JP2006190514A - CURRENT COLLECTOR FOR LITHIUM SECONDARY BATTERY ANODE FOR Si- AND Sn-BASED ACTIVE MATERIALS AND ITS MANUFACTURING METHOD AS WELL AS LITHIUM SECONDARY BATTERY USING THE CURRENT COLLECTOR - Google Patents
CURRENT COLLECTOR FOR LITHIUM SECONDARY BATTERY ANODE FOR Si- AND Sn-BASED ACTIVE MATERIALS AND ITS MANUFACTURING METHOD AS WELL AS LITHIUM SECONDARY BATTERY USING THE CURRENT COLLECTOR Download PDFInfo
- Publication number
- JP2006190514A JP2006190514A JP2005000139A JP2005000139A JP2006190514A JP 2006190514 A JP2006190514 A JP 2006190514A JP 2005000139 A JP2005000139 A JP 2005000139A JP 2005000139 A JP2005000139 A JP 2005000139A JP 2006190514 A JP2006190514 A JP 2006190514A
- Authority
- JP
- Japan
- Prior art keywords
- current collector
- lithium secondary
- secondary battery
- copper
- plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、Si系及びSn系活物質用リチウム二次電池負極用集電体に関する。 The present invention relates to a current collector for a negative electrode of a lithium secondary battery for Si-based and Sn-based active materials.
非水電解液を使用するリチウム二次電池用負極としては、従来から金属リチウム、リチウム合金、あるいはリチウムを吸蔵・放出可能な炭素材料などが知られている。リチウム負極は、充放電容量が大きいという特徴を有する一方でデンドライトの成長による短絡の問題点があり、一般的には炭素材料が使用されている。 しかし、炭素材料を使用した負極では、リチウム負極のようにデンドライトの成長による短絡の問題がなく安全性には優れているものの、使用可能な電流密度が低く、また充放電容量も十分なものではなく、1回の充電で長時間使用を可能にする負極材料の出現が望まれている。 As a negative electrode for a lithium secondary battery using a non-aqueous electrolyte, metal lithium, a lithium alloy, or a carbon material capable of inserting and extracting lithium has been conventionally known. A lithium negative electrode has a feature of a large charge / discharge capacity, but has a problem of short circuit due to the growth of dendrite, and a carbon material is generally used. However, a negative electrode using a carbon material does not have a short-circuit problem due to the growth of dendrites and is excellent in safety like a lithium negative electrode, but the usable current density is low and the charge / discharge capacity is not sufficient. In addition, the advent of negative electrode materials that can be used for a long time with a single charge is desired.
こうした負極材料として、Si、Sn等の単体あるいはこれらの金属間化合物を使用したものが提案されている(例えば、特許文献1(特開2002−83594))。しかし、負極材の活物質として、Sn、Si系の材料と使用すると、充電時の体積膨張により、活物質は微粉化・脱落し、サイクル寿命が短いという問題があった。この問題点にたいしては、特許文献2(特開2002−313319)に集電体を粗面化するという提案がされている。この提案は集電体の表面を粗面化することにより、この上にスパッタリングにより設けたシリコン薄膜の厚み方向において前記粗面の凹凸の谷部に向かうにつれて幅が広くなる空隙を形成して、集電体表面の近傍において幅の広い空隙を保持しこの空隙が充放電による活物質の体積の膨張、収縮の変化を吸収するというものである。 As such a negative electrode material, a material using a simple substance such as Si or Sn or an intermetallic compound thereof has been proposed (for example, Patent Document 1 (Japanese Patent Laid-Open No. 2002-83594)). However, when an Sn or Si-based material is used as the active material of the negative electrode material, there is a problem that the active material is pulverized / dropped off due to volume expansion during charging, and the cycle life is short. For this problem, Patent Document 2 (Japanese Patent Application Laid-Open No. 2002-313319) proposes to roughen the current collector. In this proposal, the surface of the current collector is roughened, thereby forming a gap that becomes wider in the thickness direction of the silicon thin film provided by sputtering on the surface of the current collector toward the concave and convex valleys of the rough surface. A wide gap is maintained in the vicinity of the current collector surface, and this gap absorbs changes in volume expansion and contraction of the active material due to charge and discharge.
また、特許文献3(特開2002−319408)には、銅箔表面にやけめっきを施して粒粉状銅を付着させ、さらに該粒粉状銅を緻密なめっき銅層で被せめっきを施した集電体を使用することにより、この表面に活物質を柱状に分離された状態で形成するという方法が提案されている。この方法によれば、柱状部分の空隙により充放電サイクルに伴う活物質の膨張、収縮による応力を緩和することが出来るとされている。
しかしながら、前記特許文献2においては前記粗面化の状態について、集電体に対して電解銅めっきを施し単にその表面粗さRa、Ryを開示するにとどまり、電池特性などについてより好適な性能を発揮させるための詳細な粗面化条件については不明である。
また、前記特許文献3に提案の方法では、粗面化の効果を十分に得るため、電着量を大きくし粒子を増大化しようとすると基材との密着性が不十分となり、銅粉が脱落するという問題が生じ、満足できる結果を得ることは出来ない。
本発明は、こうした状況の下で、集電体とSi系及びSn系活物質との密着性が十分に向上した、充放電サイクル特性の優れたリチウム二次電池負極用集電体を提供することを目的とするものである。
However, in the above-mentioned Patent Document 2, with respect to the roughened state, electrolytic copper plating is performed on the current collector, and the surface roughness Ra and Ry are merely disclosed, and more favorable performance with respect to battery characteristics and the like. It is not clear about the detailed roughening conditions for exhibiting.
