JP2006189315A - Optical shape measurement method - Google Patents

Optical shape measurement method Download PDF

Info

Publication number
JP2006189315A
JP2006189315A JP2005001145A JP2005001145A JP2006189315A JP 2006189315 A JP2006189315 A JP 2006189315A JP 2005001145 A JP2005001145 A JP 2005001145A JP 2005001145 A JP2005001145 A JP 2005001145A JP 2006189315 A JP2006189315 A JP 2006189315A
Authority
JP
Japan
Prior art keywords
shape
wave
height
length
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005001145A
Other languages
Japanese (ja)
Other versions
JP4690727B2 (en
Inventor
Shohei Hashiguchi
昇平 橋口
Manabu Kuninaga
学 國永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005001145A priority Critical patent/JP4690727B2/en
Publication of JP2006189315A publication Critical patent/JP2006189315A/en
Application granted granted Critical
Publication of JP4690727B2 publication Critical patent/JP4690727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple measurement method for minutely measuring a true shape of a strip-shaped body in its entirety, the body moving at a high speed with its height varying. <P>SOLUTION: According to this shape measurement method of an optical cutting mode, a linear laser light source with its output modulated is used to form an optical cut image on the strip-shaped body, and a linear sensor of a delay integration type is used on the imaging side to perform overlap-imaging while shifting the cut image bit by bit, thus restoring the shape of the strip-shaped body. In this method, a widthwise position including only vibration components is searched for and a lengthwise height variation of a plate at this position is subtracted from a shape including vibration to remove the vibration, thereby measuring an original shape. Further, wave pitches are found from a change in the length of a widthwise cross-sectional curve while finding an elongation percentage from the length of a longitudinal height curve of the plate to simply calculate a wave height by sine-wave approximation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高速に走行する帯状体の形状を光学的に測定する方法に関する。   The present invention relates to a method for optically measuring the shape of a strip that runs at high speed.

例えば、熱延鋼板の製造ラインにおいて、鋼板の平坦度などの形状を測定することは品質管理上重要である。
まず、本発明の測定対象である長手方向に移動する帯状体の一つである鋼板に現れる平坦度などの形状を表す指標について説明する。
図13は、鋼板の製造時の形状不良の例であり、(a)は中伸び、(b)は耳波、(c)は二番伸び(Quarter Buckle)と呼ばれ、それぞれ鋼板の幅方向中心部、端部、4分の1点の伸びが波として現れたものである。図13には耳波と二番伸びが鋼板の幅方向の両側に現れる例を示しているが、片側にのみ現れる場合もある。
鋼板の平坦度を表す指標としては、波高さ、波ピッチ、急峻度、および伸び率がよく使われる。
For example, in a production line for hot-rolled steel sheets, it is important for quality control to measure shapes such as flatness of the steel sheets.
First, an index representing a shape such as flatness appearing on a steel plate that is one of strips that move in the longitudinal direction, which is a measurement target of the present invention, will be described.
Fig. 13 is an example of a shape defect when manufacturing a steel sheet, where (a) is called middle elongation, (b) is called an ear wave, and (c) is called second elongation (Quarter Buckle). The elongation at the center, end and quarter points appear as waves. Although FIG. 13 shows an example in which the ear waves and the second elongation appear on both sides in the width direction of the steel sheet, there are cases where they appear only on one side.
Wave height, wave pitch, steepness, and elongation are often used as indices representing the flatness of a steel sheet.

図14を用いて、波高さ、波ピッチ、急峻度の定義を説明する。鋼板1を平らなテーブル上に張力をかけずに置いた場合に、長手方向に現れる波の山と谷の高さの差を波高さP、また山と山あるいは谷と谷の間隔を波ピッチPと定義する。急峻度λは、鋼板1長手方向の波高さHと波ピッチPとの比として(1)式にて定義される。

Figure 2006189315
図15を用いて伸び率の定義を説明する。長手方向の長さL0の測定範囲における鋼板の波曲線の長さをL、伸び率εは(2)式のように伸びL−L0とL0の比として定義される。
Figure 2006189315
長さL0の測定範囲をN個の有限区間に分けて、添え字を区間iに対応させると、長手方向位置の座標あるいは時刻をt、鋼板の波曲線の高さをyとして、鋼板の波曲線の長さLは曲線の(3)式のように計算できる。
Figure 2006189315
The definition of wave height, wave pitch, and steepness will be described with reference to FIG. When the steel plate 1 is placed on a flat table without applying tension, the difference between the heights of the wave peaks and valleys appearing in the longitudinal direction is the wave height P, and the pitch between the peaks and peaks or the valleys and valleys is the wave pitch. Define as P. The steepness λ is defined by the expression (1) as the ratio between the wave height H in the longitudinal direction of the steel sheet 1 and the wave pitch P.
Figure 2006189315
The definition of the elongation rate will be described with reference to FIG. The length of the wave curve of the steel sheet in the measurement range of the length L 0 in the longitudinal direction is L, and the elongation rate ε is defined as the ratio of the elongations L−L 0 and L 0 as in equation (2).
Figure 2006189315
If the measurement range of length L 0 is divided into N finite sections and the subscript corresponds to section i, the coordinate or time of the longitudinal position or time is t, the height of the wave curve of the steel sheet is y, The length L of the wave curve can be calculated as in equation (3) of the curve.
Figure 2006189315

急峻度と伸び率の間の換算を行うために、上記鋼板の波曲線を正弦波とみなして計算した伸び率を用いることがある。図16は波曲線f(t)が波高さH、波ピッチPの正弦波である場合を示し、波曲線は(4)式のように表される。

Figure 2006189315
この場合、計算範囲L0を波ピッチPにとると、正弦波曲線の長さは、波の一周期分に関して(5)式のように計算できる。
Figure 2006189315
鋼板の形状に関しては、波高さHはピッチPに比べ小さい、すなわち急峻度をλとするとλ=H/P << 1という仮定は十分な精度で成り立つので正弦波曲線の長さは(6)式のように計算できる。
Figure 2006189315
計算範囲L0は波ピッチPであるから伸び率εは(7)式のように表される。
Figure 2006189315
したがって急峻度λは(8)式のように計算できる。
Figure 2006189315
In order to convert between the steepness and the elongation rate, an elongation rate calculated by regarding the wave curve of the steel sheet as a sine wave may be used. FIG. 16 shows a case where the wave curve f (t) is a sine wave having a wave height H and a wave pitch P, and the wave curve is expressed by the following equation (4).
Figure 2006189315
In this case, if the calculation range L 0 is the wave pitch P, the length of the sine wave curve can be calculated as in equation (5) for one wave period.
Figure 2006189315
Regarding the shape of the steel sheet, the wave height H is smaller than the pitch P. That is, assuming that the steepness is λ, the assumption that λ = H / P << 1 holds with sufficient accuracy, so the length of the sine wave curve is (6) It can be calculated as
Figure 2006189315
Since the calculation range L 0 is the wave pitch P, the elongation rate ε is expressed as in equation (7).
Figure 2006189315
Therefore, the steepness λ can be calculated as shown in equation (8).
Figure 2006189315

以上の鋼板形状の指標を測定することが、品質管理において重要である。
熱延鋼板などの高速に走行する帯状体の平坦度などの形状測定においては、鋼板の幅方向および長手方向にレーザ変位計を多数台並べ、鋼板の幅方向のC反り、あるいは長手方向における耳波や中伸びといった形状を測定するという方法が知られている(特許文献1)。しかしながら、レーザ変位計を多数台並べるといってもレーザ変位計は高価であり、幅方向の測定点はせいぜい数点である。また、板幅が変更されたり板が蛇行した場合、板の動きに追従する機構も必要である。
It is important in quality control to measure the above steel plate shape index.
When measuring the shape of a strip that runs at high speed, such as hot-rolled steel sheets, a number of laser displacement meters are arranged in the width direction and longitudinal direction of the steel sheet, and the C warp in the width direction of the steel sheet, or the ears in the longitudinal direction. A method of measuring a shape such as a wave or a medium stretch is known (Patent Document 1). However, even if a large number of laser displacement meters are arranged, the laser displacement meters are expensive, and there are at most several measurement points in the width direction. Further, when the plate width is changed or the plate meanders, a mechanism that follows the movement of the plate is also required.

一方、特許文献2に開示された方法のような、線状レーザ光源と遅延積分型リニアセンサを組み合わせた光切断方式により帯状体の形状を計測する方法においては、高速に走行する帯状体の形状を幅方向および長手方向において密に測定することが可能であり、得られた形状を画像化して、耳波や中伸びなどの形状を視覚的に明瞭な形で表示することができ、レーザ変位計を多数台並べる方法に比べはるかに安価に、少ない部品点数でかつ高精度な形状測定を実現できる。 On the other hand, in the method of measuring the shape of the belt-like body by the light cutting method combining the linear laser light source and the delay integration type linear sensor as in the method disclosed in Patent Document 2, the shape of the belt-like body running at high speed is used. Can be measured closely in the width direction and longitudinal direction, and the obtained shape can be imaged and shapes such as ear waves and medium stretch can be displayed in a visually clear form, and laser displacement Compared with the method of arranging a large number of meters, it is much cheaper and can realize highly accurate shape measurement with a small number of parts.

ところで、実際の鋼板の通板条件においては、生産ラインの振動に起因する鋼板の高さ変動が測定誤差として入ってしまい、あたかも中伸びや耳波といった形状としての波が現れているかのような印象を現場オペレータに与えてしまうという問題があった。特許文献3では、上記の線状レーザ光源と遅延積分型リニアセンサからなる撮像手段の対を二対用いて、それぞれの光切断像の差分をとることにより、鋼板のねじれ振動など高さ変動に影響されない真の帯状体の形状を測定する方法が開示されている。しかしながら、二対の撮像手段を用いるために撮像部が大掛かりになって位置などの調整が難しい。また、生産ラインによっては鋼板のねじれ振動が無視でき幅方向にほぼ一様な振動さえ除去できればよい場合、あるいは張力変動が大きいため光学的測定手段での形状の定量化が難しいラインで中伸びが出ているか否かを現場オペレータにガイダンスできればよいというレベルの適用対象に対しては、その目的に比して設備が高価になる問題があった。
特開平5−1912号公報 特許2913903号公報 特開2004−226240号公報
By the way, in the actual plate passing condition of the steel plate, the fluctuation in the height of the steel plate due to the vibration of the production line enters as a measurement error, as if a wave as a shape such as a middle stretch or an ear wave appears. There was a problem of giving an impression to the field operator. In Patent Document 3, by using two pairs of imaging means consisting of the linear laser light source and the delay integration type linear sensor, and taking the difference between the respective light cut images, the height fluctuation such as torsional vibration of the steel sheet is obtained. A method for measuring the shape of an unaffected true strip is disclosed. However, since the two pairs of image pickup means are used, the image pickup unit becomes large and it is difficult to adjust the position and the like. Also, depending on the production line, the torsional vibration of the steel sheet can be ignored, and it is only necessary to eliminate evenly uniform vibration in the width direction. There is a problem that the equipment is more expensive than the purpose of the application target at a level where it is only necessary to provide guidance to the field operator as to whether or not it has come out.
JP-A-5-1912 Japanese Patent No. 2913903 JP 2004-226240 A

一対の撮像手段を用いる場合、鋼板振動の振幅や周期が波高さやピッチに比べて小さいときは、平滑化フィルタを用いることにより振動の影響を波高さやピッチの測定値から除去可能であるが、振動と波の振幅と周期が同程度のとき、平滑化フィルタにより振動の影響を除去することは困難である。また、鋼板の厚みが厚くなると波のピッチが大きくなる傾向があり、波高さとピッチを測定するには長周期の時間窓を設けて波の頂点の情報を得なければいけないが、コイル状になった鋼板をまき解くときに発生する捲き癖の周期と波の周期が近似したり、途中で板の変形が入ることもあり、測定誤差が大きくなるという問題点があった。
本発明は、かかる問題点に鑑み、生産ラインの振動による帯状体の高さ変動が生じても、帯状体の形状の指標(以下では形状とも呼ぶ)を全面全長にわたっても簡易な設備にて測定することができる方法を提供することを目的とする。
When using a pair of imaging means, if the amplitude or period of the steel plate vibration is smaller than the wave height or pitch, the effect of vibration can be removed from the measured values of the wave height or pitch by using a smoothing filter. It is difficult to remove the influence of vibration by the smoothing filter when the amplitude and period of the wave are comparable. Also, as the thickness of the steel plate increases, the wave pitch tends to increase, and in order to measure the wave height and pitch, a long-period time window must be provided to obtain information on the wave apex. However, there is a problem that the measurement error increases because the period of the wrinkles and the wave period that occur when the steel sheet is unrolled may be approximated or the plate may be deformed in the middle.
In view of such a problem, the present invention measures the shape index of the band (hereinafter also referred to as a shape) with simple equipment over the entire length even if the height of the band due to the vibration of the production line occurs. An object is to provide a method that can be used.

以下では、製造ラインにおいて水平の平板上を帯状体が移動していくを配置を例にして、帯状体の形状変化が高さの変化として測定される場合について説明するが、上記の平板が傾斜しているときには上記高さを変位と読み替えればよいことは当然である。
本願の第1の発明は、出力が変調された線状レーザ光源を用い、帯状体上に該帯状体の幅方向に線状のレーザビームを投射して光切断曲線(像)を構成し、該光切断曲線(像)を前記帯状体上で所定の間隔ずつずらしながら遅延積分型のリニアセンサを用いて重ね撮像して、帯状体の形状を復元する光切断方式の形状測定方法であって、前記帯状体の長手方向に沿っての高さ変動が最小になる前記帯状体の幅方向の点を求め、該点における長手方向の高さ変動を前記帯状体の振動の大きさとして、幅方向の各点で測定された高さから差し引くことにより、前記帯状体の形状の指標を、帯状体の全面または一部にわたって測定することを特徴とする光学的形状測定方法である。
In the following, a case where the change in the shape of the strip is measured as a change in height will be described by taking as an example the arrangement of the strip moving on a horizontal flat plate in the production line. Of course, the height may be read as displacement.
The first invention of the present application uses a linear laser light source whose output is modulated, and projects a linear laser beam on the strip in the width direction of the strip to form a light cutting curve (image). A light-cutting shape measuring method for reconstructing the shape of a band-like body by overlappingly imaging the light-cutting curve (image) on the band-like body by using a delay integration type linear sensor while shifting by a predetermined interval. , Obtaining a point in the width direction of the strip that minimizes the height variation along the longitudinal direction of the strip, and using the height variation in the longitudinal direction at the point as the magnitude of vibration of the strip In this optical shape measuring method, the index of the shape of the band-like body is measured over the entire surface or a part of the band-like body by subtracting from the height measured at each point in the direction.

第2の発明は、上記の形状の指標が、帯状体の形状の位置変化を波と称して、波高さ、波ピッチ、急峻度、および伸び率の内のいずれかまたは全部であることを特徴とする光学的形状測定方法である。
第3の発明は、上記の形状の指標を求めるのに、前記帯状体の幅方向の離散的な複数の点xにおいて長手方向断面曲線の長さを計算する手順と、該長手方向断面曲線の長さが最小となる幅方向の点xmを検索する手順と、該点xmでの長手方向断面曲線の長さを基準にして幅方向の各点xでの伸び率を計算する手順と、長手方向の離散的な複数の点tにおける前記帯状体面上の前記光切断曲線の長さを計算する手順と、該光切断曲線の長さの長手方向の変化において頂点(山または谷)の間隔から前記波のピッチを計算する手順と、前記伸び率から急峻度を計算する手順と、さらに、該急峻度と前記波のピッチから波高さを推定する手順を具備することを特徴とする光学的形状測定方法である。
In a second aspect of the invention, the shape index is any or all of wave height, wave pitch, steepness, and elongation rate, with the change in position of the shape of the band-like body being referred to as a wave. It is an optical shape measuring method.
According to a third aspect of the present invention, in order to obtain the index of the shape, a procedure for calculating the length of the longitudinal section curve at a plurality of discrete points x in the width direction of the strip, a step of length to find the point x m in the width direction becomes a minimum, the procedure for calculating the elongation at each point x in the longitudinal section with respect to the length width direction of the curve at the point x m A procedure for calculating the length of the light cutting curve on the surface of the strip at a plurality of discrete points t in the longitudinal direction, and the change of the length of the light cutting curve in the longitudinal direction An optical system comprising: a procedure for calculating the wave pitch from the interval; a procedure for calculating the steepness from the elongation; and a procedure for estimating the wave height from the steepness and the wave pitch. This is a method for measuring a target shape.

本発明は、これまで困難であった高さ変動の加わった高速移動物体の連続的形状測定を簡便な撮像手段で初めて可能にした発明である。例えば鉄鋼業に於けるオンライン形状寸法計測において、従来の方式に比べてはるかに高密度な全面全長計測が可能になり、オペレータガイダンスによる製品寸法形状の造り込み精度の向上やユーザに対する完全品質保証が実現できることになる。 またコスト的に見ても本方式は簡単な装置で実現できるため、例えば熱延等で用いられているレーザ変位計を多数台並べた方式に比較して、はるかに安い設備投資で設置可能である。   The present invention is the first to enable continuous shape measurement of a high-speed moving object to which height fluctuation has been added, which has been difficult until now, with a simple imaging means. For example, in the online shape measurement in the steel industry, it is possible to measure the entire length of the entire surface, which is much higher density than the conventional method, improving the accuracy of building the product size and shape by operator guidance, and ensuring the complete quality for the user. It can be realized. In terms of cost, this method can be realized with a simple device. For example, it can be installed with much lower capital investment than a method in which a large number of laser displacement meters used in hot rolling are arranged. is there.

以下本発明を、図を用いて作用とともに説明する。図1は本発明の光学的形状測定装置の全体構成の概略を示している。1は測定対象(帯状体)で長手方向に移動する鋼板であり、その中に耳波や中伸びなどの形状的欠陥を有している。2は線状レーザ光源であり、そこから射出する扇状に広げられたビーム3が、測定対象である鋼板に照射されると、測定対象の表面形状に沿って光切断像4を形成する。5は逐次積分型のリニアセンサを有する特殊カメラであり、後でその機能を詳述する。6は測定対象の搬送速度を測定する測定ロールであり、7は回転速度測定器である。8は信号処理制御装置であり、回転速度測定器7の回転速度の信号から対象物体の移動距離を算出し所定の距離毎に線状レーザ光源2を発光させると同時に、特殊カメラ5に送る制御クロックを制御して所定のビデオ信号を得る。この信号を高速に処理して連続的に形状指標値を得る。9は測定結果の表示装置である。   In the following, the present invention will be described together with the operation with reference to the drawings. FIG. 1 shows an outline of the overall configuration of the optical shape measuring apparatus of the present invention. Reference numeral 1 denotes a steel plate that moves in the longitudinal direction as a measurement target (strip-shaped body), and has a shape defect such as an ear wave or a middle elongation therein. Reference numeral 2 denotes a linear laser light source. When a beam 3 radiated from the fan is irradiated onto a steel plate as a measurement target, a light cut image 4 is formed along the surface shape of the measurement target. Reference numeral 5 denotes a special camera having a successive integration type linear sensor, the function of which will be described in detail later. Reference numeral 6 denotes a measurement roll for measuring the conveyance speed of the measurement object, and reference numeral 7 denotes a rotational speed measuring device. Reference numeral 8 denotes a signal processing control device, which calculates the moving distance of the target object from the rotational speed signal of the rotational speed measuring device 7 and causes the linear laser light source 2 to emit light at a predetermined distance and simultaneously send it to the special camera 5. A predetermined video signal is obtained by controlling the clock. This signal is processed at high speed to continuously obtain shape index values. Reference numeral 9 denotes a measurement result display device.

まず、特殊カメラ5について説明する。図2は特殊カメラの機能と信号処理の構造について説明するための図である。10はカメラの受光部にある二次元半導体撮像素子の中の光電変換電荷積分転送部である。二次元に配列された光電変換素子は、各列毎に垂直方向の電荷転送部を有し、転送される途中でそれぞれの箇所の光電変換素子より電荷を受け取り積分する。11は水平転送読みだし部であり、その出力は通常のリニアアレイと同じ形となる。
通常このタイプのセンサーは撮像対象の実像が光電変換面上で垂直方向に移動する速度と垂直方向の転送速度を同期させると、等価的に長時間露光したことになり感度およびS/N比を画期的に向上できるため、超高速撮影や低照度撮影用として使用されている。
First, the special camera 5 will be described. FIG. 2 is a diagram for explaining the function of the special camera and the structure of signal processing. Reference numeral 10 denotes a photoelectric conversion charge integration transfer unit in the two-dimensional semiconductor image pickup device in the light receiving unit of the camera. The two-dimensionally arranged photoelectric conversion elements have a vertical charge transfer section for each column, and receive and integrate charges from the respective photoelectric conversion elements in the middle of the transfer. Reference numeral 11 denotes a horizontal transfer reading unit whose output has the same form as a normal linear array.
Normally, when this type of sensor synchronizes the speed at which the real image to be imaged moves vertically on the photoelectric conversion surface and the transfer speed in the vertical direction, it means that the exposure is equivalently long, and the sensitivity and S / N ratio are reduced. Because it can be improved dramatically, it is used for ultra-high-speed shooting and low-light shooting.

しかし本発明においては、特許文献2で開示しているように上記素子を通常とは全く違った形で使用している。すなわち、対象物体と垂直転送速度は同期する必要はなく必要なだけ速く転送する。この間に適当な間隔にてレーザを瞬間的に発光させると、光切断像が対応する位置に電荷が蓄積する。装置全体を暗室中に置くか、カメラレンズの前にレーザの光だけを通す干渉フィルタを置くと、レーザが当たっていない部分は電荷が発生しないため、光切断像が重ならない範囲で、いくらでも光切断像の間隔を狭く出来、さらに連続的に切れ目なく光切断像が得られるという、これまでの単なるテレビカメラを使っていたときと比べてはるかに高速な測定を可能にする方法である。   However, in the present invention, as disclosed in Patent Document 2, the above element is used in a completely different form. That is, it is not necessary to synchronize the target object and the vertical transfer speed, and transfer is performed as fast as necessary. When the laser is instantaneously emitted at an appropriate interval during this period, electric charges are accumulated at the position corresponding to the light section image. If the entire device is placed in a dark room or an interference filter that passes only laser light is placed in front of the camera lens, no charge is generated in the part that is not hit by the laser. This is a method that enables a much faster measurement than when using a simple television camera so far, in which the interval between the cut images can be narrowed, and a light cut image can be obtained continuously and continuously.

