JP2006189217A - 熱交換器、及び、その熱交換器を用いた熱音響装置 - Google Patents

熱交換器、及び、その熱交換器を用いた熱音響装置 Download PDF

Info

Publication number
JP2006189217A
JP2006189217A JP2005002619A JP2005002619A JP2006189217A JP 2006189217 A JP2006189217 A JP 2006189217A JP 2005002619 A JP2005002619 A JP 2005002619A JP 2005002619 A JP2005002619 A JP 2005002619A JP 2006189217 A JP2006189217 A JP 2006189217A
Authority
JP
Japan
Prior art keywords
heat exchanger
stack
temperature side
side heat
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005002619A
Other languages
English (en)
Other versions
JP4554374B2 (ja
Inventor
Shinichi Sakamoto
眞一 坂本
Yoshiaki Watanabe
好章 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Original Assignee
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd filed Critical Doshisha Co Ltd
Priority to JP2005002619A priority Critical patent/JP4554374B2/ja
Priority to PCT/JP2005/007684 priority patent/WO2006073005A1/ja
Priority to US11/662,252 priority patent/US8931286B2/en
Publication of JP2006189217A publication Critical patent/JP2006189217A/ja
Application granted granted Critical
Publication of JP4554374B2 publication Critical patent/JP4554374B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/50Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes
    • F02G2243/54Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes thermo-acoustic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1403Pulse-tube cycles with heat input into acoustic driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1405Pulse-tube cycles with travelling waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1416Pulse-tube cycles characterised by regenerator stack details

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】熱交換の効率性を向上させることのできるスタックを有する熱交換器及びその熱交換器を用いた熱音響装置を提供する。
【解決手段】複数のスタック構成要素3eL、3eHを積層した第一のスタック3aと、この第一のスタック3aの両端に設けられた第一高温側熱交換器4及び第一低温側熱交換器5を備え、第一高温側熱交換器4及び第一低温側熱交換器5と間の温度差によって自励の音波を発生させ、第二高温側熱交換器6及び第二低温側熱交換器7に挟まれた第二のスタック3bで熱エネルギーに変換する熱音響装置1において、第一高温側熱交換器4及び第二高温側熱交換器6側から順に、熱伝導率の低いスタック構成要素3eL、熱伝導率の高いスタック構成要素3eL、熱伝導率の低いスタック構成要素3eL、及び、第一・第二低温側熱交換器5、7と配する。
【選択図】 図3

