JP2006192651A - Mold - Google Patents

Mold Download PDF

Info

Publication number
JP2006192651A
JP2006192651A JP2005005283A JP2005005283A JP2006192651A JP 2006192651 A JP2006192651 A JP 2006192651A JP 2005005283 A JP2005005283 A JP 2005005283A JP 2005005283 A JP2005005283 A JP 2005005283A JP 2006192651 A JP2006192651 A JP 2006192651A
Authority
JP
Japan
Prior art keywords
cavity
mirror surface
temperature control
side mirror
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005005283A
Other languages
Japanese (ja)
Inventor
Takashi Tsuruta
崇 鶴田
Masabumi Kurisu
正文 栗栖
Shinji Kadoriku
晋二 角陸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005005283A priority Critical patent/JP2006192651A/en
Publication of JP2006192651A publication Critical patent/JP2006192651A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold having a temperature conditioning circuit which realizes a high quality molding method for suppressing the warpage of an optical disk substrate. <P>SOLUTION: Multistage fixed mirror surface core temperature conditioning circuits 32-1 to 32-3 and movable mirror surface core temperature conditioning circuits 33-1 to 33-3 are respectively provided to a fixed mirror surface core 25 and a movable mirror surface core 29, and the distances from the temperature conditioning circuits 32-1 to 32-3 to a cavity 23 are optimized in inner, middle and outer peripheries to equalize the surface temperature distribution of the optical disk after molding and ejection when a fluid is passed through the temperature conditioning grooves which constitute the temperature conditioning circuits 32-1 to 32-3 and 33-1 to 33-3. Accordingly, the optical disk substrate of high quality having no warpage can be produced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、板状の成形物の高品質成形を目的とした成形金型であり、より詳細には光ディスク成形金型に関するものである。   The present invention relates to a molding die for the purpose of high-quality molding of a plate-like molded product, and more particularly to an optical disc molding die.

従来の光ディスク成形金型の温調回路構造としては、キャビティ(製品部)と固定側・可動側鏡面入れ子のそれぞれの温調回路内壁キャビティ側頂部の距離を均一としているものがあった(例えば、特許文献1参照)。   As a temperature control circuit structure of a conventional optical disk molding die, there is one in which the distance between the cavity (product part) and the top of the temperature control circuit inner wall cavity side of each of the fixed side and movable side mirror inserts is uniform (for example, Patent Document 1).

図3は特許文献1に記載された従来の光ディスク成形金型の温調回路構造を示すものである。金型装置は、図3に示すように、固定側金型部20と、この固定側金型部20に対して接離動作される可動側金型部21とを備えてなり、これら固定側金型部20と可動側金型部21、及び固定側金型部20に取り付けられた外周リング22とによって構成される閉空間が射出装置から成形材料が充填されるキャビティ23とされる。金型装置13においては、外周リング22によってキャビティ23の外周部分を閉鎖することで、成形されるディスク基板の外周が規定される。   FIG. 3 shows a temperature control circuit structure of a conventional optical disk molding die described in Patent Document 1. In FIG. As shown in FIG. 3, the mold apparatus includes a fixed mold part 20 and a movable mold part 21 that is moved toward and away from the fixed mold part 20. A closed space formed by the mold part 20, the movable mold part 21, and the outer peripheral ring 22 attached to the fixed mold part 20 is a cavity 23 filled with a molding material from the injection device. In the mold apparatus 13, the outer periphery of the disk substrate to be molded is defined by closing the outer peripheral portion of the cavity 23 by the outer peripheral ring 22.

固定側金型部20は、固定側取付板24と、この固定側取付板24に設けられる固定側鏡面入れ子25と、この固定側鏡面入れ子25の一方面、具体的にはキャビティ23側の面に取り付けられるスタンパ26とを備えてなる。そして、この固体側取付板24の中央部には、キャビティ23内に成形材料を供給するスプルー27aを有するスプルーブッシュ27が配設されている。   The fixed-side mold part 20 includes a fixed-side mounting plate 24, a fixed-side mirror surface insert 25 provided on the fixed-side mount plate 24, and one surface of the fixed-side mirror surface insert 25, specifically, a surface on the cavity 23 side. And a stamper 26 attached to the head. A sprue bush 27 having a sprue 27 a for supplying a molding material into the cavity 23 is disposed at the center of the solid side mounting plate 24.

スタンパ26は、ディスク基板形成の際の原盤となるものであり、一方面、具体的にはキャビティ23側に配される面に、ディスク基板に転写するための凹凸パターンが形成されている。このスタンパ26は、最外周近傍が上述した外周リング22の一部によって保持されることにより固定側鏡面入れ子25上に取り付けられている。また、スタンパ26は、図示を省略する内径ガイドにより、その最内周側の位置が規制されている。   The stamper 26 serves as a master for forming a disk substrate, and an uneven pattern for transferring to the disk substrate is formed on one surface, specifically, the surface disposed on the cavity 23 side. The stamper 26 is mounted on the fixed mirror end insert 25 by holding the vicinity of the outermost periphery by a part of the outer peripheral ring 22 described above. Further, the position of the innermost circumferential side of the stamper 26 is regulated by an inner diameter guide (not shown).

可動側金型部21は、可動側取付板28と、この可動側取付板28に設けられる可動側鏡面入れ子29とを備えてなり、その中央部にはセンターピン30及びゲートカットパンチ31が配設されている。   The movable-side mold part 21 includes a movable-side mounting plate 28 and a movable-side mirror insert 29 provided on the movable-side mounting plate 28, and a center pin 30 and a gate cut punch 31 are arranged at the center. It is installed.

このような金型装置においては、固定側鏡面入れ子25と可動側鏡面入れ子29とにそれぞれ設けられる温調回路32,33によって、ディスク基板成形時の金型温度が調節される。温調回路32,33は流体を通す溝によって構成されている。
特開2003−305756号公報
In such a mold apparatus, the mold temperature at the time of molding the disk substrate is adjusted by the temperature control circuits 32 and 33 provided in the fixed side mirror surface insert 25 and the movable side mirror insert 29, respectively. The temperature control circuits 32 and 33 are constituted by grooves through which a fluid passes.
JP 2003-305756 A

図3に示す従来の構成ではおいて、固定側鏡面入れ子25の温調回路32及び可動側鏡面入れ子29の温調回路33はそれぞれキャビティ23までの距離を均一としていた。   In the conventional configuration shown in FIG. 3, the temperature control circuit 32 of the fixed mirror surface insert 25 and the temperature control circuit 33 of the movable mirror insert 29 have a uniform distance to the cavity 23.

しかしながら従来の構成では、キャビティ外周部よりも金型に接する表面積に対して樹脂体積の大きいスプルー部の影響で熱容量の大きいキャビティ内周部についても均一に温調回路を配置しているため、成形取り出し後の製品において温度分布がばらつき、収縮タイミングのずれによる製品反りが発生し、安定した品質の製品が生産できないという課題を有していた。   However, in the conventional configuration, the temperature control circuit is evenly arranged on the inner peripheral part of the cavity having a large heat capacity due to the influence of the sprue part having a large resin volume with respect to the surface area in contact with the mold rather than the outer peripheral part of the cavity. In the product after taking out, the temperature distribution is varied, and the product warpage occurs due to the deviation of the shrinkage timing, and there is a problem that a product of stable quality cannot be produced.

本発明は、前記従来の課題を解決するもので、高品質の製品を得るための温調回路構造を持った成形金型を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and an object thereof is to provide a molding die having a temperature control circuit structure for obtaining a high-quality product.

上記目的を達成するために、固定側鏡面入れ子と、可動側鏡面入れ子と、前記固定側鏡面入れ子あるいは前記可動側鏡面入れ子のうち少なくとも一方に備えた流体を通す温調溝とにより構成し、前記固定側鏡面入れ子と前記可動側鏡面入れ子とを組み合わせ、壁面に2つの平行な平面を有するキャビティを形成する成形金型において、前記キャビティに成形材料を供給するスプルー部の中心を通り前記キャビティ平面に垂直な断面において、前記スプルー部の中心からn番目の前記温調溝断面の前記キャビティ側の頂部と、前記キャビティの内壁の平面との距離をLとし、前記スプルー部の中心からn+1番目の前記温調溝断面の前記キャビティ側の頂部と、前記キャビティの内壁の平面との距離をLn+1としたとき、L<Ln+1の関係を満たすことを特徴とする。 In order to achieve the above-mentioned object, it is constituted by a fixed side mirror surface nest, a movable side mirror surface nest, and a temperature control groove for passing a fluid provided in at least one of the fixed side mirror surface nest or the movable side mirror surface nest, In a molding die for forming a cavity having two parallel planes on a wall surface by combining a fixed side mirror surface insert and the movable side mirror insert, and passing through the center of a sprue portion for supplying a molding material to the cavity, the cavity plane In a vertical cross section, the distance between the top of the cavity side of the nth temperature control groove cross section from the center of the sprue section and the plane of the inner wall of the cavity is L n, and n + 1 th from the center of the sprue section. when the said cavity-side of the top of the temperature regulating groove section, the distance between the plane of the inner wall of the cavity was L n + 1, L n < L n + And satisfies the relation.

また本発明は、前記成形金型は光ディスク成形用であることを特徴とする。   According to the present invention, the molding die is for optical disc molding.

このような構成によって、成形後の光ディスク基板における内周・中周・外周での表面温度を安定させることができ、製品反り量を減少させることができる。   With such a configuration, it is possible to stabilize the surface temperatures at the inner circumference, middle circumference, and outer circumference of the optical disc substrate after molding, and to reduce the amount of product warpage.

本発明によれば、成形後の製品の反りを減少させることができる。また、適正な温度コントロールを実現することで、よりハイサイクルな成形が可能となり、DVD−RやDVD−RAM等のより高密度な成形を要する製品の転写性を向上させることができる。   According to the present invention, it is possible to reduce warpage of a product after molding. Further, by realizing appropriate temperature control, higher cycle molding becomes possible, and transferability of products that require higher density molding such as DVD-R and DVD-RAM can be improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の一実施の形態における光ディスク成形金型の温調回路構造の概略を示す断面図である。なお、図1において、図3に示す従来技術における部材と同一部材あるいは同一機能の部材については同じ符号を用い、説明を省略する。   FIG. 1 is a cross-sectional view showing an outline of a temperature control circuit structure of an optical disk molding die according to an embodiment of the present invention. In FIG. 1, the same members or members having the same functions as those in the prior art shown in FIG.

図1において、固定側鏡面入れ子25にある固定側鏡面入れ子温調回路32−1はキャビティ23の内周部の温調回路であり、固定側鏡面入れ子温調回路32−2はキャビティ23の中周部の温調回路であり、固定側鏡面入れ子温調回路32−3はキャビティ23の外周部の温調回路である。すなわち、固定側鏡面入れ子25を、これら内周・中周・外周を流体が巡るように温調回路32を構成している。また同様に可動側鏡面入れ子29についても、内周部は可動側鏡面入れ子温調回路33−1、中周部は可動側鏡面入れ子温調回路33−2、外周部は可動側鏡面入れ子温調回路33−3というように、可動側鏡面入れ子33を、これら内周・中周・外周を流体が巡るように温調回路33を構成している。さらに、固定側鏡面入れ子温調回路32−1〜3及び可動側鏡面入れ子温調回路33−1〜3における内壁キャビティ23側の頂部からキャビティ23平面までの距離を、内周・中周・外周の順で大きくなるように多段的に変化させている。   In FIG. 1, a fixed-side mirror nesting temperature adjustment circuit 32-1 in the fixed-side mirror nesting 25 is a temperature adjustment circuit in the inner periphery of the cavity 23, and a fixed-side mirror nesting temperature adjustment circuit 32-2 is located in the cavity 23. The fixed-side specular nesting temperature control circuit 32-3 is a temperature control circuit at the outer periphery of the cavity 23. That is, the temperature adjustment circuit 32 is configured so that the fluid circulates around the inner circumference, the middle circumference, and the outer circumference of the fixed-side mirror insert 25. Similarly, for the movable side mirror nesting 29, the inner peripheral part is a movable side mirror nesting temperature adjustment circuit 33-1, the middle part is a movable side mirror nesting temperature adjustment circuit 33-2, and the outer part is a movable side mirror nesting temperature adjustment circuit. As in the circuit 33-3, the temperature-control circuit 33 is configured so that the movable mirror surface insert 33 has a fluid circulating around the inner circumference, the middle circumference, and the outer circumference. Further, the distances from the top on the inner wall cavity 23 side to the plane of the cavity 23 in the fixed side mirror surface nesting temperature adjusting circuits 32-1 to 3 and the movable side mirror surface nesting temperature adjusting circuits 33-1 to 33-3 are determined as the inner circumference, the middle circumference, and the outer circumference. It is changed in multiple stages so as to increase in this order.

なお、上述した実施の形態においては、温調回路32,33が、キャビティ23に成形材料を供給するスプルー27aの中心をとおりかつキャビティ23平面に垂直な断面において3つの溝から形成されているが、それ以上の数の溝によって温調回路32,33を構成しても良い。この場合、次に記載する条件を満たす必要がある。   In the above-described embodiment, the temperature control circuits 32 and 33 are formed of three grooves in a cross section that passes through the center of the sprue 27a that supplies the molding material to the cavity 23 and is perpendicular to the plane of the cavity 23. The temperature control circuits 32 and 33 may be configured by a larger number of grooves. In this case, the following conditions must be satisfied.

キャビティ23に成形材料を供給するスプルー27aの中心をとおりかつキャビティ23平面に垂直な断面において、温調回路32,33を構成している溝のキャビティ23側の頂部とキャビティ23の内壁の平面との距離をLとし、温調回路32,33を構成している溝においてスプルー27aに近い内壁とスプルー27aの中心との距離をRとし、スプルー27aに近い順から順番に各溝を断面n溝(nは自然数)とし、断面n溝における距離RをR、距離LをLとし、断面n溝に対してスプルー27aから遠い側に隣り合う溝を断面n+1溝とし断面n+1溝の距離RをRn+1、距離LをLn+1としたとき、
<Rn+1ならばL<Ln+1
の関係を満たすように、温調回路32,33を構成する各溝の大きさを設定する。
In the cross section passing through the center of the sprue 27a that supplies the molding material to the cavity 23 and perpendicular to the plane of the cavity 23, the top of the groove constituting the temperature control circuit 32, 33 on the cavity 23 side and the plane of the inner wall of the cavity 23 , L is the distance between the inner wall close to the sprue 27a and the center of the sprue 27a in the grooves constituting the temperature control circuits 32 and 33, and the grooves are n-grooves in order from the closest to the sprue 27a. (Where n is a natural number), the distance R in the cross-sectional n-groove is R n , the distance L is L n , the groove adjacent to the side far from the sprue 27a with respect to the cross-sectional n-groove is the cross-sectional n + 1 groove, and the cross-section n + 1 groove distance R Is R n + 1 and the distance L is L n + 1 ,
If R n <R n + 1, then L n <L n + 1
The size of each groove constituting the temperature control circuits 32 and 33 is set so as to satisfy the relationship.

このように、熱容量の大きい内周部より多段的に温調回路を構成し、最適なレイアウトをとることで、より収縮バラツキが小さく反りの少ない低温条件での成形が可能となり、成形取り出し後の光ディスク基板の表面温度分布が安定する。これにより、基板の反りを抑えた高品質の光ディスク生産をすることができる。   In this way, the temperature control circuit is configured in multiple stages from the inner periphery with a large heat capacity, and by taking an optimal layout, molding under low temperature conditions with less shrinkage variation and less warping is possible. The surface temperature distribution of the optical disk substrate is stabilized. Thereby, it is possible to produce a high-quality optical disc with suppressed substrate warpage.

図2は本実施の形態にてDVD−RAMを成形した結果をグラフにまとめたものである。本実施の形態では、水を媒体に渦巻状に温調回路を配置したもので、幾度の解析・シミュレーションにより、温調回路内壁キャビティ側の頂部からキャビティまでの距離を設定している。   FIG. 2 is a graph summarizing the results of molding the DVD-RAM in this embodiment. In this embodiment, the temperature control circuit is arranged in a spiral shape using water as a medium, and the distance from the top on the temperature control circuit inner wall cavity side to the cavity is set by several analyzes and simulations.

従来方法では、取り出し直後の製品のデータ記録面内周部の温度が約130℃と高温で、かつデータ記録面外周部との温度差が約6℃あり製品反りの状態が不安定であったのに対し、本実施の形態によればデータ記録面内中外周の温度差が2℃かつ、従来方法より10℃程度取り出し直後の製品表面温度の温度低下を可能とした。これにより、データ記録面において、成形温度を約10℃下げることができ、取り出し直後の成形品表面温度バラツキも約1/3に抑えたことが分かる。結果として、製品反り量を減少させることができる。   In the conventional method, the temperature of the inner periphery of the data recording surface of the product immediately after removal is as high as about 130 ° C., and the temperature difference from the outer periphery of the data recording surface is about 6 ° C., so that the product warpage is unstable. On the other hand, according to the present embodiment, the temperature difference between the inner and outer circumferences of the data recording surface is 2 ° C., and the product surface temperature can be lowered immediately after taking out by about 10 ° C. from the conventional method. Thus, it can be seen that the molding temperature can be lowered by about 10 ° C. on the data recording surface, and the variation of the surface temperature of the molded product immediately after the removal is also suppressed to about 1 /. As a result, the amount of product warpage can be reduced.

なお、本実施の形態においては、DVD−RAM基板成形を一例にとったが、DVD−Rを始め、その他の光ディスク基板や精密薄肉成形工法に応用しても良い。   In the present embodiment, the DVD-RAM substrate molding is taken as an example, but the present invention may be applied to other optical disk substrates and precision thin-wall molding methods including DVD-R.

本発明は、光ディスク成形金型や精密薄肉製品を生産する成形金型において、流体を温調回路媒体とする成形金型に応用可能である。   INDUSTRIAL APPLICABILITY The present invention can be applied to a molding die that uses a fluid as a temperature control circuit medium in an optical disc molding die or a molding die that produces a precision thin-walled product.

本発明の一実施の形態における光ディスク成形金型の温調回路の概略構造を示す断面図Sectional drawing which shows schematic structure of the temperature control circuit of the optical disk molding die in one embodiment of this invention 本実施の形態にてDVD−RAMを成形した結果を示すグラフThe graph which shows the result of having shape | molded DVD-RAM in this Embodiment 従来の光ディスク成形金型温調回路構造の概略図Schematic diagram of conventional optical disk molding die temperature control circuit structure

符号の説明Explanation of symbols

23 キャビティ(製品部)
25 固定側鏡面入れ子
29 可動側鏡面入れ子
32,32−1,32−2,32−3 固定側鏡面入れ子温調回路
33,33−1,33−2,33−3 固定側鏡面入れ子温調回路
23 Cavity (Product part)
25 Fixed side mirror surface nesting 29 Movable side mirror surface nesting 32, 32-1, 32-2, 32-3 Fixed side mirror surface nesting temperature control circuit 33, 33-1, 33-2, 33-3 Fixed side mirror surface nesting temperature control circuit

Claims (2)

固定側鏡面入れ子と、可動側鏡面入れ子と、前記固定側鏡面入れ子あるいは前記可動側鏡面入れ子のうち少なくとも一方に備えた流体を通す温調溝とにより構成し、前記固定側鏡面入れ子と前記可動側鏡面入れ子とを組み合わせ、壁面に2つの平行な平面を有するキャビティを形成する成形金型において、
前記キャビティに成形材料を供給するスプルー部の中心を通り前記キャビティ平面に垂直な断面において、
前記スプルー部の中心からn番目の前記温調溝断面の前記キャビティ側の頂部と、前記キャビティの内壁の平面との距離をLとし、
前記スプルー部の中心からn+1番目の前記温調溝断面の前記キャビティ側の頂部と、前記キャビティの内壁の平面との距離をLn+1としたとき、
<Ln+1の関係を満たすことを特徴とする成形金型。
The fixed-side mirror surface nesting, the movable-side mirror surface nesting, and a temperature control groove for passing a fluid provided in at least one of the fixed-side mirror surface nesting or the movable-side mirror surface nesting, and the fixed-side mirror surface nesting and the movable side In a mold that combines a mirror insert and forms a cavity with two parallel planes on the wall,
In a cross section that passes through the center of the sprue portion that supplies the molding material to the cavity and is perpendicular to the cavity plane,
The distance between the top of the nth temperature control groove section from the center of the sprue part on the cavity side and the plane of the inner wall of the cavity is L n ,
When the distance between the top of the n + 1 th temperature control groove cross section from the center of the sprue portion on the cavity side and the plane of the inner wall of the cavity is L n + 1 ,
A molding die characterized by satisfying a relationship of L n <L n + 1 .
前記成形金型は光ディスク成形用であることを特徴とする請求項1記載の成形金型。   2. The molding die according to claim 1, wherein the molding die is for optical disc molding.
JP2005005283A 2005-01-12 2005-01-12 Mold Pending JP2006192651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005005283A JP2006192651A (en) 2005-01-12 2005-01-12 Mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005005283A JP2006192651A (en) 2005-01-12 2005-01-12 Mold

Publications (1)

Publication Number Publication Date
JP2006192651A true JP2006192651A (en) 2006-07-27

Family

ID=36799088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005005283A Pending JP2006192651A (en) 2005-01-12 2005-01-12 Mold

Country Status (1)

Country Link
JP (1) JP2006192651A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061677A (en) * 2007-09-06 2009-03-26 Olympus Corp Mold apparatus for molding
JP2015189075A (en) * 2014-03-28 2015-11-02 日本電気株式会社 Metal mold and injection molding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061677A (en) * 2007-09-06 2009-03-26 Olympus Corp Mold apparatus for molding
JP2015189075A (en) * 2014-03-28 2015-11-02 日本電気株式会社 Metal mold and injection molding method

Similar Documents

Publication Publication Date Title
US20060220268A1 (en) Method and mold for injection molding optical article with increased surface accuracy
JP2006192651A (en) Mold
CN103370182B (en) The manufacture method of optical element and optical element
US20020067688A1 (en) Optical disc and mold for manufacturing the optical disc
JP2010082838A (en) Lens manufacturing method
WO2009101890A1 (en) Injection molding method
JP3871815B2 (en) Mold for optical disc
JP2006240038A (en) Mold, molding method, and molded product
JP2008257261A (en) Optical device, optical device molding die, and method for molding optical device
JP2006051822A (en) Plastic part and its shaping method
JP2000000826A (en) Molding metal mold
JP2007261142A (en) Mold for injection-molding optical lens
JP2000141381A (en) Disc-shaped plastic molded product
EP2085206A1 (en) Disk-molding mold and mirror surface disk
JP4695485B2 (en) Mold for molding and molding method
JP6304487B2 (en) Mold and injection molding method
JP2001129858A (en) Method for producing synthetic resin cylinder
JP2005231197A (en) Mold for molding plastic lens and method for producing plastic lens
JP4912091B2 (en) Mold for optical disk substrate molding
JP5120752B2 (en) Injection molding equipment
JP2009241297A (en) Method for manufacturing optical element, optical element molding mold, and optical element
JPH0243009A (en) Plastic molding mold
JP2010228157A (en) Injection molding method and injection molding machine
JP4024765B2 (en) Mold for molding disk substrate and molding method
JPH05212755A (en) Method for molding disk substrate