次にリアルタイム信号処理方法の1例について説明する。この信号処理は光切断像の間隔変化分が形状の変化分に比例する事を利用して、実時間処理するためのものである。図2において12は前置増幅器でありセンサーの出力を増幅すると同時にインピーダンスの変換を行う。13は比較器でありアナログ信号を2値化し、光切断像があれば1となる。14はシフトレジスタであり、水平転送クロックによって1ライン分遅延させる。15はラッチであり今回値と前回値を保持する。16は判定器であり今回の値と前回の値の組み合わせが、(1,0)となる時のみ、1を出力しその列に於いて次の光切断像が到達した事を判定する。18は間隔積算カウント値保持用シフトレジスタであり、17は第一制御回路である。第一制御回路17は判定器16の出力が0の間は単に対応する列のレジスタを+1するだけであるが、1になると、+1した後その値を第二制御回路19へ送出する。21は基準間隔値設定器であり20は変化分積分用レジスタである。基準間隔値は測定対象が平坦な時には光切断像は等間隔の直線となり、その間隔値を保持する。第二制御回路19は第一制御回路17よりきた今回の間隔値から基準値を減算して変化分を求め、それを20の変化分積分値シフトレジスタの値に加算する。従って、このレジスタのそれぞれのデータは測定対象の幅方向における現在の高さを現しており、時々刻々と変化する形状をリアルタイムで表示する事も可能である。22はD/A変換器であり、23は表示器である。   Next, an example of the real-time signal processing method will be described. This signal processing is for real-time processing using the fact that the interval change of the light section image is proportional to the shape change. In FIG. 2, a preamplifier 12 amplifies the output of the sensor and simultaneously converts the impedance. A comparator 13 binarizes the analog signal and becomes 1 if there is a light section image. A shift register 14 is delayed by one line by a horizontal transfer clock. A latch 15 holds the current value and the previous value. Reference numeral 16 denotes a determiner, which outputs 1 only when the combination of the current value and the previous value is (1, 0), and determines that the next light section image has arrived in that column. Reference numeral 18 denotes an interval integration count value holding shift register, and reference numeral 17 denotes a first control circuit. While the output of the determiner 16 is 0, the first control circuit 17 simply increments the corresponding column register by +1. When it becomes 1, the value is incremented by 1 and the value is sent to the second control circuit 19. 21 is a reference interval value setter, and 20 is a change integration register. When the object to be measured is flat, the reference interval value is a straight line of equal intervals and holds the interval value. The second control circuit 19 subtracts the reference value from the current interval value from the first control circuit 17 to obtain the change amount, and adds it to the value of the 20 change integral value shift register. Therefore, each data of this register represents the current height in the width direction of the measurement object, and it is also possible to display a shape that changes every moment in real time. 22 is a D / A converter and 23 is a display.

図3は、反射体24が鋼板1の周辺にある場合の線状レーザ光源2と特殊カメラ5を用いて得られた幅方向光切断図である。鋼板が中伸びや耳波などの本来の形状が現れていない平坦で振動がない場合には断面曲線は直線になるから、断面曲線の直線からの変位をここでは鋼板の高さと呼ぶことにする。
図4は図1の本発明での光学配置を長手方向から見た側面図(a)と、板エッジ周辺を拡大した図(b)である。反射体24が鋼板1の周辺に存在する場合、板の厚みによっては反射体と鋼板上に映ったレーザ線の像が連続的につながってしまい、板エッジの検出が難しくなる。このため図3に示すような鋼板と反射体の間に影をつくる光学配置にすることが望ましい。図4の3'はレーザ2が鋼板1を見込むときのレーザ線を表し、25は特殊カメラ5が鋼板1を見込むときの視野を表す。図4でカメラの鋼板の真上からの見込み角θCが小さい場合、影の幅は鋼板表面から反射体までの距離Dとレーザの見込み角θLで決まりDtanθLである。実際にはカメラの見込み角θCは有限なので影の幅はD(tanθL−tanθC)であり、カメラで検出できる影を作るには影の幅がカメラの分解能に相当する幅Δwより大きくする。すなわち(9)式のように設定すればよい。

Figure 2006189315
以上が線状レーザ光源2と特殊カメラ5を用いて形状を測定する方法についての説明である。 FIG. 3 is a sectional view in the width direction obtained using the linear laser light source 2 and the special camera 5 when the reflector 24 is in the vicinity of the steel plate 1. When the steel plate is flat and does not show its original shape such as medium elongation or ear waves, the cross-section curve becomes a straight line when there is no vibration. Therefore, the displacement from the straight line of the cross-section curve is called the height of the steel plate here. .
4A and 4B are a side view of the optical arrangement of the present invention shown in FIG. 1 as viewed from the longitudinal direction and an enlarged view of the periphery of the plate edge. When the reflector 24 is present around the steel plate 1, depending on the thickness of the plate, the image of the laser beam reflected on the reflector and the steel plate is continuously connected, making it difficult to detect the plate edge. Therefore, it is desirable to adopt an optical arrangement that creates a shadow between the steel plate and the reflector as shown in FIG. 4 represents a laser beam when the laser 2 looks at the steel plate 1, and 25 indicates a field of view when the special camera 5 looks at the steel plate 1. If in FIG. 4 prospective angle theta C from directly above the steel plate of the camera is small, the width of the shadow is Dtanshita L determined by the yaw angle theta L of the distance D and the laser from the steel sheet surface to the reflector. Since the camera's expected angle θ C is actually finite, the shadow width is D (tanθ L −tanθ C ). To create a shadow that can be detected by the camera, the shadow width is larger than the width Δw corresponding to the camera resolution. To do. That is, the setting may be made as shown in equation (9).
Figure 2006189315
This completes the description of the method for measuring the shape using the linear laser light source 2 and the special camera 5.

(第1の実施の形態)
次に、鋼板の振動がある場合の形状を測定する方法について説明する。図5(a)は鋼板の幅方向中央付近が伸びて凹凸が現れている中伸びに振動が加わっている様子を示す図である。長手方向の位置座標あるいは時刻をtで表し、幅方向位置xにおける本来の形状による波曲線をf(x, t)、また幅方向にほぼ一様な振動をg(t)とするとき、鋼板の振動が加わったときの鋼板の高さh(x, t)は(10)式のように表される。

Figure 2006189315
(First embodiment)
Next, a method for measuring the shape when there is vibration of the steel plate will be described. FIG. 5 (a) is a diagram showing a state in which vibration is applied to the medium elongation in which the vicinity of the center in the width direction of the steel sheet is elongated and the unevenness appears. When the position coordinate or time in the longitudinal direction is represented by t, the wave curve of the original shape at the width direction position x is f (x, t), and the substantially uniform vibration in the width direction is g (t), the steel plate The height h (x, t) of the steel plate when the vibration is applied is expressed by the equation (10).
Figure 2006189315

後で示すが、鋼板の製造ラインにおいては、中伸びや耳波などの形状は幅方向の特定の位置に現れるため、幅方向には本来の形状の波が現れない点xmが存在する。幅方向の位置xmにおいては振動g(t)のみが現れているはずであり、振動が幅方向に関して一様であれば(11)式のように近似的に位置xmにおける鋼板の高さh(xm, t)は振動g(t)に等しくなる。

Figure 2006189315
したがって幅方向位置xにおける本来の形状f(x, t)は(10)式と(11)式から(12)式のように求められ、振動を除いた形状を検出することができる。
Figure 2006189315
As will be described later, in the steel sheet production line, shapes such as intermediate stretch and ear waves appear at specific positions in the width direction, and therefore there exists a point x m where the original shape wave does not appear in the width direction. Only the vibration g (t) should appear at the position x m in the width direction. If the vibration is uniform in the width direction, the height of the steel plate at the position x m is approximated as shown in equation (11). h (x m , t) is equal to the vibration g (t).
Figure 2006189315
Therefore, the original shape f (x, t) at the position x in the width direction is obtained as in Equation (12) from Equations (10) and (11), and the shape excluding vibration can be detected.
Figure 2006189315

振動のみが現れている点xmを求めるために、幅方向位置xにおける鋼板の高さh(x, t)の長手方向に関する変動を表す量として、h(x, t)の長手断面曲線の長さL(x)を(13)式で定義する。ここで、図6に示すようにtiは長手断面曲線の長さを計算するために長手方向に分割された測定区間iにおける端点、添え字Nは区間の総数を表す。

Figure 2006189315
図5(b)は中伸びの場合にこのようにして計算した長手断面曲線の長さL(x)である。鋼板の中央部では幅方向にほぼ一様な振動g(t)に中伸びによる波f(x, t)が加わるため、鋼板の高さh(x, t)の変動量、すなわち長手断面曲線の長さL(x)が大きくなり、振動のみが現れる幅方向位置においてはL(x)は小さくなる。したがってL(x)を計算し、L(x)が最小になる点を探索すれば本来の形状が現れていない幅方向位置xmが求められる。 In order to obtain the point x m where only the vibration appears, the longitudinal cross-section curve of h (x, t) is used as an amount representing the fluctuation in the longitudinal direction of the height h (x, t) of the steel plate at the position x in the width direction. The length L (x) is defined by equation (13). Here, as shown in FIG. 6, t i represents an end point in the measurement section i divided in the longitudinal direction in order to calculate the length of the longitudinal section curve, and the subscript N represents the total number of sections.
Figure 2006189315
FIG. 5B shows the length L (x) of the longitudinal section curve calculated in this way in the case of medium elongation. At the center of the steel sheet, the wave f (x, t) due to medium elongation is added to the vibration g (t) that is almost uniform in the width direction, so the fluctuation amount of the height h (x, t) of the steel sheet, that is, the longitudinal section curve The length L (x) increases, and L (x) decreases at the position in the width direction where only vibration appears. Therefore to calculate the L (x), L (x ) is not the original shape appear if searching for a point where the minimum width direction position x m is obtained.

図6は上記で説明した幅方向にほぼ一様な振動がある場合に振動を除去する手順を示したものである。まず幅方向位置xにおける、振動を含む長手断面曲線の長さL(x)を計算する(S101)。次に幅方向に関してL(x)の最小値xmを求める(S102)。各幅方向位置xにおける鋼板の高さh(xm, t)から最小位置xmにおける鋼板の高さh(xm, t)を差し引く(S103)。以上により幅方向にほぼ一様な振動を除去した後、波高さ、ピッチ、急峻度、伸び率など平坦度を表すパラメータを計算すればよい(S104)。波の山や谷が複数見つかる場合にはこれらの対から波高さ、ピッチ、急峻度を求め、この中での最大値や平均値を抽出するようにしてもよい。
図10に上記の方法により振動の影響を取り除いた例を示す。(a1)は振動除去前の中伸びの画像であり、その凹凸を256階調にて示しており凹部は黒く凸部は白くなるように表現している。(a2)は(a1)の中伸び画像の中央部、左側と右側エッジ付近の長手断面をグラフ表示したものである。中伸びにもかかわらずエッジ付近にも波があるように見え、振動の影響を受けていると考えられる。(b1)、(b2)は第1の発明の方法にて振動を除去した後の中伸びの画像、長手断面を示すが、エッジ付近の振動の影響による波は消すことができた。
FIG. 6 shows a procedure for removing vibration when there is substantially uniform vibration in the width direction described above. First, the length L (x) of the longitudinal sectional curve including vibration at the position x in the width direction is calculated (S101). Then find the minimum x m of L (x) with respect to the width direction (S102). The height h (x m, t) of the steel sheet in the width direction position x from the steel plate at the minimum position x m height h (x m, t) subtracting (S103). After removing substantially uniform vibration in the width direction as described above, parameters representing flatness such as wave height, pitch, steepness, elongation, etc. may be calculated (S104). When a plurality of wave peaks and valleys are found, the wave height, pitch, and steepness may be obtained from these pairs, and the maximum value or average value among them may be extracted.
FIG. 10 shows an example in which the influence of vibration is removed by the above method. (A1) is a medium-stretched image before vibration removal, and the unevenness is shown in 256 gradations, and the concave portion is expressed as black and the convex portion is expressed as white. (A2) is a graph showing a longitudinal section near the center, left side and right edge of the middle stretched image of (a1). It seems that there is a wave near the edge in spite of medium elongation, and it is thought that it is affected by vibration. (B1) and (b2) show an image and a longitudinal section of the medium elongation after removing the vibration by the method of the first invention, but the waves due to the influence of the vibration near the edge could be eliminated.

(第2の実施の形態)
次に、帯状体の形状の指標の計算について説明する。
前記のL(x)が最小となる点xmでの長手断面曲線h(xm, t)の長さL(xm)を基準にした、幅方向位置xでの曲線h(x, t)の伸び率を(14)式にしたがって計算する。

Figure 2006189315
第1の実施の形態にしたがって振動の影響を除去した後(14)式の伸び率を計算した場合、L(xm)は図15における測定範囲の長さL0=tN−t0となる。
張力変動が激しく平坦度の定量化が難しいラインにおいて、オペレータへのガイダンスとして伸び率を表示し、中伸びが出ているか否かの判断を行う目的に本発明の方法を適用するのであれば、第1の実施の形態で振動の影響を除去せずに伸び率を計算してもよい。
さらに波のピッチは図7のようにしても求められる。まず長手位置tにおいて幅方向位置xの断面曲線F(x, t)の長さC(t)は、前記L(x)を計算したときのように曲線を有限のM個の線分区間に分けて(15)式のようにして求める。
Figure 2006189315
(Second Embodiment)
Next, calculation of the index of the shape of the strip will be described.
The curve h (x, t at the width direction position x with reference to the length L (x m ) of the longitudinal sectional curve h (x m , t) at the point x m where L (x) is minimum ) Is calculated according to equation (14).
Figure 2006189315
When the elongation of equation (14) is calculated after removing the influence of vibration in accordance with the first embodiment, L (x m ) is the length of the measurement range L 0 = t N −t 0 in FIG. Become.
In a line where tension fluctuation is large and flatness is difficult to quantify, if the method of the present invention is applied for the purpose of displaying whether the elongation is displayed as guidance to the operator and determining whether medium elongation has occurred, The elongation may be calculated without removing the influence of vibration in the first embodiment.
Further, the wave pitch can also be obtained as shown in FIG. First, at the longitudinal position t, the length C (t) of the cross-sectional curve F (x, t) at the width direction position x is calculated by dividing the curve into a finite number of M line segments as when L (x) is calculated. Divide it as shown in equation (15).
Figure 2006189315

断面曲線F(x, t)の長さC(t)は長手方向に見ると波の頂点では曲線は長く、節の部分では短くなる。したがってC(t)の周期の2倍を波ピッチとして求めることができる。幅方向中央部に現れる中伸びだけではなく、幅方向両側に出る耳波や二番伸びも検出したい場合には、例えば図8のように幅方向を5分割された区間DS、DQ、C、WQ、WSにおけるそれぞれの幅方向断面曲線の変化からピッチを求めてもよい。従来波ピッチを求める上では波の一周期分が入るように時間窓をある程度長くとる必要があるが、本手法では半分の長さの時間窓を設定すればよく、また幅方向断面曲線の長さの変化のみからピッチを求めているので、第1の発明のように長手方向における振動の影響を除去する処理を行う必要はない。図12にピッチの大きい中伸びの例を示す。(a)は中伸びの画像であり、測定範囲はピッチの半分の長さしかないが、(b)の光切断曲線の長手方向の変化を見ると二つの山が出るので山の間の距離を計算し、2倍すれば本来の波ピッチが計算できる。
以上により伸び率と波ピッチが計算できたならば、正弦波近似の(8)式を用いて伸び率εから急峻度λを求め、さらに急峻度λに波ピッチPを乗算して波高さHを近似的に求めることができる。
The length C (t) of the section curve F (x, t) is long at the top of the wave and short at the node when viewed in the longitudinal direction. Therefore, it is possible to obtain twice the period of C (t) as the wave pitch. When it is desired to detect not only the middle extension appearing in the center in the width direction but also the ear waves and the second extension appearing on both sides in the width direction, for example, sections DS, DQ, C, You may obtain | require a pitch from the change of each width direction cross-section curve in WQ and WS. In order to obtain the conventional wave pitch, it is necessary to make the time window long enough so that one period of the wave enters, but in this method, it is only necessary to set a half time window and the length of the cross-sectional curve in the width direction. Since the pitch is obtained only from the change in length, there is no need to perform a process for removing the influence of vibration in the longitudinal direction as in the first invention. FIG. 12 shows an example of medium elongation with a large pitch. (a) is a medium-stretched image, and the measurement range is only half the pitch, but looking at the change in the longitudinal direction of the light cutting curve in (b), two peaks appear, so the distance between the peaks And the original wave pitch can be calculated by multiplying by two.
If the elongation rate and the wave pitch can be calculated as described above, the steepness λ is obtained from the elongation rate ε using the sine wave approximation (8), and the wave pitch P is multiplied by the steepness λ by the wave pitch P. Can be obtained approximately.

図9は請求項3の過程をフローとしてまとめたものである。まず鋼板の幅方向の各位置xにおいて長手断面曲線の長さL(x)を計算し(S201)、L(x)の最小値を与える幅方向位置xmを求め(S202)、(14)式にしたがって伸び率を計算する(S203)。次に(15)式にしたがって長手方向位置(あるいは時刻t)における光切断曲線の長さC(t)を計算し(S204)、C(t)の頂点(山または谷)の間隔からピッチPを求める(S205)。正弦波近似における急峻度と伸び率の換算式(8)を用いて伸び率εから急峻度λを計算し(S206)、急峻度λにピッチPを乗算して波高さHを求める(S207)。 FIG. 9 summarizes the process of claim 3 as a flow. First, in each position x in the width direction of the steel sheet to calculate the length of the longitudinal cross section curves L (x) (S201), obtains the width-direction position x m giving the minimum value of L (x) (S202), (14) The elongation percentage is calculated according to the formula (S203). Next, the length C (t) of the light cutting curve at the longitudinal position (or time t) is calculated according to the equation (15) (S204), and the pitch P is calculated from the interval between the vertices (mountain or valley) of C (t). Is obtained (S205). The steepness λ is calculated from the elongation ε using the conversion formula (8) of the steepness and elongation in the sine wave approximation (S206), and the wave height H is obtained by multiplying the steepness λ by the pitch P (S207). .

図11に中伸び、耳波、二番伸びについて伸び率を計算した例を示す。いずれも形状の特徴をよく捉えており、伸び率グラフを見れば一目でどのような形状であるかがわかる。レーザ変位計を多数台幅方向に並べる方法と異なり、高密度に形状を表現できる。
伸び率を用いることの利点は、第一に中伸び、耳波、および幅方向四分の一点に出る二番伸びなどの形状の種類を、伸び率曲線で明瞭に区別できる、第二に波高さ、ピッチを求めるときは波の1周期分が入るように時間窓をある程度長く設定する必要があるが、伸び率の場合は一周期なくとも計算可能である、第三にピッチが長い厚手の板の場合に、測定途中で鋼板に折れなどの変形が入っても波高さ、ピッチを求めるときのような頂点を検索するときに発生する誤差は発生しないことなどが挙げられる。生産ラインの現場オペレータが調質圧延ミルの出側の形状を確認しながらミルの圧下状態を変化させるような場合、図6の伸び率曲線がオペレータガイダンスとして非常に役に立つ。
なお、以上では、測定対象が鋼板など帯状体のときの形状測定方法について説明した。しかし、本発明はパイプの管状体など連続な表面を有する物体の平坦度測定または形状の乱れ測定にも応用可能である。例えばパイプに対して管周方向の形状を測定するには、管軸方向を幅方向に管周方向を長手方向にとればよい。また管軸方向の形状を測定するには管周方向を幅方向に管軸方向を長手方向にとって測定すればよい。
FIG. 11 shows an example in which the elongation rate is calculated for medium elongation, ear wave, and second elongation. All of them capture the characteristics of the shape well, and you can see at a glance what the shape is by looking at the elongation graph. Unlike the method of arranging a large number of laser displacement meters in the width direction, the shape can be expressed with high density.
The advantage of using the elongation rate is that, firstly, the type of shape such as medium elongation, ear wave, and the second elongation appearing at a point in the width direction can be clearly distinguished by the elongation curve. Now, when finding the pitch, it is necessary to set the time window to a certain length so that one period of the wave enters, but in the case of the elongation rate, it can be calculated without one period. In the case of a plate, even if a deformation such as a bend occurs in the steel plate in the middle of measurement, an error that occurs when searching for vertices as in finding the wave height and pitch does not occur. When the on-site operator of the production line changes the mill reduction state while checking the shape of the exit side of the temper rolling mill, the elongation curve in FIG. 6 is very useful as operator guidance.
In the above, the shape measuring method when the measurement object is a belt-like body such as a steel plate has been described. However, the present invention can also be applied to flatness measurement or shape disturbance measurement of an object having a continuous surface such as a tubular body of a pipe. For example, in order to measure the shape of the pipe circumferential direction with respect to the pipe, the pipe axis direction may be taken as the width direction and the pipe circumferential direction taken as the longitudinal direction. In order to measure the shape in the tube axis direction, the tube circumferential direction may be measured in the width direction and the tube axis direction in the longitudinal direction.

本発明の全体構成を示す図である。It is a figure which shows the whole structure of this invention. 特殊カメラの機能と信号処理の構造を示す図である。It is a figure which shows the function of a special camera, and the structure of signal processing. 鋼板周辺に反射体がある場合に特殊カメラで撮像された線状レーザビームを表す図である。It is a figure showing the linear laser beam imaged with the special camera when there exists a reflector around a steel plate. 鋼板周辺に反射体がある場合に板エッジを確実に検出するための光学配置を説明した図である。It is the figure explaining the optical arrangement | positioning for detecting a plate edge reliably, when there exists a reflector around a steel plate. 振動の含まれる中伸び形状から、振動成分のみを含む位置の高さ変動を差し引くことで振動を除去する過程を説明する図である。It is a figure explaining the process of removing a vibration by deducting the height fluctuation | variation of the position containing only a vibration component from the middle stretched shape containing a vibration. 帯状体の振動の影響を除去する過程を説明する図である。It is a figure explaining the process of removing the influence of the vibration of a strip. 光切断曲線の長さの長手方向変化とピッチの関係を説明する図である。It is a figure explaining the relationship between the longitudinal direction change of the length of a light cutting curve, and a pitch. 鋼板の幅方向を分割してそれぞれの区間における光切断曲線の長さの長手方向変化からピッチを求める方法を説明する図である。It is a figure explaining the method of dividing | segmenting the width direction of a steel plate and calculating | requiring a pitch from the longitudinal direction change of the length of the optical cutting curve in each area. 伸び率とピッチを求め正弦波近似で急峻度と波高さを計算する手順を説明する図である。It is a figure explaining the procedure which calculates | requires an elongation rate and a pitch, and calculates steepness and a wave height by sine wave approximation. 振動を除去した実施例を説明する図である。It is a figure explaining the Example which removed the vibration. 振動を除去した実施例を説明する図である。It is a figure explaining the Example which removed the vibration. 中伸びの伸び率を計算した例を説明する図である。It is a figure explaining the example which calculated the elongation rate of middle elongation. 耳波の伸び率を計算した例を説明する図である。It is a figure explaining the example which calculated the elongation rate of the ear wave. 二番伸びの伸び率を計算した例を説明する図である。It is a figure explaining the example which calculated the elongation rate of the 2nd elongation. 波ピッチの大きい中伸びについて光切断曲線の長さの変化からピッチが求められることを説明する図である。It is a figure explaining that a pitch is calculated | required from the change of the length of a light cutting curve about the medium elongation with a large wave pitch. 本発明が測定対象とする形状を説明する図である。It is a figure explaining the shape made into a measuring object by the present invention. 平坦度の指標である波高さ、波ピッチ、急峻度の定義を説明する図である。It is a figure explaining the definition of the wave height which is the parameter | index of flatness, a wave pitch, and steepness. 長手断面曲線の長さを計算する方法を説明する図である。It is a figure explaining the method of calculating the length of a longitudinal section curve. 波形状を正弦波と仮定したときの曲線と波高さ、ピッチの関係を示す図である。It is a figure which shows the relationship between a curve, a wave height, and a pitch when a wave shape is assumed to be a sine wave.

符号の説明Explanation of symbols

1 測定対象物体
2 線状レーザ光源
3 線状レーザビーム
4 光切断像
5 特殊カメラ
6 速度測定用ロール
7 回転速度測定器
8 信号処理制御盤
9 表示装置
10 光電変換電荷積分転送部
11 水平転送読みだし部
12 前置増幅器
13 比較器
14 シフトレジスタ
15 ラッチ
16 判定器
17 第一制御回路
18 間隔積算カウント値保持用シフトレジスタ
19 第二制御回路
20 変化分積分用シフトレジスタ
21 基準間隔値設定器
22 D/A変換器
23 表示器
24 反射体
25 鋼板1を見込む視野線
3' 鋼板1を見込むレーザ線
DESCRIPTION OF SYMBOLS 1 Measuring object 2 Linear laser light source 3 Linear laser beam 4 Optical cut image 5 Special camera 6 Speed measurement roll 7 Rotational speed measuring device 8 Signal processing control board 9 Display apparatus 10 Photoelectric conversion charge integration transfer part 11 Horizontal transfer reading Stocking unit 12 Preamplifier 13 Comparator 14 Shift register 15 Latch 16 Determinator 17 First control circuit 18 Shift register 19 for holding interval accumulated count value Second control circuit 20 Shift register 21 for integration of change Reference interval value setting unit 22 D / A converter 23 Display 24 Reflector 25 Field of view 3 'of steel plate 1 Laser line of steel plate 1

Claims (3)

出力が変調された線状レーザ光源を用い、帯状体上に該帯状体の幅方向に線状のレーザビームを投射して光切断曲線(像)を構成し、該光切断曲線(像)を前記帯状体上で所定の間隔ずつずらしながら遅延積分型のリニアセンサを用いて重ね撮像して、帯状体の形状を復元する光切断方式の形状測定方法であって、
前記帯状体の長手方向に沿っての高さ変動が最小になる前記帯状体の幅方向の点を求め、該点における長手方向の高さ変動を前記帯状体の振動の大きさとして、幅方向の各点で測定された高さから差し引くことにより、前記帯状体の形状の指標を、帯状体の全面または一部にわたって測定することを特徴とする光学的形状測定方法。
Using a linear laser light source whose output is modulated, a linear laser beam is projected on the strip in the width direction of the strip to form a light cutting curve (image). It is a shape measuring method of a light cutting method for reconstructing the shape of the band-shaped body by performing overlapping imaging using a delay integration type linear sensor while shifting by a predetermined interval on the band-shaped body,
A point in the width direction of the belt-like body that minimizes the height variation along the longitudinal direction of the belt-like body is obtained, and the height variation in the longitudinal direction at the point is defined as the magnitude of the vibration of the belt-like body. A method for measuring an optical shape, comprising: measuring an index of the shape of the belt-like body over the entire surface or a part of the belt-like body by subtracting from the height measured at each point.
前記形状の指標は、帯状体の形状の位置変化を波と称して、波高さ、波ピッチ、急峻度、および伸び率の内のいずれかまたは全部であることを特徴とする請求項1に記載の光学的形状測定方法。   The shape index is any one or all of a wave height, a wave pitch, a steepness, and an elongation rate, where a change in the position of the shape of the belt-like body is referred to as a wave. Optical shape measurement method. 前記帯状体の幅方向の離散的な複数の点xにおいて長手方向断面曲線の長さを計算する手順と、該長手方向断面曲線の長さが最小となる幅方向の点xmを検索する手順と、
該点xmでの長手方向断面曲線の長さを基準にして幅方向の各点xでの伸び率を計算する手順と、
長手方向の離散的な複数の点tにおける前記帯状体面上の前記光切断曲線の長さを計算する手順と、
該光切断曲線の長さの長手方向の変化において頂点(山または谷)の間隔から前記波のピッチを計算する手順と、
前記伸び率から急峻度を計算する手順と、
さらに、該急峻度と前記波のピッチから波高さを推定する手順を具備することを特徴とする請求項2に記載の光学的形状測定方法。
A procedure for calculating the length of the longitudinal section curve at a plurality of discrete points x in the width direction of the strip, and a procedure for searching for a point x m in the width direction where the length of the longitudinal section curve is minimum When,
A procedure for calculating the elongation at each point x in the width direction based on the length of the longitudinal section curve at the point x m ;
Calculating the length of the light cutting curve on the strip surface at a plurality of discrete points t in the longitudinal direction;
Calculating the wave pitch from the apex (crest or trough) spacing in the longitudinal change in the length of the light cutting curve;
A procedure for calculating the steepness from the elongation;
The optical shape measuring method according to claim 2, further comprising a step of estimating a wave height from the steepness and the wave pitch.
JP2005001145A 2005-01-06 2005-01-06 Optical shape measurement method Active JP4690727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005001145A JP4690727B2 (en) 2005-01-06 2005-01-06 Optical shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005001145A JP4690727B2 (en) 2005-01-06 2005-01-06 Optical shape measurement method

Publications (2)

Publication Number Publication Date
JP2006189315A true JP2006189315A (en) 2006-07-20
JP4690727B2 JP4690727B2 (en) 2011-06-01

Family

ID=36796674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005001145A Active JP4690727B2 (en) 2005-01-06 2005-01-06 Optical shape measurement method

Country Status (1)

Country Link
JP (1) JP4690727B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058036A (en) * 2006-08-29 2008-03-13 Sumitomo Metal Ind Ltd Flatness measuring method and flatness measuring apparatus of plate material
JP2009288072A (en) * 2008-05-29 2009-12-10 Kobe Steel Ltd Shape measuring apparatus and shape measuring method
JP2010243263A (en) * 2009-04-02 2010-10-28 Nippon Steel Corp Surface inspecting device and surface inspection method of belt-like body, and program
JP2011099821A (en) * 2009-11-09 2011-05-19 Sumitomo Metal Ind Ltd Method and device for measuring optical shape of plate material
JP2011220683A (en) * 2010-04-02 2011-11-04 Bridgestone Corp Method for producing lengthy goods and visual inspection device
KR101129880B1 (en) 2009-07-24 2012-03-23 현대제철 주식회사 Optical apparatus for measuring flatness
JP2012252017A (en) * 2012-08-24 2012-12-20 Toshiba Mitsubishi-Electric Industrial System Corp Shape measurement device
CN103212813A (en) * 2012-01-19 2013-07-24 昆山思拓机器有限公司 Integral cutting equipment for linear array laser sensor and method for detecting and repairing hole of linear array laser sensor
CN105651189A (en) * 2016-02-03 2016-06-08 浙江大学 Non-destructive online testing equipment used for measuring thickness of ink layer in mobile phone cover plate
JP2017151066A (en) * 2016-02-26 2017-08-31 株式会社キーエンス Image inspection device, image inspection method, image inspection program, and computer-readable recording medium and recorded device
CN111426286A (en) * 2020-04-21 2020-07-17 北京科技大学 Roughness intelligent detector
US12000688B2 (en) 2021-07-20 2024-06-04 Keyence Corporation Shape inspection device, processing device, height image processing device using characteristic points in combination with correcetion reference regions to correct height measurements
JP7537039B1 (en) 2024-02-07 2024-08-20 Primetals Technologies Japan株式会社 Metal strip shape detection device, rolling mill, and detection method
JP7537038B1 (en) 2024-02-07 2024-08-20 Primetals Technologies Japan株式会社 Metal strip shape detection device, rolling mill, and detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159728A (en) * 1994-11-30 1996-06-21 Mitsubishi Electric Corp Shape measuring instrument
JP2000329540A (en) * 1999-05-20 2000-11-30 Kawasaki Steel Corp Method and apparatus for measuring flatness of strip body
JP2004226240A (en) * 2003-01-23 2004-08-12 Nippon Steel Corp Optical shape measuring method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178608A (en) * 1985-02-05 1986-08-11 Mitsubishi Electric Corp Flatness detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159728A (en) * 1994-11-30 1996-06-21 Mitsubishi Electric Corp Shape measuring instrument
JP2000329540A (en) * 1999-05-20 2000-11-30 Kawasaki Steel Corp Method and apparatus for measuring flatness of strip body
JP2004226240A (en) * 2003-01-23 2004-08-12 Nippon Steel Corp Optical shape measuring method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058036A (en) * 2006-08-29 2008-03-13 Sumitomo Metal Ind Ltd Flatness measuring method and flatness measuring apparatus of plate material
JP2009288072A (en) * 2008-05-29 2009-12-10 Kobe Steel Ltd Shape measuring apparatus and shape measuring method
JP2010243263A (en) * 2009-04-02 2010-10-28 Nippon Steel Corp Surface inspecting device and surface inspection method of belt-like body, and program
KR101129880B1 (en) 2009-07-24 2012-03-23 현대제철 주식회사 Optical apparatus for measuring flatness
JP2011099821A (en) * 2009-11-09 2011-05-19 Sumitomo Metal Ind Ltd Method and device for measuring optical shape of plate material
JP2011220683A (en) * 2010-04-02 2011-11-04 Bridgestone Corp Method for producing lengthy goods and visual inspection device
CN103212813A (en) * 2012-01-19 2013-07-24 昆山思拓机器有限公司 Integral cutting equipment for linear array laser sensor and method for detecting and repairing hole of linear array laser sensor
JP2012252017A (en) * 2012-08-24 2012-12-20 Toshiba Mitsubishi-Electric Industrial System Corp Shape measurement device
CN105651189A (en) * 2016-02-03 2016-06-08 浙江大学 Non-destructive online testing equipment used for measuring thickness of ink layer in mobile phone cover plate
JP2017151066A (en) * 2016-02-26 2017-08-31 株式会社キーエンス Image inspection device, image inspection method, image inspection program, and computer-readable recording medium and recorded device
US10515446B2 (en) 2016-02-26 2019-12-24 Keyence Corporation Image inspection device, image inspection method, image inspection program, and computer-readable recording medium and recording equipment
CN111426286A (en) * 2020-04-21 2020-07-17 北京科技大学 Roughness intelligent detector
US12000688B2 (en) 2021-07-20 2024-06-04 Keyence Corporation Shape inspection device, processing device, height image processing device using characteristic points in combination with correcetion reference regions to correct height measurements
JP7537039B1 (en) 2024-02-07 2024-08-20 Primetals Technologies Japan株式会社 Metal strip shape detection device, rolling mill, and detection method
JP7537038B1 (en) 2024-02-07 2024-08-20 Primetals Technologies Japan株式会社 Metal strip shape detection device, rolling mill, and detection method

Also Published As

Publication number Publication date
JP4690727B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP4690727B2 (en) Optical shape measurement method
US8459073B2 (en) Method for measuring sheet material flatness and method for producing steel sheet using said measuring method
JP4516884B2 (en) Periodic defect inspection method and apparatus
JP4116887B2 (en) Optical shape measurement method
JP2008058036A (en) Flatness measuring method and flatness measuring apparatus of plate material
JP6314798B2 (en) Surface defect detection method and surface defect detection apparatus
WO2006007704A1 (en) Flatness monitor
TW201221901A (en) Method and device for evaluating surface shape
JP6256365B2 (en) Method and equipment for measuring flat shape of steel strip
JP2011099821A (en) Method and device for measuring optical shape of plate material
JP5347661B2 (en) Belt surface inspection apparatus, surface inspection method, and program
JP2006292503A (en) Method and device for flaw inspection
JP2004141956A (en) Method and instrument for measuring meandering of metal plate and manufacturing method for metal plate using the measuring method
JP4854602B2 (en) Method for detecting the shape of rolled material
JPH08285550A (en) Instrument for measuring-steel plate displacement
KR101879066B1 (en) Material shape measuring apparatus
KR0129054B1 (en) Measuring method and apparatus for plate transformation of steel plate
KR20030018183A (en) The Apparatus and Method for measuring Width of Steel Sheet with Laser and High Resolution Area Scan CCD Camera
JP7222415B2 (en) Device for measuring meandering amount of hot-rolled steel strip and method for measuring meandering amount of hot-rolled steel strip
JP3599013B2 (en) Method for measuring camber shape of rolled metal strip, camber shape measuring device and rolling device
KR101030857B1 (en) Method of measuring plate flatness
JP7447874B2 (en) Method for generating a model for estimating the amount of meandering in a steel plate, method for estimating the amount of meandering in a steel plate, method for controlling meandering in a steel plate, and method for manufacturing a steel plate
JP7047995B1 (en) Steel plate meandering amount measuring device, steel sheet meandering amount measuring method, hot-rolled steel strip hot rolling equipment, and hot-rolled steel strip hot-rolling method
JP2011242298A (en) Shape measuring instrument, method, and program for strip-shaped material
JPH06201347A (en) Shape detection for traveling strip, its device and rolling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110218

R151 Written notification of patent or utility model registration

Ref document number: 4690727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350