Description

本発明は、熱音響効果を利用して冷却対象物を冷却し、若しくは、加熱対象物を加熱することのできる熱音響装置に関するものであり、より詳しくは、熱エネルギーから音エネルギーへ、若しくは、音エネルギーから熱エネルギーへの変換効率を向上させるようにした熱交換器及びその熱交換器を用いた熱音響装置に関するものである。
音響効果を利用した熱交換装置に関しては下記の特許文献1や特許文献2などに記載されるものが存在する。
まず、特許文献1に記載される装置は、熱音響効果を利用した冷却装置に関するもので、作動流体を封入したループ管の内部に、高温側熱交換器及び低温側熱交換器に挟まれた第一のスタックと、高温側熱交換器及び低温側熱交換器に挟まれた蓄冷器(第二のスタック)と、第一のスタック側の高温側熱交換器を加熱することによって自励の定在波及び進行波を発生させ、この定在波及び進行波によって蓄冷器側の低温側熱交換器を冷却させるようにしたものである。
また、特許文献2には、このような熱音響装置のスタックに関するものとして、複数枚の多孔板およびOリングを熱輸送方向に交互に並べたスタックの構造が開示されている。この文献2によれば、このスタックは、この多孔板を蓄熱効果の高い物質で構成し、また、隣り合う多孔板の間であって、かつ、Oリングとの間の空気層を熱伝導率の低い物質で構成して熱輸送方向と逆方向への熱の移動を抑制し、また、多孔板の壁面に熱を蓄えるようにしたものである。更に、この特許文献2には、スタックの別の実施の形態として、蓄熱効果の高い物質からなる円板と熱伝導率の低い物質からなる円板とを交互に並べるようにした構成が開示されている。
特開2000―88378号公報 特開平10−68556号公報
しかしながら、上記特許文献2に用いられているスタックは、その両端部を蓄熱効果の高いスタックとし、その間に、蓄熱効果の高いスタックと熱伝導率の低いスタックとを交互に並べるような構成としているため、次のような問題を生ずる。
すなわち、スタックの両端部には高温側熱交換器や低温側熱交換器が取り付けられることになるが、この高温側熱交換器や低温側熱交換器側に蓄熱効果の高いスタックを取り付けると、その高温側熱交換器や低温側熱交換器の熱がスタックの内部に蓄積されてしまい、作動流体との間でうまく熱交換を行うことができなくなってしまう。特に、高温側熱交換器を数百℃に加熱するような状況では、その高温側熱交換器側のスタックで作動流体との間で熱交換を行うことができなくなってしまう。更に、蓄熱効果の高いスタックを高温側熱交換器側と低温側熱交換器側に密着して設けると、高温側熱交換器の熱が蓄熱効果の高いスタックを介して低温側熱交換器側へ移送されてしまい、低温側熱交換器の温度を高くしてしまう可能性がある。そして、このように低温側熱交換器の温度を高くしてしまうと、高温側熱交換器と低温側熱交換器との温度勾配が小さくなり、導通路内から音波を迅速に発生させることができず、熱交換の効率性が悪くなってしまう。
そこで、本発明は上記課題に着目してなされたもので、熱交換の効率性を向上させることのできるようなスタックを備えた熱交換器、及び、その熱交換器を用いた熱音響装置を提供することを目的とする。
本発明は上記課題を解決するために、複数のスタック構成要素を積層したスタックと、当該スタックの一端側に設けられた高温側熱交換器と、前記スタックの他端側に設けられた低温側熱交換器とを備え、前記高温側熱交換器と低温側熱交換器との間に生じた温度差によってスタックの導通路内に温度勾配を生じさせ、当該スタックから音波を発生させる熱交換器において、前記積層されたスタックの両端側を熱伝導率の低いスタック構成要素とし、その熱伝導率の低いスタック構成要素の間に、相対的に熱伝導率の高いスタック構成要素を設けるようにしたものである。
このように構成すれば、両端部に熱伝導率の低いスタック構成要素を設けているため、高温側熱交換器などからの熱をスタックを介して低温側熱交換器側へ移送させることを低減することができ、高温側熱交換器と低温側熱交換器との温度差を大きくすることができる。これにより、温度勾配を大きくして迅速に定在波及び進行波を発生させ、熱交換の効率性を向上させることができるようになる。
また、別の発明では、複数のスタック構成要素を積層したスタックと、当該スタックの一端側に設けられた高温側熱交換器と、前記スタックの他端側に設けられた低温側熱交換器とを備え、前記スタック内に音波を入力することによって高温側熱交換器と低温側熱交換器との間に温度勾配を生じさせ、前記高温側熱交換器、若しくは、低温側熱交換器から熱を外部に出力する熱交換器において、前記スタックの両端側を熱伝導率の低いスタック構成要素とし、その熱伝導率の低いスタック構成要素の間に、相対的に熱伝導率の高いスタック構成要素を設ける。
このように構成すれば、音エネルギーから熱エネルギーへ変換する際、高温側熱交換器側から低温側熱交換器側に向けて高い熱が移送されてしまうというようなことがなくなり、低温側熱交換器の冷却温度を低くして、冷却対象物をより冷却することなどができるようになる。
また、このような発明において、この熱伝導率の高いスタック構成要素を、熱伝導率の低いスタック構成要素の厚みよりも厚くする。
このようにすれば、導通路内に存在する作動流体との熱交換を行うための面積を大きくすることができ、迅速に音波を発生させて熱交換の効率性を向上させることができるようになる。
更に、各スタック構成要素を高温側熱交換器及び低温側熱交換器の挟み込み力によって積層する。
このようにすれば、接着剤などを用いて各スタック構成要素を積層する場合に比べて、簡単にスタック構成要素を積層することができる。特に、接着剤を用いた場合は、溢れた接着剤によって微小径の導通路を塞いでしまう可能性があるが、単に高温側熱交換器と低温側熱交換器とで挟み込むだけの構成とすれば、このような導通路を塞いでしまうようなことがなくなる。
また、スタック構成要素を積層する場合の別の態様として、各スタック構成要素を自重で積層する。
このようにすれば、高温側熱交換器と低温側熱交換器とで各スタック構成要素を挟み込む必要がなくなり、簡単にスタック構成要素を積層することができるようになる。
そして、このような熱交換器は、次のような熱音響装置に適用される。すなわち、ループ管の内部に、第一高温側熱交換器及び第一低温側熱交換器に挟まれた第一のスタックと、第二高温側熱交換器及び第二低温側熱交換器に挟まれた第二のスタックとを具備し、前記第一高温側熱交換器を加熱することによって自励による定在波及び進行波を発生させ、この定在波及び進行波によって前記第二低温側熱交換器を冷却し、若しくは、前記第一低温側熱交換器を冷却することによって自励による定在波及び進行波を発生させ、この定在波及び進行波によって前記第二高温側熱交換器を加熱する熱音響装置に適用する。そして、この第一のスタック及び第二のスタックの両端側を熱伝導率の低いスタック構成要素とし、その熱伝導率の低いスタック構成要素の間に、相対的に熱伝導率の高いスタック構成要素を設けるようにする。
本発明の熱交換器は、複数のスタック構成要素を積層したスタックと、当該スタックの一端側に設けられた高温側熱交換器と、前記スタックの他端側に設けられた低温側熱交換器とを備え、前記高温側熱交換器と低温側熱交換器との間に生じた温度差によってスタックの導通路内に温度勾配を生じさせ、当該スタックから音波を発生させる熱交換器において、前記積層されたスタックの両端側を熱伝導率の低いスタック構成要素とし、その熱伝導率の低いスタック構成要素の間に、相対的に熱伝導率の高いスタック構成要素を設けるようにしたので、高温側熱交換器などからの熱をスタックを介して低温側熱交換器側へ移送させることが少なくなり、高温側熱交換器と低温側熱交換器との温度差を大きくすることができる。これにより、温度勾配を大きくして迅速に定在波及び進行波を発生させ、熱交換の効率性を向上させることができるようになる。
また、別の発明では、複数のスタック構成要素を積層したスタックと、当該スタックの一端側に設けられた高温側熱交換器と、前記スタックの他端側に設けられた低温側熱交換器とを備え、前記スタック内に音波を入力することによって高温側熱交換器と低温側熱交換器との間に温度勾配を生じさせ、前記高温側熱交換器、若しくは、低温側熱交換器から熱を外部に出力する熱交換器において、前記スタックの両端側を熱伝導率の低いスタック構成要素とし、その熱伝導率の低いスタック構成要素の間に、相対的に熱伝導率の高いスタック構成要素を設けるようにしたので、音エネルギーから熱エネルギーへ変換する際、高温側熱交換器側から低温側熱交換器側に向けて高い熱が移送されてしまうことがなくなる。これにより、低温側熱交換器の冷却温度を低くして、冷却対象物をより冷却することなどができるようになる。
以下、本発明に係る熱音響装置1の第一の実施の形態について図面を参照して説明する。
この実施の形態における熱音響装置1は、図1に示すように、全体として略長方形状に構成されたループ管2の内部に、第一高温側熱交換器4、第一低温側熱交換器5、第一のスタック3aからなる第一の熱交換器300と、第二高温側熱交換器6、第二低温側熱交換器7、第二のスタック3bからなる第二の熱交換器310とを設けて構成されるもので、第一の熱交換器300側の第一高温側熱交換器4を加熱することによって自励による定在波及び進行波を発生させ、この定在波及び進行波による音エネルギーを第二の熱交換器310側へ移送することによって第二の熱交換器310側に設けられた第二の熱交換器310側で熱エネルギーに変換し、第二低温側熱交換器7を冷却するようにしたものである。
そして、この実施の形態においては、第一高温側熱交換器4と第一低温側熱交換器5との温度差を大きくして定在波及び進行波の発生時間を短縮化すべく、第一のスタック3aをループ管の軸方向と垂直な方向に分割し、それぞれの分割された各スタック構成要素3eL、3eHを、第一高温側熱交換器4側から順に、熱伝導率の低いスタック構成要素3eL、熱伝導率の高いスタック構成要素3eH、熱伝導率の低いスタック構成要素3eLと3層に配するようにしたものである。また、更に、この自励による定在波及び進行波に基づく音エネルギーを熱エネルギーに効率よく変換すべく、第二のスタック3b側についても同様に、第二高温側熱交換器6側から順に、熱伝導率の低いスタック構成要素3eL、熱伝導率の高いスタック構成要素3eH、熱伝導率の低いスタック構成要素3eLと3層に配するようにしたものである。以下、この熱音響装置1の具体的構成について詳細に説明する。
熱音響装置1を構成するループ管2は、閉曲線をなすように一対の直線管部2aと、これらの直線管部2aを連結する連結管部2bとを設けて構成される。これらの直線管部2a、連結管部2bは、金属製のパイプによって構成されるが、材質は金属に限らず、透明なガラス、若しくは、樹脂などによって構成することもできる。透明なガラスや樹脂などの材料で構成した場合は、実験等における第一のスタック3aや第二のスタック3bの位置の確認や管内の状況を容易に観察することができる。
そして、このように構成されたループ管2の内部には、第一高温側熱交換器4、第一低温側熱交換器5及び第一のスタック3aからなる第一の熱交換器300と、第二高温側熱交換器6、第二低温側熱交換器7及び第二のスタック3bからなる第二の熱交換器310とを設けている。
