JP2006191736A - Re-adhesion control device of electric vehicle - Google Patents

Re-adhesion control device of electric vehicle Download PDF

Info

Publication number
JP2006191736A
JP2006191736A JP2005001263A JP2005001263A JP2006191736A JP 2006191736 A JP2006191736 A JP 2006191736A JP 2005001263 A JP2005001263 A JP 2005001263A JP 2005001263 A JP2005001263 A JP 2005001263A JP 2006191736 A JP2006191736 A JP 2006191736A
Authority
JP
Japan
Prior art keywords
value
motor
adhesion control
frequency
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005001263A
Other languages
Japanese (ja)
Inventor
Jiro Toyosaki
次郎 豊崎
Yasushi Matsumoto
康 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2005001263A priority Critical patent/JP2006191736A/en
Publication of JP2006191736A publication Critical patent/JP2006191736A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the deterioration of acceleration or deceleration performance caused by idling or sliding by a simple and inexpensive constitution. <P>SOLUTION: A PID adjuster 16 is arranged with at least either of a rotation number deflection amount of a motor 2 obtained by a rotation number deflection amount operation part 12, and a time change rate deflection amount of the rotation number of the motor obtained by a deflection amount operation part 14 as an input, and a frequency command value with respect to the motor 2 or its torque command value is controlled by using the output value of the adjuster so as to be narrowed down to either or the command values, thus enabling the re-adhesion control of an electric vehicle by a re-adhesion control device that is simple in constitution and less in adjustment amount. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、モータの回転周波数を検出または推定する手段と、インバータなどの電力変換装置とを用いた電気車の制御において、駆動している車輪が空転または滑走したときこれを正常な状態、つまり粘着状態にするための再粘着制御装置に関する。   In the control of an electric vehicle using a means for detecting or estimating the rotation frequency of a motor and a power conversion device such as an inverter, the present invention is in a normal state when a driven wheel is idled or slid. The present invention relates to a re-adhesion control device for making an adhesive state.

図11は例えば特許文献1に開示されているこの種の制御装置を示す構成図である。同図において、1はインバータなどの電力変換装置、2は誘導電動機(モータ)、3はパルスジェネレータ(PG)、4は回転数(周波数)演算器、7は基準周波数選択器、8,11は減算器、9は関数発生器、10は変化率演算器で、これは4台のモータを1つの単位として駆動する場合の例である。すなわち、すべてのモータ2にそれぞれPG3を設け、このPG3の出力信号から回転数演算器4により、各モータ2の回転周波数fr1〜fr4を得るようにしている。なお、回転数演算器4には駆動輪の径のばらつきによる回転周波数の差異分を、惰行中の回転周波数によって補正する機能(車輪径差補正機能)を付加する場合もある。   FIG. 11 is a block diagram showing this type of control device disclosed in Patent Document 1, for example. In the figure, 1 is a power converter such as an inverter, 2 is an induction motor (motor), 3 is a pulse generator (PG), 4 is a rotation speed (frequency) calculator, 7 is a reference frequency selector, and 8 and 11 are A subtractor, 9 is a function generator, and 10 is a change rate calculator, which is an example of driving four motors as one unit. That is, all motors 2 are provided with PG 3, and the rotational frequency fr 1 to fr 4 of each motor 2 is obtained from the output signal of PG 3 by the rotational speed calculator 4. The rotation speed calculator 4 may be provided with a function (wheel diameter difference correction function) for correcting the difference in rotation frequency due to the variation in the diameter of the drive wheel by the rotation frequency during coasting.

回転数演算器4により求めた回転周波数fr1〜fr4は基準周波数選択器7、減算器8および変化率演算器10にそれぞれ入力される。基準周波数選択器7では、上記回転周波数のほかに力行/制動信号が入力され、力行時には回転周波数fr1〜fr4のうちの最低周波数を、制動時には回転周波数fr1〜fr4のうちの最大周波数を、それぞれ基準周波数fr(REF)として選択する。減算器8では、各モータの周波数fr1〜fr4と基準周波数fr(REF)との差を演算する。ここで、減算器8にも力行/制動信号が入力され、力行時には各モータの回転周波数から基準周波数を減算し、制動時には基準周波数から各モータの回転周波数を減算することで値がゼロ、または正の値になるようにしている。また、変化率演算器10では、回転周波数fr1〜fr4を入力して回転周波数の時間変化率を演算する。   The rotation frequencies fr1 to fr4 obtained by the rotation number calculator 4 are input to the reference frequency selector 7, the subtractor 8, and the change rate calculator 10, respectively. In the reference frequency selector 7, a powering / braking signal is input in addition to the rotational frequency, and the minimum frequency among the rotational frequencies fr1 to fr4 is set during power running, and the maximum frequency among the rotational frequencies fr1 to fr4 is set during braking. Select as reference frequency fr (REF). The subtractor 8 calculates the difference between the frequencies fr1 to fr4 of each motor and the reference frequency fr (REF). Here, a power running / braking signal is also input to the subtractor 8, and the value is zero by subtracting the reference frequency from the rotational frequency of each motor during power running and subtracting the rotational frequency of each motor from the reference frequency during braking, or It is set to a positive value. Further, the change rate calculator 10 inputs the rotation frequencies fr1 to fr4 and calculates the time change rate of the rotation frequency.

減算器8で演算された回転周波数と基準周波数frとの差、および変化率演算器10で演算された時間変化率が、関数発生器9に入力される。関数発生器9では、入力の値に応じたモータ電流指令の絞込み量となる値を出力する。関数発生器9の出力値は減算器11に入力され、ここで本来のモータ電流指令から減算され、最終的に電力変換器1に入力するモータ電流指令が出力される構成となっている。   The difference between the rotation frequency calculated by the subtracter 8 and the reference frequency fr and the time change rate calculated by the change rate calculator 10 are input to the function generator 9. The function generator 9 outputs a value that is a reduction amount of the motor current command according to the input value. The output value of the function generator 9 is input to the subtractor 11, where it is subtracted from the original motor current command, and finally the motor current command input to the power converter 1 is output.

以上のような構成とすることで、それまでは、空転または滑走状態を検知した場合に、或る一定のパターンでモータ電流指令を低減していたものを、空転または滑走状態におけるモータの回転状態(回転周波数と基準周波数との差,回転周波数の時間変化率)をもとに、モータ電流指令の低減量を決定できる。これにより、空転または滑走状態に合わせた再粘着を図ることができ、電気車の加速または減速性能の低下を最小限に抑えられるようにしている。   By adopting the configuration as described above, until the idling or sliding state is detected, the motor current command is reduced in a certain pattern, and the motor rotating state in the idling or sliding state is changed. The reduction amount of the motor current command can be determined based on (the difference between the rotation frequency and the reference frequency, the time change rate of the rotation frequency). As a result, re-adhesion in accordance with the idling or sliding state can be achieved, and a decrease in the acceleration or deceleration performance of the electric vehicle can be minimized.

特許第3246075号公報(第5頁、図1)Japanese Patent No. 3246075 (5th page, FIG. 1)

図11の装置では、車輪とレールとの間の粘着状態によって、大きく変化する空転または滑走時の回転周波数の挙動に応じてモータ電流指令の絞込み量を決定することで、空転または滑走による加速あるいは減速性能の低下を最小限に抑えることができる。
しかし、下記(1),(2)ような問題がある。
(1)必要となる関数発生器の入出力特性を作り込まなければならず、手間と時間が掛かる。これにより、開発費の増大、ひいては装置の高価格化を招く。
(2)性能を向上させようとすると、調整要素の増加、または関数発生器の情報量の増加につながり、制御装置への負担が増加する。
In the apparatus of FIG. 11, acceleration or slipping due to idling or sliding is determined by determining the amount of narrowing of the motor current command in accordance with the behavior of the rotational frequency during idling or sliding that varies greatly depending on the adhesion state between the wheel and the rail. A reduction in deceleration performance can be minimized.
However, there are problems (1) and (2) below.
(1) The input / output characteristics of the required function generator must be created, which takes time and effort. This leads to an increase in development costs and, consequently, an increase in the price of the device.
(2) Attempting to improve performance leads to an increase in adjustment factors or an increase in the amount of information in the function generator, which increases the burden on the control device.

したがって、この発明の課題は、簡単かつ安価な構成で、空転または滑走による加速あるいは減速性能の低下を最小限に抑えることにある。   Accordingly, an object of the present invention is to minimize a decrease in acceleration or deceleration performance due to idling or sliding with a simple and inexpensive configuration.

このような課題を解決するため、請求項1の発明では、モータの回転周波数を検出または推定する手段と電力変換装置とを用いた電気車の再粘着制御装置において、
モータの回転周波数の検出値(推定値)またはモータ回転周波数の検出値(推定値)の時間変化率の少なくとも一方の値より演算される偏差量を入力値とするPID調節器を設け、その出力値を用いてモータに対する周波数指令またはトルク指令の少なくとも一方を絞り込むことを特徴とする。
In order to solve such a problem, in the invention of claim 1, in the re-adhesion control device for an electric vehicle using the means for detecting or estimating the rotational frequency of the motor and the power converter,
A PID controller is provided that has a deviation value calculated from at least one of the detected value (estimated value) of the motor rotation frequency and the time change rate of the detected value (estimated value) of the motor rotation frequency as its input value. The value is used to narrow down at least one of a frequency command and a torque command for the motor.

上記請求項1の発明においては、前記PID調節器の入力値に対してしきい値を設定し、前記PID調節器の入力値がしきい値よりも小さいときは、PID調節器の入力値をゼロとすることができる(請求項2の発明)。この請求項2の発明においては、前記PID調節器の入力値がゼロのときは、一定時間後に前記PID調節器の出力値(積分項)をゼロまで低減することができる(請求項3の発明)。また、請求項1〜3の発明においては、前記PID調節器の出力部にローパスフィルタを挿入することができる(請求項4の発明)。   In the first aspect of the present invention, a threshold value is set for the input value of the PID adjuster, and when the input value of the PID adjuster is smaller than the threshold value, the input value of the PID adjuster is set. It can be zero (invention of claim 2). In the invention of claim 2, when the input value of the PID regulator is zero, the output value (integral term) of the PID regulator can be reduced to zero after a certain time (invention of claim 3). ). In the first to third aspects of the invention, a low-pass filter can be inserted into the output section of the PID adjuster (the fourth aspect of the invention).

この発明によれば、簡単な構成で車輪とレールとの間の粘着状態により大きく変化する空転または滑走時の回転周波数の挙動に応じて、モータ電流指令の絞込み量を決定するようにしたので、空転または滑走による加速あるいは減速性能の低下を最小限に抑えることが可能となる。その結果、安価で調整の必要が少ない(他機種への適用が容易な)再粘着制御装置を提供することができる。   According to the present invention, the amount of narrowing down of the motor current command is determined in accordance with the behavior of the rotational frequency at the time of idling or sliding greatly changing depending on the adhesion state between the wheel and the rail with a simple configuration. It is possible to minimize a decrease in acceleration or deceleration performance due to idling or sliding. As a result, it is possible to provide a re-adhesion control device that is inexpensive and requires little adjustment (easily applied to other models).

図1はこの発明の第1の実施の形態を示す構成図である。
図1において、1はインバータなどの電力変換装置、2は誘導電動機(モータ)、3はパルスジェネレータ(PG)、4は回転数(周波数)演算器、11は減算器、12は回転数演算値をもとに偏差量を演算する回転数偏差量演算部、13は回転数演算値から回転数の時間変化率を求める時間変化率演算器、14は回転数の時間変化率演算値をもとに偏差量を演算する偏差量演算部、15は加算器、16はPID(P:比例、I:積分、D:微分)調節器である。
FIG. 1 is a block diagram showing a first embodiment of the present invention.
In FIG. 1, 1 is a power conversion device such as an inverter, 2 is an induction motor (motor), 3 is a pulse generator (PG), 4 is a rotation speed (frequency) calculator, 11 is a subtractor, and 12 is a rotation speed calculation value. Rotational speed deviation amount calculation unit for calculating the deviation amount based on the above, 13 is a time change rate calculator for calculating the time change rate of the rotation speed from the rotation speed calculation value, and 14 is based on the time change rate calculation value of the rotation speed A deviation amount calculation unit for calculating a deviation amount, 15 is an adder, and 16 is a PID (P: proportional, I: integral, D: derivative) adjuster.

図1に示すように、この発明の特徴はPID調節器16を用いて、空転または滑走状態になった場合の再粘着制御を行なうことにある。そこで、まずPID調節器により再粘着制御が可能であることについて、以下に説明する。なお、空転は力行時の現象であり、滑走は制動時の現象であるが、発生原理と再粘着方法については、符号の違いや変化量の増減関係に違いはあるものの、基本的には同様に考えられるので、以下では空転の場合を例に説明することとする。   As shown in FIG. 1, a feature of the present invention resides in that the PID controller 16 is used to perform re-adhesion control when the vehicle is idling or sliding. Therefore, first, the fact that re-adhesion control is possible with the PID controller will be described below. Note that idling is a phenomenon during power running and sliding is a phenomenon during braking, but the generation principle and re-adhesion method are basically the same, although there are differences in the sign and the change in the amount of change. In the following, the case of idling will be described as an example.

空転が発生すると、空転が発生した軸のモータ回転数は、他の車軸のモータ回転数よりも高くなる。空転が発生する原因は、モータが発生するトルクが車輪の粘着力を上回ってしまったためであり、この空転状態を回避するためには、基本的に次の2つの方法が考えられる。
(1)車輪とレールとの間の粘着力を大きくする。
(2)モータが発生するトルクを絞る。
When idling occurs, the motor rotation speed of the shaft where idling occurs becomes higher than the motor rotation speed of the other axles. The reason why idling occurs is that the torque generated by the motor exceeds the adhesive force of the wheels. In order to avoid this idling state, the following two methods are basically conceivable.
(1) Increase the adhesion between the wheel and the rail.
(2) Reduce the torque generated by the motor.

上記(1)を実現する手段としては、車輪とレールに散砂することが挙げられるが、ここでは(2)の方法で再粘着させることを考える。
すなわち、空転が発生したときは、すばやくトルクを絞るようにする。ただし、必要以上に絞りすぎると、加速特性が悪化する。加速特性を悪化させないようにするためには、空転状態に応じた絞り量でトルクを絞るか、絞ったトルクを適切にもとの状態、またはもとの状態の近傍まで戻してやる必要がある。また、トルクをもとの状態に戻す過程で再度空転することも考えられるので、できるだけ緩やかな傾きでトルクをもとの状態に戻すことも重要である。
As means for realizing the above (1), it is possible to scatter sand on the wheels and rails. Here, it is considered to re-adhere by the method (2).
That is, when idling occurs, the torque is quickly reduced. However, if the aperture is reduced more than necessary, the acceleration characteristics will deteriorate. In order not to deteriorate the acceleration characteristics, it is necessary to reduce the torque by the amount of restriction according to the idling state, or to return the reduced torque appropriately to the original state or the vicinity of the original state. In addition, it is conceivable that the engine slips again in the process of returning the torque to the original state. Therefore, it is also important to return the torque to the original state with a gradient as gentle as possible.

以上のことを勘案すると、空転が発生してからのトルクの絞り方については、概略図2に示すような特性にするのが望ましいと考えられる。図2の関係を保ちつつ空転の状況に応じて調整量が変化できれば、状況に応じた最適な再粘着制御が実現可能となる。
図2は再粘着制御時の電流指令値特性を示すが、これは3つの領域に分けて考えることができる。領域(a)は空転が生じた時点ですみやかに粘着状態に戻すための領域であり、そのためには粘着状態を確保できるレベルまで瞬時に電流指令値を絞り込む必要がある。
Considering the above, it is considered desirable to have the characteristics shown in FIG. 2 as to how to reduce the torque after idling. If the adjustment amount can be changed according to the idling state while maintaining the relationship of FIG. 2, optimal re-adhesion control according to the situation can be realized.
FIG. 2 shows the current command value characteristics during the re-adhesion control, which can be considered in three regions. The area (a) is an area for quickly returning to the adhesive state at the time when idling occurs. For that purpose, it is necessary to instantaneously narrow the current command value to a level that can ensure the adhesive state.

また、領域(b)は、再粘着させた状態でできるだけ早くもとの状態に近づけるための領域であり、そのためには現在のモータの状況に応じて電流指令値をもとに戻す必要がある。さらに、領域(c)は、再度空転が発生しないように、空転が発生した時点での電流指令値から或る一定量低減した状態で、電流指令値を保持している領域である。この領域では、モータの状態はすでに空転が発生する前の正常な状態に戻っているものと考えてよい。   In addition, the area (b) is an area for returning to the original state as soon as possible in the re-adhered state, and for this purpose, it is necessary to return the current command value to the original state according to the current state of the motor. . Further, the region (c) is a region in which the current command value is held in a state where the current command value is reduced by a certain amount from the current command value at the time when the slipping occurs so that the slipping does not occur again. In this region, it may be considered that the motor has already returned to the normal state before idling.

ここで、空転したモータの回転周波数とトルク(電流)絞り量とトルク(電流)指令値との関係を図2に示す。
或るモータが回転すると、空転したモータの回転周波数は、急激に増加する(図2の(a)の領域)。この偏差量を用いて電流指令値を絞り込むことで、回転周波数の上昇は抑えられ、さらに、粘着状態での正常な回転周波数まで戻ることとなる(図2の(b)の領域)。しかし、この状態で、電流指令値も空転が発生した時点の値まで戻してしまうと、再び空転が発生する可能性が高くなる。そこで、空転したモータの回転周波数が再粘着して正常な状態に戻ったとしても、電流指令値だけは、空転が発生した時点の値まで戻さずに、或る一定量低減した状態で保持する期間を設ける(図2の(c)の領域)。
Here, FIG. 2 shows the relationship among the rotational frequency of the idling motor, the torque (current) throttle amount, and the torque (current) command value.
When a certain motor rotates, the rotational frequency of the idle motor increases rapidly (region (a) in FIG. 2). By narrowing down the current command value using this deviation amount, an increase in the rotational frequency is suppressed, and further, the normal rotational frequency in the adhesive state is restored (region (b) in FIG. 2). However, if the current command value is returned to the value at the time when idling occurs in this state, the possibility of idling again increases. Therefore, even if the rotational frequency of the idling motor returns to the normal state due to re-adhesion, only the current command value is held in a state where it is reduced by a certain amount without returning to the value at the time of idling. A period is provided (region (c) in FIG. 2).

以上、3つの領域の特性は、空転したモータの回転周波数を偏差量として、領域(a)の特性は微分動作で、領域(b)の特性は比例動作で、領域(c)の特性は領域(a)〜(b)の偏差量の積分動作としてそれぞれ実現できることから、いわゆるPID調節器を用いれば良いことが分かる。このとき、空転状態を示す偏差量としては、上記に示す各モータの回転周波数にもとづくもの、または、各モータの回転周波数から回転周波数の時間変化率を求め、その回転周波数の時間変化率にもとづくもの、の少なくとも一方を利用することができる。図2(d)の領域については、後述する。
以上のことから、空転が発生した場合の再粘着制御時の電流指令値の絞り量の特性を、ここではPID調節器にて近似的に実現するものとする。
As described above, the characteristics of the three regions are as follows: the rotational frequency of the idling motor is used as the deviation amount, the property of region (a) is the differential operation, the property of region (b) is the proportional operation, and the property of region (c) is the region It can be understood that a so-called PID controller may be used since each can be realized as an integration operation of the deviation amounts of (a) to (b). At this time, the deviation amount indicating the idling state is based on the rotation frequency of each motor described above, or the time change rate of the rotation frequency is obtained from the rotation frequency of each motor, and is based on the time change rate of the rotation frequency. At least one of those can be used. The area in FIG. 2D will be described later.
From the above, it is assumed here that the characteristics of the amount of restriction of the current command value at the time of re-adhesion control when idling occurs are approximately realized by the PID controller.

図3に図1の第1変形例を示す。
図1では、PID調節器16の出力値をそのまま電流指令値の低減量として用いているが、図3のようにPID調節器16aの出力値を電流指令値の低減率とし、減算器17で1から減算し、乗算器18でその値に本来の電流指令値を乗算することで、最終的な電流指令値とすることもできる。その他は、図1の場合と同様である。
また、図1および図3では電流指令値を絞り込むようにしているが、電流指令値の代わりに周波数指令値を絞り込むようにしても良く、その両方を絞り込むようにしても良い。
FIG. 3 shows a first modification of FIG.
In FIG. 1, the output value of the PID regulator 16 is used as it is as the reduction amount of the current command value, but the output value of the PID regulator 16 a is set as the current command value reduction rate as shown in FIG. The final current command value can also be obtained by subtracting 1 from 1 and multiplying the value by the original current command value by the multiplier 18. Others are the same as the case of FIG.
1 and 3, the current command value is narrowed down, but the frequency command value may be narrowed down instead of the current command value, or both of them may be narrowed down.

図4に図1,3に示す回転数偏差量演算部の具体例を示す。
基準周波数演算部121は、回転周波数演算器4で演算された回転周波数fr1〜fr4を入力され、基準周波数を演算する。この基準周波数と回転周波数fr1〜fr4とを減算器122にて減算することで、回転数にもとづく偏差量を演算する。このとき、力行/制動信号を用い、力行時には回転周波数fr1〜fr4から基準周波数を減算し、制動時には基準周波数から各モータの回転周波数fr1〜fr4を減算することで、空転時と滑走時の偏差量の増減関係を合わせるようにしている。
FIG. 4 shows a specific example of the rotational speed deviation amount calculation unit shown in FIGS.
The reference frequency calculation unit 121 receives the rotation frequencies fr1 to fr4 calculated by the rotation frequency calculator 4 and calculates the reference frequency. By subtracting the reference frequency and the rotation frequencies fr1 to fr4 by the subtractor 122, a deviation amount based on the rotation speed is calculated. At this time, the power running / braking signal is used, the reference frequency is subtracted from the rotation frequencies fr1 to fr4 at the time of power running, and the rotation frequencies fr1 to fr4 of each motor are subtracted from the reference frequency at the time of braking. The amount of increase / decrease is matched.

図5に図1,3に示す時間変化率偏差量演算部の具体例を示す。
これは、図4の入力fr1〜fr4を回転周波数の時間変化率Δfr1/Δt〜Δfr4/Δtに変えた他は、図4と基本的に同じ構成となっている。なお、141は回転数の時間変化率基準値を演算する演算部であり、142は減算器である。
FIG. 5 shows a specific example of the time change rate deviation amount calculation unit shown in FIGS.
This is basically the same as FIG. 4 except that the inputs fr1 to fr4 in FIG. 4 are changed to the time change rates Δfr1 / Δt to Δfr4 / Δt of the rotation frequency. In addition, 141 is a calculating part which calculates the time change rate reference value of rotation speed, 142 is a subtractor.

図6に図1の第2の変形例を示す。
図6では、図1の偏差量演算部14の代わりに回転数の時間変化率の大小判別部19を設け、これにより各モータの回転数の時間変化率Δfr1/Δt〜Δfr4/Δtと設定値“αSET”との大小関係を判別する。すなわち、回転数の時間変化率の大小判別部19の出力を回転数偏差量調整部20へ入力し、各モータの回転数の時間変化率Δfr1/Δt〜Δfr4/Δtが設定値“αSET”よりも小さい場合には、回転数偏差量はゼロとしてPID調節器16に入力し、設定値“αSET”よりも大きい場合には、回転数偏差量演算部12で演算された偏差量をそのままPID調節器16の入力とする。こうすることで、回転数の時間変化率が設定値以上になった場合に、回転数偏差量をもとに戻す再粘着制御が可能となる。
FIG. 6 shows a second modification of FIG.
In FIG. 6, instead of the deviation amount calculation unit 14 of FIG. 1, a time change rate magnitude determination unit 19 of the rotation speed is provided, whereby the rotation speed change rate Δfr1 / Δt to Δfr4 / Δt of each motor and the set value The magnitude relationship with “αSET” is determined. That is, the output of the speed change rate magnitude determination unit 19 of the rotation speed is input to the rotation speed deviation adjustment unit 20, and the time change rates Δfr1 / Δt to Δfr4 / Δt of the rotation speeds of the respective motors are set from the set value “αSET”. Is smaller than the set value “αSET”, the deviation amount calculated by the rotation amount deviation calculation unit 12 is directly used for PID adjustment. The input of the device 16. By doing so, it becomes possible to perform re-adhesion control that restores the rotational speed deviation when the rate of change in the rotational speed with time exceeds a set value.

図6では、回転数の時間変化率に対して設定値を設け、かつ回転数偏差量をPID調節器16の入力値として用いたが、回転数偏差量に対して設定値を設け、かつ回転数の時間変化率偏差量をPID調節器16の入力値とすることも可能である。
図7に図1の第3の変形例を示す。これは、図1に示すものに対し、加算器15とPID調節器16との間に偏差量調整部21を設けた点が特徴である。
In FIG. 6, a set value is provided for the rate of change in the rotational speed with time, and the rotational speed deviation amount is used as an input value for the PID adjuster 16. It is also possible to use a numerical time change rate deviation amount as an input value of the PID controller 16.
FIG. 7 shows a third modification of FIG. This is characterized in that a deviation amount adjusting unit 21 is provided between the adder 15 and the PID adjuster 16 with respect to that shown in FIG.

上記偏差量調整部21では、図8にその特性を示すように、加算器15で加算された偏差量に対してしきい値レベルを設定し、偏差量がしきい値レベル以下の場合は偏差量をゼロとしてPID調節器16に入力し、しきい値レベルを超えた場合には偏差量をそのままPID調節器16の入力とする。こうすることで、或る一定の偏差量になるまでは再粘着制御をしないので、不必要な状態で再粘着制御を実施しなくて済む。また、再粘着制御の頻繁な繰り返しによる加減速特性の低下を極力抑えることができる。   As shown in FIG. 8, the deviation amount adjusting unit 21 sets a threshold level for the deviation amount added by the adder 15. When the deviation amount is equal to or less than the threshold level, the deviation amount is adjusted. The amount is input to the PID controller 16 as zero, and the deviation amount is directly input to the PID controller 16 when the threshold level is exceeded. In this way, since the re-adhesion control is not performed until a certain deviation amount is reached, it is not necessary to perform the re-adhesion control in an unnecessary state. In addition, a decrease in acceleration / deceleration characteristics due to frequent repeated re-adhesion control can be suppressed as much as possible.

図9は再粘着制御特性の別の例を示す特性図である。
すなわち、図2の特性に対し、領域(c)の後にPID調節器の積分項をゼロまで戻し、空転が発生する前の状態まで戻す点が特徴である。
図2の領域(c)で電流指令値を或る一定の低減量で保持している理由は、例えば大雨が降っている状態で、車輪とレールとの粘着状態が悪化している場合に、空転が発生した時点の電流指令値まで電流指令値を戻すと、状態が改善されておらず、再度空転が発生する可能性が高いためである。
FIG. 9 is a characteristic diagram showing another example of the re-adhesion control characteristic.
That is, the characteristic of FIG. 2 is that after the region (c), the integral term of the PID regulator is returned to zero and returned to the state before idling.
The reason why the current command value is held at a certain reduction amount in the region (c) of FIG. 2 is that, for example, when the rain is raining and the adhesion state between the wheels and the rail is deteriorated, This is because if the current command value is returned to the current command value at the time when idling occurs, the state is not improved and there is a high possibility that idling will occur again.

しかし、部分的に車輪とレールとの粘着状態が悪化している場合には、再粘着制御を実行している間に粘着状態が改善されている可能性が高い。このような場合に、いつまでも一定の低減量を保持したままにしておくと、むやみに加減速特性の低下させることになる。
そこで、図9の特性図のように、領域(c)が一定時間経過した後に、電流指令値を空転が発生する前の状態(図2(d)の領域)まで戻すようにして、加減速特性の低下を抑えるようにする。
However, when the adhesion state between the wheel and the rail is partially deteriorated, there is a high possibility that the adhesion state is improved during the re-adhesion control. In such a case, if a constant reduction amount is kept forever, the acceleration / deceleration characteristics will be reduced unnecessarily.
Therefore, as shown in the characteristic diagram of FIG. 9, the acceleration / deceleration is performed by returning the current command value to the state before the idling occurs (region of FIG. 2D) after the region (c) has passed for a certain time. Try to suppress deterioration of characteristics.

図10に図1の第4の変形例を示す。
図1の構成において、PID調節器16と減算器11との間に、ローパスフィルタ22を挿入した点が特徴である。このローパスフィルタ22により、PID調節器16の微分動作による急峻な変化率を、装置に合わせて調整することができる。これにより、再粘着制御時の急変動を抑え、乗り心地が悪くなるのを抑えることができる。
FIG. 10 shows a fourth modification of FIG.
The configuration of FIG. 1 is characterized in that a low-pass filter 22 is inserted between the PID adjuster 16 and the subtractor 11. With this low-pass filter 22, the steep change rate due to the differential operation of the PID adjuster 16 can be adjusted according to the apparatus. As a result, sudden fluctuations during re-adhesion control can be suppressed, and deterioration in ride comfort can be suppressed.

この発明の第1の実施形態を示す構成図The block diagram which shows 1st Embodiment of this invention この発明の原理説明図Principle explanatory diagram of the present invention 図1の第1変形例を示す構成図The block diagram which shows the 1st modification of FIG. 図1に示す回転数偏差量演算部の具体例を示すブロック図The block diagram which shows the specific example of the rotation speed deviation amount calculating part shown in FIG. 図1に示す回転数の時間変化率偏差量演算部の具体例を示すブロック図The block diagram which shows the specific example of the time change rate deviation amount calculating part of the rotation speed shown in FIG. 図1の第2変形例を示す構成図The block diagram which shows the 2nd modification of FIG. 図1の第3変形例を示す構成図The block diagram which shows the 3rd modification of FIG. 図7で用いられる偏差量調整部の特性例を示す特性図FIG. 7 is a characteristic diagram showing a characteristic example of the deviation amount adjusting unit used in FIG. 再粘着制御特性の別の例を示す特性図Characteristic chart showing another example of re-adhesion control characteristics 図1の第4変形例を示す構成図The block diagram which shows the 4th modification of FIG. 従来例を示す構成図Configuration diagram showing a conventional example

符号の説明Explanation of symbols

1…電力変換装置、2…誘導電動機(モータ)、3…パルスジェネレータ(PG)、4…回転数(周波数)演算器、7…基準周波数選択器、8,11,17,122,142…減算器、9…関数発生器、10…変化率演算器、12…回転数偏差量演算部、13…時間変化率演算器、14…回転数の時間変化率偏差量演算部、15…加算器、16,16a…PID調節器、18…乗算器、19…大小判別部、20…回転数偏差量調整部、21…偏差量調整部、22…ローパスフィルタ、121…基準周波数演算部、141…回転数の時間変化率基準値演算部。

DESCRIPTION OF SYMBOLS 1 ... Power converter device, 2 ... Induction motor (motor), 3 ... Pulse generator (PG), 4 ... Revolution (frequency) calculator, 7 ... Reference frequency selector, 8, 11, 17, 122, 142 ... Subtraction 9 ... function generator, 10 ... change rate calculator, 12 ... rotational speed deviation calculation unit, 13 ... time change rate calculator, 14 ... rotational speed change rate deviation amount calculation unit, 15 ... adder, DESCRIPTION OF SYMBOLS 16, 16a ... PID adjuster, 18 ... Multiplier, 19 ... Size discriminating part, 20 ... Rotational speed deviation amount adjustment part, 21 ... Deviation amount adjustment part, 22 ... Low pass filter, 121 ... Reference frequency calculating part, 141 ... Rotation Number time change rate reference value calculator.

Claims (4)

モータの回転周波数を検出または推定する手段と電力変換装置とを用いた電気車の再粘着制御装置において、
モータの回転周波数の検出値(推定値)またはモータ回転周波数の検出値(推定値)の時間変化率の少なくとも一方の値より演算される偏差量を入力値とするPID調節器を設け、その出力値を用いてモータに対する周波数指令またはトルク指令の少なくとも一方を絞り込むことを特徴とする電気車の再粘着制御装置。
In a re-adhesion control device for an electric vehicle using a means for detecting or estimating the rotational frequency of a motor and a power converter,
A PID controller is provided that has a deviation value calculated from at least one of the detected value (estimated value) of the motor rotation frequency and the time change rate of the detected value (estimated value) of the motor rotation frequency as its input value. A re-adhesion control device for an electric vehicle, wherein a value is used to narrow down at least one of a frequency command and a torque command for the motor.
前記PID調節器の入力値に対してしきい値を設定し、前記PID調節器の入力値がしきい値よりも小さいときは、PID調節器の入力値をゼロとすることを特徴とする請求項1に記載の電気車の再粘着制御装置。   A threshold value is set for an input value of the PID regulator, and when the input value of the PID regulator is smaller than the threshold value, the input value of the PID regulator is set to zero. Item 2. The re-adhesion control device for an electric vehicle according to Item 1. 前記PID調節器の入力値がゼロのときは、一定時間後に前記PID調節器の出力値(積分項)をゼロまで低減することを特徴とする請求項2に記載の電気車の再粘着制御装置。   3. The electric vehicle re-adhesion control device according to claim 2, wherein when the input value of the PID controller is zero, the output value (integral term) of the PID controller is reduced to zero after a predetermined time. . 前記PID調節器の出力部にローパスフィルタを挿入することを特徴とする請求項1〜3のいずれかに記載の電気車の再粘着制御装置。

The re-adhesion control device for an electric vehicle according to any one of claims 1 to 3, wherein a low-pass filter is inserted into an output unit of the PID adjuster.

JP2005001263A 2005-01-06 2005-01-06 Re-adhesion control device of electric vehicle Pending JP2006191736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005001263A JP2006191736A (en) 2005-01-06 2005-01-06 Re-adhesion control device of electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005001263A JP2006191736A (en) 2005-01-06 2005-01-06 Re-adhesion control device of electric vehicle

Publications (1)

Publication Number Publication Date
JP2006191736A true JP2006191736A (en) 2006-07-20

Family

ID=36798294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005001263A Pending JP2006191736A (en) 2005-01-06 2005-01-06 Re-adhesion control device of electric vehicle

Country Status (1)

Country Link
JP (1) JP2006191736A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149447A1 (en) * 2007-06-07 2008-12-11 Mitsubishi Electric Corporation Electric motor controller
WO2014156928A1 (en) * 2013-03-26 2014-10-02 株式会社明電舎 Controller of independently-driven-wheel truck

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295106A (en) * 1988-09-30 1990-04-05 Toshiba Corp Drive controller for electric railcar
JPH05292604A (en) * 1992-04-03 1993-11-05 Mitsubishi Electric Corp Idling/slip controller
JPH1127811A (en) * 1997-07-04 1999-01-29 Fuji Electric Co Ltd Idling/slipping controller for inverter control electric vehicle
JP2001145207A (en) * 1999-11-16 2001-05-25 Hitachi Ltd Controller of electric vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295106A (en) * 1988-09-30 1990-04-05 Toshiba Corp Drive controller for electric railcar
JPH05292604A (en) * 1992-04-03 1993-11-05 Mitsubishi Electric Corp Idling/slip controller
JPH1127811A (en) * 1997-07-04 1999-01-29 Fuji Electric Co Ltd Idling/slipping controller for inverter control electric vehicle
JP2001145207A (en) * 1999-11-16 2001-05-25 Hitachi Ltd Controller of electric vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149447A1 (en) * 2007-06-07 2008-12-11 Mitsubishi Electric Corporation Electric motor controller
JPWO2008149447A1 (en) * 2007-06-07 2010-08-19 三菱電機株式会社 Electric motor control device
KR101062602B1 (en) 2007-06-07 2011-09-06 미쓰비시덴키 가부시키가이샤 Electric motor controller
US8228008B2 (en) 2007-06-07 2012-07-24 Mitsubishi Electric Corporation Motor controlling apparatus
WO2014156928A1 (en) * 2013-03-26 2014-10-02 株式会社明電舎 Controller of independently-driven-wheel truck
JP2014192927A (en) * 2013-03-26 2014-10-06 Meidensha Corp Controlling device for cart in which each wheel is driven independently

Similar Documents

Publication Publication Date Title
KR950015169B1 (en) Control system for induction motor driven electric car
US8093843B2 (en) Vehicle controller and control method
JP4137995B1 (en) Electric vehicle control device
JP4820243B2 (en) Automotive control device
JP3852400B2 (en) Vehicle control device
CN107921885B (en) Slip control device
WO2007000872A1 (en) Traction control device for vehicle
JP5309720B2 (en) Braking / driving control device and braking / driving control method for electric vehicle
JP2020127281A (en) Control device for electric vehicle
JP2001028804A (en) Motor controller for vehicle
JP2008120220A (en) Regeneration/friction cooperative brake control device for vehicle
JP2019115145A (en) Vehicular control device and vehicle control method
JP2006191736A (en) Re-adhesion control device of electric vehicle
JP2009011057A (en) Controller of vehicle
JP7024472B2 (en) Shift control device
JPH0690507A (en) Motor-driven vehicle
JP2003070107A (en) Motor controller for electric vehicle
JP7172837B2 (en) Braking force controller
JP6730057B2 (en) Electric vehicle control device
JP2009100603A (en) Electric vehicle controller
JP2006170116A (en) Prime mover torque control device
JP3246075B2 (en) Electric vehicle re-adhesion control device
JP6990112B2 (en) Re-adhesion control method and motor control device
JP5282615B2 (en) Vehicle motion control system
CN114393997B (en) Electric vehicle hill-holding control method, device, storage medium and controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005