Further, in the method proposed in Patent Document 3, in order to sufficiently obtain the effect of roughening, when the amount of electrodeposition is increased to increase the number of particles, the adhesion with the substrate becomes insufficient, and the copper powder is The problem of dropping out occurs, and satisfactory results cannot be obtained.
Under such circumstances, the present invention provides a current collector for a lithium secondary battery negative electrode having excellent charge / discharge cycle characteristics, in which the adhesion between the current collector and the Si-based and Sn-based active materials is sufficiently improved. It is for the purpose.
本発明者等は、鋭意検討した結果、集電体表面に銅の電着層を設け、その表面状態を特定の条件を満足させるように形成することにより、集電体とSi系及びSn系活物質との密着性が改善され充放電特性を向上させることができることを見出し、本発明に至った。 As a result of intensive studies, the present inventors have provided a copper electrodeposition layer on the surface of the current collector, and formed the surface state so as to satisfy specific conditions. It has been found that the adhesion with the active material can be improved and charge / discharge characteristics can be improved, and the present invention has been achieved.
すなわち、本発明は、
(1)集電体に銅電着層を有するリチウム二次電池用負極材料であって、該銅電着層が粒状を呈し、且つ該粒が表面側に向かってふくらみを有し、該ふくらみ部の径が0.5〜5μmであり、粒子数が500,000〜1,000,000個/mm2の密度で分布していることを特徴とするSi系及びSn系活物質用リチウム二次電池負極用集電体、
(2)銅電着層の平均粒径が1μm以上、粒径の標準偏差が0.05〜0.8であることを特徴とする前記(1)記載のSi系及びSn系活物質用リチウム二次電池負極用集電体、
(3)ふくらみ部の径が0.5〜5μmであり、粒間の平均距離が1.0μm以上であることを特徴とする前記(1)または(2)記載のSi系及びSn系活物質用リチウム二次電池負極用集電体、
(4)金属箔を陰極として粒状銅をやけめっき条件で形成後、連続的にまたは段階的にめっき条件を平滑めっき条件側へ変化させながらめっきを施す中間段階を経て平滑めっき条件にし、粒状銅の脱落を防止するように平滑めっきすることを特徴とする前記(1)〜(3)の何れか1項に記載のSi系及びSn系活物質用リチウム二次電池負極用集電体の製造方法、
(5)前記(4)記載の方法により製造された前記(1)〜(3)の何れか1項記載のSi系及びSn系活物質用リチウム二次電池負極用集電体、
(6)前記(1)、(2)、(3)及び(5)のいずれか1項に記載のSi系及びSn系活物質用リチウム二次電池負極用集電体を使用したリチウム二次電池、
に関する。
That is, the present invention
(1) A negative electrode material for a lithium secondary battery having a copper electrodeposition layer on a current collector, wherein the copper electrodeposition layer has a granular shape, and the particle has a bulge toward the surface side, and the bulge The diameter of the part is 0.5 to 5 μm, and the number of particles is distributed at a density of 500,000 to 1,000,000 particles / mm 2. Current collector for secondary battery negative electrode,
(2) The lithium for Si-based and Sn-based active materials according to (1) above, wherein the copper electrodeposited layer has an average particle size of 1 μm or more and a standard deviation of the particle size of 0.05 to 0.8. A secondary battery negative electrode current collector,
(3) The Si-based and Sn-based active material according to (1) or (2) above, wherein the bulge portion has a diameter of 0.5 to 5 μm and an average distance between grains of 1.0 μm or more. Current collector for lithium secondary battery negative electrode,
(4) After forming granular copper with a metal foil as a cathode under the plating conditions, the plating conditions are changed to smooth plating conditions through an intermediate stage of plating while changing the plating conditions toward the smooth plating conditions continuously or stepwise. The manufacture of a current collector for a negative electrode of a lithium secondary battery for Si-based and Sn-based active materials according to any one of the above (1) to (3), wherein smooth plating is performed so as to prevent detachment of the material Method,
(5) The current collector for a negative electrode of a lithium secondary battery for Si-based and Sn-based active materials according to any one of (1) to (3) manufactured by the method according to (4),
(6) Lithium secondary using the current collector for the negative electrode of the lithium secondary battery for Si-based and Sn-based active materials according to any one of (1), (2), (3) and (5) battery,
About.
本発明の集電体を使用することにより、充放電容量、及び充放電サイクル寿命に優れたリチウム二次電池を得ることが出来る。 By using the current collector of the present invention, a lithium secondary battery excellent in charge / discharge capacity and charge / discharge cycle life can be obtained.
本発明においては、集電体に銅電着層を有し、かつ、その表面状態が重要である。すなわち、銅電着層は、粒状を呈し、また表面側に向かって、ふくらみを有し、該ふくらみの径が0.5〜5μm、好ましくは1〜3μm、粒子数が500、000〜1,000,000個/mm2、好ましくは700,000〜900,000個/mm2 の密度で分布していることが重要である。 In the present invention, the current collector has a copper electrodeposition layer, and the surface state is important. That is, the copper electrodeposition layer has a granular shape and has a bulge toward the surface side. The bulge diameter is 0.5 to 5 μm, preferably 1 to 3 μm, and the number of particles is 500,000 to 1, It is important that they are distributed at a density of 000,000 pieces / mm 2 , preferably 700,000 to 900,000 pieces / mm 2 .
前記ふくらみの径が0.5μm未満であると、電着粒子が緻密に分布し、活物質層を形成した際、凸状部間の空隙が不十分な為、充放電時における活物質の体積の膨張・収縮の変化を吸収しきれない。また、5μmを超えると、活物質層を形成した際、凸状部自体が大き過ぎ、充放電時の膨張・収縮により凸状部全体が脱落してしまう。
粒子数が500,000未満であると、活物質層の密着性が悪く、充放電時の膨張・収縮により活物質層が脱落してしまう。粒子数が1,000,000を超えると、活物質層を形成した際、凸状部間の空隙が不十分な為、充放電時における活物質の体積の膨張・収縮の変化を吸収しきれない。
When the diameter of the bulge is less than 0.5 μm, the electrodeposited particles are densely distributed, and when the active material layer is formed, the gap between the convex portions is insufficient. Can not absorb the change of expansion and contraction. On the other hand, if the thickness exceeds 5 μm, when the active material layer is formed, the convex portion itself is too large, and the entire convex portion falls off due to expansion / contraction during charging / discharging.
If the number of particles is less than 500,000, the adhesion of the active material layer is poor, and the active material layer falls off due to expansion / contraction during charge / discharge. When the number of particles exceeds 1,000,000, when the active material layer is formed, the gap between the convex portions is insufficient, so that the change in volume expansion / contraction of the active material during charge / discharge can be absorbed. Absent.
さらに、銅電着層の平均粒径を1μm以上、粒径の標準偏差を0.05〜0.8とすることが好ましい。より好ましい粒径の標準偏差は0.05〜0.5である。粒間の平均距離は1.0μm以上とすることが好ましい。
銅電着層の平均粒径が1μm未満であると、電着粒子が緻密に分布し、活物質層を形成した際、凸状部間の空隙が不十分な為、充放電時における活物質の体積の膨張・収縮の変化を吸収しきれない。
粒径の標準偏差はある程度のばらつきを持ち、0.05未満とはなり得ず、0.8μmを超えると、粗大な電着粒子が形成され、充放電時の膨張・収縮により、電着粒子毎脱落してしまう。
Furthermore, it is preferable that the average particle diameter of the copper electrodeposition layer is 1 μm or more and the standard deviation of the particle diameter is 0.05 to 0.8. A more preferable standard deviation of the particle diameter is 0.05 to 0.5. The average distance between grains is preferably 1.0 μm or more.
When the average particle size of the copper electrodeposition layer is less than 1 μm, the electrodeposited particles are densely distributed, and when the active material layer is formed, the gap between the convex portions is insufficient, so that the active material during charging and discharging It cannot absorb the change of volume expansion and contraction.
The standard deviation of the particle size has a certain degree of variation and cannot be less than 0.05, and if it exceeds 0.8 μm, coarse electrodeposited particles are formed. It will fall off every time.
次に、本発明の集電体の製造方法について述べる。
プリント配線板用銅箔等の金属箔の粗面化処理は、金属箔上に硫酸銅溶液を用いて微細銅粒をやけめっき条件で形成後、平滑めっき条件で微細銅粒を被せめっきして微細銅粒の脱落を防止するという2段階でめっきを行うのが一般的である。本発明においてもこのような方法により製造することができる。但し、Si系及びSn系活物質に適合するように、前記特定の銅電着層の表面状態を形成するようにめっき操作をコントロールすることが重要である。
Next, the manufacturing method of the current collector of the present invention will be described.
The roughening treatment of the metal foil such as copper foil for printed wiring boards is performed by forming fine copper particles on the metal foil using a copper sulfate solution under the plating conditions, and then covering the fine copper particles under the smooth plating conditions and plating. In general, the plating is performed in two stages of preventing the fine copper particles from falling off. Also in the present invention, it can be produced by such a method. However, it is important to control the plating operation so as to form the surface state of the specific copper electrodeposition layer so as to be compatible with the Si-based and Sn-based active materials.
しかし、こうした方法で得られた粒状銅めっきは、粒状銅が小さい場合は問題ないが、大きい場合、集電体との密着性が不十分となることがある。この密着性をさらに改善するため、次のようにめっきを行うことがより好ましい。すなわち、
本発明においては、まず、やけめっき条件でめっきを行い、そのやけめっき段階から、連続的にあるいは段階的に徐々にやけめっき条件を平滑めっき条件側に変化させながらめっきを行い、その後さらに平滑めっきを行うことにより所定の表面状態を有する銅電着層を十分な密着性をもって得ることが出来る。
However, although the granular copper plating obtained by such a method has no problem when the granular copper is small, the adhesion with the current collector may be insufficient when the granular copper is large. In order to further improve the adhesion, it is more preferable to perform plating as follows. That is,
In the present invention, the plating is first performed under the burn plating conditions, and then the plating is performed while changing the burn plating condition from the burn plating step to the smooth plating condition side continuously or gradually. By performing the step, a copper electrodeposition layer having a predetermined surface state can be obtained with sufficient adhesion.
本発明において、集電体上に所定の粒状の銅めっきを形成するめっき浴としては硫酸銅浴、ピロリン酸銅浴等が一般的に用いられるが、例えば硫酸銅浴を用いる場合、銅 3〜30g/l、硫酸50〜200g/l、液温20〜50℃、電流密度5〜50A/dm2の条件で行うことができる。
また析出付着させた前記粒状銅の脱落を防止するためのいわゆる被せめっきに用いられる平滑めっきには、メッキ浴としては硫酸銅浴、ピロリン酸銅浴等が一般的に用いられるが、例えば硫酸銅浴を用いる場合、やけめっきより高銅濃度条件や、高液温、低電流密度条件でめっきすることにより実施でき、例えば銅 20〜50g/l、硫酸50〜200g/l、液温30〜50℃、電流密度2〜30A/dm2の条件で行うことができる。
In the present invention, as a plating bath for forming a predetermined granular copper plating on the current collector, a copper sulfate bath, a copper pyrophosphate bath and the like are generally used. It can be performed under the conditions of 30 g / l, sulfuric acid 50 to 200 g / l, liquid temperature 20 to 50 ° C., and current density 5 to 50 A / dm 2 .
In addition, for smooth plating used for so-called covering plating for preventing dropping of the deposited granular copper, a copper sulfate bath, a copper pyrophosphate bath or the like is generally used as a plating bath. In the case of using a bath, it can be carried out by plating under higher copper concentration conditions, higher liquid temperature, and lower current density conditions than burn plating. For example, copper 20-50 g / l, sulfuric acid 50-200 g / l, liquid temperature 30-50. It can be performed under the conditions of ° C. and current density of 2 to 30 A / dm 2 .
前記やけめっき条件から平滑めっき条件へのめっき条件の変化は、上記のように銅濃度を上げる、電流密度を低下させる等により実施可能であり、具体的には、例えば下記のような方法で可能である。
(1)やけめっき段階から徐々に電流を低下させる。
(2)めっき槽を複数用意し、第1のめっき槽でやけめっきを行い、次いでめっき液中の銅濃度(あるいはめっき液温度)を徐々に上昇させた第2の、第3の、……めっき槽においてめっきを継続する。
(3)コイル状基材を連続的に処理する場合、入口側から出口側にかけアノードとの極間距離を徐々に長くして電流密度を低下させる。
このようにして得られた本発明の集電体は、特に活物質としてSi系及びSn系活物質を使用したリチウム二次電池負極用集電体として好適である。
Si系活物質としては、例えばSi、あるいはSi合金が使用できる。
また、Sn系活物質としては、例えばSn、あるいはSn合金が使用できる。
The change of the plating condition from the burn plating condition to the smooth plating condition can be carried out by increasing the copper concentration or decreasing the current density as described above. Specifically, for example, the following method is possible. It is.
(1) The current is gradually reduced from the burnt plating stage.
(2) Prepare a plurality of plating tanks, perform burnt plating in the first plating tank, and then gradually increase the copper concentration (or plating solution temperature) in the plating solution. Continue plating in the plating tank.
(3) When the coiled substrate is continuously processed, the distance between the anode and the anode is gradually increased from the inlet side to the outlet side to decrease the current density.
The current collector of the present invention thus obtained is particularly suitable as a current collector for a lithium secondary battery negative electrode using Si-based and Sn-based active materials as active materials.
For example, Si or an Si alloy can be used as the Si-based active material.
As the Sn-based active material, for example, Sn or an Sn alloy can be used.
本発明に使用する銅電着層を設ける集電体(金属箔)としては、電極反応に不活性で電気伝導度が高い、Cu、Cu合金、Ni、Ti等から選択することが好ましい。中でも熱処理により母材中のCuとめっき層中のSnが拡散して金属間化合物を形成するCuまたはCu合金が好ましい。 CuまたはCu合金の中では強度・耐熱性に優れた析出硬化型Cu合金であり、中でもNi2.0〜4.0質量%、Si0.5〜1.0質量%含有し、更にMg、Zn、Sn、P、Fe、Agから選択された一種以上を0.005〜1.0質量%を必要に応じて含有し、残部Cuおよび不可避不純物であるCu合金、あるいはCr0.1〜1.0質量%、Zr0.05〜0.4質量%、更にFe、Ti、Ni、P、Sn、Znから選択された一種以上を0.005〜1.0質量%を必要に応じて含有し、残部Cuおよび不可避不純物であるCu合金がより好ましい。 The current collector (metal foil) provided with the copper electrodeposition layer used in the present invention is preferably selected from Cu, Cu alloys, Ni, Ti, etc., which are inert to electrode reactions and have high electrical conductivity. Among these, Cu or Cu alloy in which Cu in the base material and Sn in the plating layer are diffused by heat treatment to form an intermetallic compound is preferable. Among Cu or Cu alloys, it is a precipitation hardening type Cu alloy that is excellent in strength and heat resistance, among which Ni 2.0-4.0 mass%, Si 0.5-1.0 mass%, and further Mg, Zn, One or more selected from Sn, P, Fe, and Ag is optionally contained in an amount of 0.005 to 1.0% by mass, the remainder being Cu and an inevitable impurity Cu alloy, or Cr of 0.1 to 1.0% by mass. %, Zr 0.05-0.4% by mass, and further containing one or more selected from Fe, Ti, Ni, P, Sn, Zn as needed, 0.005-1.0% by mass, and the balance Cu And Cu alloy which is an inevitable impurity is more preferable.
本発明の前記特定の表面状態を有する銅電着層を備えた集電体に、Si系活物質あるいはSn系活物質層を形成するには、めっき法、あるいはスパッタリング法等がある。
めっき法やスパッタリング法等により前記活物質を前記特定の表面状態の粒状銅に付着させることにより、曲面を含む微小な凸状部を含むSi系あるいはSn系活物質層を形成することが出来る。
そして、好ましくはその凸状部同士を相互に間隙を有するように形成する。
好ましくは、この微小凸状部同士の間隙を後述する空隙率で表した場合、10〜60%であることが好ましい。
空隙率は、付着したSn合金めっき膜中のSnとCuそれぞれの含有量を各純金属の比重で除して得られた理論体積から算出した厚さの合計(t0)を、断面観察から測定した実際のめっき層厚さ(t)により下式により算出した。
空隙率=(1−(t0/t))×100(%)
集電体最表面のSi系、Sn系活物質層の構造中に、こうした空隙を設けることにより、リチウム二次電池放電時の負極へリチウムが吸蔵される際の膨張応力を吸収緩和することができ、活物質層における凸状部の脱離、および活物質層と粗面化Cuめっき層間の剥離を防止することができる。
In order to form the Si-based active material or the Sn-based active material layer on the current collector provided with the copper electrodeposition layer having the specific surface state of the present invention, there is a plating method, a sputtering method, or the like.
A Si-based or Sn-based active material layer including a minute convex portion including a curved surface can be formed by adhering the active material to the granular copper having a specific surface state by a plating method, a sputtering method, or the like.
Preferably, the convex portions are formed so as to have a gap therebetween.
Preferably, when the gap between the minute convex portions is expressed by a porosity described later, it is preferably 10 to 60%.
The porosity is measured from the cross-sectional observation of the total thickness (t0) calculated from the theoretical volume obtained by dividing the contents of Sn and Cu in the deposited Sn alloy plating film by the specific gravity of each pure metal. The actual plating layer thickness (t) was calculated by the following formula.
Porosity = (1− (t0 / t)) × 100 (%)
By providing such voids in the structure of the Si-based and Sn-based active material layers on the outermost surface of the current collector, it is possible to absorb and relax the expansion stress when lithium is occluded in the negative electrode during lithium secondary battery discharge. It is possible to prevent detachment of the convex portion in the active material layer and peeling between the active material layer and the roughened Cu plating layer.
Sn系活物質としてのSn合金としては、合金成分としてCu、Ni、Co、Feが使用できるが、特にCuとの合金が好ましく、更にSnが30〜45質量%のCuを含有する合金が特に好ましい。また、Cu6Sn5相を有することが特に好ましい。 As an Sn alloy as the Sn-based active material, Cu, Ni, Co, and Fe can be used as an alloy component, but an alloy with Cu is particularly preferable, and an alloy containing Cu with 30 to 45 mass% of Sn is particularly preferable. preferable. Moreover, it is especially preferable to have a Cu6Sn5 phase.
また、Si系活物質としてのSi合金としては、合金成分としてCu、Ni等が使用できるが、本発明のように集電体にCu合金を用いると、スパッタリング時の加熱により集電体中のCuがSiと合金化し、集電体と活物質との密着性が向上し、より好ましい。 In addition, as the Si alloy as the Si-based active material, Cu, Ni, or the like can be used as an alloy component. Cu is alloyed with Si, and the adhesion between the current collector and the active material is improved, which is more preferable.
本発明において、少なくとも曲面を含む微小凸状部を有するSn合金めっき被膜は、その微小凸状部の粒径が1〜20μmであることが好ましい。
その粒径が1μmよりも小さいと粒子間隔が微細で空隙率が小さくなり、充放電時の膨張を緩和できず、Sn合金が微粉化、脱落して、充放電サイクル後の維持率が低下し、また、20μmよりも大きいと充放電時の膨張・収縮により、Sn合金めっき被膜は、亀裂が発生し、微粉化して脱落して充放電サイクル後の維持率が低下する。また、微小凸状部同士の間隙は、前記の空隙率で表すと10〜60%を有することが好ましい。
こうした曲面を含む微小凸状部を有するめっき被膜は、めっき条件を制御することにより、形成することができる。例えば、前記Cuによる粗化めっき後、市販の有機酸系Sn−1〜3質量%Cuめっき浴を用い、浴中の金属濃度がSn:Cuが7:3になるように金属濃度を調整し、電流密度10A/dm2、浴温度25〜30℃でめっき厚さが純Sn換算で4μm形成する。
なお純Sn換算厚みはSn量をICP(誘導結合プラズマ法)による分析にて算出した。
In this invention, it is preferable that the Sn alloy plating film which has a micro convex part including a curved surface at least has the particle size of the micro convex part of 1-20 micrometers.
If the particle size is smaller than 1 μm, the particle spacing is fine and the porosity is small, the expansion during charge / discharge cannot be relaxed, the Sn alloy is pulverized and dropped, and the maintenance rate after the charge / discharge cycle is reduced. On the other hand, if it is larger than 20 μm, the Sn alloy plating film is cracked, pulverized and dropped due to expansion / contraction during charge / discharge, and the maintenance rate after the charge / discharge cycle is lowered. Moreover, it is preferable that the space | interval of minute convex-shaped parts has 10 to 60% when expressed with the said porosity.
A plating film having a minute convex portion including such a curved surface can be formed by controlling the plating conditions. For example, after the rough plating with Cu, a commercially available organic acid Sn-1 to 3% by mass Cu plating bath is used, and the metal concentration is adjusted so that the metal concentration in the bath is 7: 3 Sn: Cu. The plating thickness is 4 μm in terms of pure Sn at a current density of 10 A / dm 2 and a bath temperature of 25-30 ° C.
The pure Sn equivalent thickness was calculated by analyzing the Sn content by ICP (inductively coupled plasma method).
本発明において、前記曲面を有する微小凸状部を有するめっき被膜は、更に熱処理することが好ましい。熱処理の条件は、Sn合金の融点を超えない、温度100℃〜400℃、好ましくは、150〜300℃の範囲で、20秒〜10時間、好ましくは1分〜1時間である。
この熱処理により、曲面を含む微小凸状部を有するめっき被膜中にSn−Cuの金属間化合物が形成される。この金属間化合物の形成により、本発明のリチウム二次電池用負極材料は、充放電特性を一層向上することができる。
In the present invention, it is preferable that the plating film having the minute convex portion having the curved surface is further heat-treated. The conditions for the heat treatment are a temperature of 100 ° C. to 400 ° C., preferably 150 to 300 ° C., not exceeding the melting point of the Sn alloy, and 20 seconds to 10 hours, preferably 1 minute to 1 hour.
By this heat treatment, an Sn—Cu intermetallic compound is formed in the plating film having a minute convex portion including a curved surface. By forming this intermetallic compound, the negative electrode material for a lithium secondary battery of the present invention can further improve the charge / discharge characteristics.
以下に本発明を実施例により、更に詳細に説明する。
実施例1
銅合金箔に、銅20g/l、硫酸100g/l、液温38℃、電流密度5A/dm2のやけめっき条件で2分微細銅粒を析出させた。その後、銅40g/l、硫酸100g/l、液温40℃、電流密度5A/dm2の平滑めっき条件で30秒被せめっきを施した。得られた集電体表面の顕微鏡写真を図1に示す。
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
Fine copper particles were deposited on the copper alloy foil for 2 minutes under the burn plating conditions of copper 20 g / l, sulfuric acid 100 g / l, liquid temperature 38 ° C., and current density 5 A / dm 2 . Thereafter, the coating was performed for 30 seconds under smooth plating conditions of copper 40 g / l, sulfuric acid 100 g / l, liquid temperature 40 ° C., and current density 5 A / dm 2 . A photomicrograph of the obtained current collector surface is shown in FIG.
実施例2
銅合金箔に、銅20g/l、硫酸100g/l、液温38℃、電流密度5A/dm2のやけめっき条件で2分微細銅粒を析出させた。その後、1.5分かけ電流密度を連続的に2.5A/dm2まで低下させた後、1分被せめっきを施した。 得られた集電体表面の顕微鏡写真を図2に示す。
Example 2
Fine copper particles were deposited on the copper alloy foil for 2 minutes under the burn plating conditions of copper 20 g / l, sulfuric acid 100 g / l, liquid temperature 38 ° C., and current density 5 A / dm 2 . Thereafter, the current density was continuously reduced to 2.5 A / dm 2 over 1.5 minutes, and then plated for 1 minute. A photomicrograph of the obtained current collector surface is shown in FIG.
比較例1
銅合金箔に、銅20g/l、硫酸100g/l、液温38℃、電流密度5A/dm2のやけめっき条件で1分微細銅粒を析出させた。その後、銅40g/l、硫酸100g/l、液温40℃、電流密度5A/dm2の平滑めっき条件で30秒被せめっきを施した。得られた集電体表面の顕微鏡写真を図3に示す。
Comparative Example 1
On the copper alloy foil, fine copper particles were deposited for 1 minute under the condition of burnt plating with copper 20 g / l, sulfuric acid 100 g / l, liquid temperature 38 ° C., and current density 5 A / dm 2. Thereafter, the coating was performed for 30 seconds under smooth plating conditions of copper 40 g / l, sulfuric acid 100 g / l, liquid temperature 40 ° C., and current density 5 A / dm 2 . A photomicrograph of the resulting current collector surface is shown in FIG.
比較例2
銅合金箔に、銅20g/l、硫酸100g/l、液温38℃、電流密度5A/dm2のやけめっき条件で3分微細銅粒を析出させた。その後銅40g/l、硫酸100g/l、液温40℃、電流密度5A/dm2の平滑めっき条件で30秒被せめっきを施した。
以上の実施例及び比較例で得られた銅微細銅粒を電着させた集電体の表面特性と共に、この集電体に錫−銅合金めっきを4μm施したものを負極としたリチウム2次電池の充放電サイクル特性を表に示す。
なお比較例2では粗面化後に粒状銅の脱落が生じ(粉落ちあり)たため、充放電サイクル特性等の評価はおこなわなかった。
充放電サイクル特性は、次の条件で評価した。グローブボックス内で2極式ビーカーセルを使用し、対極として厚さ0.3mmの金属リチウムを使用した。電解液はLiPF6をエチレンカーボネート/ジメチルカーボネート(1:1(vol))溶液の溶媒に溶かして1モル/Lにした。充電は0.25mA/cm2(0V vs Li/Li+まで)、放電は1.0mA/cm2(2.0V vs Li/Li+まで)で、20サイクルの充放電サイクル試験を実施した。
Comparative Example 2
Fine copper particles were deposited on the copper alloy foil for 3 minutes under the condition of burnt plating with copper 20 g / l, sulfuric acid 100 g / l, liquid temperature 38 ° C., and current density 5 A / dm 2 . Thereafter, plating was performed for 30 seconds under smooth plating conditions of copper 40 g / l, sulfuric acid 100 g / l, liquid temperature 40 ° C., and current density 5 A / dm 2 .
In addition to the surface characteristics of the current collector obtained by electrodepositing the copper fine copper particles obtained in the above examples and comparative examples, a lithium secondary electrode having a negative electrode formed by applying 4 μm of tin-copper alloy plating to this current collector The charge / discharge cycle characteristics of the battery are shown in the table.
In Comparative Example 2, the granular copper dropped out after the roughening (with powder falling), so the charge / discharge cycle characteristics and the like were not evaluated.
The charge / discharge cycle characteristics were evaluated under the following conditions. A bipolar beaker cell was used in the glove box, and metallic lithium having a thickness of 0.3 mm was used as a counter electrode. The electrolyte was made 1 mol / L by dissolving LiPF 6 in a solvent of ethylene carbonate / dimethyl carbonate (1: 1 (vol)) solution. The charge was 0.25 mA / cm 2 (up to 0 V vs Li / Li +), the discharge was 1.0 mA / cm 2 (up to 2.0 V vs Li / Li +), and a 20-cycle charge / discharge cycle test was performed.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005000139A JP4800626B2 (en) | 2005-01-04 | 2005-01-04 | A current collector for a negative electrode of a lithium secondary battery for Si-based and Sn-based active materials, a manufacturing method thereof, and a lithium secondary battery using the current collector. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005000139A JP4800626B2 (en) | 2005-01-04 | 2005-01-04 | A current collector for a negative electrode of a lithium secondary battery for Si-based and Sn-based active materials, a manufacturing method thereof, and a lithium secondary battery using the current collector. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006190514A true JP2006190514A (en) | 2006-07-20 |
JP4800626B2 JP4800626B2 (en) | 2011-10-26 |
Family
ID=36797519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005000139A Expired - Fee Related JP4800626B2 (en) | 2005-01-04 | 2005-01-04 | A current collector for a negative electrode of a lithium secondary battery for Si-based and Sn-based active materials, a manufacturing method thereof, and a lithium secondary battery using the current collector. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4800626B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008098157A (en) * | 2006-09-14 | 2008-04-24 | Matsushita Electric Ind Co Ltd | Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode |
JP2008135376A (en) * | 2006-10-26 | 2008-06-12 | Matsushita Electric Ind Co Ltd | Electrode plate for battery and lithium secondary battery including the same |
JP2008270154A (en) * | 2007-01-30 | 2008-11-06 | Sony Corp | Negative electrode and method of manufacturing it, and battery and method of manufacturing it |
JP2009295422A (en) * | 2008-06-05 | 2009-12-17 | Sony Corp | Anode collector, anode and secondary battery |
JP2010212069A (en) * | 2009-03-10 | 2010-09-24 | Sony Corp | Secondary battery, negative electrode, and current collector |
WO2011039924A1 (en) * | 2009-09-29 | 2011-04-07 | パナソニック株式会社 | Iron disulfide-lithium primary battery |
WO2011048753A1 (en) * | 2009-10-20 | 2011-04-28 | パナソニック株式会社 | Lithium primary battery |
JP2013062047A (en) * | 2011-09-12 | 2013-04-04 | Hitachi Cable Ltd | Negative-electrode copper foil collector for lithium ion secondary battery, negative-electrode for lithium ion secondary battery, lithium ion secondary battery and method for manufacturing negative-electrode copper foil collector for lithium ion secondary battery |
US8951672B2 (en) | 2007-01-30 | 2015-02-10 | Sony Corporation | Anode, method of manufacturing it, battery, and method of manufacturing it |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002319408A (en) * | 2001-04-23 | 2002-10-31 | Sanyo Electric Co Ltd | Lithium secondary battery electrode and lithium secondary battery |
-
2005
- 2005-01-04 JP JP2005000139A patent/JP4800626B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002319408A (en) * | 2001-04-23 | 2002-10-31 | Sanyo Electric Co Ltd | Lithium secondary battery electrode and lithium secondary battery |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008098157A (en) * | 2006-09-14 | 2008-04-24 | Matsushita Electric Ind Co Ltd | Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode |
JP2008135376A (en) * | 2006-10-26 | 2008-06-12 | Matsushita Electric Ind Co Ltd | Electrode plate for battery and lithium secondary battery including the same |
JP2008270154A (en) * | 2007-01-30 | 2008-11-06 | Sony Corp | Negative electrode and method of manufacturing it, and battery and method of manufacturing it |
JP4525742B2 (en) * | 2007-01-30 | 2010-08-18 | ソニー株式会社 | Negative electrode for lithium ion secondary battery and lithium ion secondary battery |
US8951672B2 (en) | 2007-01-30 | 2015-02-10 | Sony Corporation | Anode, method of manufacturing it, battery, and method of manufacturing it |
JP2009295422A (en) * | 2008-06-05 | 2009-12-17 | Sony Corp | Anode collector, anode and secondary battery |
JP2010212069A (en) * | 2009-03-10 | 2010-09-24 | Sony Corp | Secondary battery, negative electrode, and current collector |
WO2011039924A1 (en) * | 2009-09-29 | 2011-04-07 | パナソニック株式会社 | Iron disulfide-lithium primary battery |
WO2011048753A1 (en) * | 2009-10-20 | 2011-04-28 | パナソニック株式会社 | Lithium primary battery |
JP2013062047A (en) * | 2011-09-12 | 2013-04-04 | Hitachi Cable Ltd | Negative-electrode copper foil collector for lithium ion secondary battery, negative-electrode for lithium ion secondary battery, lithium ion secondary battery and method for manufacturing negative-electrode copper foil collector for lithium ion secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP4800626B2 (en) | 2011-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4653510B2 (en) | Anode material for lithium secondary battery | |
EP2587574A1 (en) | Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, and lithium ion secondary battery using the electrode | |
TWI596827B (en) | Method for producing negative electrode material of lithium ion secondary cell and negative electrode material for lithium ion secondary cell | |
CA2421498A1 (en) | Electrode for rechargeable lithium battery and rechargeable lithium battery | |
JP2004228059A (en) | Negative electrode for lithium secondary battery, method of manufacturing the same, and lithium secondary battery | |
JP4136674B2 (en) | Lithium battery negative electrode material and method for producing the same | |
JP2001256968A (en) | Anode material for nonaqueous electrolyte secondary battery and manufacturing method thereof | |
WO2001073872A1 (en) | Rechargeable battery | |
JP4800626B2 (en) | A current collector for a negative electrode of a lithium secondary battery for Si-based and Sn-based active materials, a manufacturing method thereof, and a lithium secondary battery using the current collector. | |
JP4054868B2 (en) | Negative electrode for lithium battery and method for producing the negative electrode for lithium battery | |
KR20140051375A (en) | Metal foil with coating layer and method for producing same, secondary cell electrode and method for producing same, and lithium ion secondary cell | |
JP2008171788A (en) | Collector for lithium ion cells and method for manufacturing it | |
JP3987851B2 (en) | Secondary battery negative electrode and secondary battery including the same | |
JP4493267B2 (en) | Anode material for lithium secondary battery | |
JP2006269361A (en) | Negative electrode for lithium ion secondary battery and its manufacturing method | |
JP2009215604A (en) | Copper foil and manufacturing method thereof | |
JP2006216565A (en) | Electrode for secondary battery, manufacturing method of same, and secondary battery | |
CN102899520A (en) | Rolled copper foil and the method to make it, negative electrode for lithium ion secondary battery using it | |
JP2003036840A (en) | Lithium cell negative electrode and its manufacturing method | |
KR100953804B1 (en) | Secondary battery-use electrode and production method therefor and secondary battery | |
WO2004049476A1 (en) | Negative electrode collector for nonaqueous electrolyte secondary battery and method for manufacturing same | |
JP2010103061A (en) | Negative electrode copper alloy foil of secondary battery and manufacturing method for the same | |
JP2009272086A (en) | Copper foil and method of manufacturing the same, and current collecting copper foil for lithium ion secondary battery and method of manufacturing the same | |
JP2003257417A (en) | Negative electrode for lithium ion secondary battery | |
JP2011003383A (en) | Manufacturing method of negative electrode for lithium secondary battery, and lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060502 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070910 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110722 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110804 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140812 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |