JP2006188638A - Thermal conductive grease - Google Patents

Thermal conductive grease Download PDF

Info

Publication number
JP2006188638A
JP2006188638A JP2005003055A JP2005003055A JP2006188638A JP 2006188638 A JP2006188638 A JP 2006188638A JP 2005003055 A JP2005003055 A JP 2005003055A JP 2005003055 A JP2005003055 A JP 2005003055A JP 2006188638 A JP2006188638 A JP 2006188638A
Authority
JP
Japan
Prior art keywords
weight
grease
heat
conductive filler
base oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005003055A
Other languages
Japanese (ja)
Other versions
JP4713161B2 (en
Inventor
Tsukasa Ishigaki
司 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
Original Assignee
Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd filed Critical Polymatech Co Ltd
Priority to JP2005003055A priority Critical patent/JP4713161B2/en
Publication of JP2006188638A publication Critical patent/JP2006188638A/en
Application granted granted Critical
Publication of JP4713161B2 publication Critical patent/JP4713161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lubricants (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a thermal conductive grease having both high thermal conductivity and excellent dispensing properties and compressibility by highly packing a heat-conductive filler to a base oil. <P>SOLUTION: The thermal conductive grease comprises (A) a base oil that is composed of a copolymer of an unsaturated dicarboxylic acid dibutyl ester and an α-olefin and has 112-770 mm<SP>2</SP>/s viscosity at 40°C and (B) a heat-conductive filler packed into a base oil. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子部品にて発生する熱を外部へ効果的に放散させる目的に使用される熱伝導性グリスに関する。   The present invention relates to a thermally conductive grease used for the purpose of effectively dissipating heat generated in an electronic component to the outside.

電気機器に使用される各種電子部品の多くは、使用中に熱を発生するため、その電子部品を適切に機能させるには発生する熱を取り除く必要がある。そこで従来から、熱伝導性グリスや熱伝導性シートなどの熱伝導性材料が広く用いられている。熱伝導性グリスは、電子部品の発熱部と冷却部品の間に充填または塗布されることによって電子部品の発熱を冷却部品へと伝達する。   Many of the various electronic components used in electrical equipment generate heat during use, and it is necessary to remove the generated heat in order for the electronic components to function properly. Therefore, conventionally, heat conductive materials such as heat conductive grease and heat conductive sheets have been widely used. The heat conductive grease transmits heat generated from the electronic component to the cooling component by being filled or applied between the heat generating portion of the electronic component and the cooling component.

熱伝導性グリスとしては、従来から、シリコーンオイルを基油とし、熱伝導性充填剤として無機粉末を含有した熱伝導性シリコーングリスが広く知られている(特許文献1)。しかし、シリコーンオイルを基油に用いた熱伝導性グリスは、グリスから分離あるいは滲み出したシリコーンオイルがその周辺部を汚染することがあった(特許文献2)。また、シリコーンオイルに含まれる低分子シロキサンが熱によって二酸化ケイ素(SiO2)、炭化ケイ素(SiC )などの絶縁物として析出した結果、電気機器、電子部品に不具合をもたらすことがあった(特許文献3,4)。そこで近年、シリコーンオイル以外のオイルを基油として使用した熱伝導性グリスが提案されている。
特開平10−110179号公報 特開平3−162493号公報 特開平3−106996号公報 特開2002−201483号公報
As a heat conductive grease, conventionally, a heat conductive silicone grease containing a silicone oil as a base oil and an inorganic powder as a heat conductive filler has been widely known (Patent Document 1). However, in the case of thermally conductive grease using silicone oil as a base oil, silicone oil separated or exuded from the grease sometimes contaminates the periphery (Patent Document 2). In addition, low molecular siloxanes contained in silicone oil may be deposited as insulators such as silicon dioxide (SiO 2 ) and silicon carbide (SiC) by heat, resulting in problems with electrical equipment and electronic parts (patent document) 3, 4). Therefore, in recent years, heat conductive grease using an oil other than silicone oil as a base oil has been proposed.
JP-A-10-110179 Japanese Patent Laid-Open No. 3-162493 JP-A-3-106996 JP 2002-201483 A

熱伝導性グリスの熱伝導性を向上させるには、基油中に熱伝導性充填剤を高い密度で充填する必要がある。一方、電子部品の発熱部と冷却部品との間に塗布される熱伝導性グリスは、同程度の熱伝導性を有するグリス同士で比較した場合、厚さが薄くなるほどその熱抵抗が低くなり、熱伝導量を向上させることができる。従って、熱伝導の観点からグリスは薄膜に形成することが望ましい。   In order to improve the thermal conductivity of the thermally conductive grease, it is necessary to fill the base oil with a thermally conductive filler at a high density. On the other hand, the thermal conductive grease applied between the heat generating part of the electronic component and the cooling component has a lower thermal resistance as the thickness is reduced when compared with grease having the same thermal conductivity, The amount of heat conduction can be improved. Therefore, it is desirable to form the grease in a thin film from the viewpoint of heat conduction.

しかし、従来の熱伝導性グリスの基油に、無機粉末を高密度に充填すると、得られた熱伝導性グリスが硬くなり、グリスを薄膜に形成することが困難となった。その結果、塗布した状態での熱伝導性グリスの熱抵抗が悪化することがあった。   However, when a conventional base oil of thermally conductive grease is filled with inorganic powder at a high density, the obtained thermally conductive grease becomes hard and it is difficult to form the grease in a thin film. As a result, the thermal resistance of the thermally conductive grease in the applied state may deteriorate.

より詳細には、熱伝導性充填剤を高密度に充填したグリスは粘度が大きくなるか、ちょう度(JIS K2220 参照)が小さくなるため、ディスペンス性が悪化する。ディスペンス性とは、塗布面上での拡がり易さ、流動性、付着性などのグリスを塗布する際の作業性の良さを意味する。従って、ディスペンス性が悪化すると、シリンジなどの塗布装置からのグリスの吐出が困難になり、或いは、グリスを発熱体の上に薄く塗布することが困難になる。そのため、一定体積のグリスを接触面に吐出し、一定荷重をかけて押しつぶしたときの薄膜化のしやすさの指標となる圧縮性は、ディスペンス性の悪化とともに、低下する。   More specifically, the grease filled with the heat conductive filler at a high density has a high viscosity or a low consistency (see JIS K2220), so that the dispensing property is deteriorated. Dispensing property means good workability when applying grease such as ease of spreading on the coated surface, fluidity, and adhesion. Accordingly, when the dispensing property is deteriorated, it becomes difficult to discharge the grease from a coating device such as a syringe, or it is difficult to apply the grease thinly on the heating element. Therefore, compressibility, which is an index of ease of thinning when a certain volume of grease is discharged onto the contact surface and crushed by applying a constant load, decreases as the dispensing property deteriorates.

従って、本発明の目的は、熱伝導性充填剤を高充填することによる高い熱伝導性と、良好なディスペンス性および圧縮性とを兼ね備えた熱伝導性グリスを提供することにある。
請求項1に記載の発明の熱伝導性グリスはA )不飽和ジカルボン酸ジブチルエステルとα−オレフィンとのコポリマーからなり、40℃における粘度が112〜770mm/sである基油と、B )前記基油中に、充填された熱伝導性充填剤とを含有することを特徴とする。
Accordingly, an object of the present invention is to provide a thermally conductive grease having both high thermal conductivity due to high filling with a thermally conductive filler, and good dispensing properties and compressibility.
The thermally conductive grease of the invention according to claim 1 comprises: A) a base oil comprising a copolymer of unsaturated dicarboxylic acid dibutyl ester and α-olefin, and having a viscosity at 40 ° C. of 112 to 770 mm 2 / s; and B) The base oil contains a filled thermally conductive filler.

不飽和ジカルボン酸ジブチルエステルとα−オレフィンのコポリマーを使用すると、熱伝導性グリスに熱伝導性充填剤を高充填しても、より良好なディスペンス性、より良好な圧縮性を備えた熱伝導性グリスを提供することができる。また、シリコーンオイルを基油として使用していないため、低分子シロキサンの飛散による接点障害などの問題が発生しない。   When using unsaturated dicarboxylic acid dibutyl ester and α-olefin copolymer, thermal conductivity with better dispensing properties and better compressibility even when thermally conductive grease is highly filled with thermal conductive filler Grease can be provided. Further, since silicone oil is not used as a base oil, problems such as contact failure due to scattering of low-molecular siloxane do not occur.

請求項2に記載の発明の熱伝導性グリスは、請求項1に記載の発明において、コポリマーの40℃における粘度が112〜340mm/sであることを特徴とする。
基油の粘度が112〜340mm/sである場合には、グリスの粘度がより適切である。
The thermally conductive grease of the invention described in claim 2 is characterized in that, in the invention described in claim 1, the copolymer has a viscosity at 40 ° C. of 112 to 340 mm 2 / s.
When the viscosity of the base oil is 112 to 340 mm 2 / s, the viscosity of the grease is more appropriate.

請求項3に記載の発明の熱伝導性グリスは、請求項1又は2に記載の熱伝導性グリスにおいて、熱伝導性充填剤が酸化亜鉛、酸化アルミニウム、窒化ホウ素のうちの少なくとも一種以上であることを特徴とする。   The thermally conductive grease according to claim 3 is the thermally conductive grease according to claim 1 or 2, wherein the thermally conductive filler is at least one of zinc oxide, aluminum oxide, and boron nitride. It is characterized by that.

請求項4に記載の発明の熱伝導性グリスは、請求項1〜3に記載の発明において、熱伝導性充填剤は酸化亜鉛であり、同熱伝導性充填剤は82〜87.5重量%の割合で充填されていることを特徴とする。   The thermally conductive grease of the invention according to claim 4 is the invention according to claims 1 to 3, wherein the thermally conductive filler is zinc oxide, and the thermally conductive filler is 82 to 87.5% by weight. It is characterized by being filled in the ratio of.

請求項5に記載の発明の熱伝導性グリスは、請求項1〜3に記載の発明において、熱伝導性充填剤は窒化ホウ素であり、同熱伝導性充填剤は47.6重量%の割合で充填されていることを特徴とする。   The thermally conductive grease of the invention according to claim 5 is the invention according to claims 1 to 3, wherein the thermally conductive filler is boron nitride, and the thermally conductive filler is in a proportion of 47.6% by weight. It is filled with.

請求項6に記載の発明の熱伝導性グリスは、請求項1〜3に記載の発明において、熱伝導性充填剤は酸化アルミニウムであり、同熱伝導性充填剤は87.5重量%の割合で充填されていることを特徴とする。   The heat conductive grease of the invention according to claim 6 is the invention according to claims 1 to 3, wherein the heat conductive filler is aluminum oxide, and the heat conductive filler is in a proportion of 87.5% by weight. It is filled with.

上記構成によれば、より高い熱伝導性と良好なディスペンス性とを併せ備えた熱伝導性グリスを提供することができる。   According to the said structure, the heat conductive grease provided with higher heat conductivity and favorable dispensing property can be provided.

以下、本発明を実施する最良の形態について詳細に説明する。
本実施形態における熱伝導性グリスは、A )不飽和ジカルボン酸ジブチルエステルとα−オレフィンとのコポリマーからなり、40℃における粘度が112〜770mm/sである基油と、B )前記基油中に、充填された熱伝導性充填剤とを含有することを特徴とする。
Hereinafter, the best mode for carrying out the present invention will be described in detail.
The thermally conductive grease in the present embodiment includes A) a base oil composed of a copolymer of unsaturated dicarboxylic acid dibutyl ester and an α-olefin, and a viscosity at 40 ° C. of 112 to 770 mm 2 / s, and B) the base oil. It is characterized by containing a filled thermally conductive filler.

本発明の熱伝導性グリスは、基油として、不飽和ジカルボン酸エステルとα−オレフィンとのコポリマーを、5〜55重量%にて含有する。使用される不飽和ジカルボン酸エステルとしては、マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸などのエステルが挙げられる。これらの中でマレイン酸及びフマル酸のエステルが好適である。不飽和ジカルボン酸エステルのアルコール成分の炭素原子数は好適には3〜10個である。不飽和ジカルボン酸エステルが不飽和ジカルボン酸ジブチルエステルであると、熱伝導性グリスは良好な流動性を示すので好適である。α−オレフィンの炭素原子数は好適には6〜16個である。α−オレフィンが非分岐鎖であるコポリマーは、低温でも良好な流動性
を示すため、分岐鎖であるコポリマーよりも好適である。
The heat conductive grease of the present invention contains, as a base oil, a copolymer of an unsaturated dicarboxylic acid ester and an α-olefin at 5 to 55% by weight. Examples of the unsaturated dicarboxylic acid ester used include esters such as maleic acid, fumaric acid, citraconic acid, mesaconic acid, and itaconic acid. Of these, esters of maleic acid and fumaric acid are preferred. The number of carbon atoms in the alcohol component of the unsaturated dicarboxylic acid ester is preferably 3-10. It is preferable that the unsaturated dicarboxylic acid ester is an unsaturated dicarboxylic acid dibutyl ester because the heat conductive grease exhibits good fluidity. The α-olefin preferably has 6 to 16 carbon atoms. Copolymers in which the α-olefin is unbranched are preferable to copolymers that are branched because they exhibit good fluidity even at low temperatures.

前記コポリマーの40℃における粘度は、100〜1000mm/s(測定方法はASTM D−445に準拠)、好適には112〜770mm/s、最適には112〜340mm/sである。基油であるコポリマーの粘度が112mm/s未満であると、得られたグリスから基油が分離しやすいため不適切である。さらに、粘度が112mm/s未満であると高温で基油が蒸発し易いため、グリス中の含油量が低下して、冷却部品との接触面に割れや空気層などが生じ、放熱特性を低下させてしまうことがある。一方、基油であるコポリマーの粘度が770mm/sを超えると、熱伝導性充填剤としての無機粉末を高密度に充填することが困難になることに加え、粘度自体の増加によりグリスのディスペンス性も悪化する。 Viscosity at 40 ° C. of the copolymer, (according to the measuring method ASTM D-445) 100~1000mm 2 / s, preferably 112~770mm 2 / s, optimally 112~340mm 2 / s. When the viscosity of the copolymer, which is a base oil, is less than 112 mm 2 / s, the base oil is easily separated from the obtained grease, which is inappropriate. Furthermore, if the viscosity is less than 112 mm 2 / s, the base oil tends to evaporate at a high temperature, so the oil content in the grease decreases, causing cracks, air layers, etc. on the contact surface with the cooling parts, resulting in heat dissipation characteristics. It may be reduced. On the other hand, when the viscosity of the copolymer as the base oil exceeds 770 mm 2 / s, it becomes difficult to fill the inorganic powder as the heat conductive filler with a high density, and the grease is dispensed due to an increase in the viscosity itself. Sexuality also deteriorates.

本発明の熱伝導性グリスは、熱伝導性充填剤として、無機粉末95〜45重量%を含有する。45重量%未満では充分な放熱性が得られない。また、95重量%を超えるとグリスが硬くなりすぎ、ディスペンス性が悪化してしまう。無機粉末は酸化亜鉛、酸化アルミニウム、酸化チタン、酸化マグネシウム、酸化ケイ素、窒化アルミニウム、窒化ホウ素、窒化ケイ素、炭化ケイ素、ダイヤモンド、アルミニウム、銀、銅、黒鉛のうちの少なくとも一種以上であることが好ましい。しかし、これらに限定されるものではなく、他の充填剤の使用又は併用をしてもよい。また、無機粉末の平均粒径も特に限定されるものではないが、平均粒径は20μm以下であることが好ましく、5μm以下であるとさらに好ましい。平均粒径が20μmより大きくなると、グリスの圧縮性が悪くなり熱伝導性が低下しまう。また、2種類以上の異なる平均粒径の無機粉末を組み合わせて使用してもよい。無機粉末の粒度分布についても、特に限定されるものではない。熱伝導性グリスに電気絶縁性が要求される場合には、通常、電気絶縁性の無機粉末を用いる。   The heat conductive grease of the present invention contains 95 to 45% by weight of inorganic powder as a heat conductive filler. If it is less than 45% by weight, sufficient heat dissipation cannot be obtained. Moreover, when it exceeds 95 weight%, grease will become hard too much and dispensing property will deteriorate. The inorganic powder is preferably at least one of zinc oxide, aluminum oxide, titanium oxide, magnesium oxide, silicon oxide, aluminum nitride, boron nitride, silicon nitride, silicon carbide, diamond, aluminum, silver, copper, and graphite. . However, it is not limited to these, and other fillers may be used or used in combination. The average particle size of the inorganic powder is not particularly limited, but the average particle size is preferably 20 μm or less, and more preferably 5 μm or less. When the average particle size is larger than 20 μm, the compressibility of grease is deteriorated and the thermal conductivity is lowered. Further, two or more kinds of inorganic powders having different average particle diameters may be used in combination. The particle size distribution of the inorganic powder is not particularly limited. When electrical insulation is required for the thermally conductive grease, an electrically insulating inorganic powder is usually used.

本発明の熱伝導性グリスは、充填性の向上を目的として、界面活性剤を含有していてもよい。界面活性剤を添加することにより、無機粉末の充填率が向上し、グリスの熱伝導性を高めることが可能である。また、界面活性剤を加えることによって、グリスのより良好なディスペンス性、より良好な圧縮性を得ることができる。界面活性剤としては、非イオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤が挙げられる。非イオン界面活性剤はグリスの電気的特性に影響を及ぼさないため、例えば電気絶縁性が要求される場合には特に好ましい。非イオン性界面活性剤には、例えばポリオキシエチレンオレイルエーテル、ポリオキシエチレンアルキルエーテルが挙げられる。   The heat conductive grease of the present invention may contain a surfactant for the purpose of improving the filling property. By adding a surfactant, the filling rate of the inorganic powder can be improved and the thermal conductivity of the grease can be increased. Further, by adding a surfactant, it is possible to obtain better dispensing properties and better compressibility of grease. Examples of the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants. Nonionic surfactants do not affect the electrical properties of grease, and are particularly preferable when electrical insulation is required, for example. Examples of the nonionic surfactant include polyoxyethylene oleyl ether and polyoxyethylene alkyl ether.

なお熱伝導性グリスには、必要に応じて酸化防止剤、腐食防止剤、錆止め剤、増粘剤、増ちょう剤、顔料、染料、消泡剤、可塑剤、溶剤等の各種添加物を配合することも可能である。   In addition, various additives such as antioxidants, corrosion inhibitors, rust inhibitors, thickeners, thickeners, pigments, dyes, antifoaming agents, plasticizers, solvents, etc. are added to the thermally conductive grease as necessary. It is also possible to do.

本発明の熱伝導性グリスは、A )不飽和ジカルボン酸エステルとα−オレフィンとのコポリマーと、B )無機粉末、更に必要に応じて界面活性剤や各種添加物を、プラネタリーミキサー、トリミックスなどの混合機で、室温あるいは必要に応じて加熱しながら混練して得ることができる。更にこの混合物を均一に混練するには、高せん断力をかけて混練すれば良く、混練装置としては三本ロール、コロイドミルなどが挙げられる。   The thermally conductive grease of the present invention comprises A) a copolymer of an unsaturated dicarboxylic acid ester and an α-olefin, B) an inorganic powder, and optionally a surfactant and various additives, a planetary mixer, and a trimix. And kneading with heating at room temperature or if necessary. Further, in order to uniformly knead this mixture, it is sufficient to knead it with a high shearing force, and examples of the kneading apparatus include a triple roll and a colloid mill.

以下に、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明するが、これらは本発明の範囲を何ら制限するものではない。   Hereinafter, the embodiment will be described more specifically with reference to examples and comparative examples, but these do not limit the scope of the present invention.

A )不飽和ジカルボン酸エステルとα−オレフィンとのコポリマーとして不飽和ジカルボン酸ジブチルエステルとα−オレフィンのコポリマー「ケッチェンルブ(Ketjenlube)
115 」(アクゾノーベル(AKZO NOBEL)社製、40℃における粘度:112mm/s)100重量部(16.4重量%)に対して、B )無機粉末として酸化亜鉛(平均粒径0.4 μm)500重量部(82.0重量%)、さらに非イオン性界面活性剤(ポリオキシエチレンオレイルエーテル)10重量部(1.6重量%)をプラネタリーミキサーに投入し、室温で1時間撹拌混合し、熱伝導性グリスを作製した。
A) Copolymer of unsaturated dicarboxylic acid dibutyl ester and α-olefin as copolymer of unsaturated dicarboxylic acid ester and α-olefin “Ketjenlube”
115 "(from AKZO NOBEL, viscosity at 40 ° C .: 112 mm 2 / s) 100 parts by weight (16.4% by weight) B) zinc oxide as inorganic powder (average particle size 0.4 μm) 500 parts by weight (82.0% by weight) and 10 parts by weight (1.6% by weight) of a nonionic surfactant (polyoxyethylene oleyl ether) are put into a planetary mixer and stirred at room temperature for 1 hour. A thermally conductive grease was prepared.

実施例2では無機粉末の分量を増加させた以外は実施例1と同様である。基油のコポリマーと熱伝導性充填剤の重量百分率は表1に示す通りである。   Example 2 is the same as Example 1 except that the amount of the inorganic powder is increased. Table 1 shows the weight percentages of the base oil copolymer and the thermally conductive filler.

実施例3では無機粉末の分量を増加させた以外は実施例1と同様である。基油のコポリマーと熱伝導性充填剤の重量百分率は表1に示す通りである。   Example 3 is the same as Example 1 except that the amount of the inorganic powder is increased. Table 1 shows the weight percentages of the base oil copolymer and the thermally conductive filler.

基油のコポリマーとして不飽和ジカルボン酸ジブチルエステルとα−オレフィンのコポリマー「ケッチェンルブ135 」(アクゾノーベル社製、40℃における粘度:340mm/s)100重量部(16.4重量%)に対して、熱伝導性充填剤として酸化亜鉛(平均粒径0.4 μm)500重量部(82.0重量%)、さらに非イオン性界面活性剤10重量部(1.6重量%)となるようにプラネタリーミキサーに各材料を投入し、室温で1時間撹拌混合し、熱伝導性グリスを作製した。 As a base oil copolymer, 100 parts by weight (16.4% by weight) of an unsaturated dicarboxylic acid dibutyl ester and α-olefin copolymer “Ketjenrub 135” (manufactured by Akzo Nobel, viscosity at 40 ° C .: 340 mm 2 / s) Planetary so as to be 500 parts by weight (82.0% by weight) of zinc oxide (average particle size 0.4 μm) as a heat conductive filler and 10 parts by weight (1.6% by weight) of nonionic surfactant. Each material was put into a mixer and stirred and mixed at room temperature for 1 hour to prepare a heat conductive grease.

基油のコポリマーとして不飽和ジカルボン酸ジブチルエステルとα−オレフィンのコポリマー「ケッチェンルブ215 」(アクゾノーベル社製、40℃における粘度:120mm/s)100重量部(16.4重量%)に対して、熱伝導性充填剤として酸化亜鉛(平均粒径0.4 μm)500重量部(82.0重量%)、さらに非イオン性界面活性剤10重量部(1.6重量%)となるようにプラネタリーミキサーに各材料を投入し、室温で1時間撹拌混合し、熱伝導性グリスを作製した。 As a base oil copolymer, 100 parts by weight (16.4% by weight) of unsaturated dicarboxylic acid dibutyl ester and α-olefin copolymer “Ketjenrub 215” (manufactured by Akzo Nobel, viscosity at 40 ° C .: 120 mm 2 / s) Planetary so as to be 500 parts by weight (82.0% by weight) of zinc oxide (average particle size 0.4 μm) as a heat conductive filler and 10 parts by weight (1.6% by weight) of nonionic surfactant. Each material was put into a mixer and stirred and mixed at room temperature for 1 hour to prepare a heat conductive grease.

基油のコポリマーとして不飽和ジカルボン酸ジブチルエステルとα−オレフィンのコポリマー「ケッチェンルブ165 」(アクゾノーベル社製、40℃における粘度:770mm/s)100重量部(16.4重量%)に対して、熱伝導性充填剤として酸化亜鉛(平均粒径0.4 μm)500重量部(82.0重量%)、さらに非イオン性界面活性剤10重量部(1.6重量%)となるようにプラネタリーミキサーに各材料を投入し、室温で1時間撹拌混合し、熱伝導性グリスを作製した。 As a base oil copolymer, 100 parts by weight (16.4% by weight) of unsaturated dicarboxylic acid dibutyl ester and α-olefin copolymer “Ketjenrub 165” (manufactured by Akzo Nobel, viscosity at 40 ° C .: 770 mm 2 / s) Planetary so as to be 500 parts by weight (82.0% by weight) of zinc oxide (average particle size 0.4 μm) as a heat conductive filler and 10 parts by weight (1.6% by weight) of nonionic surfactant. Each material was put into a mixer and stirred and mixed at room temperature for 1 hour to prepare a heat conductive grease.

基油のコポリマーとして、実施例1〜3で使用したものと同一のケッチェンルブ115 を100重量部(47.6重量%)にて、及び、熱伝導性充填剤としては窒化ホウ素(平均粒径0.3 μm)100重量部(47.6重量%)を使用した。さらに非イオン性界面活性剤を10重量部(4.8重量%)にて使用し、基油、熱伝導性充填剤、及び界面活性剤をプラネタリーミキサーに投入し、室温で1時間撹拌混合し、熱伝導性グリスを作製した。   As a base oil copolymer, 100 parts by weight (47.6% by weight) of the same ketjenrub 115 used in Examples 1 to 3, and boron nitride (average particle size of 0.3) as a thermally conductive filler μm) 100 parts by weight (47.6% by weight) was used. Furthermore, using 10 parts by weight (4.8% by weight) of nonionic surfactant, base oil, thermally conductive filler, and surfactant are put into a planetary mixer and stirred at room temperature for 1 hour. Then, heat conductive grease was produced.

基油のコポリマーとして、実施例1〜3で使用したものと同一のケッチェンルブ115 を100重量部(12.3重量%)にて、及び熱伝導性充填剤として酸化アルミニウム(平均粒径1 μm)700重量部(87.5重量%)を使用した。さらに非イオン性界面活性剤10重量部(1.2重量%)を使用し、基油、熱伝導性充填剤、及び界面活性剤をプラ
ネタリーミキサーに投入し、室温で1時間撹拌混合し、熱伝導性グリスを作製した。
(比較例1)
100 parts by weight (12.3% by weight) of the same ketjenrub 115 as used in Examples 1 to 3 as a base oil copolymer and aluminum oxide (average particle size 1 μm) as a thermally conductive filler 700 parts by weight (87.5% by weight) were used. Furthermore, using 10 parts by weight (1.2% by weight) of a nonionic surfactant, the base oil, the thermally conductive filler, and the surfactant were put into a planetary mixer, and stirred and mixed at room temperature for 1 hour. A thermally conductive grease was prepared.
(Comparative Example 1)

基油として、液状ポリブテン「LV-50 」(新日本石油製、40℃における粘度:110mm/s)100重量部(16.4重量%)に対して、熱伝導性充填剤として酸化亜鉛(平均粒径0.4 μm)500重量部(82.0重量%)、さらに非イオン性界面活性剤10重量部となるようにプラネタリーミキサーに各材料を投入し、室温で1時間撹拌混合し、熱伝導性グリスを作製した。
(比較例2)
As base oil, liquid polybutene “LV-50” (manufactured by Nippon Oil Co., Ltd., viscosity at 40 ° C .: 110 mm 2 / s) 100 parts by weight (16.4% by weight), zinc oxide ( Each material was put into a planetary mixer so that the average particle size 0.4 μm) was 500 parts by weight (82.0% by weight) and the nonionic surfactant was 10 parts by weight. Conductive grease was produced.
(Comparative Example 2)

基油として、エチレンアルファオレフィンオリゴマー「HC-20 」(三井化学製、40℃における粘度:155mm/s)100重量部(16.4重量%)に対して、熱伝導性充填剤として酸化亜鉛(平均粒径0.4 μm)500重量部(82.0重量%)、さらに非イオン性界面活性剤10重量部となるようにプラネタリーミキサーに各材料を投入し、室温で1時間撹拌混合し、熱伝導性グリスを作製した。
(比較例3)
Zinc oxide as a thermally conductive filler for 100 parts by weight (16.4% by weight) of ethylene alpha olefin oligomer “HC-20” (Mitsui Chemicals, 40 ° C. viscosity: 155 mm 2 / s) as base oil (Average particle size 0.4 μm) 500 parts by weight (82.0% by weight), each material was added to the planetary mixer so that the nonionic surfactant was 10 parts by weight, and stirred and mixed at room temperature for 1 hour. A thermally conductive grease was prepared.
(Comparative Example 3)

基油として、ポリアルファオレフィン「PAO10 」(シェブロンフィリップスケミカル社製、40℃における粘度:65.3mm/s)100重量部(16.4重量%)に対して、熱伝導性充填剤として酸化亜鉛(平均粒径0.4 μm)500重量部(82.0重量
%)、さらに非イオン性界面活性剤10重量部となるようにプラネタリーミキサーに各材料を投入し、室温で1時間撹拌混合し、熱伝導性グリスを作製した。
(比較例4)
As base oil, polyalphaolefin “PAO10” (manufactured by Chevron Phillips Chemical Co., Ltd., viscosity at 40 ° C .: 65.3 mm 2 / s) 100 parts by weight (16.4% by weight) is oxidized as a heat conductive filler. Each material was put into a planetary mixer so that zinc (average particle size 0.4 μm) 500 parts by weight (82.0% by weight) and nonionic surfactant 10 parts by weight were mixed at room temperature with stirring for 1 hour. A thermally conductive grease was prepared.
(Comparative Example 4)

基油として、ジフェニルエーテル「LB-100」(松村石油研究所製、40℃における粘度:102mm/s)100重量部(16.4重量%)に対して、熱伝導性充填剤として酸化亜鉛(平均粒径0.4 μm)500重量部(82.0重量%)、さらに非イオン性界面活性剤10重量部(1.6重量%)となるようにプラネタリーミキサーに各材料を投入し、室温で1時間撹拌混合し、熱伝導性グリスを作製した。
(比較例5)
As a base oil, diphenyl ether “LB-100” (manufactured by Matsumura Oil Research Co., Ltd., viscosity at 40 ° C .: 102 mm 2 / s) 100 parts by weight (16.4% by weight), zinc oxide ( Each material was put into a planetary mixer so that the average particle size was 0.4 μm) and 500 parts by weight (82.0% by weight), and further 10 parts by weight (1.6% by weight) of a nonionic surfactant. Stir and mix for 1 hour to produce thermally conductive grease.
(Comparative Example 5)

基油として、液状ポリブテン「LV-50 」(新日本石油製、40℃における粘度:110mm/s)100重量部(47.6重量%)に対して、B )無機粉末として窒化ホウ素(平均粒径0.3 μm)100重量部(47.6重量%)、さらに非イオン性界面活性剤10重量部(4.8重量%)となるようにプラネタリーミキサーに各材料を投入し、室温で1時間撹拌混合し、熱伝導性グリスを作製した。
(比較例6)
As base oil, liquid polybutene “LV-50” (manufactured by Nippon Oil Corporation, viscosity at 40 ° C .: 100 mm 2 / s), 100 parts by weight (47.6% by weight), B 2) boron nitride (average) Each material was put into a planetary mixer so that the particle size was 0.3 μm) 100 parts by weight (47.6% by weight) and the nonionic surfactant was 10 parts by weight (4.8% by weight). The mixture was stirred and mixed for a time to produce a heat conductive grease.
(Comparative Example 6)

基油として、エチレンアルファオレフィンオリゴマー「HC-20 」(三井化学製、40℃における粘度:155mm/s)100重量部(47.6重量%)に対して、B )無機粉末として窒化ホウ素(平均粒径0.3 μm)100重量部(47.6重量%)、さらに非イオン性界面活性剤10重量部(4.8重量%)となるようにプラネタリーミキサーに各材料を投入し、室温で1時間撹拌混合し、熱伝導性グリスを作製した。
(比較例7)
As base oil, ethylene alpha olefin oligomer “HC-20” (Mitsui Chemicals, viscosity at 40 ° C .: 155 mm 2 / s) 100 parts by weight (47.6% by weight) B) Boron nitride (inorganic powder) Each material was charged into a planetary mixer so that the average particle size was 0.3 μm) and 100 parts by weight (47.6% by weight), and further 10 parts by weight (4.8% by weight) of a nonionic surfactant. Stir and mix for 1 hour to produce thermally conductive grease.
(Comparative Example 7)

基油として、液状ポリブテン「LV-50 」(新日本石油製、40℃における粘度:110mm/s)100重量部(12.3重量%)に対して、B )無機粉末として酸化アルミニウム(平均粒径1 μm)700重量部(87.5重量%)、さらに非イオン性界面活性剤10重量部(1.2重量%)となるようにプラネタリーミキサーに各材料を投入し、室温で1時間撹拌混合し、熱伝導性グリスを作製した。
(比較例8)
As base oil, liquid polybutene “LV-50” (manufactured by Nippon Oil Co., Ltd., viscosity at 40 ° C .: 100 mm 2 / s), 100 parts by weight (12.3 wt%), B) aluminum oxide (average) Each material was put into a planetary mixer so that the particle size was 1 μm) 700 parts by weight (87.5% by weight) and the nonionic surfactant was 10 parts by weight (1.2% by weight). The mixture was stirred and mixed for a time to produce a heat conductive grease.
(Comparative Example 8)

基油として、エチレンアルファオレフィンオリゴマー「HC-20 」(三井化学製、40℃における粘度:155mm/s)100重量部(12.3重量%)に対して、B )無機粉末として酸化アルミニウム(平均粒径1 μm)700重量部(87.5重量%)、さらに非イオン性界面活性剤10重量部(1.2重量%)となるようにプラネタリーミキサーに各材料を投入し、室温で1時間撹拌混合し、熱伝導性グリスを作製した。 As base oil, ethylene alpha olefin oligomer “HC-20” (manufactured by Mitsui Chemicals, viscosity at 40 ° C .: 155 mm 2 / s) 100 parts by weight (12.3 wt%), B 2) aluminum oxide as inorganic powder ( Each material was put into a planetary mixer so that the average particle diameter was 1 μm) and 700 parts by weight (87.5% by weight), and further 10 parts by weight (1.2% by weight) of a nonionic surfactant. Stir and mix for 1 hour to produce thermally conductive grease.

上記比較例1,4,5,7では、基油としてα−オレフィンを含まないオリゴマーを使用して、熱伝導性充填剤として酸化亜鉛を用いた場合(比較例1,4)、窒化ホウ素を用いた場合(比較例5)、酸化アルミニウムを用いた場合(比較例7)についてそれぞれ熱伝導性グリスを作製した。   In the above Comparative Examples 1, 4, 5, and 7, when an oligomer containing no α-olefin is used as the base oil and zinc oxide is used as the thermally conductive filler (Comparative Examples 1, 4), boron nitride is used. When used (Comparative Example 5) and when aluminum oxide was used (Comparative Example 7), heat conductive grease was prepared.

比較例2,3,6,8では、基油としてアルファオレフィンを含むオリゴマーであるが、不飽和ジカルボン酸ジブチルエステルとα−オレフィンのコポリマーではないオリゴマーを使用して、熱伝導性充填剤として酸化亜鉛を用いた場合(比較例2,3)、窒化ホウ素を用いた場合(比較例6)、酸化アルミニウムを用いた場合(比較例8)についてそれぞれ熱伝導性グリスを作製した。   In Comparative Examples 2, 3, 6, and 8, an oligomer containing an alpha olefin as a base oil, but an oligomer that is not a copolymer of unsaturated dicarboxylic acid dibutyl ester and an α-olefin, was used as an oxidation conductive filler. Thermally conductive grease was prepared for each of the cases using zinc (Comparative Examples 2 and 3), the case using boron nitride (Comparative Example 6), and the case using aluminum oxide (Comparative Example 8).

実施例1〜8及び比較例1〜8にて得られた熱伝導性グリスの特性を表1,2に示す。熱伝導性グリスの特性評価にあたり、圧縮性、ディスペンス性、及び熱抵抗を指標として用いた。圧縮性は粘度及び1/4 ちょう度(JIS-K2220 )から、ディスペンス性は実際にディスペンスノズル(口径1.6mm)から吐出可能か否かによって、熱抵抗は以下に記載する方法によって測定した。各指標の測定方法をより詳細に記載する。   The characteristics of the thermally conductive grease obtained in Examples 1 to 8 and Comparative Examples 1 to 8 are shown in Tables 1 and 2. In evaluating the characteristics of the thermally conductive grease, compressibility, dispensing property, and thermal resistance were used as indices. The compressibility was measured from the viscosity and 1/4 consistency (JIS-K2220), the dispense property was measured by whether or not it could actually be discharged from a dispense nozzle (caliber 1.6 mm), and the thermal resistance was measured by the method described below. The measurement method for each index is described in more detail.

粘度はブルックフィールド型回転粘度計を用い、室温下で、回転数10rpmにて測定した。ちょう度は、JIS-K2220 に記載されている方法によって測定されたものであり、円錐状のプローブをグリスに侵入させたときの深さによって表される数値である。   The viscosity was measured using a Brookfield type rotational viscometer at room temperature and at a rotation speed of 10 rpm. The consistency is measured by the method described in JIS-K2220, and is a numerical value represented by the depth when a conical probe is allowed to enter the grease.

熱抵抗は、図1に示すような熱抵抗測定機にて測定した。熱抵抗測定の詳細を以下に示す(ASTM D5470準拠)。試料10を断熱材11上に設置された断面積1cmの銅製ブロック12の上に吐出し、上方の銅製ブロック13で挟み、荷重4kgの重り14を乗せて押しつぶす。充分に押しつぶれた状態での試料厚みを測定した。下方の銅製ブロック12内にはヒーター(発熱量25W)が内蔵されている。上方の銅製ブロック13はファン付きのヒートシンク15に接続されており、放熱を促す。荷重をかけながらヒーターを発熱させ、温度が定常状態になった時点での下方の銅製ブロック12と上方の銅製ブロック13の温度を測定し、式(1)から試料の熱抵抗を求めた。 The thermal resistance was measured with a thermal resistance measuring machine as shown in FIG. Details of the thermal resistance measurement are shown below (according to ASTM D5470). The sample 10 is discharged onto a copper block 12 having a cross-sectional area of 1 cm 2 installed on a heat insulating material 11, sandwiched between upper copper blocks 13, and loaded with a weight 14 having a load of 4 kg and crushed. The thickness of the sample in a sufficiently crushed state was measured. A heater (heat generation amount 25 W) is built in the lower copper block 12. The upper copper block 13 is connected to a heat sink 15 with a fan to promote heat dissipation. The heater was heated while applying a load, and the temperature of the lower copper block 12 and the upper copper block 13 when the temperature reached a steady state was measured, and the thermal resistance of the sample was determined from equation (1).

熱抵抗=(θj1−θj0)/ 発熱量Q (1)
式(1)において、θj1は下方の銅製ブロック12の温度、θj0は上方の銅製ブロック13の温度、発熱量Qは25Wである。
Thermal resistance = (θj1−θj0) / Heat generation amount Q (1)
In equation (1), θj1 is the temperature of the lower copper block 12, θj0 is the temperature of the upper copper block 13, and the heating value Q is 25W.

なお、熱抵抗測定時に一定荷重を加えた際の試料厚みからも、熱伝導性グリスの圧縮性を評価することができる。   The compressibility of the thermally conductive grease can be evaluated from the sample thickness when a constant load is applied during the measurement of thermal resistance.

Figure 2006188638
Figure 2006188638

Figure 2006188638
表中に示された特性をより詳細に説明する。
Figure 2006188638
The characteristics shown in the table will be described in more detail.

熱伝導性充填剤として酸化亜鉛を用いた場合である、実施例1〜6と比較例1〜4とを比較する。実施例1〜6では、圧縮性が良好となる粘度及びちょう度を保ちつつ、ディスペンス性が良好であり、熱抵抗が0.15℃/W以下と熱伝導性に優れた熱伝導性グリスが得られた。ここで、圧縮性の良好となる粘度は、一般には約50〜350Pa・s程度であるが、必ずしも粘度がこの範囲にあればよいというものではなく、材料によって同粘度でも圧縮性が異なる場合はある。基油の粘度が770mm2/sであった実施例6ではグリスの粘度が他の実施例よりも高いため、基油の粘度は112 〜770mm2/sであることが好適である
が、112 〜340mm2/sの範囲がより好適であることが判明した。一方、比較例1〜4で得られたグリスは、ディスペンス性は良好であったが、熱抵抗測定時の荷重が加えられても試料10の厚みは実施例の場合よりも厚く、充分に圧縮されないことから、圧縮性に乏しいことが判明した。さらに、熱抵抗が0.22℃/W以上となり、実施例1〜6に比べて熱伝導性に劣っていた。
Examples 1 to 6 and Comparative Examples 1 to 4 in which zinc oxide is used as the heat conductive filler are compared. In Examples 1-6, while maintaining the viscosity and the consistency at which the compressibility is good, the dispensing property is good, and the heat resistance is 0.15 ° C./W or less, and the heat conductive grease having excellent heat conductivity. Obtained. Here, the viscosity with good compressibility is generally about 50 to 350 Pa · s, but the viscosity is not necessarily within this range, and when the compressibility varies depending on the material even with the same viscosity. is there. In Example 6 where the viscosity of the base oil was 770 mm 2 / s, the viscosity of the grease was higher than that of the other examples, so that the viscosity of the base oil is preferably 112 to 770 mm 2 / s. A range of ˜340 mm 2 / s has been found to be more suitable. On the other hand, the grease obtained in Comparative Examples 1 to 4 had good dispensing properties, but even when a load was applied during measurement of thermal resistance, the thickness of the sample 10 was thicker than in the case of the example and was sufficiently compressed. It was found that the compressibility was poor. Further, the thermal resistance was 0.22 ° C./W or higher, and the thermal conductivity was inferior to Examples 1-6.

次に熱伝導性充填剤として窒化ホウ素を用いた場合である、実施例7と比較例5,6とを比較する。実施例、比較例ともにディスペンス性が良好であったが、比較例5,6では熱抵抗測定時の荷重を加えた状態での圧縮性が実施例7に比べて劣り、その結果、グリスの熱抵抗も比較例の方が高かったのに対し、実施例では熱抵抗が0.20℃/W以下の優れた熱伝導性グリスが得られた。   Next, Example 7 and Comparative Examples 5 and 6, which are cases where boron nitride is used as the heat conductive filler, will be compared. The dispensing properties were good in both the examples and comparative examples, but in the comparative examples 5 and 6, the compressibility in the state where the load at the time of measuring the thermal resistance was applied was inferior to that in the example 7, and as a result, the heat of the grease In comparison with the comparative example, the resistance was higher, but in the example, an excellent thermal conductive grease having a thermal resistance of 0.20 ° C./W or less was obtained.

次に熱伝導性充填剤として酸化アルミニウムを使用する場合である、実施例8と比較例7,8を比較する。実施例8では良好であったディスペンス性が、比較例8では悪かった。また、いずれの比較例でも熱抵抗測定時の荷重を加えた状態での圧縮性が実施例8よりも乏しく、その結果、熱抵抗がより高かった。また、比較例8ではグリスの粘度も際立って高かった。   Next, Example 8 and Comparative Examples 7 and 8, which are cases where aluminum oxide is used as the heat conductive filler, will be compared. The dispensing property that was good in Example 8 was bad in Comparative Example 8. Moreover, in any comparative example, the compressibility in the state where the load at the time of measuring the thermal resistance was applied was poorer than that of Example 8, and as a result, the thermal resistance was higher. In Comparative Example 8, the viscosity of the grease was remarkably high.

熱抵抗測定機の概略を示す側面図。The side view which shows the outline of a thermal resistance measuring machine.

符号の説明Explanation of symbols

10…試料、11…断熱材、12,13…銅製ブロック、14…重り、15…ヒートシンク。   DESCRIPTION OF SYMBOLS 10 ... Sample, 11 ... Heat insulating material, 12, 13 ... Copper block, 14 ... Weight, 15 ... Heat sink.

Claims (6)

A )不飽和ジカルボン酸ジブチルエステルとα−オレフィンとのコポリマーからなり、40℃における粘度が112〜770mm/sである基油と、B )前記基油中に、充填された熱伝導性充填剤とを含有する熱伝導性グリス。 A) a base oil made of a copolymer of unsaturated dicarboxylic acid dibutyl ester and α-olefin, and having a viscosity at 40 ° C. of 112 to 770 mm 2 / s, and B) a heat conductive filling filled in the base oil. Conductive grease containing an agent. 前記コポリマーの40℃における粘度が112〜340mm/sであることを特徴とする請求項1に記載の熱伝導性グリス。 The thermally conductive grease according to claim 1, wherein the copolymer has a viscosity at 40 ° C. of 112 to 340 mm 2 / s. 前記熱伝導性充填剤は、酸化亜鉛、酸化アルミニウム、窒化ホウ素のうちの少なくとも一種以上であることを特徴とする請求項1又は2に記載の熱伝導性グリス。 The thermally conductive grease according to claim 1 or 2, wherein the thermally conductive filler is at least one of zinc oxide, aluminum oxide, and boron nitride. 前記熱伝導性充填剤は酸化亜鉛であり、同熱伝導性充填剤は82〜87.5重量%の割合で充填されていることを特徴とする請求項1〜3のいずれかに記載の熱伝導性グリス。 The heat-conductive filler according to any one of claims 1 to 3, wherein the heat-conductive filler is zinc oxide, and the heat-conductive filler is filled in a proportion of 82 to 87.5% by weight. Conductive grease. 前記熱伝導性充填剤は窒化ホウ素であり、同熱伝導性充填剤は47.6重量%の割合で充填されていることを特徴とする請求項1〜3のいずれかに記載の熱伝導性グリス。 The thermal conductive filler according to any one of claims 1 to 3, wherein the thermal conductive filler is boron nitride, and the thermal conductive filler is filled in a proportion of 47.6 wt%. grease. 前記熱伝導性充填剤は酸化アルミニウムであり、同熱伝導性充填剤は87.5重量%の割合で充填されていることを特徴とする請求項1〜3のいずれかに記載の熱伝導性グリス。 The heat conductive filler according to any one of claims 1 to 3, wherein the heat conductive filler is aluminum oxide, and the heat conductive filler is filled in a proportion of 87.5 wt%. grease.
JP2005003055A 2005-01-07 2005-01-07 Thermally conductive grease Active JP4713161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005003055A JP4713161B2 (en) 2005-01-07 2005-01-07 Thermally conductive grease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005003055A JP4713161B2 (en) 2005-01-07 2005-01-07 Thermally conductive grease

Publications (2)

Publication Number Publication Date
JP2006188638A true JP2006188638A (en) 2006-07-20
JP4713161B2 JP4713161B2 (en) 2011-06-29

Family

ID=36796132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005003055A Active JP4713161B2 (en) 2005-01-07 2005-01-07 Thermally conductive grease

Country Status (1)

Country Link
JP (1) JP4713161B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012967A (en) * 2016-07-20 2018-01-25 三井金属アクト株式会社 Vehicular door latch device
JP2019089924A (en) * 2017-11-14 2019-06-13 ニホンハンダ株式会社 Thermal conductive oil composition, heat release agent and electronic device
CN111566193A (en) * 2017-12-11 2020-08-21 道达尔销售服务公司 Grease composition with improved adhesion
DE102016213508B4 (en) * 2015-09-16 2021-02-04 Fuji Electric Co., Ltd. Semiconductor component
WO2021186875A1 (en) * 2020-03-18 2021-09-23 積水ポリマテック株式会社 Heat-conductive grease
JP7047199B1 (en) * 2021-04-08 2022-04-04 富士高分子工業株式会社 Thermally conductive grease composition
WO2022215292A1 (en) * 2021-04-08 2022-10-13 富士高分子工業株式会社 Thermally conductive grease composition
WO2023191108A1 (en) * 2022-03-31 2023-10-05 コスモ石油ルブリカンツ株式会社 Thermally conductive grease composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230151259A1 (en) 2020-03-11 2023-05-18 Sumitomo Metal Mining Co., Ltd. Thermally conductive composition
US20230141757A1 (en) 2020-03-11 2023-05-11 Sumitomo Metal Mining Co., Ltd. Thermally conductive composition
US20230141794A1 (en) 2020-03-11 2023-05-11 Sumitomo Metal Mining Co., Ltd. Thermally conductive paste

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03172391A (en) * 1989-11-17 1991-07-25 Akzo Nv Compound manufactured using alpha, beta ester unsaturated dicarboxylate and olefinic unsaturated compound as well as manufacture of said compound
JP2002201483A (en) * 2001-01-04 2002-07-19 Hitachi Ltd High thermal conductive grease composition and cooling apparatus using the same
JP2003027080A (en) * 2001-07-11 2003-01-29 Hitachi Ltd Thermally conductive grease, method for mounting the same, method for cooling electronic component, electronic device and information processing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03172391A (en) * 1989-11-17 1991-07-25 Akzo Nv Compound manufactured using alpha, beta ester unsaturated dicarboxylate and olefinic unsaturated compound as well as manufacture of said compound
JP2002201483A (en) * 2001-01-04 2002-07-19 Hitachi Ltd High thermal conductive grease composition and cooling apparatus using the same
JP2003027080A (en) * 2001-07-11 2003-01-29 Hitachi Ltd Thermally conductive grease, method for mounting the same, method for cooling electronic component, electronic device and information processing device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016213508B4 (en) * 2015-09-16 2021-02-04 Fuji Electric Co., Ltd. Semiconductor component
JP2018012967A (en) * 2016-07-20 2018-01-25 三井金属アクト株式会社 Vehicular door latch device
JP2019089924A (en) * 2017-11-14 2019-06-13 ニホンハンダ株式会社 Thermal conductive oil composition, heat release agent and electronic device
CN111566193A (en) * 2017-12-11 2020-08-21 道达尔销售服务公司 Grease composition with improved adhesion
WO2021186875A1 (en) * 2020-03-18 2021-09-23 積水ポリマテック株式会社 Heat-conductive grease
JP6976023B1 (en) * 2020-03-18 2021-12-01 積水ポリマテック株式会社 Thermally conductive grease
JP7047199B1 (en) * 2021-04-08 2022-04-04 富士高分子工業株式会社 Thermally conductive grease composition
WO2022215292A1 (en) * 2021-04-08 2022-10-13 富士高分子工業株式会社 Thermally conductive grease composition
WO2023191108A1 (en) * 2022-03-31 2023-10-05 コスモ石油ルブリカンツ株式会社 Thermally conductive grease composition

Also Published As

Publication number Publication date
JP4713161B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4713161B2 (en) Thermally conductive grease
TWI428395B (en) A fine conductive silicone grease composition and a hardened product thereof
TWI542641B (en) Hardened organopolysiloxane composition and semiconductor device
JP4603700B2 (en) High thermal conductive grease composition and cooling device using the same
TWI648388B (en) Compressible thermal interface material
TWI457399B (en) Thermally conductive silicone oxygen composition
US20080004191A1 (en) Thermal conductive grease
US7510998B2 (en) Silicon grease compositions
JP4551074B2 (en) Curable organopolysiloxane composition and semiconductor device
JP2007070492A (en) Heat conductive grease, adhesive and elastomer composition, and cooling device
TWI351432B (en)
JP5565758B2 (en) Curable, grease-like thermally conductive silicone composition and semiconductor device
JP4652085B2 (en) High thermal conductivity compound
JP2009096961A (en) Heat-conductive silicone grease composition excellent in reworkability
JP2007106809A (en) Heat-conductive grease composition
JP2008038137A (en) Heat conductive silicone grease composition and cured product thereof
CN107828105B (en) Silicone-free gel-like thermally conductive composition
JP2009138036A (en) Thermally-conductive silicone grease composition
JP2003027080A (en) Thermally conductive grease, method for mounting the same, method for cooling electronic component, electronic device and information processing device
JP2008222776A (en) Heat-conductive silicone grease composition
JP7379940B2 (en) thermally conductive composition
JP4667882B2 (en) High thermal conductivity compound
JP2004210856A (en) Thermally conductive silicone grease composition
JP2008174697A (en) Thermally conductive oil composition, heat dissipating agent and electronic parts or electronic device
JP4942978B2 (en) Thermally conductive silicone grease composition and semiconductor device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110324

R150 Certificate of patent or registration of utility model

Ref document number: 4713161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250