JP2006188130A - Battery state detector - Google Patents

Battery state detector Download PDF

Info

Publication number
JP2006188130A
JP2006188130A JP2005000698A JP2005000698A JP2006188130A JP 2006188130 A JP2006188130 A JP 2006188130A JP 2005000698 A JP2005000698 A JP 2005000698A JP 2005000698 A JP2005000698 A JP 2005000698A JP 2006188130 A JP2006188130 A JP 2006188130A
Authority
JP
Japan
Prior art keywords
battery
voltage
time
threshold value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005000698A
Other languages
Japanese (ja)
Other versions
JP4341556B2 (en
Inventor
Keizo Yamada
惠造 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2005000698A priority Critical patent/JP4341556B2/en
Publication of JP2006188130A publication Critical patent/JP2006188130A/en
Application granted granted Critical
Publication of JP4341556B2 publication Critical patent/JP4341556B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery state detector for accurately detecting the deterioration of a battery. <P>SOLUTION: A microcomputer of a battery controller (battery state detector) calculates a time constant τ<SP>(n+m)</SP>(step 114). A threshold value V<SB>st_th</SB><SP>(n+m-1)</SP>previously calculated based on the calculated time constant τ<SP>(n+m)</SP>is corrected so as to correspond to an increase of electric resistance on a vehicle side (step 116), and a lead battery life is determined based on the corrected threshold value V<SB>st_th</SB><SP>(n+m-1)</SP>(step 122). The deterioration of the lead battery can be detected, regardless of the electric resistance on the vehicle side which increases due to change with the lapse of time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は電池状態検出装置に係り、特に、車両のエンジン始動用電池の状態を検知する電池状態検知装置に関する。   The present invention relates to a battery state detection device, and more particularly to a battery state detection device that detects a state of a battery for starting an engine of a vehicle.

従来、電池状態を表すパラメータ又は電池状態を演算するための測定パラメータとして、内部抵抗、放電電圧、開回路電圧、残容量、充電状態等が用いられている。自動車、携帯機器などの高性能化に伴ってそれらに使用される電池の負荷が大きくなるに従い、近時、このような電池状態の監視と電池状態制御はその重要性がますます大きくなってきている。車両用電池では、排ガスの削減のために行われているアイドルストップ・スタート(ISS)、回生充電などに対応するため、これらの用途に適した電池状態に電池を保つ技術が望まれている。鉛電池はこれらの用途に応用できる代表的な電池のひとつである。   Conventionally, internal resistance, discharge voltage, open circuit voltage, remaining capacity, state of charge, and the like are used as parameters representing the battery state or measurement parameters for calculating the battery state. As the load on the batteries used for automobiles and portable devices increases, the importance of such battery state monitoring and battery state control is increasing. Yes. In order to cope with idle stop / start (ISS), regenerative charging, and the like performed for reducing exhaust gas, a vehicle battery is required to have a technology for keeping the battery in a battery state suitable for these applications. Lead batteries are one of the typical batteries that can be applied to these applications.

このような要請に応えるため、車両用ではエンジン始動時の電圧や直流内部抵抗を予め測定したデータマップと比較して電池状態を算出するハイブリッド車用電池残存容量検出装置が提案されている(例えば、特許文献1参照)。一般に、エンジン始動時の電圧から電池状態を算出する場合、エンジン始動電圧が新品状態からどれだけ下がったかで電池の劣化判定が行われる。   In order to meet such demands, there has been proposed a battery remaining capacity detection device for a hybrid vehicle that calculates a battery state by comparing a voltage and DC internal resistance at the time of starting an engine with a data map measured in advance (for example, for vehicles) (for example, , See Patent Document 1). In general, when the battery state is calculated from the voltage at the time of starting the engine, the deterioration of the battery is determined according to how much the engine starting voltage has dropped from the new state.

また、車両を用いた電池試験方法として、スタータモータを回した状態での電圧を評価する方法が知られている。この方法は、エンジン始動不能になった車両に対してスタータと電池のどちらが原因か調べるためのバッテリチェックの方法として古くから用いられてきた。この方法では、オシロスコープを使わず、時間応答性の遅い簡単な電圧計による測定が一般的であり、例えば、突入電流後比較的電圧が安定した時の電圧が9V程度以上であれば正常と判断する。エンジンに燃料の供給をしないような措置をするなどして、スタータモータが回っても実際にエンジンが始動しないような条件にすると、正常な車両でも時間的に安定した電圧が得られ、バッテリチェックができる。   As a battery test method using a vehicle, a method for evaluating a voltage in a state where a starter motor is rotated is known. This method has been used for a long time as a battery check method for investigating whether a starter or a battery is the cause of a vehicle whose engine cannot be started. In this method, measurement with a simple voltmeter that does not use an oscilloscope and has a slow time response is common. For example, if the voltage is relatively stable after an inrush current, the voltage is determined to be normal if the voltage is about 9 V or higher. To do. If measures are taken not to supply fuel to the engine so that the engine does not actually start even if the starter motor rotates, a time-stable voltage can be obtained even in a normal vehicle, and battery check Can do.

特開平7−63830号公報JP-A-7-63830

しかしながら、エンジン始動電圧が新品状態からどれだけ下がったかで劣化の判定を行うと、例えば、車両のスタータモータに使われるブラシつきDCモータはブラシの経時劣化などで車両側の電気抵抗が増加しエンジン始動電圧による電池状態検知上の誤差要因となるため、電池の劣化を正確に検出することができない、という問題がある。   However, when the deterioration is determined based on how much the engine starting voltage has decreased from the new state, for example, a DC motor with a brush used for a starter motor of a vehicle increases the electric resistance on the vehicle side due to deterioration of the brush over time. Since this is an error factor in battery state detection due to the starting voltage, there is a problem that battery deterioration cannot be detected accurately.

上記事案に鑑み、本発明の課題は、車両側の電気抵抗に拘らず電池の劣化を正確に検知可能な電池状態検知装置を提供することである。   In view of the above case, an object of the present invention is to provide a battery state detection device capable of accurately detecting battery deterioration regardless of electric resistance on the vehicle side.

上記課題を解決するために、本発明は、車両のエンジン始動用電池の状態を検知する電池状態検知装置において、前記電池のエンジン始動前の開回路電圧及びエンジン始動時の放電電圧を検出する電圧検出手段と、前記電圧検出手段で検出された放電電圧に予め設定された設定値以上の電圧低下があるときに、一定時刻毎に一定時間にわたって前記電圧検出手段で検出された複数の放電電圧値を記憶する記憶手段と、前記記憶手段に記憶された複数の放電電圧値の中から最低電圧値を特定する特定手段と、前記記憶手段に記憶された複数の放電電圧値のうち放電電圧値が最初に測定された時刻と前記最低電圧値が測定された時刻との間における2つの時刻での放電電圧値と前記電圧検出手段により検出された開回路電圧値とから時定数を算出し、該算出した時定数に基づいて予め算出されていたしきい値を車両側の電気抵抗の増加に対応するように補正するしきい値補正手段と、前記特定手段により特定された最低電圧値が前記しきい値補正手段により補正されたしきい値を越えたときに前記電池が寿命と判定する判定手段と、を備える。   In order to solve the above problems, the present invention provides a battery state detection device for detecting a state of a battery for starting an engine of a vehicle, and a voltage for detecting an open circuit voltage of the battery before starting the engine and a discharge voltage when starting the engine. A plurality of discharge voltage values detected by the voltage detection unit over a certain period of time at a certain time when the discharge voltage detected by the detection unit and the voltage detection unit is greater than a preset value; Storage means for storing, a specifying means for specifying the lowest voltage value among the plurality of discharge voltage values stored in the storage means, and a discharge voltage value among the plurality of discharge voltage values stored in the storage means. The time constant is calculated from the discharge voltage value at two times between the first measured time and the time at which the lowest voltage value is measured and the open circuit voltage value detected by the voltage detecting means. Threshold correction means for correcting a threshold value calculated in advance based on the calculated time constant so as to correspond to an increase in electric resistance on the vehicle side; and a minimum voltage value specified by the specifying means is Determination means for determining that the battery has a life when the threshold value corrected by the threshold value correction means is exceeded.

本発明では、電圧検出手段により電池のエンジン始動前の開回路電圧及びエンジン始動時の放電電圧が検出され、記憶手段により電圧検出手段で検出された放電電圧に予め設定された設定値以上の電圧低下があるときに、一定時刻毎に一定時間にわたって電圧検出手段で検出された複数の放電電圧値が記憶され、特定手段により記憶手段に記憶された複数の放電電圧値の中から最低電圧値が特定され、しきい値補正手段により記憶手段に記憶された複数の放電電圧値のうち放電電圧値が最初に測定された時刻と最低電圧値とが測定された時刻との間における2つの時刻での放電電圧値と電圧検出手段で検出された開回路電圧値とから時定数が算出され、該算出された時定数に基づいて予め算出されていたしきい値が車両側の電気抵抗の増加に対応するように補正され、判定手段により特定手段で特定された最低電圧値がしきい値補正手段で補正されたしきい値を越えたときに電池が寿命と判定される。   In the present invention, the open circuit voltage before starting the engine of the battery and the discharge voltage at the start of the engine of the battery are detected by the voltage detecting means, and a voltage equal to or higher than a preset value set to the discharge voltage detected by the voltage detecting means by the storage means. When there is a decrease, a plurality of discharge voltage values detected by the voltage detection means over a certain time at a certain time are stored, and the lowest voltage value is selected from the plurality of discharge voltage values stored in the storage means by the specifying means. Two times between the time when the discharge voltage value is first measured and the time when the lowest voltage value is measured among the plurality of discharge voltage values specified and stored in the storage means by the threshold correction means. The time constant is calculated from the discharge voltage value of the current and the open circuit voltage value detected by the voltage detection means, and the threshold value calculated in advance based on the calculated time constant increases the electrical resistance on the vehicle side. It is corrected so as to respond, the lowest voltage value specified by the specifying means by determining means battery is determined to life when exceeds the corrected threshold by threshold correction means.

本発明において、2つの時刻での放電電圧値の一方は、特定手段により特定された最低電圧値を用いるようにしてもよい。また、時定数の算出精度を向上させるために、しきい値補正手段は、2つの時刻での放電電圧値の少なくとも一方が電圧検出手段で検出されたエンジン始動前の電池の開回路電圧値より低く該開回路電圧値との差が1V以下のときに、予め算出されていたしきい値を補正することが好ましい。更に、電池状態検知装置への電源供給に拘らず適正な寿命判定を行うために、しきい値補正手段により補正されたしきい値を記憶する不揮発性メモリを備えることが好ましい。また、判定手段により電池が寿命と判定されたときに、電池が寿命であることを報知するための報知信号を出力する出力手段を更に備えることがより好ましい。   In the present invention, the minimum voltage value specified by the specifying means may be used as one of the discharge voltage values at the two times. Further, in order to improve the calculation accuracy of the time constant, the threshold value correcting means is based on the open circuit voltage value of the battery before starting the engine in which at least one of the discharge voltage values at two times is detected by the voltage detecting means. It is preferable to correct the threshold value calculated in advance when the difference from the open circuit voltage value is 1 V or less. Furthermore, it is preferable to provide a nonvolatile memory for storing the threshold value corrected by the threshold value correction means in order to perform an appropriate life determination regardless of the power supply to the battery state detection device. It is more preferable to further include an output means for outputting a notification signal for notifying that the battery is at the end of its life when the determination means determines that the battery is at the end of its life.

本発明によれば、しきい値補正手段により時定数に基づいて予め算出されていたしきい値が車両側の電気抵抗の増加に対応するように補正され、判定手段によりしきい値補正手段で補正されたしきい値を基準に電池の寿命が判定されるので、車両側の電気抵抗に拘らず電池の劣化を正確に検出することができる、という効果を得ることができる。   According to the present invention, the threshold value previously calculated based on the time constant by the threshold value correcting means is corrected so as to correspond to the increase in the electric resistance on the vehicle side, and corrected by the threshold value correcting means by the determining means. Since the battery life is determined based on the set threshold value, it is possible to obtain an effect that the deterioration of the battery can be accurately detected regardless of the electric resistance on the vehicle side.

以下、図面を参照して、本発明を、車両用鉛電池の状態検知を行うバッテリコントローラに適用した実施の形態について説明する。   Hereinafter, an embodiment in which the present invention is applied to a battery controller that detects the state of a vehicle lead battery will be described with reference to the drawings.

(構成)
図1に示すように、本実施形態のバッテリコントローラ10(電池状態検知装置)は、エンジン等の車両側の制御を行う車両コントローラ20の下位装置として機能し、中央演算処理装置として機能するCPUと、バッテリコントローラ10の基本制御プログラムや後述する数式等のプログラムデータが記憶されたROMと、CPUのワークエリアとして働くと共にデータを一時的に記憶するRAMとを有し、電圧検出手段の一部、記憶手段、特定手段、しきい値補正手段及び判定手段としてのマイコン2、マイコン2の外部バスに接続され不揮発性メモリとして機能するEPROM3、鉛電池1の外部端子からのアナログ電圧をデジタル電圧に変換する電圧検出手段の一部としてのA/Dコンバータ(不図示)、及び、車両コントローラ20との通信を行うためのインターフェイスを含んで構成されており、通信線により車両コントローラ20と接続されている。
(Constitution)
As shown in FIG. 1, the battery controller 10 (battery state detection device) of the present embodiment functions as a subordinate device of the vehicle controller 20 that controls the vehicle side such as the engine, and a CPU that functions as a central processing unit. , A ROM that stores a basic control program of the battery controller 10 and program data such as mathematical formulas to be described later, and a RAM that serves as a work area of the CPU and temporarily stores data, and a part of the voltage detection means, Microcomputer 2 as storage means, identification means, threshold correction means and determination means, EPROM 3 connected to the external bus of microcomputer 2 and functioning as a non-volatile memory, analog voltage from the external terminal of lead battery 1 is converted to digital voltage A / D converter (not shown) as a part of the voltage detection means to perform, and the vehicle controller 2 It is configured to include an interface for communicating with, and is connected to the vehicle controller 20 by a communication line.

鉛電池1の正極外部出力端子は、イグニッションスイッチ(以下、IGNと略称する。)11の中央端子に接続されている。IGN11は、中央端子とは別に、OFF端子、ON/ACC端子及びSTART端子を有しており、中央端子とこれらOFF、ON/ACC及びSTART端子のいずれかとは、ロータリー式に切り替え接続が可能である。IGN11のON/ACC端子、START端子側には、鉛電池1の負荷となり、モータジェネレータ、スタータ、発電機等を表すMG12が接続されている。一方、鉛電池1の負極外部出力端子はグランドに接続されている。なお、車両コントローラ20は、常時IGNの接続状態を監視している。   A positive external output terminal of the lead battery 1 is connected to a central terminal of an ignition switch (hereinafter abbreviated as IGN) 11. The IGN11 has an OFF terminal, an ON / ACC terminal, and a START terminal in addition to the central terminal. The central terminal and any of these OFF, ON / ACC, and START terminals can be switched in a rotary manner. is there. An MG 12 serving as a load of the lead battery 1 and representing a motor generator, a starter, a generator, and the like is connected to the ON / ACC terminal and the START terminal side of the IGN 11. On the other hand, the negative external output terminal of the lead battery 1 is connected to the ground. The vehicle controller 20 constantly monitors the connection state of the IGN.

ここで、エンジン始動時の鉛電池1の電圧変化について説明する。図3は、エンジン始動時の鉛電池1の電圧波形を模式的に示したものである。エンジン始動時の鉛電池1の電圧波形は、IGN11がSTART端子に位置した通電開始時の後、スタータモータへの急激な1段目のパルス放電が行われ、電圧波形は急激な立下りとなりエンジン始動時の最低電圧値Vstが現れる。その後、減衰する数回の増減を経てエンジン始動が完了する。電圧波形は、エンジンの構造やエンジンとスタータモータとを繋ぐクラッチの摩擦等にも影響されるが、主としてスタータモータのブラシに影響され、概ね図3に示すような波形となる。   Here, the voltage change of the lead battery 1 at the time of engine start is demonstrated. FIG. 3 schematically shows the voltage waveform of the lead battery 1 when the engine is started. The voltage waveform of the lead battery 1 at the start of the engine is that after the start of energization when the IGN 11 is located at the START terminal, a rapid first-stage pulse discharge to the starter motor is performed, and the voltage waveform is abruptly falling. The minimum voltage value Vst at the start appears. After that, the engine start is completed after a few attenuations. The voltage waveform is influenced by the structure of the engine and the friction of the clutch connecting the engine and the starter motor, but is mainly influenced by the brush of the starter motor, and generally has a waveform as shown in FIG.

図4は、スタータモータへの急激な1段目のパルス放電部分を更に模式化して示したものである。本実施形態では、後述するように、バッテリコントローラ10のマイコン2が、開回路電圧OCVを所定時間毎に取り込み、鉛電池1の電圧が予め設定された設定値Vc以下となると、D/Aコンバータのサンプリング周期を変更し、設定値Vc以下となった最初の放電電圧値:V(t1)における時刻t1から一定時刻毎に一定時間にわたり複数の放電電圧値を測定する。なお、図4では、本発明を分かり易く表すために、時刻t1と最低電圧値Vstを測定した時刻との間に放電電圧値を測定した時刻t2(そのときの放電電圧値:V(t2))を表している。   FIG. 4 is a schematic view of the rapid first stage pulse discharge portion to the starter motor. In the present embodiment, as will be described later, when the microcomputer 2 of the battery controller 10 takes in the open circuit voltage OCV every predetermined time and the voltage of the lead battery 1 becomes equal to or lower than a preset value Vc, the D / A converter , And a plurality of discharge voltage values are measured over a certain period of time from the time t1 at the first discharge voltage value V (t1) that is equal to or lower than the set value Vc. In FIG. 4, in order to easily understand the present invention, the time t2 when the discharge voltage value is measured between the time t1 and the time when the lowest voltage value Vst is measured (discharge voltage value at that time: V (t2)) ).

(動作)
次に、フローチャートを参照して、本実施形態のバッテリコントローラ10の動作についてマイコン2のCPUを主体として説明する。なお、マイコン2のCPUは、バッテリコントローラ10に電源が投入されると、図2に示す電池状態検知ルーチンを実行する。
(Operation)
Next, with reference to a flowchart, the operation of the battery controller 10 of the present embodiment will be described with the CPU of the microcomputer 2 as a main component. The CPU of the microcomputer 2 executes a battery state detection routine shown in FIG. 2 when the battery controller 10 is powered on.

電池状態検知ルーチンでは、まず、ステップ102において、車両コントローラ20からIGN11がON端子に位置した旨の報知があったか否かを判断し、否定判断のときは、ステップ104で鉛電池1の開回路電圧値OCVをA/Dコンバータを介して取り込み(測定し)、ステップ102へ戻る。なお、ステップ104での鉛電池1の開回路電圧の測定は、鉛電池1の硫酸濃度が安定したときに行うことが好ましく、例えば、6時間程度の長いサンプリング周期(インターバル)で行われる。   In the battery state detection routine, first, in step 102, it is determined whether or not there is a notification from the vehicle controller 20 that the IGN 11 is located at the ON terminal. If the determination is negative, the open circuit voltage of the lead battery 1 is determined in step 104. The value OCV is acquired (measured) via the A / D converter, and the process returns to step 102. Note that the measurement of the open circuit voltage of the lead battery 1 in step 104 is preferably performed when the sulfuric acid concentration of the lead battery 1 is stabilized, for example, with a long sampling period (interval) of about 6 hours.

一方、ステップ102で肯定判断のときは、ステップ105で鉛電池1の放電電圧値を取り込む(測定する)。なお、ステップ105での鉛電池1の放電電圧値の測定は、図3に示したように、電圧波形が急激な立下りとなることが予測されるため、10ms以下のサンプリング周期で測定することが好ましい。   On the other hand, when an affirmative determination is made at step 102, the discharge voltage value of the lead battery 1 is captured (measured) at step 105. Note that the measurement of the discharge voltage value of the lead battery 1 in step 105 is performed with a sampling period of 10 ms or less because the voltage waveform is predicted to fall sharply as shown in FIG. Is preferred.

次にステップ106では、ステップ104で測定したOCVに対する放電電圧値の電圧降下が設定値Vc(例えば、0.3V)以上か否かを判断し、肯定判断のときは、ステップ105に戻り電圧降下が設定値Vc以下となるまで待機し、否定判断のときは、次のステップ108において、一定時刻毎に(例えば、0.4ms以下のサンプリング周期で)一定時間(例えば、64ms)にわたって鉛電池1の放電電圧値を測定し(図4も参照)、測定した時経に従ってRAMに格納(記憶)する。   Next, at step 106, it is determined whether or not the voltage drop of the discharge voltage value with respect to the OCV measured at step 104 is greater than or equal to a set value Vc (for example, 0.3V). In the next step 108, the lead battery 1 over a certain time (for example, 64 ms) at a certain time (for example, with a sampling period of 0.4 ms or less). The discharge voltage value is measured (see also FIG. 4) and stored in the RAM according to the measured time.

ステップ108で一定時間における放電電圧の測定及びRAMへの格納が終了すると、次のステップ110において、RAMに格納した複数の放電電圧値の中から最低電圧値Vstを特定する。次にステップ112において、ステップ108で最初に放電電圧が測定された時刻t1における放電電圧値V(t1)が、ステップ104で測定されたOCV−1V以上かつOCV未満(OCV−V(t1)≦1V)か否かを判断する。肯定判断のときは、次のステップ114において、下式(1)により車両の電気的時定数τ(n+m)を算出する。 When the measurement of the discharge voltage for a fixed time and the storage in the RAM are completed in step 108, the next step 110 specifies the lowest voltage value Vst from the plurality of discharge voltage values stored in the RAM. Next, at step 112, the discharge voltage value V (t1) at time t1 when the discharge voltage is first measured at step 108 is greater than or equal to OCV-1V and less than OCV measured at step 104 (OCV−V (t1) ≦ 1V). If the determination is affirmative, in the next step 114, the electrical time constant τ (n + m) of the vehicle is calculated by the following equation (1).

Figure 2006188130
Figure 2006188130

ここで、OCV:開回路電圧値、Vst:エンジン始動時の最低電圧値、t1、t2:エンジン始動時の電圧低下開始からVst測定までの間で放電電圧を測定した時刻、t:エンジン始動時の電圧低下開始からVst測定までの間で放電電圧を測定した時刻であってt1またはt2と同じ時刻としてもよい時刻、V(t):エンジン始動時の電圧低下開始からVst測定までの間の時刻tでの放電電圧値である。   Here, OCV: open circuit voltage value, Vst: lowest voltage value at engine start, t1, t2: time when discharge voltage was measured between the voltage drop start at engine start and Vst measurement, t: at engine start The time when the discharge voltage is measured from the start of voltage drop to the Vst measurement and may be the same time as t1 or t2, V (t): between the voltage drop start at the time of engine start and the Vst measurement This is the discharge voltage value at time t.

次のステップ116では、新品電池でのエンジン始動時の放電電圧値等から式(1)で予め算出された車両の電気的時定数τ(n)、新品電池でのしきい値Vst_th (n)をEPROM3から読み出して、下式(2)によりしきい値Vst_th (n)を補正(更新)する。なお、式(2)において、OCVfulは25°C満充電での鉛電池1の開回路電圧値である。 In the next step 116, the electric time constant τ (n) of the vehicle calculated in advance by equation (1) from the discharge voltage value at the start of the engine with a new battery, the threshold value V st_th (n with the new battery ) . ) Is read from the EPROM 3 and the threshold value V st — th (n) is corrected (updated) by the following equation (2). In the equation (2), OCV ful is an open circuit voltage of the lead battery 1 in fully charged 25 ° C.

Figure 2006188130
Figure 2006188130

次にステップ118では、マイコンがリセットされたときのために、ステップ116で算出したしきい値Vst_th (n+m)をEPROM3に格納して、ステップ122へ進む。一方、ステップ112で否定判断のときは、車両の電気的時定数τの算出精度、ひいては、しきい値Vの更新精度が図れないため、ステップ120で前回算出したしきい値Vst_th (n+m−1)をEPROM3から読み出してステップ122へ進む。 Next, at step 118, the threshold value V st — th (n + m) calculated at step 116 is stored in the EPROM 3 for the time when the microcomputer is reset, and the routine proceeds to step 122. On the other hand, when a negative determination is made in step 112, the calculation accuracy of the electrical time constant τ of the vehicle, and hence the update accuracy of the threshold value V, cannot be achieved. Therefore, the threshold value V st_th (n + m−) previously calculated in step 120 is not achieved. 1) is read from EPROM 3 and the process proceeds to step 122.

ステップ122では、ステップ110で特定した最低電圧値Vstが、ステップ116で補正したしきい値Vst_th (n+m)(又はステップ120で読み出したしきい値Vst_th (n+m−1))より大きいか否かを判断し、否定判断のときはステップ102へ戻り、肯定判断のときは次のステップ124で鉛電池1が寿命である旨の報知信号を車両コントローラ20へ出力してステップ102へ戻る。車両コントローラ20は、例えば、インストールメントパネルにその旨を表示させる。これにより、ドライバは鉛電池1が寿命となったことを知ることができる。 In step 122, whether or not the minimum voltage value Vst specified in step 110 is larger than the threshold value V st_th (n + m) corrected in step 116 (or the threshold value V st_th (n + m−1) read in step 120). If the determination is negative, the process returns to step 102. If the determination is affirmative, a notification signal indicating that the lead battery 1 is at the end of its life is output to the vehicle controller 20 in the next step 124, and the process returns to step 102. For example, the vehicle controller 20 displays that fact on the installation panel. Thereby, the driver can know that the lead battery 1 has reached the end of its life.

(作用等)
次に、本実施形態のバッテリコントローラ10の作用等について説明する。
(Action etc.)
Next, the operation and the like of the battery controller 10 of the present embodiment will be described.

本実施形態のバッテリコントローラ10では、時定数τ(n+m)を算出し(ステップ114)、算出された時定数τ(n+m)に基づいて予め算出されていたしきい値Vst_th (n)を車両側の電気抵抗の増加に対応するように補正し(ステップ116)、補正されたしきい値Vst_th (n+m)を基準に鉛電池1の寿命を判定する(ステップ122)ので、経時変化により増加する車両側の電気抵抗に拘らず鉛電池1の劣化を正確に検出することができる。また、放電電圧値V(t1)がOCV−1V以上かつOCV未満のときに時定数τ(n+m)を算出するようにしたので(ステップ112、114)、時定数τ(n+m)の算出精度の向上を図ることができる。更に、EPROM3にしきい値Vst_th (n+m)を格納するようにしたので、バッテリコントローラ10の作動電源が鉛電池1から供給される場合に、MG12への放電等により鉛電池1からの電源供給が途絶えても、鉛電池1の充電後に前回演算したVst_th (n+m−1)を用いることができる。 In the battery controller 10 of the present embodiment, the time constant τ (n + m) is calculated (step 114), and the threshold value V st — th (n) calculated in advance based on the calculated time constant τ (n + m) is used on the vehicle side. (Step 116), and the life of the lead battery 1 is determined based on the corrected threshold value Vst_th (n + m) (step 122). The deterioration of the lead battery 1 can be accurately detected regardless of the electric resistance on the vehicle side. Since the time constant τ (n + m) is calculated when the discharge voltage value V (t1) is greater than or equal to OCV−1V and less than OCV (steps 112 and 114), the calculation accuracy of the time constant τ (n + m) is improved. Improvements can be made. Further, since the threshold value V st — th (n + m) is stored in the EPROM 3, when the operating power of the battery controller 10 is supplied from the lead battery 1, the power supply from the lead battery 1 is caused by discharge to the MG 12 or the like. Even if it stops , V st — th (n + m−1) calculated last time after the lead battery 1 is charged can be used.

なお、本実施形態では、ステップ108において0.4ms以下のサンプリング周期で鉛電池1の放電電圧値を測定する例を示したが、1ms程度のサンプリング周期で放電電圧値を測定するようにしてもよい。1ms程度のサンプリング周期では粗いため、ステップ112において肯定判断とならない(OCVに近い電圧データを取れない)こともあるが、その場合はしきい値の補正(更新)は行わず、次回以降OCVに近い電圧データが測定できたエンジン始動時に更新するようにしてもよい。このような態様では、マイコン2やA/Dコンバータに比較的低コストのものを使用することができる。一方、本実施形態のように、0.4ms以下のサンプリング周期とすれば、毎回エンジン始動時にOCVに近い電圧データがサンプルできる。   In the present embodiment, the example in which the discharge voltage value of the lead battery 1 is measured in step 108 with a sampling period of 0.4 ms or less is shown, but the discharge voltage value may be measured with a sampling period of about 1 ms. Good. Since the sampling period of about 1 ms is rough, there is a case where an affirmative determination is not made in step 112 (voltage data close to OCV cannot be obtained). In this case, the threshold value is not corrected (updated), and the OCV is changed to the OCV after the next time. You may make it update at the time of engine starting which the near voltage data was able to be measured. In such an aspect, a relatively low cost microcomputer 2 or A / D converter can be used. On the other hand, if the sampling period is 0.4 ms or less as in this embodiment, voltage data close to OCV can be sampled every time the engine is started.

また、本実施形態では、時刻t1と最低電圧値Vstを測定した時刻との間に放電電圧値を測定した時刻t2における放電電圧値V(t2)を用いて説明したが、時刻t2は最低電圧値Vstを測定した時刻と同じで、電圧V(t2)は最低電圧値Vstと同じであってもよい。また、放電電圧値V(t1)を設定値Vc以下となった最初の時刻t1における鉛電池1の放電電圧値とした例を説明したが、放電電圧値V(t1)は鉛電池1の電圧が設定値Vc以下となった後、時刻t2前の任意の時刻における鉛電池1の放電電圧値を用いるようにしてもよい。なお、車両の電気的時定数τの精度を高めるためには、時刻t1と時刻t2との時間を一定時間とすることが望ましい。   In this embodiment, the discharge voltage value V (t2) at the time t2 when the discharge voltage value is measured between the time t1 and the time when the minimum voltage value Vst is measured is described. However, the time t2 is the minimum voltage. The voltage V (t2) may be the same as the lowest voltage value Vst at the same time when the value Vst is measured. Further, the example in which the discharge voltage value V (t1) is the discharge voltage value of the lead battery 1 at the first time t1 when the discharge voltage value V (t1) becomes equal to or lower than the set value Vc has been described. May be the discharge voltage value of the lead battery 1 at an arbitrary time before time t2 after the value becomes equal to or lower than the set value Vc. In order to improve the accuracy of the electrical time constant τ of the vehicle, it is desirable that the time between the time t1 and the time t2 is a fixed time.

更に、本実施形態では、IGN11がON/ACC端子に接続された旨を車両コントローラから報知を受け、鉛電池1の放電電圧値を測定する例を示したが、車両コントローラ20から報知を受けなくても、図1に点線で示したように、ホール素子等の電流センサ4を挿入してエンジン始動時を把握するようにしてもよい。この例では、バッテリコントローラ10が電流センサ4に接続された電流測定用のA/Dコンバータを有する必要がある。マイコン2は、電流測定用のA/Dコンバータから電流値(厳密には電流を電圧値に変換した値)を取り込み、所定値(例えば、0.1A)未満のときは、IGN11がOFF端子に接続されているものとみなし、取り込んだ電流値が所定値以上のときに、鉛電池1の放電電圧を所定のサンプリング時間毎に測定すればよい。   Furthermore, in this embodiment, although the example which received the notification from the vehicle controller that the IGN11 was connected to the ON / ACC terminal, and measured the discharge voltage value of the lead battery 1 was shown, there is no notification from the vehicle controller 20. However, as indicated by a dotted line in FIG. 1, a current sensor 4 such as a Hall element may be inserted to grasp the engine start time. In this example, the battery controller 10 needs to have an A / D converter for current measurement connected to the current sensor 4. The microcomputer 2 takes in a current value (strictly, a value obtained by converting the current into a voltage value) from the A / D converter for current measurement, and when it is less than a predetermined value (for example, 0.1 A), the IGN 11 is set to the OFF terminal. Assuming that the battery is connected, the discharge voltage of the lead battery 1 may be measured every predetermined sampling time when the current value taken in is greater than or equal to a predetermined value.

また、本実施形態では、車両コントローラ20に報知信号を出力する例を示したが、バッテリコントローラ10又は鉛電池1がLEDや電池状態検知装置等を有しており、マイコン2のCPUがLEDを点灯・ラッチさせたり、液晶表示パネルに鉛電池1の寿命を表示するようにしてもよい。更に、本実施形態では、車両の時定数τを算出した後、しきい値Vst_thを算出する例を示したが、式(2)に式(1)を代入することで、一度の演算でしきい値の算出が可能なことは云うまでもない。 Moreover, in this embodiment, although the example which outputs a notification signal to the vehicle controller 20 was shown, the battery controller 10 or the lead battery 1 has LED, a battery state detection apparatus, etc., and CPU of the microcomputer 2 is LED. The life of the lead battery 1 may be displayed on the liquid crystal display panel. Furthermore, in the present embodiment, an example is shown in which the threshold value V st_th is calculated after calculating the vehicle time constant τ. However, by substituting the expression (1) into the expression (2), the calculation can be performed once. Needless to say, the threshold value can be calculated.

次に、実施例および比較例を挙げて本発明を更に具体的に説明する。   Next, the present invention will be described more specifically with reference to examples and comparative examples.

(実施例1)
4年間使用し劣化した80D26型自動車用鉛電池を、常温(25°C)でSOC70%に調整したものを使用した。車両には2500ccのガソリンエンジンの乗用車を使用した。この車両では、5年使用した80D26型鉛電池でのエンジン始動電圧Vstが常温で8.1Vだったので、しきい値を8.1Vとした。まず、エンジン始動波形を1msサンプリング周期で測定した。次に、スタータモータを分解しブラシを5年5万km使用した古い車両の劣化したものと交換し、同様にエンジン始動波形を測定した。式(2)に代入したパラメータと時定数τの計算結果を下表1に示す。
Example 1
A lead battery for an 80D26 type automobile that was deteriorated after being used for 4 years was adjusted to SOC 70% at room temperature (25 ° C.). A 2500cc gasoline engine passenger car was used as the vehicle. In this vehicle, the engine starting voltage Vst of the 80D26 type lead battery used for 5 years was 8.1 V at room temperature, so the threshold value was set to 8.1 V. First, the engine start waveform was measured at a sampling period of 1 ms. Next, the starter motor was disassembled and replaced with a deteriorated old vehicle that used a brush for 50,000 km for 5 years, and the engine start waveform was measured in the same manner. Table 1 below shows the parameters substituted into Equation (2) and the calculation results of the time constant τ.

Figure 2006188130
Figure 2006188130

この時定数τを式(1)に代入してしきい値Vst_thを求めると、8.39Vとなった。劣化ブラシ使用時のVstは、このしきい値8.39Vで判定した。スタータモータのブラシ(スタータブラシ)の劣化によらず同じ判定結果になった。 Substituting this time constant τ into equation (1) to obtain the threshold value V st_th yielded 8.39V . The Vst when using the deteriorated brush was determined based on this threshold value of 8.39V. The same determination result was obtained regardless of the deterioration of the starter motor brush (starter brush).

(比較例1)
比較例1では、従来技術と同様に、しきい値Vst_thを補正することなく、スタータブラシが劣化しても、しきい値8.1Vを使用して判定した。この結果を表2に示す。
(Comparative Example 1)
In Comparative Example 1, as in the prior art, without correcting the threshold V St_th, starter brushes also deteriorated, was determined using the threshold 8.1 V. The results are shown in Table 2.

Figure 2006188130
Figure 2006188130

実施例1、比較例1では、同じ鉛電池を使用しているが、比較例ではスタータブラシの劣化状態によって鉛電池の劣化判定結果が違ってしまった。以上の結果より、しきい値を補正する実施例1のバッテリコントローラが優れていることが分かる。   In Example 1 and Comparative Example 1, the same lead battery is used, but in the comparative example, the deterioration judgment result of the lead battery differs depending on the deterioration state of the starter brush. From the above results, it can be seen that the battery controller of Example 1 that corrects the threshold value is superior.

本発明は車両側の電気抵抗に拘らず電池の劣化を正確に検知可能な電池状態検知装置を提供するものであるため、電池状態検知装置の製造、販売に寄与するので、産業上の利用可能性を有する。   Since the present invention provides a battery state detection device capable of accurately detecting battery deterioration regardless of the electric resistance on the vehicle side, it contributes to the manufacture and sale of the battery state detection device, so that it can be used industrially. Have sex.

本発明が適用可能な実施形態のバッテリコントローラのブロック回路図である。It is a block circuit diagram of a battery controller of an embodiment to which the present invention is applicable. 実施形態のバッテリコントローラのマイコンのCPUが実行する電池状態検知ルーチンのフローチャートである。It is a flowchart of the battery state detection routine which CPU of the microcomputer of the battery controller of the embodiment executes. エンジン始動時の鉛電池の電圧波形を模式的に示したグラフである。It is the graph which showed typically the voltage waveform of the lead battery at the time of engine starting. 図3に示した電圧波形のうちエンジン始動時の急激な立下りの部分を更に模式化して示したグラフである。It is the graph which further modeled and showed the part of the rapid fall at the time of engine starting among the voltage waveforms shown in FIG.

符号の説明Explanation of symbols

1 鉛電池(エンジン始動用電池)
2 マイコン(電圧検出手段の一部、記憶手段、特定手段、しきい値補正手段及び判定手段)
3 EPROM(不揮発性メモリ)
10 バッテリコントローラ(電池状態検知装置)
1 Lead battery (battery for engine start)
2 Microcomputer (part of voltage detection means, storage means, identification means, threshold value correction means and determination means)
3 EPROM (nonvolatile memory)
10 Battery controller (battery state detection device)

Claims (5)

車両のエンジン始動用電池の状態を検知する電池状態検知装置において、
前記電池のエンジン始動前の開回路電圧及びエンジン始動時の放電電圧を検出する電圧検出手段と、
前記電圧検出手段で検出された放電電圧に予め設定された設定値以上の電圧低下があるときに、一定時刻毎に一定時間にわたって前記電圧検出手段で検出された複数の放電電圧値を記憶する記憶手段と、
前記記憶手段に記憶された複数の放電電圧値の中から最低電圧値を特定する特定手段と、
前記記憶手段に記憶された複数の放電電圧値のうち放電電圧値が最初に測定された時刻と前記最低電圧値が測定された時刻との間における2つの時刻での放電電圧値と前記電圧検出手段により検出された開回路電圧値とから時定数を算出し、該算出した時定数に基づいて予め算出されていたしきい値を車両側の電気抵抗の増加に対応するように補正するしきい値補正手段と、
前記特定手段により特定された最低電圧値が前記しきい値補正手段により補正されたしきい値を越えたときに前記電池が寿命と判定する判定手段と、
を備えた電池状態検知装置。
In the battery state detection device for detecting the state of the battery for starting the engine of the vehicle,
Voltage detection means for detecting an open circuit voltage of the battery before starting the engine and a discharge voltage at the time of starting the engine;
A memory for storing a plurality of discharge voltage values detected by the voltage detection unit over a certain period of time at a certain time when the discharge voltage detected by the voltage detection unit has a voltage drop equal to or higher than a preset value. Means,
Specifying means for specifying a minimum voltage value from among a plurality of discharge voltage values stored in the storage means;
The discharge voltage value and the voltage detection at two times between the time when the discharge voltage value is first measured and the time when the lowest voltage value is measured among the plurality of discharge voltage values stored in the storage means. Threshold value for calculating a time constant from the open circuit voltage value detected by the means and correcting a threshold value calculated in advance based on the calculated time constant so as to correspond to an increase in electric resistance on the vehicle side Correction means;
Determining means for determining that the battery has a life when a minimum voltage value specified by the specifying means exceeds a threshold value corrected by the threshold value correcting means;
A battery state detection device comprising:
前記2つの時刻での放電電圧値の一方が前記特定手段により特定された最低電圧値であることを特徴とする請求項1に記載の電池状態検知装置。   The battery state detection device according to claim 1, wherein one of the discharge voltage values at the two times is the lowest voltage value specified by the specifying means. 前記しきい値補正手段は、前記2つの時刻での放電電圧値の少なくとも一方が前記電圧検出手段で検出されたエンジン始動前の電池の開回路電圧値より低く該開回路電圧値との差が1V以下のときに、前記予め算出されていたしきい値を補正することを特徴とする請求項1又は請求項2に記載の電池状態検知装置。   The threshold value correcting means is such that at least one of the discharge voltage values at the two times is lower than the open circuit voltage value of the battery before starting the engine detected by the voltage detecting means, and the difference from the open circuit voltage value is The battery state detection device according to claim 1 or 2, wherein the threshold value calculated in advance is corrected when the voltage is 1 V or less. 前記しきい値補正手段により補正されたしきい値を記憶する不揮発性メモリを更に備えたことを特徴とする請求項1乃至請求項3のいずれか1項に記載の電池状態検知装置。   The battery state detection device according to any one of claims 1 to 3, further comprising a non-volatile memory that stores the threshold value corrected by the threshold value correction unit. 前記判定手段により前記電池が寿命と判定されたときに、前記電池が寿命であることを報知するための報知信号を出力する出力手段を更に備えたことを特徴とする請求項1乃至請求項4のいずれか1項に記載の電池状態検知装置。   5. The apparatus according to claim 1, further comprising output means for outputting a notification signal for notifying that the battery is at the end of its life when the determination means determines that the battery is at the end of its life. The battery state detection device according to any one of the above.
JP2005000698A 2005-01-05 2005-01-05 Battery state detection device Expired - Fee Related JP4341556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005000698A JP4341556B2 (en) 2005-01-05 2005-01-05 Battery state detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005000698A JP4341556B2 (en) 2005-01-05 2005-01-05 Battery state detection device

Publications (2)

Publication Number Publication Date
JP2006188130A true JP2006188130A (en) 2006-07-20
JP4341556B2 JP4341556B2 (en) 2009-10-07

Family

ID=36795721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005000698A Expired - Fee Related JP4341556B2 (en) 2005-01-05 2005-01-05 Battery state detection device

Country Status (1)

Country Link
JP (1) JP4341556B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087654A (en) * 2006-10-03 2008-04-17 Shin Kobe Electric Mach Co Ltd Battery condition determining device and lead-acid battery for automobile
JP2008087656A (en) * 2006-10-03 2008-04-17 Shin Kobe Electric Mach Co Ltd Battery condition determining device and lead-acid battery for automobile
JP2008094211A (en) * 2006-10-11 2008-04-24 Shin Kobe Electric Mach Co Ltd Battery state determining device, and lead battery for automobile
JP2008189075A (en) * 2007-02-01 2008-08-21 Gs Yuasa Corporation:Kk Deteriorating state diagnostic system for secondary battery
CN101639522A (en) * 2008-08-01 2010-02-03 株式会社杰士汤浅 Equipment for diagnosing degradable state of secondary battery
KR100987606B1 (en) 2007-12-03 2010-10-13 어드밴스 스마트 인더스트리얼 리미티드 Apparatus and method for correcting measurements of remaining capacity of battery pack
WO2018083873A1 (en) * 2016-11-02 2018-05-11 ボッシュ株式会社 Control device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087654A (en) * 2006-10-03 2008-04-17 Shin Kobe Electric Mach Co Ltd Battery condition determining device and lead-acid battery for automobile
JP2008087656A (en) * 2006-10-03 2008-04-17 Shin Kobe Electric Mach Co Ltd Battery condition determining device and lead-acid battery for automobile
JP4702251B2 (en) * 2006-10-03 2011-06-15 新神戸電機株式会社 Battery state determination device and lead battery for automobile
JP2008094211A (en) * 2006-10-11 2008-04-24 Shin Kobe Electric Mach Co Ltd Battery state determining device, and lead battery for automobile
JP4677970B2 (en) * 2006-10-11 2011-04-27 新神戸電機株式会社 Battery state determination device and lead battery for automobile
JP2008189075A (en) * 2007-02-01 2008-08-21 Gs Yuasa Corporation:Kk Deteriorating state diagnostic system for secondary battery
KR100987606B1 (en) 2007-12-03 2010-10-13 어드밴스 스마트 인더스트리얼 리미티드 Apparatus and method for correcting measurements of remaining capacity of battery pack
CN101639522A (en) * 2008-08-01 2010-02-03 株式会社杰士汤浅 Equipment for diagnosing degradable state of secondary battery
WO2018083873A1 (en) * 2016-11-02 2018-05-11 ボッシュ株式会社 Control device
JPWO2018083873A1 (en) * 2016-11-02 2019-09-19 ボッシュ株式会社 Control device

Also Published As

Publication number Publication date
JP4341556B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
JP4057276B2 (en) Method and apparatus for determining the state of a secondary storage battery mounted on a vehicle
US7902828B2 (en) Method and apparatus for monitoring the condition of a battery by measuring its internal resistance
US6747457B2 (en) Apparatus for and method of calculating output deterioration in secondary battery
JP5070790B2 (en) Battery state detection system and automobile equipped with the same
US6885167B2 (en) Method and apparatus for determining cold cranking amperes value
JP4457781B2 (en) Deterioration degree estimation method and deterioration degree estimation apparatus
JP2004201484A (en) Vehicle-mounted battery monitor
KR101563178B1 (en) Secondary battery state detection device and secondary battery state detection method
JP5644190B2 (en) Battery state estimation device and battery information notification device
JP2013544205A (en) Apparatus and method for determining starting capability of an internal combustion engine
JP4193745B2 (en) Battery state detection method and battery state detection device
WO2017078606A1 (en) A system and a method for determining state-of-charge of a battery
JP4341556B2 (en) Battery state detection device
JP5129029B2 (en) Open voltage value estimation method and open voltage value estimation apparatus
JP2008053126A (en) Battery deterioration judgement device
JP4548011B2 (en) Deterioration degree judging device
JP4702115B2 (en) Battery status judgment device
JP2007261433A (en) Battery control device and battery control method
JP5112920B2 (en) Deterioration degree calculation device and deterioration degree calculation method
JP2005292035A (en) Method of detecting battery condition
JP4374982B2 (en) Storage battery deterioration determination device and storage battery provided with the same
JP4507720B2 (en) Deterioration determination method and deterioration determination device for lead acid battery
JP2008260506A (en) Startability predicting device and power control device
JP4572518B2 (en) Battery status detection method
JP4751381B2 (en) Engine control method and engine control apparatus for idling stop vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4341556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees