JP2006193346A - Refining method of silicon - Google Patents

Refining method of silicon Download PDF

Info

Publication number
JP2006193346A
JP2006193346A JP2005004063A JP2005004063A JP2006193346A JP 2006193346 A JP2006193346 A JP 2006193346A JP 2005004063 A JP2005004063 A JP 2005004063A JP 2005004063 A JP2005004063 A JP 2005004063A JP 2006193346 A JP2006193346 A JP 2006193346A
Authority
JP
Japan
Prior art keywords
silicon
gas
sio
slag
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005004063A
Other languages
Japanese (ja)
Other versions
JP4782428B2 (en
Inventor
Kensuke Okazawa
健介 岡澤
Masaki Okajima
正樹 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005004063A priority Critical patent/JP4782428B2/en
Publication of JP2006193346A publication Critical patent/JP2006193346A/en
Application granted granted Critical
Publication of JP4782428B2 publication Critical patent/JP4782428B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently removing boron in molten silicon in the production of silicon requiring high purity for e.g. solar cell. <P>SOLUTION: This refining method of silicon is characterized in that Na<SB>2</SB>CO<SB>3</SB>(5) or a mixture 6 of Na<SB>2</SB>CO<SB>3</SB>and SiO<SB>2</SB>is blown into molten silicon together with a carrier gas through a bottom hole 2 or an immersed pipe 3 of a container housing the molten silicon 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、太陽電池等に使用されるシリコンの高純度化のための精練方法に関する。   The present invention relates to a scouring method for increasing the purity of silicon used in solar cells and the like.

太陽電池等に用いられるシリコンは、高純度なものが求められる。特に、ボロンのように除去が困難な不純物については、種々の除去方法が提案されている。キャリアーガスと共に、何らかの固体あるいは何らかのガスを溶融シリコン中に吹き込む方法もその中の1つである。   High purity silicon is required for silicon used in solar cells and the like. In particular, various removal methods have been proposed for impurities that are difficult to remove, such as boron. One method is to blow some solid or some gas into the molten silicon together with the carrier gas.

特許文献1では、Ca(OH)やCaCOを、Ar、HO、またはCOをキャリアーガスとして用いて、吹き込む方法が提案されている。また、特許文献2では、キャリアーガスについては記載されていないものの、シリコンよりも低い密度を持つスラグ、具体的にはNaO−SiOを基材としたスラグを底穴から連続的に供給する方法が提案されている。
特開平9−202611号公報 特開平8−073209号公報
Patent Document 1 proposes a method of blowing Ca (OH) 2 or CaCO 3 using Ar, H 2 O, or CO 2 as a carrier gas. In Patent Document 2, although carrier gas is not described, slag having a density lower than that of silicon, specifically, slag based on Na 2 O—SiO 2 is continuously supplied from the bottom hole. A method has been proposed.
JP-A-9-202611 JP-A-8-073209

しかし、Ca(OH)やCaCOを、Ar、HO、またはCOをキャリアーガスとして吹き込む方法では、以下に示す2つの理由により、シリコン中のB濃度を太陽電池レベルである0.3ppm以下にまで下げることが不可能である。 However, in the method of blowing Ca (OH) 2 or CaCO 3 using Ar, H 2 O, or CO 2 as a carrier gas, the B concentration in silicon is set at a solar cell level of 0. It is impossible to reduce it to 3 ppm or less.

第一の理由として、Ca(OH)やCaCOに不純物として含まれるB濃度が高いことが挙げられる。市販品では、数ppmのBが含まれていると推測できるので、どのような方法でシリコンに添加しても、シリコン中B濃度を1ppmよりも大幅に低下させることができない。 The first reason is that the B concentration contained as an impurity in Ca (OH) 2 or CaCO 3 is high. Since it can be estimated that a commercially available product contains several ppm of B, the B concentration in silicon cannot be significantly reduced below 1 ppm even if it is added to silicon by any method.

第二の理由として、Ca(OH)やCaCOによって形成されるCaO−SiO系のスラグは、シリコンより密度が大きいことが挙げられる。スラグがシリコンと接触する時間が長過ぎると、逆にシリコンへBが移動する復B現象が起きる。よって、シリコン中のB濃度をより低下させるためには、添加したスラグはしかるべき時間の後に取り除く必要がある。しかし、Ca(OH)やCaCOによって形成されるCaO−SiO系のスラグは、シリコンより密度が大きいために、スラグが溶融シリコン中に沈んでしまう。熱間では沈殿したスラグの除去ができないので、シリコン中のB濃度を1ppmよりも大幅に低下させることができないのである。 The second reason is that the density of CaO—SiO 2 slag formed by Ca (OH) 2 or CaCO 3 is larger than that of silicon. If the time for which the slag is in contact with silicon is too long, a reverse B phenomenon occurs in which B moves to silicon. Therefore, in order to further reduce the B concentration in silicon, it is necessary to remove the added slag after an appropriate time. However, since the CaO—SiO 2 slag formed by Ca (OH) 2 or CaCO 3 has a higher density than silicon, the slag sinks in the molten silicon. Since the precipitated slag cannot be removed while hot, the B concentration in silicon cannot be significantly reduced below 1 ppm.

一方、NaO−SiOを基材とするスラグを底穴から連続的に添加する方法では、スラグに不純物として含まれるB濃度は低い。さらに、スラグの密度はシリコンよりも小さく、除去が容易である。しかし、スラグの持つ酸化力が弱く、ボロン除去能力は高いとは言えない。 On the other hand, in the method of continuously adding slag based on Na 2 O—SiO 2 from the bottom hole, the B concentration contained as an impurity in the slag is low. Furthermore, the density of the slag is smaller than that of silicon and is easy to remove. However, the oxidizing power of slag is weak and it cannot be said that boron removal ability is high.

本発明方法は、シリコンからのボロン除去を効率よく行い、シリコン中のB濃度を太陽電池レベルにまで下げるシリコンの精練方法を提供することを目的とする。   An object of the method of the present invention is to provide a silicon refining method that efficiently removes boron from silicon and lowers the B concentration in silicon to a solar cell level.

本発明は上記課題を解決するためになされたもので、(1)溶融シリコンを収容した容器の底穴又は浸漬管からキャリアーガスと共にNaCO、又はNaCOとSiOとの混合物を吹き込むことを特徴とするシリコンの精練方法、(2)前記溶融シリコンよりも密度の低い酸性酸化物を前記溶融シリコン上に添加することを特徴とする(1)記載のシリコンの精練方法、(3)生成したスラグを精練中又は精練後に少なくとも1回除去することを特徴とする(1)又は(2)に記載のシリコンの精練方法、(4)前記キャリアーガスとして酸化性ガス、不活性ガス又は双方の混合ガスを用いることを特徴とする(1)記載のシリコンの精練方法、(5)前記不活性ガスとしてArガスを用いることを特徴とする(4)記載のシリコンの精練方法、(6)前記酸性酸化物としてSiOを用いることを特徴とする(2)記載のシリコンの精練方法、(7)前記NaCO、又はNaCOとSiOとの混合物を吹き込む前の溶融シリコン中のボロン濃度が20質量ppm以下であることを特徴とする(1)記載のシリコンの精練方法である。 The present invention has been made to solve the above problems. (1) Na 2 CO 3 or a mixture of Na 2 CO 3 and SiO 2 together with a carrier gas from a bottom hole or a dip tube of a container containing molten silicon. (2) A silicon scouring method according to (1), wherein an acidic oxide having a lower density than the molten silicon is added onto the molten silicon. 3) The generated slag is removed at least once during or after scouring, and the silicon scouring method according to (1) or (2), (4) an oxidizing gas or an inert gas as the carrier gas Or a mixed gas of both, wherein the silicon scouring method according to (1), and (5) Ar gas is used as the inert gas. Scouring method of silicon, (6) a method of scouring the acidic oxide as characterized by using the SiO 2 (2) silicon as claimed, (7) the Na 2 CO 3, or a Na 2 CO 3 and SiO 2 The silicon scouring method according to (1), wherein the boron concentration in the molten silicon before blowing the mixture is 20 mass ppm or less.

本発明方式を用いることによって、効率よくシリコン中のボロン濃度を低下させることができる。   By using the method of the present invention, the boron concentration in silicon can be efficiently reduced.

本発明は、図1に示すように、溶融したシリコン1中に容器の底穴2又は浸漬管3からキャリアーガスと共にNaCO(5)、又はNaCOとSiOとの混合物6を吹き込む方法である。 As shown in FIG. 1, the present invention includes Na 2 CO 3 (5) or a mixture 6 of Na 2 CO 3 and SiO 2 together with a carrier gas from a bottom hole 2 or a dip tube 3 in molten silicon 1. It is a method of blowing.

発明者等の実験では、ボロン除去能力はNaCOを吹き込む場合、およびNaCOとSiOとを吹き込む場合の方がNaO−SiOを吹きこむ場合よりも明らかに高かった。さらに、NaCOとSiOとを吹き込む場合、分子量比でNaCO/SiO>1となるようにNaCOとSiOの量を調節すると、ボロン除去能力を高められる点で好ましい。NaCOは、溶融シリコン中に添加されると分解されてCOを発生するが、このCOの酸化作用がB除去に効果的であると考えられる。また、SiOには、NaCOのNaOとCOへの分解を促進する作用があると考えられるため、NaCOとSiOとを吹き込む場合の方がより好ましい。ここで言うボロン除去能力とは、例えば、一定量の溶融シリコン中のボロン濃度を10質量ppmから1質量ppmへ低下させるのに要する、吹き込む固体の流量や時間等に係る。流量や時間が少ないほど、除去能力が高いと言うことになる。従来のNaO−SiOを連続的に添加する方式に比べ、本発明のNaCO、又はNaCOとSiOとを吹き込む本発明方法の方が、吹き込む固体の流量や時間を少なくすることが可能であるため、ボロン除去方法として優れていると言える。 In the experiments by the inventors, the boron removal ability was clearly higher when Na 2 CO 3 was blown and when Na 2 CO 3 and SiO 2 were blown than when Na 2 O—SiO 2 was blown. . Furthermore, when Na 2 CO 3 and SiO 2 are blown, the boron removal ability can be improved by adjusting the amount of Na 2 CO 3 and SiO 2 so that the molecular weight ratio is Na 2 CO 3 / SiO 2 > 1. Is preferable. Na 2 CO 3 is to generate is decomposed to be added CO 2 into the molten silicon is believed that oxidation of the CO 2 is effective in B removal. Further, the SiO 2, since it is considered that an effect of promoting the decomposition of the Na 2 O and CO 2 of Na 2 CO 3, who when blowing and the SiO 2 Na 2 CO 3 is more preferable. The boron removal capability referred to here relates to, for example, the flow rate of solid to be blown, the time, etc. required to reduce the boron concentration in a certain amount of molten silicon from 10 ppm to 1 ppm. The smaller the flow rate and time, the higher the removal ability. Compared to the conventional method of continuously adding Na 2 O—SiO 2 , the method of the present invention in which Na 2 CO 3 of the present invention or Na 2 CO 3 and SiO 2 is blown is more effective in the flow rate and time of the solid to be blown. Therefore, it can be said that it is excellent as a boron removal method.

一方、ボロン除去能力は、NaCO、又はNaCOとSiOとを吹き込む場合と、従来のCa(OH)やCaCOを吹き込む場合とでは、ほぼ同等であり、10ppm程度から1ppm程度までのボロン除去は同様に行うことができる。しかし、上記したようにCa(OH)やCaCOは、不純物として含まれているB濃度が数ppm程度であると考えられる。このことによって、Ca(OH)やCaCOを吹き込んだ場合、1ppm程度から0.3ppm程度までのボロン除去が困難である。なぜなら、溶融シリコン中のボロン濃度とCa(OH)やCaCOのボロン濃度が同じレベルだからである。一方、NaCOとSiOの不純物のB濃度は0.1ppmのオーダーであり、シリコン上に浮遊するスラグを復Bが起こらないように適当に除去さえすれば、シリコン中のB濃度を太陽電池レベルである0.3ppm以下にまで下げることができる。 On the other hand, the boron removing ability is almost the same when Na 2 CO 3 or Na 2 CO 3 and SiO 2 are blown, and when conventional Ca (OH) 2 and CaCO 3 are blown, and from about 10 ppm. Boron removal up to about 1 ppm can be similarly performed. However, as described above, it is considered that Ca (OH) 2 and CaCO 3 have a B concentration contained as an impurity of about several ppm. Thus, when Ca (OH) 2 or CaCO 3 is blown, it is difficult to remove boron from about 1 ppm to about 0.3 ppm. This is because the boron concentration in the molten silicon and the boron concentration of Ca (OH) 2 or CaCO 3 are the same level. On the other hand, the B concentration of impurities of Na 2 CO 3 and SiO 2 is on the order of 0.1 ppm, and if the slag floating on the silicon is appropriately removed so that recovery B does not occur, the B concentration in the silicon can be reduced. It can be lowered to 0.3 ppm or less which is a solar cell level.

さらに、NaCO、又はNaCOとSiOとを吹き込むときに形成されるスラグは、シリコンよりも密度が低く、シリコン上に浮くために除去が容易である。 Further, Na 2 CO 3, or slag that is formed when bubbling and Na 2 CO 3 and SiO 2 is lower density than silicon is easily removed to float on the silicon.

スラグをキャリアーガスと共に添加する方法では、スラグやシリコンが飛散し、シリコンの収率を低下させる問題が生じる可能性がある。本発明方法では、図1に示すように、溶融シリコン1よりも密度の低い酸性酸化物4を溶融シリコン1上に添加することにより、溶融シリコンの上に層を形成してシリコン1の飛散を抑えることができる。溶融シリコンよりも密度の軽い酸性酸化物としては、SiOが好ましい。SiOであれば、廉価でボロン濃度が低いからである。 In the method of adding slag together with the carrier gas, there is a possibility that slag and silicon are scattered and there is a problem that the yield of silicon is lowered. In the method of the present invention, as shown in FIG. 1, an acidic oxide 4 having a lower density than the molten silicon 1 is added onto the molten silicon 1, thereby forming a layer on the molten silicon to prevent scattering of the silicon 1. Can be suppressed. As an acidic oxide having a lighter density than molten silicon, SiO 2 is preferable. This is because SiO 2 is inexpensive and has a low boron concentration.

NaCO、又はNaCOとSiOとを吹き込むのに用いられるキャリアーガスは、酸化性ガス、不活性ガス又は双方の混合ガスが望ましい。酸化性ガスとしてはOやCO等が好ましい。酸化性ガスはガスそのものの酸化作用によりボロン除去効果をより高める一方、シリコンも酸化させてしまい、シリコンの収率を低くするおそれがあるため、酸化性ガスと不活性ガスとの混合ガスを用いることが好ましい。不活性ガスは、酸化性ガスとは反対に、ボロン除去効果には寄与せず、また、シリコンを酸化させることもない。不活性ガスとしては、特にArが廉価で有効である。適度なボロン除去効果を維持しつつシリコンの収率低下を防止するためには、混合ガス中の酸化性ガスの割合は全体の2%以下が望ましい。 Na 2 CO 3, or carrier gas used for blowing and the SiO 2 Na 2 CO 3, the oxidizing gas, an inert gas or both mixed gas is desired. As the oxidizing gas, O 2 or CO 2 is preferable. Oxidizing gas enhances the boron removal effect due to the oxidizing action of the gas itself, but also oxidizes silicon, which may reduce the yield of silicon. Therefore, a mixed gas of oxidizing gas and inert gas is used. It is preferable. In contrast to the oxidizing gas, the inert gas does not contribute to the boron removal effect and does not oxidize silicon. As the inert gas, Ar is particularly inexpensive and effective. In order to prevent a decrease in the yield of silicon while maintaining an appropriate boron removal effect, the ratio of the oxidizing gas in the mixed gas is desirably 2% or less of the total.

溶融するシリコンの初期ボロン濃度は、20質量ppm以下が望ましい。シリコンの収率は、NaCOや酸化性ガスの作用によるシリコンの酸化によって低下するおそれがある。初期ボロン濃度が20質量ppmを超えるレベルから太陽電池用シリコンレベルである0.3質量ppm以下にまで下げようとすると、長時間の精練が必要になるおそれがある。また、精練の時間が長くなることにより、酸化によるシリコンの収率が低下するおそれがあり、十分なシリコン量が得られない可能性がある。 The initial boron concentration of the molten silicon is desirably 20 mass ppm or less. The yield of silicon may be reduced by oxidation of silicon due to the action of Na 2 CO 3 or oxidizing gas. If it is attempted to reduce the initial boron concentration from a level exceeding 20 ppm by mass to 0.3 ppm by mass or less, which is a silicon level for solar cells, a long scouring may be required. In addition, since the scouring time becomes longer, the yield of silicon due to oxidation may be reduced, and a sufficient amount of silicon may not be obtained.

以上のように本発明のシリコンの精練方法を用いることによってシリコン中のボロンを効率よく除去し、B濃度を太陽電池レベルにまで下げることができる。   As described above, by using the silicon scouring method of the present invention, boron in silicon can be efficiently removed and the B concentration can be lowered to the solar cell level.

溶融シリコンにCaCOやNaCOを酸化性ガス又は不活性ガスで吹き込み精練する試行実験を実施した。シリコン質量は10kgとした。また、ルツボにはカーボン、浸漬管にはアルミナ管を用い、総処理時間は120分とした。表1に示すように、吹き込み条件は、CaCOをArガスとOガスで吹き込む比較例1、CaCOをArガスとCOガスで吹き込む比較例2、CaCOをArガスで吹き込む比較例3、NaOとSiOとを1:1の分子量比でArガスで吹き込む比較例4、NaCOをArガスとOガスで吹き込む実施例1、NaCOをArガスとCOガスで吹き込む実施例2、NaCOをArガスで吹き込む実施例3、NaCOとSiOとを2:1の分子量比でArガスで吹き込む実施例4である。また、各比較例および各実施例において、溶融シリコン上にケイ砂を5kg添加した方式としない方式を実施した。さらに、スラグがシリコンに浮く比較例4と各実施例とでは、30分毎にスラグを除去した。比較例1〜3は、スラグが沈み、熱間でのスラグ除去ができないので、30分間スラグを吹き込んだ後、冷却し、スラグとシリコンとを分離することを4回繰り返した。吹き込むガス流量は、いずれも15L/min)とした。初期のシリコン中のボロン濃度13ppmに対して、処理後のボロン濃度やシリコンの収率を表2に示す。 A trial experiment was conducted in which CaCO 3 or Na 2 CO 3 was blown into molten silicon with an oxidizing gas or an inert gas and refined. The silicon mass was 10 kg. Moreover, carbon was used for the crucible, and an alumina tube was used for the dip tube, and the total treatment time was 120 minutes. As shown in Table 1, conditions insufflation, comparative examples blowing Comparative Example 2, CaCO 3 blowing Comparative Example 1, CaCO 3 blowing CaCO 3 in Ar gas and O 2 gas Ar gas and CO 2 gas in the Ar gas 3, Na 2 O and the SiO 2 1: example 1, Na 2 CO 3 to blow Comparative example 4, Na 2 CO 3 blown in Ar gas at Ar gas and O 2 gas at 1 molecular weight ratio and Ar gas Example 2 for blowing with CO 2 gas, Example 3 for blowing Na 2 CO 3 with Ar gas, and Example 4 for blowing Na 2 CO 3 and SiO 2 with Ar gas at a molecular weight ratio of 2: 1. Further, in each comparative example and each example, a method in which 5 kg of silica sand was added on molten silicon was not used. Furthermore, in the comparative example 4 and each Example in which slag floats on silicon, slag was removed every 30 minutes. In Comparative Examples 1 to 3, since the slag sinks and the slag cannot be removed in the hot state, the slag was blown for 30 minutes, then cooled, and the slag and silicon were separated four times. The flow rate of gas to be blown was 15 L / min. Table 2 shows the boron concentration and silicon yield after the treatment with respect to the boron concentration of 13 ppm in the initial silicon.

Figure 2006193346
Figure 2006193346

各比較例と各実施例とのB濃度の変化を比較すると、CaCOを用いた比較例1〜3では、いずれも1ppm程度で定常に達すること、NaO−SiOをスラグとして用いた比較例4は、90分後には1ppm以下に低下し、120分後には0.4ppm程度になることが判った。一方、NaCOをスラグとして用いた各実施例は、B濃度を0.03ppm以下に低下させられることが判った。但し、何れの方式も、ケイ砂を溶融シリコン上に添加した場合は、添加しない場合に比べ、収率が高いことが判った。 Comparing changes in B concentration between each comparative example and each example, in Comparative Examples 1 to 3 using CaCO 3 , all reached steady state at about 1 ppm, and Na 2 O—SiO 2 was used as slag. Comparative Example 4 was found to decrease to 1 ppm or less after 90 minutes and to about 0.4 ppm after 120 minutes. On the other hand, it was found that each example using Na 2 CO 3 as slag can reduce the B concentration to 0.03 ppm or less. However, in any method, it was found that when silica sand was added onto molten silicon, the yield was higher than when it was not added.

Figure 2006193346
Figure 2006193346

本発明の模式図である。It is a schematic diagram of the present invention.

符号の説明Explanation of symbols

1 シリコン、
2 底穴、
3 浸漬管、
4 酸性酸化物、
5 NaCO
6 NaCOとSiOとの混合物。
1 silicon,
2 bottom hole,
3 Dip tube
4 acidic oxides,
5 Na 2 CO 3 ,
6 A mixture of Na 2 CO 3 and SiO 2 .

Claims (7)

溶融シリコンを収容した容器の底穴又は浸漬管からキャリアーガスと共にNaCO、又はNaCOとSiOとの混合物を吹き込むことを特徴とするシリコンの精練方法。 Bottom hole or dip tube Na 2 CO 3 with carrier gas from, or Na 2 CO 3 and scouring method of the silicon, characterized in that blowing a mixture of SiO 2 container with molten silicon. 前記溶融シリコンよりも密度の低い酸性酸化物を前記溶融シリコン上に添加することを特徴とする請求項1記載のシリコンの精練方法。   2. The silicon scouring method according to claim 1, wherein an acidic oxide having a lower density than the molten silicon is added onto the molten silicon. 生成したスラグを精練中又は精練後に少なくとも1回除去することを特徴とする請求項1又は2記載のシリコンの精練方法。   The silicon scouring method according to claim 1 or 2, wherein the generated slag is removed at least once during or after scouring. 前記キャリアーガスとして酸化性ガス、不活性ガス又は双方の混合ガスを用いることを特徴とする請求項1記載のシリコンの精練方法。   2. The silicon refining method according to claim 1, wherein an oxidizing gas, an inert gas, or a mixed gas of both is used as the carrier gas. 前記不活性ガスとしてArガスを用いることを特徴とする請求項4記載のシリコンの精練方法。   The silicon scouring method according to claim 4, wherein Ar gas is used as the inert gas. 前記酸性酸化物としてSiOを用いることを特徴とする請求項2記載のシリコンの精練方法。 3. The silicon scouring method according to claim 2 , wherein SiO2 is used as the acidic oxide. 前記NaCO、又はNaCOとSiOとの混合物を吹き込む前の溶融シリコン中のボロン濃度が20質量ppm以下であることを特徴とする請求項1記載のシリコンの精練方法。 2. The silicon refining method according to claim 1, wherein a boron concentration in the molten silicon before blowing the Na 2 CO 3 or a mixture of Na 2 CO 3 and SiO 2 is 20 ppm by mass or less.
JP2005004063A 2005-01-11 2005-01-11 Silicon refining method Expired - Fee Related JP4782428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005004063A JP4782428B2 (en) 2005-01-11 2005-01-11 Silicon refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004063A JP4782428B2 (en) 2005-01-11 2005-01-11 Silicon refining method

Publications (2)

Publication Number Publication Date
JP2006193346A true JP2006193346A (en) 2006-07-27
JP4782428B2 JP4782428B2 (en) 2011-09-28

Family

ID=36799720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004063A Expired - Fee Related JP4782428B2 (en) 2005-01-11 2005-01-11 Silicon refining method

Country Status (1)

Country Link
JP (1) JP4782428B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113748086A (en) * 2019-04-30 2021-12-03 瓦克化学股份公司 Method for refining a crude silicon melt using a particulate mediator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176211A (en) * 1988-01-05 1989-07-12 Nippon Sheet Glass Co Ltd Decarbonization of metal silicon
JPH0873209A (en) * 1994-09-01 1996-03-19 Elkem As Method of refining silicon
JPH09202611A (en) * 1996-01-25 1997-08-05 Kawasaki Steel Corp Removal of boron from metallic silicon
JP2003012317A (en) * 2001-06-27 2003-01-15 Daido Steel Co Ltd Method for refining silicon
WO2003066523A1 (en) * 2002-02-04 2003-08-14 Sharp Kabushiki Kaisha Silicon purifying method, slag for purifying silicon, and purified silicon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176211A (en) * 1988-01-05 1989-07-12 Nippon Sheet Glass Co Ltd Decarbonization of metal silicon
JPH0873209A (en) * 1994-09-01 1996-03-19 Elkem As Method of refining silicon
JPH09202611A (en) * 1996-01-25 1997-08-05 Kawasaki Steel Corp Removal of boron from metallic silicon
JP2003012317A (en) * 2001-06-27 2003-01-15 Daido Steel Co Ltd Method for refining silicon
WO2003066523A1 (en) * 2002-02-04 2003-08-14 Sharp Kabushiki Kaisha Silicon purifying method, slag for purifying silicon, and purified silicon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113748086A (en) * 2019-04-30 2021-12-03 瓦克化学股份公司 Method for refining a crude silicon melt using a particulate mediator
CN113748086B (en) * 2019-04-30 2024-02-06 瓦克化学股份公司 Method for refining crude silicon melt using particulate mediator

Also Published As

Publication number Publication date
JP4782428B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
US8034151B2 (en) Method for removing boron from silicon
JP5210167B2 (en) Method for purifying silicon
JP4980793B2 (en) Silicon recovery method and silicon recovery apparatus
JP5140835B2 (en) Manufacturing method of high purity silicon
US6632413B2 (en) Method for purifying silicon
CN102227375A (en) Method for cleaning silicon sludge
JP4900600B2 (en) Manufacturing method of high purity silicon
JP2006282498A (en) Method for producing high purity silicon
US20120321541A1 (en) Methods for Refining Aluminum-Containing Silicon
JP4073864B2 (en) Silicon purification method and silicon
JP4749730B2 (en) Si refining method
JP4782428B2 (en) Silicon refining method
JP2006160575A (en) Method of purifying silicon and silicon
JP4671871B2 (en) Silicon refining method
JP4511957B2 (en) Silicon refining method
JP2009120460A (en) Method for purifying silicon
CN111945021A (en) Solvent and method for purifying A356 aluminum alloy
JP4713892B2 (en) Crucible for refining silicon slag
JP5726618B2 (en) Method for treating tin-containing copper
JP2012020920A (en) Method of recovering silicon
JP4406280B2 (en) Na removal method in silicon refining
JP4354259B2 (en) Slag separation method in silicon refining
JP2018154907A (en) Pretreatment method for molten iron
TWI510635B (en) Method of making molten steel with low nitrogen content
CN116209780A (en) Flux for refining magnesium melt and method for refining magnesium melt using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110707

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees