JPH09202611A - Removal of boron from metallic silicon - Google Patents

Removal of boron from metallic silicon

Info

Publication number
JPH09202611A
JPH09202611A JP1120896A JP1120896A JPH09202611A JP H09202611 A JPH09202611 A JP H09202611A JP 1120896 A JP1120896 A JP 1120896A JP 1120896 A JP1120896 A JP 1120896A JP H09202611 A JPH09202611 A JP H09202611A
Authority
JP
Japan
Prior art keywords
solid
silicon
blown
carrier gas
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1120896A
Other languages
Japanese (ja)
Inventor
Matao Araya
復夫 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1120896A priority Critical patent/JPH09202611A/en
Publication of JPH09202611A publication Critical patent/JPH09202611A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove boron from metallic silicon in high accuracy without causing the clogging of a blowing nozzle by using a solid decomposable at a specific high temperature to generate H2 O and/or CO2 and blowing the solid into a molten Si bath together with a carrier gas. SOLUTION: One or more kinds of solids decomposable at <=1400 deg.C to generate H2 O and/or CO2 are blown into a molten Si bath together with a carrier gas. Ar, H2 , CO, etc., can be used as the carrier gas. The solid is e.g. Ca(OH)2 , CaCO3 or their mixture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は金属シリコン中のボ
ロン除去方法に関し、半導体あるいは太陽電池に用いら
れる高純度シリコンの製造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing boron in metallic silicon, and more particularly to the production of high-purity silicon used for semiconductors or solar cells.

【0002】[0002]

【従来の技術】半導体や太陽電池に用いるSiは半導体
特性を呈示する程高純度(一般に6−N以上といわれ
る)が必要で、従来金属シリコンを塩化して得たシラン
ガスを精製して不純物を除き再びこれを還元して高純度
のSiを得る方法が用いられている。この方法はコスト
が高く特に太陽電池用として利用されるSiはコストダ
ウンのため、冶金的な精製方法が検討されている。例え
ば特公平5−31488号公報には溶融金属シリコンに
粉状の珪石を吹込みSiOガスを発生させ、該SiOガ
スを還元剤が充填した層内で金属Siに還元することに
より高純度シリコンを得ようとする方法が提案されてい
る。
2. Description of the Related Art Si used in semiconductors and solar cells is required to have a high degree of purity (generally said to be 6-N or more) so as to exhibit semiconductor characteristics. Conventionally, silane gas obtained by chlorinating metallic silicon is purified to remove impurities. However, a method of removing this again and obtaining high-purity Si is used. This method is high in cost, and particularly Si used for solar cells is cost-reduced, so a metallurgical refining method is being studied. For example, in Japanese Examined Patent Publication No. 5-31488, high-purity silicon is produced by injecting powdery silica stone into molten metal silicon to generate SiO gas and reducing the SiO gas into metal Si in a layer filled with a reducing agent. A method of trying to obtain is proposed.

【0003】さらに、特開平5−246706号公報に
は、冶金用シリコンを出発原料として溶融し、溶融シリ
コンと上部に設けた電極間にアークをとばすとともに、
不活性ガス、好ましくは酸化性ガスを添加することによ
り精製し、高純度シリコンを得る方法が提案されてい
る。ところで金属Si中には通常20ppm程度のボロ
ン(B)が含まれており、冶金的方法では、特にこのS
i中のBの除去が難しく、多くの研究がなされてきた。
冶金的にSi中のBを除去する方法としては、例えば、
特開平4−193706号公報あるいは特開平5−24
6706号公報に、H2 O、又はCO2 もしくはO2
スをSi浴中に吹込むことにより、Bを酸化して除去す
る方法が提案されており、同時にSiO2 、CaO、C
aCl2 、CaF2 などを吹込むことによりその効果を
さらに高めている。また、特開昭58−130114号
公報にはアルカリ金属又はアルカリ土類金属の酸化物を
含有するスラグとシリコンを混合して溶解することによ
ってBを除去する方法が示されている。
Further, in Japanese Patent Laid-Open No. 246706/1993, silicon for metallurgy is melted as a starting material, and an arc is blown between the molten silicon and an electrode provided on the upper part.
A method for obtaining high-purity silicon by purifying by adding an inert gas, preferably an oxidizing gas, has been proposed. By the way, metal Si usually contains about 20 ppm of boron (B).
Removal of B in i is difficult, and many studies have been conducted.
As a method of metallurgically removing B in Si, for example,
JP-A-4-193706 or JP-A-5-24
Japanese Patent No. 6706 proposes a method of oxidizing and removing B by blowing H 2 O, or CO 2 or O 2 gas into a Si bath, and at the same time, SiO 2 , CaO, and C.
The effect is further enhanced by blowing in aCl 2 , CaF 2, etc. Further, JP-A-58-130114 discloses a method of removing B by mixing and dissolving slag containing an oxide of an alkali metal or an alkaline earth metal and dissolving it.

【0004】[0004]

【発明が解決しようとする課題】上述の特開平4−19
3706号公報あるいは特開平5−246706号公報
に示される方法では、Si中のBと反応するH2 Oある
いはCO2 、O2 などの酸化性ガスは気体で吹き込まれ
るため、Si中に吹き込まれるとすぐにSiを酸化し、
一部SiO2 などが生成する。このため、ノズル先端が
つまり易く、また量も限定されたものになるため、安定
な操業を行うことが難しかった。また、特開昭58−1
30114号公報に開示されている方法では、溶融時に
すべての反応が終り、原理的にはスラグとSiの間のB
の分配平衡によって除去できる限度が決まるため、太陽
電池に利用できる程度にB含有量を低減することはでき
ず、予備的な処理の域を出ないという問題があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the method disclosed in Japanese Patent Publication No. 3706 or Japanese Patent Laid-Open No. 246706/1993, H 2 O that reacts with B in Si or an oxidizing gas such as CO 2 or O 2 is blown as a gas, and is blown into Si. Immediately oxidizes Si,
A part of SiO 2 is generated. Therefore, the tip of the nozzle is likely to be clogged and the amount is limited, which makes it difficult to perform stable operation. Further, Japanese Patent Application Laid-Open No. 58-1
According to the method disclosed in Japanese Patent No. 30114, all the reactions are completed at the time of melting, and in principle, B between slag and Si is
Since the removal equilibrium determines the upper limit of removal, the B content cannot be reduced to such an extent that it can be used in solar cells, and there is a problem in that it cannot go beyond the scope of preliminary treatment.

【0005】本発明はこれらの問題を解決し吹き込みノ
ズル詰まり等を生ずることなく、精度よくボロンを除去
することができる技術を提供することを目的とする。
It is an object of the present invention to solve these problems and to provide a technique capable of removing boron accurately without causing clogging of a blowing nozzle.

【0006】[0006]

【課題を解決するための手段】本発明は前記の問題点を
以下の方法によって解決したものである。すなわち、そ
の技術手段は、1400℃以下で分解しH2 O及び/又
はCO2 を発生する1種又は2種以上の固体を、キャリ
アガスと共に溶融Si浴中に吹込むことを特徴とする金
属シリコン中のボロン除去方法である。
The present invention has solved the above problems by the following method. That is, the technical means is to blow one or more solids that decompose at 1400 ° C. or lower to generate H 2 O and / or CO 2 into a molten Si bath together with a carrier gas. This is a method for removing boron in silicon.

【0007】固体をSi浴中に搬送するキャリアガスに
はAr、H2 、COなどが用いられる。また、前記固体
としては、Ca(OH)2 あるいは、CaCO3 又はこ
れらの混合物が用いられるが、1400℃以下で分解し
てH2 OあるいはCO2 を発生するものであれば何でも
よい。
Ar, H 2 , CO and the like are used as a carrier gas for carrying the solid into the Si bath. Further, Ca (OH) 2 , CaCO 3 or a mixture thereof is used as the solid, but any solid can be used as long as it decomposes at 1400 ° C. or lower to generate H 2 O or CO 2 .

【0008】[0008]

【発明の実施の形態】本発明によれば、Si浴中に吹込
まれた固体は、Si浴中でSi浴の温度によって分解
し、H2 OあるいはCO2 を発生する。この発生CO2
あるいはH2 Oが酸化ガスとしてSi中のBと反応しB
の酸化物ガスを生成し、キャリアガスとともにSi浴外
に排出されることによって、Si中のBが除去される。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, a solid blown into a Si bath decomposes in the Si bath depending on the temperature of the Si bath to generate H 2 O or CO 2 . This generated CO 2
Alternatively, H 2 O reacts with B in Si as an oxidizing gas to form B
B in Si is removed by generating the oxide gas of No. 3 and discharging it out of the Si bath together with the carrier gas.

【0009】1400℃以下の温度で分解しH2 Oある
いはCO2 を発生する固体(以下固体吹込み物と称す)
がSi浴内に吹き込まれると分解により急激なガス発生
が起り、これによるSiの撹拌と反応界面積の増大が起
り、反応を有利に進めることができると同時に、ノズル
先端部でのシリコン酸化を抑えることができ、ノズル詰
りを防ぐことができる。また、大量のSiを処理する場
合でも、十分な撹拌と反応界面積を確保することができ
る。さらにこの方法では、H2 O、CO2 などを固体で
吹き込むため、大量のH2 OあるいはCO2 を容易にS
i浴中に導入することが可能となり、反応時間を短縮す
ることができる。搬送ガスは固体吹込み物の搬送の役目
であるが、ガス種としてはSiに対して不活性なAr又
は反応生成物として出てくるH2 、COなどが望まし
い。また実験から固体吹込み物の添加量には、毎分吹き
込まれる固体吹込み物から発生するH2 O及びまたはC
2の量をm(g/min)とし、処理するSiの量を
M(kg)、処理時間(t)分としたとき、下記の範囲
が適当である。
A solid that decomposes at a temperature of 1400 ° C. or lower to generate H 2 O or CO 2 (hereinafter referred to as a solid blown substance)
Is blown into the Si bath, abrupt gas generation occurs due to decomposition, which causes stirring of Si and an increase in reaction interfacial area, which allows the reaction to proceed advantageously and at the same time silicon oxidation at the nozzle tip. It can be suppressed, and the nozzle clogging can be prevented. Further, even when treating a large amount of Si, sufficient stirring and a reaction interfacial area can be secured. Furthermore, in this method, since H 2 O, CO 2 and the like are blown in as a solid, a large amount of H 2 O or CO 2 can be easily converted into S.
It can be introduced into the i-bath and the reaction time can be shortened. The carrier gas plays a role of carrier of the solid blown product, and as the gas species, Ar inert to Si or H 2 or CO which is a reaction product is desirable. In addition, from the experiment, the addition amount of the solid blowing material was determined to be H 2 O and / or C generated from the solid blowing material blown every minute.
When the amount of O 2 is m (g / min), the amount of Si to be treated is M (kg), and the treatment time is (t) minutes, the following ranges are suitable.

【0010】 m≧(12×M)/t (g/min) なお、固体吹込み物の粒径は100mesh以下が好ま
しい。100meshを越えるとノズル詰りなどで、吹
込みが安定せず好ましくない。
M ≧ (12 × M) / t (g / min) The particle size of the solid blown product is preferably 100 mesh or less. When it exceeds 100 mesh, the nozzle is clogged and the blowing is not stable, which is not preferable.

【0011】[0011]

【実施例】Bを22ないし7ppm含む表1に示すシリ
コン20kgをAr雰囲気下、シリカるつぼ中で溶解し
た。溶湯温度1500℃で、アルミナ管で被覆した内径
8mmのシリカチューブを上方から溶湯内に浸漬し、5
1/minでキャリアガスを吹き込んだ。この際、Ca
(OH)2 (平均粒径325mesh)、CaCO 3
(平均粒径200mesh)ないしMgCO3 をキャリ
アガスと共に、溶融シリコン中に吹き込んだ。吹込時間
を20〜120分間とし、冷却、固化後のシリコン中の
B量含有量をICP法により分析した。これらをまとめ
て表2に示す。
EXAMPLES Siri shown in Table 1 containing 22 to 7 ppm of B
Dissolve 20 kg of con in a silica crucible under Ar atmosphere
Was. Inner diameter covered with alumina tube at a melt temperature of 1500 ℃
Dip an 8 mm silica tube into the melt from above and
The carrier gas was blown in at 1 / min. At this time, Ca
(OH)Two (Average particle size 325 mesh), CaCO Three 
(Average particle size 200 mesh) or MgCOThree Carry
It was blown into molten silicon together with Agus. Blowing time
For 20 to 120 minutes, and after cooling and solidifying in the silicon
The B content was analyzed by the ICP method. Put these together
Are shown in Table 2.

【0012】これらの結果より、溶融シリコン中でH2
OないしCO2 を発生する固体をシリコン中に吹き込む
ことにより、シリコン中のBを低下することができる。
とりわけ、実施例No.1〜5に比較すると明らかなよ
うに、m* =12M/t(ここで、M;シリコン量k
g、t;吹込時間min)で規定されるm* よりも発生
ガス量を大きくした場合にその効果は大きい。
From these results, H 2 in molten silicon
B in the silicon can be lowered by blowing a solid that generates O or CO 2 into the silicon.
In particular, Example No. As is clear from comparison with 1 to 5, m * = 12 M / t (where M; silicon amount k
The effect is great when the amount of generated gas is larger than m * defined by g, t; blowing time min).

【0013】なお、これらの処理によりシリコン中に入
るCaの量は最大90ppmであり、この量はシリコン
インゴットを製造する際に一方向凝固精製を行うことに
より除去可能な量であり、問題はなかった。また、吹き
込みノズルの閉塞や、ガス発生時の突沸による溶融シリ
コンの飛散は観察されなかった。
The maximum amount of Ca that enters the silicon by these treatments is 90 ppm, and this amount can be removed by carrying out directional solidification refining during the production of a silicon ingot, and there is no problem. It was No clogging of the blowing nozzle and no scattering of molten silicon due to bumping when gas was generated were observed.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【発明の効果】本発明によれば、Siから最も除去する
ことが難しいBを除去できることとなった。従って、A
lやCa、Feなどを除去する従来の方法を組合せるこ
とにより、金属Siから安価かつ大量に太陽電池用の原
料Siを製造することができる。これにより現在特に発
展が期待されている太陽電池産業で唯一ネックポイント
となっている原料問題を解決することができる。
According to the present invention, B, which is the most difficult to remove from Si, can be removed. Therefore, A
By combining conventional methods for removing l, Ca, Fe, etc., it is possible to inexpensively and in large quantities manufacture raw material Si for solar cells from metallic Si. As a result, it is possible to solve the raw material problem, which is the only bottleneck in the solar cell industry, which is expected to develop at present.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1400℃以下で分解しH2 O及び/又
はCO2 を発生する1種又は2種以上の固体を、キャリ
アガスと共に溶融Si浴中に吹込むことを特徴とする金
属シリコン中のボロン除去方法。
1. In metallic silicon, characterized in that one or more solids which decompose at 1400 ° C. or lower and generate H 2 O and / or CO 2 are blown into a molten Si bath together with a carrier gas. How to remove boron.
【請求項2】 前記キャリアガスがAr、H2 及びCO
からなる群から選ばれた1種または2種以上の混合物で
あることを特徴とする請求項1記載の金属シリコン中の
ボロン除去方法。
2. The carrier gas is Ar, H 2 and CO
The method for removing boron in metallic silicon according to claim 1, which is a mixture of one or more selected from the group consisting of:
【請求項3】 前記固体がCa(OH)2 及び/又はC
aCO3 であることを特徴とする請求項1又は2記載の
金属シリコン中のボロン除去方法。
3. The solid is Ca (OH) 2 and / or C
The method for removing boron in metallic silicon according to claim 1 or 2, which is aCO 3 .
JP1120896A 1996-01-25 1996-01-25 Removal of boron from metallic silicon Withdrawn JPH09202611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1120896A JPH09202611A (en) 1996-01-25 1996-01-25 Removal of boron from metallic silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1120896A JPH09202611A (en) 1996-01-25 1996-01-25 Removal of boron from metallic silicon

Publications (1)

Publication Number Publication Date
JPH09202611A true JPH09202611A (en) 1997-08-05

Family

ID=11771596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1120896A Withdrawn JPH09202611A (en) 1996-01-25 1996-01-25 Removal of boron from metallic silicon

Country Status (1)

Country Link
JP (1) JPH09202611A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085134A1 (en) * 2004-03-03 2005-09-15 Nippon Steel Corporation Method for removing boron from silicon
JP2006193346A (en) * 2005-01-11 2006-07-27 Nippon Steel Corp Refining method of silicon
WO2006085679A1 (en) * 2005-02-09 2006-08-17 Nippon Steel Materials Co., Ltd. Method of refining silicon
JP2006240963A (en) * 2005-03-07 2006-09-14 Nippon Steel Corp Method for manufacturing high purity silicon
JP2006240964A (en) * 2005-03-07 2006-09-14 Nippon Steel Corp Method for producing high purity silicon
JP2006282497A (en) * 2005-03-07 2006-10-19 Nippon Steel Corp Method for producing high purity silicon
JP2009057240A (en) * 2007-08-31 2009-03-19 Shin Etsu Chem Co Ltd Method for producing high purity silicon
JP2009084129A (en) * 2007-10-02 2009-04-23 Hitachi Zosen Corp Method for producing high purity silicon
US7615202B2 (en) 2005-03-07 2009-11-10 Nippon Steel Materials Co., Ltd. Method for producing high purity silicon
WO2010126016A1 (en) * 2009-04-27 2010-11-04 信越化学工業株式会社 Method for removing impurities from flux
WO2010126017A1 (en) * 2009-04-27 2010-11-04 信越化学工業株式会社 Method for removing impurities from flux

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100802141B1 (en) * 2004-03-03 2008-02-12 신닛뽄세이테쯔 카부시키카이샤 Method for removing boron from silicon
US8034151B2 (en) 2004-03-03 2011-10-11 Nippon Steel Corporation Method for removing boron from silicon
WO2005085134A1 (en) * 2004-03-03 2005-09-15 Nippon Steel Corporation Method for removing boron from silicon
JP2006193346A (en) * 2005-01-11 2006-07-27 Nippon Steel Corp Refining method of silicon
KR100911922B1 (en) * 2005-02-09 2009-08-13 신닛테츠 마테리알즈 가부시키가이샤 Method of refining silicon
US7662356B2 (en) 2005-02-09 2010-02-16 Nippon Steel Materials Co., Ltd. Method of refining Si
WO2006085679A1 (en) * 2005-02-09 2006-08-17 Nippon Steel Materials Co., Ltd. Method of refining silicon
JP2006282497A (en) * 2005-03-07 2006-10-19 Nippon Steel Corp Method for producing high purity silicon
JP2006240964A (en) * 2005-03-07 2006-09-14 Nippon Steel Corp Method for producing high purity silicon
JP2006240963A (en) * 2005-03-07 2006-09-14 Nippon Steel Corp Method for manufacturing high purity silicon
JP4741860B2 (en) * 2005-03-07 2011-08-10 新日鉄マテリアルズ株式会社 Method for producing high purity silicon
US7615202B2 (en) 2005-03-07 2009-11-10 Nippon Steel Materials Co., Ltd. Method for producing high purity silicon
JP2009057240A (en) * 2007-08-31 2009-03-19 Shin Etsu Chem Co Ltd Method for producing high purity silicon
JP2009084129A (en) * 2007-10-02 2009-04-23 Hitachi Zosen Corp Method for producing high purity silicon
WO2010126017A1 (en) * 2009-04-27 2010-11-04 信越化学工業株式会社 Method for removing impurities from flux
WO2010126016A1 (en) * 2009-04-27 2010-11-04 信越化学工業株式会社 Method for removing impurities from flux

Similar Documents

Publication Publication Date Title
JP3205352B2 (en) Silicon purification method and apparatus
TWI268910B (en) Method for removing boron from silicon
FI86839C (en) Process for improving the quality of an alumina material
JP5140835B2 (en) Manufacturing method of high purity silicon
JPH09202611A (en) Removal of boron from metallic silicon
US6632413B2 (en) Method for purifying silicon
US7615202B2 (en) Method for producing high purity silicon
JP4900600B2 (en) Manufacturing method of high purity silicon
US5935295A (en) Molten aluminum treatment
JP2024026145A (en) Silicon granules for preparation of trichlorosilane and associated production method
JP4511957B2 (en) Silicon refining method
JPH10182134A (en) Refining of silicon
US4773929A (en) Method of and device for the simultaneous heating and refining of a metal bath
US3975187A (en) Treatment of carbothermically produced aluminum
US4892580A (en) Lead-containing additive for steel melts
CA1078626A (en) Treatment of carbothermically produced aluminum
JP2003213345A (en) Method for refining metal
JPH10130011A (en) Removing method of boron from metal silicon
RU2010881C1 (en) Process of producing aluminum-silicon alloys
US5147450A (en) Process for purifying magnesium
JPS6141712A (en) Removal of contamination metal form pig iron, steel, other metals and metal alloy
EP0153260B1 (en) Process for the production of ferromanganese refined by metallothermic reactions in the ladle
JPH0125363B2 (en)
JPH05148564A (en) Method for adding of si to mg or mg alloy
BE1003182A4 (en) Method for producing steel for standard use

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030401