウム、アルコキシドは水と反応して水酸化ナトリウムになり、水に溶解される。そして、水和された反応処理液は、油水分離部2bに供給される。   The hydration unit 2a supplies water to the reaction treatment liquid supplied from the dechlorination unit 1c to perform hydration, and a hydration tank 2a ′ separate from the reaction tank and distillation tank, and the water The water supply part 2a '' which supplies water to the Japanese tank 2a 'is provided. In the hydration part 2a, by adding water to the reaction treatment liquid, sodium chloride and the like present in the reaction treatment liquid are dissolved in water, and unreacted sodium and alkoxide react with water to form sodium hydroxide. Dissolved in water. Then, the hydrated reaction treatment liquid is supplied to the oil / water separator 2b.

油水分離部2bは、水和部2aにて水が添加された反応処理液を、静置分離により、塩化ナトリウム等を含む水相と、ビフェニル及びノルマルパラフィン等を含む油相とに分離する油水分離槽を備えて構成されている。そして、塩化ナトリウム等を含む水相側の溶液が廃水として廃棄されるようになっている。尚、本実施形態においては、水和部2aと油水分離部2bとは、それぞれ別々の水和槽及び油水分離槽を備えて構成してもよいが、同一の槽を共有してもよい。   The oil / water separation unit 2b is an oil / water solution that separates the reaction treatment liquid to which water has been added in the hydration unit 2a into a water phase containing sodium chloride and an oil phase containing biphenyl, normal paraffin, and the like by stationary separation. A separation tank is provided. And the solution by the side of the water phase containing sodium chloride etc. is discarded as waste water. In addition, in this embodiment, although the hydration part 2a and the oil-water separation part 2b may each be provided with a separate hydration tank and an oil-water separation tank, they may share the same tank.

蒸留部2cは、前記油水分離部2bにより分離された油相側の溶液を留出液と缶出液とに分離する蒸留槽を備えて構成されている。具体的には、蒸留槽内を加熱・減圧することにより、油相側の溶液を蒸留し、留出蒸気を冷却して留出液とし、該留出液を回収しうるように構成されている。ここでは、ノルマルパラフィンを蒸留塔上部より回収し(回収溶剤)、それ以外のビフェニル等の油を蒸留塔下部より抜き出している(回収油)。   The distillation unit 2c includes a distillation tank that separates the oil phase side solution separated by the oil / water separation unit 2b into a distillate and a bottoms. Specifically, the inside of the distillation tank is heated and depressurized to distill the solution on the oil phase side, cool the distillate vapor to form a distillate, and collect the distillate. Yes. Here, normal paraffin is recovered from the upper part of the distillation tower (recovered solvent), and other oils such as biphenyl are extracted from the lower part of the distillation tower (recovered oil).

次に、蒸留部2cで回収された回収溶剤のうち、初期留出分は油中に溶解しているイソプロピルアルコールが留出するので、反応促進剤として促進剤供給部1dに供給すると共に、後期留出分はノルマルパラフィンが留出するので、洗浄用及び希釈用の溶剤油として蒸留再生部3に供給して再利用するように構成されている。   Next, among the recovered solvent recovered in the distillation unit 2c, the isopropyl alcohol dissolved in the oil is distilled from the initial distillate, so that it is supplied to the accelerator supply unit 1d as a reaction accelerator, Since normal paraffin is distilled from the distillate, the distillate is supplied to the distillation regeneration unit 3 as a solvent oil for washing and dilution and reused.

蒸留再生部3は、蒸留部2cから回収されたノルマルパラフィンを精留等によって、留出分を洗浄油として利用するために洗浄部へ供給し、缶出分を高濃度PCB槽を介してPCB汚染油貯留部1aに供給するようになっている。また、蒸留再生部3では、一旦洗浄された解体物の溶剤油を低濃度PCB槽を介して回収し、同様に精留等が行われるようになっている。   The distillation regeneration unit 3 supplies the normal paraffin recovered from the distillation unit 2c to the cleaning unit by using rectification or the like in order to use the distillate as cleaning oil, and the can is discharged to the PCB via the high-concentration PCB tank. It supplies to the contaminated oil storage part 1a. In the distillation regeneration section 3, the solvent oil of the dismantled product once washed is collected through a low-concentration PCB tank, and rectification or the like is performed in the same manner.

なお、上記実施形態では、反応槽において脱塩素化反応が行われた反応処理液中に、脱塩素化反応に使用されなかった金属ナトリウムが残存しているが、この反応処理液を水和槽2a’に供給して水和すると、残存する金属ナトリウムを無駄に消費することとなる。そこで、前記反応槽において脱塩素化反応が行われた後に、所定の金属ナトリウム濃度に調整すべく、ナトリウム供給部1bから金属ナトリウムを添加し、PCB汚染油貯留部1aから被処理液を添加して、脱塩素化反応を繰り返し行う構成としてもよい。また、脱塩素化反応が繰り返し行われた後の前記反応槽中の反応処理液の一部を水和槽2a’に供給し、反応槽に残った反応処理液に、再び上記と同様にナトリウム供給部1bから金属ナトリウムを添加し、PCB汚染油貯留部1aから被処理液を添加する構成としてもよい。
このように、一旦、脱塩素化反応が行われた反応処理液に、また新たに金属ナトリウムと被処理液とを添加して脱塩素化反応を行うことにより、通常であれば反応工程後の水和工程により無駄に消費されていた脱塩素化反応後に残存する金属ナトリウムを有効利用することができる。さらに、反応槽にて繰り返し行われた脱塩素化反応後の反応処理液の一部を抜き取ることにより、反応槽の容量を増大させることなく、脱塩素化反応を繰り返し行うことができる。
In the above embodiment, metal sodium that has not been used in the dechlorination reaction remains in the reaction treatment liquid in which the dechlorination reaction has been performed in the reaction tank. If it supplies to 2a 'and it hydrates, the metal sodium which remains will be consumed wastefully. Therefore, after the dechlorination reaction is performed in the reaction tank, metal sodium is added from the sodium supply unit 1b and the liquid to be treated is added from the PCB-contaminated oil storage unit 1a in order to adjust to a predetermined metal sodium concentration. Thus, the dechlorination reaction may be repeated. Further, a part of the reaction treatment liquid in the reaction tank after the dechlorination reaction has been repeatedly performed is supplied to the hydration tank 2a ′, and the reaction treatment liquid remaining in the reaction tank is again sodium as in the above. It is good also as a structure which adds metallic sodium from the supply part 1b and adds a to-be-processed liquid from the PCB contaminated oil storage part 1a.
In this way, once the dechlorination reaction has been performed, by adding metal sodium and the liquid to be treated again and performing the dechlorination reaction, normally, after the reaction step The metallic sodium remaining after the dechlorination reaction that was wasted in the hydration process can be effectively used. Furthermore, by removing a part of the reaction solution after the dechlorination reaction repeatedly performed in the reaction tank, the dechlorination reaction can be repeatedly performed without increasing the capacity of the reaction tank.

また、反応槽において、脱塩素化反応を行う回数が多いほど、残存する金属ナトリウムを無駄に水和工程により消費せずに有効利用することができるが、この回数が4回を超えると、被処理液中に生成した反応生成物によって、脱塩素化反応が阻害され、反応後の被処理液中にPCBが残存する虞がある。そこで、脱塩素化反応を行う回数は、2〜4回が好ましく、より好ましくは3〜4回である。   In addition, as the number of times of performing the dechlorination reaction in the reaction vessel increases, the remaining metallic sodium can be effectively used without being wasted by the hydration step. The reaction product generated in the treatment liquid inhibits the dechlorination reaction, and PCB may remain in the liquid to be treated after the reaction. Therefore, the number of times of performing the dechlorination reaction is preferably 2 to 4 times, more preferably 3 to 4 times.

また、添加するナトリウム分散体としては、平均粒子径が7μm以下のものが好ましく、より好ましくは5μm以下である。平均粒子径が7μm以下のナトリウム分散体を利用することで、脱塩素化反応を数回(2〜4回)繰り返すことにより、PCBを好適に分解処理することができる。また、平均粒子径が5μm以下の場合、追加するナトリウム分散体の量を削減することができる(反応に必要な化学当量の2.4〜2.8倍)。なお、平均粒子径が7μmを超える場合、脱塩素化反応を繰り返したときに、多量の金属ナトリウムを添加しなければならず(例えば、反応に必要な化学当量の3倍〜4倍)、反応終了後に残存する金属ナトリウムの量も増加するので好ましくない。また、添加するナトリウム分散体の平均粒子径の下限としては、1μm以上のものが好ましい。平均粒子径が1μm未満であると取り扱いにくく、また、発火の虞があるので好ましくない。   Further, the sodium dispersion to be added preferably has an average particle size of 7 μm or less, more preferably 5 μm or less. By using a sodium dispersion having an average particle diameter of 7 μm or less, PCB can be suitably decomposed by repeating the dechlorination reaction several times (2 to 4 times). Moreover, when an average particle diameter is 5 micrometers or less, the quantity of the sodium dispersion to add can be reduced (2.4-2.8 times the chemical equivalent required for reaction). If the average particle diameter exceeds 7 μm, a large amount of sodium metal must be added when the dechlorination reaction is repeated (for example, 3 to 4 times the chemical equivalent required for the reaction), and the reaction Since the amount of metallic sodium remaining after the completion also increases, it is not preferable. The lower limit of the average particle size of the sodium dispersion to be added is preferably 1 μm or more. If the average particle size is less than 1 μm, it is difficult to handle and there is a risk of ignition, which is not preferable.

ここで、ナトリウム分散体の平均粒子径(d32(mm) )とは、次式により求めた平均体積径を意味する。すなわち、平均体積径は、n個(n=1300)のナトリウム粒子を光学顕微鏡(蛍光顕微鏡)で撮影し、その画像を蛍光画像解析システム(製品名 Lumina Vision、三谷商事(株)製)によって解析して、個々の粒子の粒子径(投影面積相当径;di)を測定し、このときに重なった粒子についてもシステム上で処理を行い、測定した粒子径(di)の平均値を算出することにより求めた。 Here, the average particle diameter (d 32 (mm)) of the sodium dispersion means an average volume diameter determined by the following equation. That is, the average volume diameter was obtained by photographing n (n = 1300) sodium particles with an optical microscope (fluorescence microscope) and analyzing the image with a fluorescence image analysis system (product name: Lumina Vision, manufactured by Mitani Corp.). Then, the particle diameter (projected area equivalent diameter; d i ) of each particle is measured, and the particles overlapped at this time are also processed on the system, and the average value of the measured particle diameter (d i ) is calculated. Was determined by

Figure 2006193482
Figure 2006193482

また、洗浄油としてノルマルパラフィンを利用した場合、脱塩素化反応後の反応槽中の反応処理液から一部を抜き出す際に比重差を利用することができる。具体的には上澄み液として得られる反応処理液は大部分がノルマルパラフィンであり、未反応のナトリウムは沈降するため、上澄み液のみを一部除去することによって、未反応の金属ナトリウムを残存させることが可能となる。   Further, when normal paraffin is used as the cleaning oil, the specific gravity difference can be used when a part is extracted from the reaction treatment liquid in the reaction tank after the dechlorination reaction. Specifically, most of the reaction treatment liquid obtained as a supernatant liquid is normal paraffin, and unreacted sodium settles, so that only part of the supernatant liquid is removed to leave unreacted metallic sodium. Is possible.

上述のように構成された有機ハロゲン化合物の処理装置について、以下に、ハイブリッド方法による処理方法について図面を参照して説明する。図2は、本実施形態に係る有機ハロゲン化合物の処理方法を説明するための概略フロー図である。   With respect to the organic halogen compound processing apparatus configured as described above, a processing method using a hybrid method will be described below with reference to the drawings. FIG. 2 is a schematic flowchart for explaining the organic halogen compound processing method according to this embodiment.

まず、コンデンサ等からPCBが抜き取られ(S101)、該PCBにノルマルパラフィンが溶解された被処理液が反応工程(S102)に移行される。   First, PCB is extracted from a capacitor or the like (S101), and the liquid to be treated in which normal paraffin is dissolved in the PCB is transferred to the reaction step (S102).

反応工程(S102)においては、被処理液に反応促進剤としてイソプロピルアルコールが供給される。反応層には予め金属ナトリウム分散体を供給しておき、この反応層にノルマルパラフィンで希釈したPCBを供給して、金属ナトリウム分散体とPCBとを反応させて脱塩素化反応が行われる。このとき、金属ナトリウム分散体の供給量は反応に必要な化学当量の約2.4〜2.8倍とされる。金属ナトリウム分散体の分散媒としては、炭化水素系溶剤と同種のものを使用するのが好ましいが、電気絶縁油等を使用することもできる。上記反応工程(S102)により、脱塩素化された反応処理液は、イソプロピルアルコールから水素が供給され、その重合が抑制されて、ノルマルパラフィン中に、ビフェニル、塩化ナトリウム、未反応のナトリウム、アルコキシド等が存在することとなる。   In the reaction step (S102), isopropyl alcohol is supplied as a reaction accelerator to the liquid to be treated. A metal sodium dispersion is supplied to the reaction layer in advance, and a PCB diluted with normal paraffin is supplied to the reaction layer, and the metal sodium dispersion and PCB are reacted to perform a dechlorination reaction. At this time, the supply amount of the metal sodium dispersion is about 2.4 to 2.8 times the chemical equivalent required for the reaction. As the dispersion medium for the metallic sodium dispersion, it is preferable to use the same kind of hydrocarbon solvent, but it is also possible to use an electrical insulating oil or the like. In the reaction treatment liquid dechlorinated by the reaction step (S102), hydrogen is supplied from isopropyl alcohol, the polymerization is suppressed, and biphenyl, sodium chloride, unreacted sodium, alkoxide, etc. are contained in normal paraffin. Will exist.

次に、水和工程(S103)においては、脱塩素化された反応処理液を、従来行われていた蒸留工程を得ることなく水和槽に供給し、水が供給される。かかる工程により、ノルマルパラフィン中の塩化ナトリウムが水に溶解され、アルコキシドがイソプロピルアルコールと水酸化ナトリウムとして水に抽出され、残留ナトリウムが水酸化ナトリウムとして水に抽出されることにより、反応液中のアルカリ金属塩が溶解される。また、イソプロピルアルコールの一部は油に抽出される。そして、水和処理が行われた反応処理液が油水分離工程(S104)に移行される。   Next, in the hydration step (S103), the dechlorinated reaction treatment liquid is supplied to the hydration tank without obtaining a distillation step that has been conventionally performed, and water is supplied. By this process, sodium chloride in normal paraffin is dissolved in water, alkoxide is extracted into water as isopropyl alcohol and sodium hydroxide, and residual sodium is extracted into water as sodium hydroxide, so that the alkali in the reaction solution is extracted. The metal salt is dissolved. A part of isopropyl alcohol is extracted into oil. And the reaction processing liquid in which the hydration process was performed transfers to an oil-water separation process (S104).

油水分離工程(S104)においては、静置分離により、水相(水、塩化ナトリウム、水酸化ナトリウム、一部のイソプロピルアルコール)と油相(絶縁油、ノルマルパラフィン、ビフェニル、一部のイソプロピルアルコール)とに分離され、水相側の溶液が廃アルカリとして系外に排出され、油相側の溶液が抜き出されて蒸留工程(S105)に移行される。   In the oil-water separation step (S104), the aqueous phase (water, sodium chloride, sodium hydroxide, some isopropyl alcohol) and the oil phase (insulating oil, normal paraffin, biphenyl, some isopropyl alcohol) are obtained by static separation. The aqueous phase side solution is discharged out of the system as waste alkali, the oil phase side solution is extracted, and the process proceeds to the distillation step (S105).

蒸留工程(S105)においては、油相側の溶液が加熱蒸留され、沸点の差によって、初期留出分のイソプロピルアルコールが促進剤供給部1dに供給されると共に、後期留出分のノルマルパラフィンが蒸留再生部3に供給され、コンデンサ等の洗浄油、PCBの希釈油等に再利用される(S106)。そして、ビフェニル等を含む缶出液は廃油として廃棄される。   In the distillation step (S105), the solution on the oil phase side is heated and distilled, and due to the difference in boiling point, isopropyl alcohol for the initial distillate is supplied to the accelerator supply unit 1d, and the normal paraffin for the late distillate is supplied. It is supplied to the distillation regeneration unit 3 and reused for cleaning oil such as a condenser, diluted oil for PCB, and the like (S106). And the bottoms containing biphenyl etc. are discarded as waste oil.

このように、本実施形態に係る有機ハロゲン化合物の処理方法及びその処理装置によれば、反応槽にて有機ハロゲン化合物が炭化水素系溶剤に溶け込んだ被処理液にアルカリ金属を反応させて脱ハロゲン化処理を行い、脱ハロゲン化処理された反応処理液を蒸留することなく水和槽に供給して水を添加し、ハロゲン化アルカリ金属塩や未反応のアルカリ金属等を溶解させて分離除去し、残った反応処理液を蒸留槽にて蒸留して、炭化水素系溶剤を回収するようにした。従って、蒸留工程の前に、水和工程を行うことから、反応工程で生成されるアルカリ金属塩が蒸留時に濃縮され、配管に堆積されることなく、送液を円滑に行うことができる。また、水和を水和槽にて行うことから、反応槽や蒸留槽に水を添加した場合の如く、蒸留コストが増大したり、金属ナトリウムが浪費される虞もない。   As described above, according to the method and apparatus for treating an organic halogen compound according to the present embodiment, the alkali metal is reacted with the liquid to be treated in which the organic halogen compound is dissolved in the hydrocarbon-based solvent in the reaction tank to remove the halogen. The dehalogenated reaction treatment solution is supplied to the hydration tank without adding water, and water is added to dissolve the halogenated alkali metal salt and unreacted alkali metal. The remaining reaction solution was distilled in a distillation tank to recover the hydrocarbon solvent. Therefore, since the hydration step is performed before the distillation step, the alkali metal salt generated in the reaction step is concentrated during the distillation and can be smoothly fed without being deposited on the pipe. Further, since hydration is performed in a hydration tank, there is no possibility that the distillation cost increases or metal sodium is wasted, as in the case where water is added to the reaction tank or distillation tank.

なお、本実施形態では、反応槽において、脱ハロゲン化反応を繰り返し行う場合、被処理液を添加する毎にナトリウム濃度を調整するようにしてもよく、または、1回目の被処理液の添加時に大過剰のナトリウム分散体を添加し、脱ハロゲン化反応の終了時に、ナトリウムの量を反応に必要な化学当量の3.5倍以下、好ましくは2.4〜2.8倍に濃度調整するようにしてもよい。   In this embodiment, when the dehalogenation reaction is repeatedly performed in the reaction vessel, the sodium concentration may be adjusted every time the liquid to be treated is added, or at the first addition of the liquid to be treated. A large excess of sodium dispersion is added, and at the end of the dehalogenation reaction, the amount of sodium is adjusted to a concentration not more than 3.5 times the chemical equivalent required for the reaction, preferably 2.4 to 2.8 times. It may be.

また、本実施形態における反応槽での反応温度は80〜130℃で行うことが好ましい。反応温度が80℃未満であると脱塩素化反応に長時間を要し、130℃を超えると脱塩素化反応時に副生成物(重合体)が生成されやすくなることから好ましくない。   Moreover, it is preferable to perform reaction temperature in the reaction tank in this embodiment at 80-130 degreeC. If the reaction temperature is less than 80 ° C., a long time is required for the dechlorination reaction, and if it exceeds 130 ° C., a by-product (polymer) is easily generated during the dechlorination reaction, which is not preferable.

また、反応槽内において有機ハロゲン化合物とナトリウム分散体とを反応させる際には、有機ハロゲン化合物の濃度が低い場合には有機ハロゲン化合物を先に反応槽内に仕込み、後からナトリウム分散体を添加する構成とするのが好ましく、有機ハロゲン化合物の濃度が高い場合には先にナトリウム分散体を反応槽内に仕込み、後から有機ハロゲン化合物を添加する構成とするのが好ましい。有機ハロゲン化合物の濃度が高い場合、ナトリウム分散体を後から添加すると、急激に分散体と有機ハロゲン化合物が反応し、反応槽内の温度が局部的に上昇する虞があるが、先にナトリウム分散体を仕込んでおくことで、見かけ上、有機ハロゲン化合物の濃度が薄まり、好適に分散させることも可能となり、重合体などの反応副生成物の生成を抑制できる。さらに、大過剰のナトリウム分散体中に有機ハロゲン化合物が添加されるため、有機ハロゲン化合物の脱ハロゲン化を短時間で行うことが可能である。ここで、高濃度とは有機ハロゲン化合物濃度が1%以上をいい、好適には10%以上をいう。   Also, when reacting the organic halogen compound and sodium dispersion in the reaction vessel, if the concentration of the organic halogen compound is low, the organic halogen compound is first charged in the reaction vessel, and the sodium dispersion is added later. In the case where the concentration of the organic halogen compound is high, it is preferable to prepare the sodium dispersion in the reaction tank first and add the organic halogen compound later. If the concentration of the organic halogen compound is high, adding a sodium dispersion later may cause a rapid reaction between the dispersion and the organic halogen compound, causing the temperature in the reaction vessel to rise locally. By preparing the body, the concentration of the organic halogen compound is apparently reduced and can be suitably dispersed, and the production of reaction byproducts such as a polymer can be suppressed. Furthermore, since an organic halogen compound is added to a large excess of sodium dispersion, it is possible to dehalogenate the organic halogen compound in a short time. Here, the high concentration means an organic halogen compound concentration of 1% or more, preferably 10% or more.

一実施形態の有機ハロゲン化合物の処理装置を説明するための概略ブロック図である。It is a schematic block diagram for demonstrating the processing apparatus of the organic halogen compound of one Embodiment. 同実施形態の有機ハロゲン化合物の処理方法を説明するための概略フロー図である。It is a schematic flowchart for demonstrating the processing method of the organic halogen compound of the embodiment. 従来の有機ハロゲン化合物の処理方法を説明するための概略フロー図である。It is a schematic flowchart for demonstrating the processing method of the conventional organic halogen compound.

符号の説明Explanation of symbols

1…反応手段
1a…PCB汚染油貯留部
1b…ナトリウム供給部
1c…脱塩素化部
1d…促進剤供給部
2…溶剤回収手段
2a…水和部
2a’…水和槽
2a’’…水供給部
2b…油水分離部
2c…蒸留部
3…蒸留再生部
DESCRIPTION OF SYMBOLS 1 ... Reaction means 1a ... PCB contaminated oil storage part 1b ... Sodium supply part 1c ... Dechlorination part 1d ... Accelerator supply part 2 ... Solvent recovery means 2a ... Hydration part 2a '... Hydration tank 2a''... Water supply Part 2b ... Oil / water separation part 2c ... Distillation part 3 ... Distillation regeneration part

Claims (5)

有機ハロゲン化合物が炭化水素系溶剤に溶け込んだ被処理液とアルカリ金属とを混合して、有機ハロゲン化合物とアルカリ金属とを反応槽にて反応させ、有機ハロゲン化合物を分解して反応処理液とする反応工程と、
該反応処理液を蒸留することなく水和槽に供給し、該水和槽にて反応処理液に水を添加し、反応により生成したハロゲン化アルカリ金属塩を水に抽出させる水和工程と、
該水和工程を経た反応処理液から前記水を油水分離槽にて分離除去する油水分離工程と、
該油水分離工程を経た反応処理液を蒸留槽にて蒸留し、前記炭化水素系溶剤を回収する蒸留工程とを備えることを特徴とする有機ハロゲン化合物の処理方法。
A liquid to be treated in which an organic halogen compound is dissolved in a hydrocarbon solvent and an alkali metal are mixed, the organic halogen compound and the alkali metal are reacted in a reaction vessel, and the organic halogen compound is decomposed to obtain a reaction treatment liquid. A reaction process;
A hydration step of supplying the reaction treatment liquid to the hydration tank without distillation, adding water to the reaction treatment liquid in the hydration tank, and extracting the alkali metal halide generated by the reaction into water;
An oil-water separation step of separating and removing the water from the reaction treatment liquid that has undergone the hydration step in an oil-water separation tank;
A method for treating an organic halogen compound, comprising: a distillation treatment step of distilling the reaction treatment liquid that has undergone the oil-water separation step in a distillation tank and recovering the hydrocarbon solvent.
前記反応工程は、前記有機ハロゲン化合物とアルカリ金属とを反応槽にて反応させる第一の反応工程と、さらに、所定のアルカリ金属濃度に調整すべく添加される前記アルカリ金属と、前記被処理液とを添加することにより反応処理液とする第二の反応工程とを備えることを特徴とする請求項1記載の有機ハロゲン化合物の処理方法。   The reaction step includes a first reaction step in which the organic halogen compound and the alkali metal are reacted in a reaction vessel, the alkali metal added to adjust the alkali metal concentration to a predetermined concentration, and the liquid to be treated. And a second reaction step in which a reaction treatment liquid is added to the organic halogen compound, and the organic halogen compound treatment method according to claim 1. 前記水和工程に於いて、前記反応工程を経た前記反応槽中の反応処理液の一部を供給することを特徴とする請求項2記載の有機ハロゲン化合物の処理方法。   3. The method for treating an organic halogen compound according to claim 2, wherein in the hydration step, a part of the reaction treatment liquid in the reaction tank that has undergone the reaction step is supplied. 前記アルカリ金属は、平均粒子径が7μm以下のアルカリ金属分散体であることを特徴とする請求項1乃至3のいずれかに記載の有機ハロゲン化合物の処理方法。   The method for treating an organohalogen compound according to any one of claims 1 to 3, wherein the alkali metal is an alkali metal dispersion having an average particle diameter of 7 µm or less. 有機ハロゲン化合物が炭化水素系溶剤に溶け込んだ被処理液とアルカリ金属とを混合して、有機ハロゲン化合物とアルカリ金属とを反応槽にて反応させ、有機ハロゲン化合物を分解して反応処理液とする反応手段(1)と、
前記反応槽から反応処理液を蒸留することなく水和槽(2a’)に供給し、該水和槽(2a’)にて反応処理液に水を添加し、反応により生成したハロゲン化アルカリ金属塩を水に抽出させる水和手段(2a)と、
前記水和槽(2a’)から供給された反応処理液から前記水を油水分離槽にて分離除去する油水分離手段(2b)と、
前記油水分離槽で分離された反応処理液を蒸留槽にて蒸留し、前記炭化水素系溶剤を回収する蒸留手段(2c)とを備えることを特徴とする有機ハロゲン化合物の処理装置。
A liquid to be treated in which an organic halogen compound is dissolved in a hydrocarbon solvent and an alkali metal are mixed, the organic halogen compound and the alkali metal are reacted in a reaction vessel, and the organic halogen compound is decomposed to obtain a reaction treatment liquid. Reaction means (1);
The reaction treatment liquid is supplied from the reaction tank to the hydration tank (2a ′) without being distilled, water is added to the reaction treatment liquid in the hydration tank (2a ′), and the alkali metal halide generated by the reaction. Hydration means (2a) for extracting the salt into water;
Oil-water separation means (2b) for separating and removing the water from the reaction treatment liquid supplied from the hydration tank (2a ′) in an oil-water separation tank;
An apparatus for treating an organic halogen compound, comprising: distillation means (2c) for distilling the reaction treatment liquid separated in the oil / water separation tank in a distillation tank and recovering the hydrocarbon solvent.
JP2005007581A 2005-01-14 2005-01-14 Organic halogen compound treatment method and treatment apparatus Active JP5190174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005007581A JP5190174B2 (en) 2005-01-14 2005-01-14 Organic halogen compound treatment method and treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005007581A JP5190174B2 (en) 2005-01-14 2005-01-14 Organic halogen compound treatment method and treatment apparatus

Publications (2)

Publication Number Publication Date
JP2006193482A true JP2006193482A (en) 2006-07-27
JP5190174B2 JP5190174B2 (en) 2013-04-24

Family

ID=36799833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005007581A Active JP5190174B2 (en) 2005-01-14 2005-01-14 Organic halogen compound treatment method and treatment apparatus

Country Status (1)

Country Link
JP (1) JP5190174B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272569A (en) * 2006-12-19 2008-11-13 Kobelco Eco-Solutions Co Ltd Treatment method of polychlorinated biphenyl contamination and its device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215920A (en) * 1996-02-09 1997-08-19 Nippon Soda Co Ltd Method for treating halogen compound
JP2001294539A (en) * 2000-04-13 2001-10-23 Tosoh Corp Method for dehalogenating organic halogen compound
JP2001302553A (en) * 2000-04-28 2001-10-31 Nippon Soda Co Ltd Method for treating organohalogen compound
JP2002012561A (en) * 2000-04-28 2002-01-15 Nippon Soda Co Ltd Method for treating organohalogen compound
JP2002035159A (en) * 2000-07-28 2002-02-05 Shinko Pantec Co Ltd Method for treating oil contaminated with organic halogen compound and apparatus for treating it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215920A (en) * 1996-02-09 1997-08-19 Nippon Soda Co Ltd Method for treating halogen compound
JP2001294539A (en) * 2000-04-13 2001-10-23 Tosoh Corp Method for dehalogenating organic halogen compound
JP2001302553A (en) * 2000-04-28 2001-10-31 Nippon Soda Co Ltd Method for treating organohalogen compound
JP2002012561A (en) * 2000-04-28 2002-01-15 Nippon Soda Co Ltd Method for treating organohalogen compound
JP2002035159A (en) * 2000-07-28 2002-02-05 Shinko Pantec Co Ltd Method for treating oil contaminated with organic halogen compound and apparatus for treating it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272569A (en) * 2006-12-19 2008-11-13 Kobelco Eco-Solutions Co Ltd Treatment method of polychlorinated biphenyl contamination and its device

Also Published As

Publication number Publication date
JP5190174B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5190174B2 (en) Organic halogen compound treatment method and treatment apparatus
JP6498270B2 (en) Purification of used oil
Weidlich et al. Recycling of Spent Hydrodehalogenation Catalysts–Problems Dealing with Separation of Aluminium
JP2001294539A (en) Method for dehalogenating organic halogen compound
JP4084073B2 (en) Detoxification method for organic halogen compounds
JP2005103388A (en) Method and system for cleaning pcb-contaminated matter
JP3935758B2 (en) Detoxification treatment method and detoxification treatment system for organic halogen compounds
JP3933484B2 (en) Detoxification treatment method and detoxification treatment system for organic halogen compound contaminated oil
JP2002212109A (en) Method for treating organic halide compound
JP3771120B2 (en) Method and apparatus for treating organic halogen compound contaminated oil
JP2001302552A (en) Method for treating organihalogen compound
JP3976332B1 (en) Decomposition method of high-concentration organochlorine compounds
JP2008100166A (en) Method for separating and recovering pcb, and apparatus therefor
KR101021690B1 (en) Method for treatment of wasted insulation oil including polychlorinated biphenyls
JP5377419B2 (en) Detoxification method for PCB mixed insulating oil
JP2007111661A (en) Regenerating method for dechlorinating catalyst
JP3918182B2 (en) Method for separating inorganic components in electrical insulating oil
JP4018173B2 (en) Separation of inorganic components in electrical insulating oil
JP2005270388A (en) Method for decomposing organic halogen compound
JP2007306948A (en) Method of decomposing treatment of low concentration organic halogen compound
JP4902336B2 (en) Method and apparatus for treating polychlorinated biphenyl contaminants
JP3910883B2 (en) Method and apparatus for decomposing organohalogen compounds
JP2000246002A (en) Method for cleaning solid material contaminated with organic halide and device therefor
JP5377414B2 (en) Oil purification equipment and detoxification treatment facility for PCB mixed insulating oil
JP2013056063A (en) Method and apparatus for detoxicating halogen compound-containing oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5190174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250