この第一高温側熱交換器4及び第一低温側熱交換器5は、共に熱容量の大きい金属などで構成され、図3に示すように、その内側にループ管2の軸方向に沿った微小径の導通路30を設けている。これらの熱交換器4、5のうち、第一高温側熱交換器4は、第一のスタック3aの上面に接するように取り付けられ、外部から供給された電力によって、例えば、約600℃に加熱される。なお、この第一高温側熱交換器4は、電力だけでなく、廃熱や未利用エネルギーなどによって加熱されるようにしても良い。
一方、第一低温側熱交換器5は、同様に、第一のスタック3aの下面に接するように取り付けられ、その外周部分に水などを循環させて相対的に第一高温側熱交換器4よりも低い温度、例えば、15℃〜16℃に設定される。
これら第一高温側熱交換器4と第一低温側熱交換器5との間に設けられる第一のスタック3aは、ループ管2の内側壁面に接する円柱状のもので、図3に示すように、熱伝導率の異なる複数のスタック構成要素3eL、3eHを積層して構成される。これらのスタック構成要素3eL、3eHは、例えば、セラミクス、燒結金属、金網、金属製不織布などの素材が用いられ、第一高温側熱交換器4側から順に、熱伝導率の低いスタック構成要素3eL、熱伝導率の高いスタック構成要素3eH、熱伝導率の低いスタック構成要素3eLと配される。これらのスタック構成要素3eL、3aHのうち、熱伝導率の高いスタック構成要素3eHは、相対的に熱伝導率の低いスタック構成要素3eLよりも厚く構成され、このようにすることによって、作動流体と熱交換を行いうる面積を大きくしている。これらの各スタック構成要素3eL、3eHの内側には、図2に示すように、ループ管2の軸方向に沿った微小径の貫通した導通路30を複数有している。これらの各スタック構成要素3eL、3eHは、それぞれ密着するように上下方向に積層されている。なお、このように各スタック構成要素3eL、3eHを積層する場合、接着剤を用いて積層すると、その内側に設けられた微小径の導通路30を溢れ出た接着剤で塞いでしまう可能性がある。このため、接着剤を用いることなく、例えば、第一高温側熱交換器4と第一低温側熱交換器5との幅を第一のスタック3aの厚み幅と同じ幅に設定し、この第一高温側熱交換器4と第一低温側熱交換器5との挟み込み力によってそれぞれのスタック構成要素3eL、3eHを挟み込む。また、この第一のスタック3aがループ管2の起立する直線管部2a内に設けられる場合は、それぞれのスタック構成要素3eL、3eHの自重によって各スタック構成要素3eL、3eHを密着するように積層する。
また、この各スタック構成要素3eL、3eHの平面方向における熱伝導率は一定となるように、例えば、単一の素材で構成される。平面方向における熱伝導率が不均一であると、第一のスタック3aの内側と外側で温度差が生じ、不均一な音波が発生して定在波及び進行波の発生時間が遅くなり、熱交換の効率性が悪くなってしまう。このため、各スタック構成要素3eL、3eHを単一の素材で構成し、平面方向における熱伝導率を同じにする。
そして、このように第一高温側熱交換器4、第一低温側熱交換器5、第一のスタック3aから構成された第一の熱交換器300は、第一高温側熱交換器4を上側に設けた状態で直線管部2aの中央よりも下方側に設けられる。このように第一のスタック3aを直線管部2aの中央より下方に設けるのは、第一高温側熱交換器4を加熱した際に生じる上昇気流を利用して迅速に音波を発生させるためであり、また、第一高温側熱交換器4を上側に設けるのは、第一高温側熱交換器4を加熱する際に発生する暖かい作動流体を第一のスタック3aの導通路30内に入り込ませないようにして第一低温側熱交換器5との間に大きな温度勾配を形成するためである。
次に、このように構成された第一の熱交換器300の作用について説明する。まず、この第一の熱交換器300の第一高温側熱交換器4を加熱するとともに第一低温側熱交換器5を冷却すると、この第一高温側熱交換器4と第一低温側熱交換器5の方向(軸方向)へ向けて熱が移送される。この際、第一高温側熱交換器4で約600℃に加熱された熱が第一のスタック3aを介して第一低温側熱交換器5へ移送されことになるが、第一のスタック3aの端部に設けられた熱伝導率の低いスタック構成要素3eLによってその熱の移送が阻害される。これにより、第一低温側熱交換器5にその熱が移送されることなく、第一高温側熱交換器4と第一低温側熱交換器5の温度差を大きくすることができる。一方、この第一高温側熱交換器4で約600℃に加熱された熱は、第一のスタック3aの導通路30内の作動流体を介して、第一低温側熱交換器5側へ移送される。これによって第一高温側熱交換器4と第一低温側熱交換器5との間に温度勾配が形成されるが、この作動流体に生じた温度勾配によって作動流体のゆらぎが生じ、第一のスタック3aとの間で熱交換を行いながら音波が発生する。このとき、相対的に熱伝導率の高いスタック構成要素3eHとの間で大きな熱交換が行われ、迅速に音波を発生させて熱交換の効率性を向上させることができる。
このように発生した音波は、ループ管2内において定在波及び進行波となり、音エネルギーとして第二の熱交換器310側へ移送される。
この第二の熱交換器310は、第二高温側熱交換器6、第二低温側熱交換器7、第二のスタック3bから構成される。この第二高温側熱交換器6及び第二低温側熱交換器7は、共に熱容量の大きい金属などで構成され、第一のスタック3aと同様に、第二のスタック3bの両端側に取り付けられるとともに、その内側に定在波及び進行波を導通させるための微小径の導通路30を設けている。この第二高温側熱交換器6は、外周部分に水を循環させて、例えば、15℃〜16℃に設定される。一方、第二低温側熱交換器7は、熱の出力部を有しており、外部の冷却対象物を冷却できるようにしている。この冷却対象物としては、例えば、外気や、発熱を伴う家電製品、パーソナルコンピュータのCPUなどが考えられる。また、第二のスタック3bは、第一のスタック3aと同様の構成を有している。すなわち、第二高温側熱交換器6側から順に、熱伝導率の低いスタック構成要素3eL、熱伝導率の高いスタック構成要素3eH、熱伝導率の低いスタック構成要素3eLと3層に配している。また、熱伝導率の高いスタック構成要素3eHは相対的に熱伝導率の低いスタック構成要素3eLよりも厚く構成される。このように構成された第二の熱交換器310は、図4に示すように、ループ管2における音波の粒子速度変動と音圧変動が同相になる位置の近傍に設けられる。
このループ管2の内部には、ヘリウム、アルゴンなどのような不活性ガスが封入される。なお、このような不活性ガスに限らず、窒素や空気などのような作動流体を封入しても良い。これらの作動流体は、0.01MPa〜5MPaに設定される。
このような作動流体を封入するに際してプラントル数が小さく、また、比重も小さいヘリウムなどを使用すれば、音波の発生までの時間を短縮化することができる。しかし、このような作動流体を用いると、音速が早くなってしまい、スタック内壁との間でうまく熱交換を行うことができない。また、逆に、プラントル数が大きく、また、比重も大きいアルゴンなどを使用すると、今度は粘性が高くなって音波を迅速に発生させることができなくなる。このため、好ましくは、ヘリウムとアルゴンの混合ガスを用いるようにする。このような混合ガスの封入は、次のようにして行う。
まず、始めにプラントル数が小さく、また、比重も小さいヘリウムをループ管2内に封入しておき、迅速に音波を発生させる。そして、発生した音波の音速を低下させるべく、次にアルゴンなどのようなプラントル数が大きく、また、比重も大きいガスを注入する。このアルゴンの混入に際しては、図1に示すように、上側に設けられた連結管部2bの中央部分にヘリウム気体注入装置9aとアルゴン気体注入装置9bを設け、そこからアルゴンを注入する。すると、アルゴンは、左右の直線管部2aに均一に分離し、下方に向かって内部のヘリウムと混合する。これらの混合ガスの圧力は、0.01MPa〜5MPaに設定される。
次に、このように構成された熱音響装置1の動作について説明する。
まず、ループ管2にヘリウム気体注入装置9aを用いてヘリウムを封入しておき、この状態で第一の熱交換器300の第一低温側熱交換器5及び第二の熱交換器310の第二高温側熱交換器6の外周部分に水を循環させる。この状態で第一の熱交換器300の第一高温側熱交換器4を約600℃に加熱し、また、第一低温側熱交換器5を約15〜16℃に設定する。すると、第一高温側熱交換器4から第一低温側熱交換器5への方向に熱が移送される。この際、第一高温側熱交換器4からの熱が第一のスタック3aの部材を介して第一低温側熱交換器5へ移送されるが、この熱の移送は、熱伝導率の低いスタック構成要素3eLの存在によって阻害される。これにより、第一高温側熱交換器4と第一低温側熱交換器5との温度差を大きくすることができる。一方、この第一高温側熱交換器4の熱(600℃)は、第一のスタック3aの導通路30内の作動流体によって第一低温側熱交換器5側へ移送される。これにより第一高温側熱交換器4と第一低温側熱交換器5との間に温度勾配が形成され、この作動流体に生じた温度勾配によって作動流体のゆらぎが生じ、第一のスタック3aとの間で熱交換を行いながら音波が発生する。このとき、相対的に厚く、かつ、熱伝導率の高く構成されたスタック構成要素3eHとの間で大きな熱交換が行われ、迅速に音波を発生させて熱交換の効率性を向上させる。このように発生した音波は、定在波及び進行波による音エネルギーとして、第二の熱交換器310側へ移送される。この音エネルギーは、エネルギー保存の法則に基づき、第一の熱交換器300での熱エネルギーの移送方向(第一高温側熱交換器4から第一低温側熱交換器5の方向)と逆方向、すなわち、第一低温側熱交換器5から第一高温側熱交換器4の方向に移送される。
そして、この定在波及び進行波が発生した直後に、連結管部2bの上側に設けられたアルゴン気体注入装置9bからアルゴンを注入し、一定の圧力に設定して熱交換の効率性を良くする。
次に、第二の熱交換器310側では、定在波及び進行波に基づいて、第二のスタック3bの導通路30内の作動流体を膨張・収縮させる。そして、その際に熱交換された熱エネルギーを音エネルギーの移送方向と逆方向、すなわち、第二低温側熱交換器7から第二高温側熱交換器6側へ移送する。このとき、第二高温側熱交換器6側に高い熱が蓄積され、また、第二低温側熱交換器7側に低い熱が蓄積される。そして、これらの温度差によって、高い熱が第二のスタック3bを介して第二低温側熱交換器7側へ移送されるが、第二高温側熱交換器6及び第二低温側熱交換器7側に熱伝導率の低いスタック構成要素3eLを設けているため、熱の移送が阻害される。これによって、第二低温側熱交換器7の温度をより低くすることができ、冷却対象物をより冷却することができる。
このように上記実施の形態によれば、複数のスタック構成要素3eL、3eHを積層した第一のスタック3aと、第一のスタック3aの一端側に設けられた第一高温側熱交換器4と、第一のスタック3aの他端側に設けられた第一低温側熱交換器5とを備え、第一高温側熱交換器4と第一低温側熱交換器5との間に生じた温度差によって第一のスタック3aの導通路30内に温度勾配を生じさせ、第一のスタック3aから音波を発生させる第一の熱交換器300において、第一のスタック3aの両端側を熱伝導の低いスタック構成要素3eLとし、その熱伝導率の低いスタック構成要素3eLの間に、相対的に熱伝導率の高いスタック構成要素3eHを設けるようにしたので、第一高温側熱交換器4で加熱された熱を第一のスタック3aの部材を介して第一低温側熱交換器5側へ移送させることを低減することができ、第一高温側熱交換器4と第一低温側熱交換器5との温度差を大きくすることができる。これにより、温度勾配を大きくして迅速に定在波及び進行波を発生させ、熱交換の効率性を向上させることができるようになる。
また、第二の熱交換器310についても、同様に、第二のスタック3bの両端側を熱伝導率の低いスタック構成要素3eLとしたので、音エネルギーから熱エネルギーへ変換する際、第二高温側熱交換器6側から第二低温側熱交換器7側に向けて高い熱が移送させることを低減することができ、第二低温側熱交換器7の冷却温度をより低くして、外部の冷却対象物をより冷却することができるようになる。
また、このような発明において、この熱伝導率の高いスタック構成要素3eHを、熱伝導率の低いスタック構成要素3eLの厚みよりも厚くしたので、導通路30内に存在する作動流体との熱交換を行える面積を大きくすることができ、迅速に音波を発生させて熱交換の効率性を向上させることができるようになる。
更に、第一高温側熱交換器4と第一低温側熱交換器5の挟み込み力、及び、第二高温側熱交換器6と第二低温側熱交換器7の挟み込み力によって各スタック構成要素3eL、3eHを積層するようにしたので、接着剤などを用いて各スタック構成要素3eL、3eHを積層する場合に比べて、漏れた接着剤によって導通路30を塞いでしまうといった不具合を防止することができる。
また、スタック構成要素3eL、3eHを積層する場合の別の態様として、各スタック構成要素3eL、3eHを自重で積層するようにしたので、第一高温側熱交換器4と第一低温側熱交換器5の幅を厳密に第一のスタック3aの幅に合わせる必要がなく、簡単に各スタック構成要素3eL、3eHを積層することができるようになる。
なお、本発明は上記実施の形態に限定されることなく、種々の形態で実施することができる。
例えば、上記実施の形態においては、第一の熱交換器300や第二の熱交換器310を一カ所ずつ設けるようにしているが、これに限らず、図5の熱音響装置1aに示すように、ループ管2内に第一の熱交換器300や第二の熱交換器310を複数設けるようにしても良い。この場合、ループ管2内における音波の粒子速度変動と音圧変動が同相になる位置の近傍に第一の熱交換器300及び第二の熱交換器310を設けると良い。
更に、上記実施の形態では、第一のスタック3a側を加熱して第二のスタック3b側を冷却する熱音響装置1を例に挙げて説明したが、これとは逆に、第一のスタック3a側を冷却して第二のスタック3b側を加熱するようにしても良い。この熱音響装置1の例を図6に示す。
図6において、上記実施の形態と同じ符号を示すものは同じ構造を有するものを示している。この実施の形態における熱音響装置1bは、第一の実施の形態と同様に、第一の熱交換器300と第二の熱交換器310を有する。そして、この実施の形態では、第一低温側熱交換器5にマイナス数十度、若しくは、これよりも低い温度に冷却するとともに、第一高温側熱交換器4及び第二低温側熱交換器7に不凍性の液体を循環させる。すると熱音響効果の原理により、第一のスタック3aに形成された温度勾配によって自励の音波が発生する。この定在波及び進行波の音エネルギーの進行方向は、第一のスタック3aにおける熱エネルギーの移送方向(第一高温側熱交換器4から第一低温側熱交換器5の方向)と逆方向に向かうように発生する。この定在波及び進行波による音エネルギーは、第二のスタック3b側へ移送され、第二のスタック3b側では、定在波及び進行波に基づく作動流体の圧力変化及び体積変化によって作動流体が膨張・収縮を繰り返し、その際に生じた熱エネルギーを音エネルギーの移送方向と逆方向である第二低温側熱交換器7から第二高温側熱交換器6側へ移送する。このようにして第二高温側熱交換器6を加熱する。
加えて、上記実施の形態では、定在波及び進行波をループ管2内に発生させるようにしているが、この定在波及び進行波を大きくすると音響流や作動流体の対流などが発生し、第一の熱交換器300の熱が作動流体を介して第二の熱交換器310側に移送されてしまう。そして、これにより、第二低温側熱交換器7の温度が高くなって熱交換の効率性が悪くなってしまう可能性がある。このような不具合を防止するために、例えば、音響流や対流などのような作動流体の直流的な流れと逆方向の音波を発生させるスピーカや圧電フィルム、共鳴器などを設けるようにしても良い。
また、上記実施の形態では、第一のスタック3a及び第二のスタック3bをそれぞれスタック構成要素3eL、3eHを積層した構造としているが、これらのうち、いずれか一方のスタックのみを積層した構造とし、一方を、積層しない構造としても良い。
本発明の一実施の形態を示す熱音響装置の概略図 同形態におけるスタックを軸方向から見た図 同形態におけるスタックの断面図 同形態における音波の粒子速度変動と音圧変動が同相になる位置と第一の熱交換器及び第二の熱交換器との位置関係を示す図 他の実施の形態における熱音響装置の概略図 他の実施の形態における熱音響装置の概略図
符号の説明
1・・・熱音響装置
2・・・ループ管
2a・・・直線管部
2b・・・連結管部
3a・・・第一のスタック
3b・・・第二のスタック
3eL・・・熱伝導率の低いスタック構成要素
3eH・・・熱伝導率の高いスタック構成要素
30・・・導通路
4・・・第一高温側熱交換器
5・・・第一低温側熱交換器
6・・・第二高温側熱交換器
7・・・第二低温側熱交換器
300・・・第一の熱交換器
310・・・第二の熱交換器

Claims (6)

  1. 複数のスタック構成要素を積層したスタックと、当該スタックの一端側に設けられた高温側熱交換器と、前記スタックの他端側に設けられた低温側熱交換器とを備え、前記高温側熱交換器と低温側熱交換器との間に生じた温度差によってスタックの導通路内に温度勾配を生じさせ、当該スタックから音波を発生させる熱交換器において、前記積層されたスタックの両端側を熱伝導率の低いスタック構成要素とし、その熱伝導率の低いスタック構成要素の間に、相対的に熱伝導率の高いスタック構成要素を設けたことを特徴とする熱交換器。
  2. 複数のスタック構成要素を積層したスタックと、当該スタックの一端側に設けられた高温側熱交換器と、前記スタックの他端側に設けられた低温側熱交換器とを備え、前記スタック内に音波を入力することによって高温側熱交換器と低温側熱交換器との間に温度勾配を生じさせ、前記高温側熱交換器、若しくは、低温側熱交換器から熱を外部に出力する熱交換器において、前記スタックの両端側を熱伝導率の低いスタック構成要素とし、その熱伝導率の低いスタック構成要素の間に、相対的に熱伝導率の高いスタック構成要素を設けたことを特徴とする熱交換器。
  3. 前記熱伝導率の高いスタック構成要素が、両端側の熱伝導率の低いスタック構成要素の厚みよりも厚くした請求項1又は2に記載の熱交換器。
  4. 前記各スタック構成要素を高温側熱交換器及び低温側熱交換器の挟み込み力によって積層した請求項1又は2に記載の熱交換器。
  5. 前記各スタック構成要素を自重によって積層した請求項1又は2に記載の熱交換器。
  6. ループ管の内部に、第一高温側熱交換器及び第一低温側熱交換器に挟まれた第一のスタックと、第二高温側熱交換器及び第二低温側熱交換器に挟まれた第二のスタックとを具備してなり、前記第一高温側熱交換器を加熱することによって自励による定在波及び進行波を発生させ、この定在波及び進行波によって前記第二低温側熱交換器を冷却し、若しくは、前記第一低温側熱交換器を冷却することによって自励による定在波及び進行波を発生させ、この定在波及び進行波によって前記第二高温側熱交換器を加熱する熱音響装置であって、前記第一のスタック及び第二のスタックの両端側を熱伝導率の低いスタック構成要素とし、その熱伝導率の低いスタック構成要素の間に、相対的に熱伝導率の高いスタック構成要素を設けたことを特徴とする熱音響装置。
JP2005002619A 2005-01-07 2005-01-07 熱交換器、及び、その熱交換器を用いた熱音響装置 Expired - Fee Related JP4554374B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005002619A JP4554374B2 (ja) 2005-01-07 2005-01-07 熱交換器、及び、その熱交換器を用いた熱音響装置
PCT/JP2005/007684 WO2006073005A1 (ja) 2005-01-07 2005-04-22 熱交換器、及び、その熱交換器を用いた熱音響装置
US11/662,252 US8931286B2 (en) 2005-01-07 2005-04-22 Heat exchanger and thermoacoustic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005002619A JP4554374B2 (ja) 2005-01-07 2005-01-07 熱交換器、及び、その熱交換器を用いた熱音響装置

Publications (2)

Publication Number Publication Date
JP2006189217A true JP2006189217A (ja) 2006-07-20
JP4554374B2 JP4554374B2 (ja) 2010-09-29

Family

ID=36647494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005002619A Expired - Fee Related JP4554374B2 (ja) 2005-01-07 2005-01-07 熱交換器、及び、その熱交換器を用いた熱音響装置

Country Status (3)

Country Link
US (1) US8931286B2 (ja)
JP (1) JP4554374B2 (ja)
WO (1) WO2006073005A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007538A1 (fr) 2006-07-10 2008-01-17 Panasonic Corporation Appareil de cuisson par chauffage
JP2008249223A (ja) * 2007-03-30 2008-10-16 Doshisha スタック及びその製造方法
JP2010261426A (ja) * 2009-05-11 2010-11-18 Isuzu Motors Ltd スターリングエンジン
JP2010261687A (ja) * 2009-05-11 2010-11-18 Isuzu Motors Ltd 熱音響機関
JP2010261688A (ja) * 2009-05-11 2010-11-18 Isuzu Motors Ltd 熱音響機関
KR101016218B1 (ko) 2008-11-21 2011-02-25 한국표준과학연구원 주파수 가변이 가능한 열음향 발생장치 및 그 장치를 이용한 열음향 발생방법 및 최대의 음향출력을 위한 열음향교환기의 내부위치 조절방법
JP2012202586A (ja) * 2011-03-24 2012-10-22 Nippon Telegr & Teleph Corp <Ntt> 熱音響装置用スタックおよび熱音響装置用スタックの製造方法
CN108759086A (zh) * 2018-05-29 2018-11-06 华中科技大学 一种均匀加热的密封热声加热器
JP2019095129A (ja) * 2017-11-22 2019-06-20 大阪瓦斯株式会社 蓄熱システム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0811686D0 (en) * 2008-06-26 2008-07-30 Univ Nottingham A heat exchanger arrangement
WO2010107308A1 (en) * 2009-02-25 2010-09-23 Cornelis Maria De Blok Multistage traveling wave thermoacoustic engine with phase distributed power extraction
US8205459B2 (en) * 2009-07-31 2012-06-26 Palo Alto Research Center Incorporated Thermo-electro-acoustic refrigerator and method of using same
US8227928B2 (en) * 2009-07-31 2012-07-24 Palo Alto Research Center Incorporated Thermo-electro-acoustic engine and method of using same
US8584471B2 (en) 2010-04-30 2013-11-19 Palo Alto Research Thermoacoustic apparatus with series-connected stages
US8375729B2 (en) 2010-04-30 2013-02-19 Palo Alto Research Center Incorporated Optimization of a thermoacoustic apparatus based on operating conditions and selected user input
NL2007434C2 (en) * 2011-09-16 2013-03-19 Stichting Energie Thermo-acoustic system.
EP2898217B1 (en) 2012-09-19 2017-07-05 Etalim Inc. Thermoacoustic transducer apparatus including a transmission duct
JP6627707B2 (ja) * 2016-10-06 2020-01-08 株式会社デンソー エネルギ変換装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344266A (ja) * 1998-06-03 1999-12-14 Sanyo Electric Co Ltd 音響冷凍装置
JP2002535597A (ja) * 1999-01-20 2002-10-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 質量流束を抑制した進行波装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901787A (en) * 1988-08-04 1990-02-20 Balanced Engines, Inc. Regenerative heat exchanger and system
US5165243A (en) * 1991-06-04 1992-11-24 The United States Of America As Represented By The United States Department Of Energy Compact acoustic refrigerator
JPH1068556A (ja) 1996-08-27 1998-03-10 Sharp Corp 熱音響冷凍機
US6131644A (en) * 1998-03-31 2000-10-17 Advanced Mobile Telecommunication Technology Inc. Heat exchanger and method of producing the same
JP3015786B1 (ja) * 1998-07-17 2000-03-06 株式会社移動体通信先端技術研究所 ループ管気柱音響波動冷凍機
JP2002031423A (ja) 2000-07-17 2002-01-31 Iwatani Internatl Corp 熱音響エンジン
US6574968B1 (en) * 2001-07-02 2003-06-10 University Of Utah High frequency thermoacoustic refrigerator
JP2004028389A (ja) * 2002-06-24 2004-01-29 Sanyo Electric Co Ltd 音響冷却装置、温度勾配発生ユニット及びその製造方法
JP3677551B2 (ja) 2002-12-18 2005-08-03 防衛庁技術研究本部長 蓄熱式熱交換器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344266A (ja) * 1998-06-03 1999-12-14 Sanyo Electric Co Ltd 音響冷凍装置
JP2002535597A (ja) * 1999-01-20 2002-10-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 質量流束を抑制した進行波装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007538A1 (fr) 2006-07-10 2008-01-17 Panasonic Corporation Appareil de cuisson par chauffage
JP2008249223A (ja) * 2007-03-30 2008-10-16 Doshisha スタック及びその製造方法
KR101016218B1 (ko) 2008-11-21 2011-02-25 한국표준과학연구원 주파수 가변이 가능한 열음향 발생장치 및 그 장치를 이용한 열음향 발생방법 및 최대의 음향출력을 위한 열음향교환기의 내부위치 조절방법
JP2010261426A (ja) * 2009-05-11 2010-11-18 Isuzu Motors Ltd スターリングエンジン
JP2010261687A (ja) * 2009-05-11 2010-11-18 Isuzu Motors Ltd 熱音響機関
JP2010261688A (ja) * 2009-05-11 2010-11-18 Isuzu Motors Ltd 熱音響機関
JP2012202586A (ja) * 2011-03-24 2012-10-22 Nippon Telegr & Teleph Corp <Ntt> 熱音響装置用スタックおよび熱音響装置用スタックの製造方法
JP2019095129A (ja) * 2017-11-22 2019-06-20 大阪瓦斯株式会社 蓄熱システム
CN108759086A (zh) * 2018-05-29 2018-11-06 华中科技大学 一种均匀加热的密封热声加热器

Also Published As

Publication number Publication date
JP4554374B2 (ja) 2010-09-29
WO2006073005A1 (ja) 2006-07-13
US8931286B2 (en) 2015-01-13
US20070261839A1 (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JP4554374B2 (ja) 熱交換器、及び、その熱交換器を用いた熱音響装置
JP4652821B2 (ja) 熱音響装置
JP4652822B2 (ja) 熱音響装置
Gu et al. A chip scale electrocaloric effect based cooling device
TW425729B (en) Thermal electric module unit
JP5702280B2 (ja) 積層熱電モジュール
TWI415558B (zh) 用於冷卻電子裝置之散熱片組件
Torelló et al. Electrocaloric coolers: a review
US7804046B2 (en) Acoustic heater and acoustic heating system
Smoot et al. Experimental investigation of a three-layer oscillating heat pipe
US20070220903A1 (en) Thermoacoustic Apparatus
US20070193281A1 (en) Thermoacoustic apparatus and thermoacoustic system
KR20160048308A (ko) 적층형 열전 발전 장치
Lu et al. Optimization of the thermal performance of three-dimensional integrated circuits utilizing rectangular-shaped and disk-shaped heat pipes
US9763015B2 (en) Method of manufacturing thermoacoustic energy converting element part, thermoacoustic energy converting element part, and thermoacoustic energy converter
Wälchli et al. Self-contained, oscillating flow liquid cooling system for thin form factor high performance electronics
US10495072B2 (en) Thermoacoustic energy converting element part, thermoacoustic energy converter, and method of manufacturing thermoacoustic energy converting element part
US20150253043A1 (en) Thermoacoustic energy converting element part and thermoacoustic energy converter
JP2016200304A (ja) 熱音響装置
JP2016529465A (ja) エネルギー貯蔵システム
CN208569296U (zh) 一种换热冷却装置以及光刻机

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4554374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees