JP2006187941A - Optical element manufacturing apparatus, optical element manufacturing method and optical capacity analyzing method - Google Patents

Optical element manufacturing apparatus, optical element manufacturing method and optical capacity analyzing method Download PDF

Info

Publication number
JP2006187941A
JP2006187941A JP2005001392A JP2005001392A JP2006187941A JP 2006187941 A JP2006187941 A JP 2006187941A JP 2005001392 A JP2005001392 A JP 2005001392A JP 2005001392 A JP2005001392 A JP 2005001392A JP 2006187941 A JP2006187941 A JP 2006187941A
Authority
JP
Japan
Prior art keywords
analysis
molded product
mold
optical element
residual stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005001392A
Other languages
Japanese (ja)
Inventor
Kaoru Okidaka
馨 沖高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005001392A priority Critical patent/JP2006187941A/en
Publication of JP2006187941A publication Critical patent/JP2006187941A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element manufacturing apparatus capable of manufacturing an optical element of a high capacity by directly and quantitatively calculating the residual stress or optical characteristics in the production of the optical element such as a scanning lens (fθ optical system) or the like of an optical scanner used in an image forming apparatus such as a laser beam printer or a digital copier and preliminarily estimating a change in the double refraction in a molded product with the elapse of time, an optical element manufacturing method using it and an optical capacity analyzing method. <P>SOLUTION: The same condition as a heat cycle environment test or annealing treatment is set, and the analysis of non-steady heat conductivity and the analysis of viscoelastic stress are performed on the basis of the residual stress in the molded product calculated theretofore according to the condition (S17, S18). Then, when a predetermined time of conversion with the elapse of time is elapsed (S19), a double refraction distribution being the optical capacity is calculated on the basis of the final residual stress in the molded product after the analysis of a change with the elapse of time (S20, S21). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光学素子製造装置、光学素子製造方法、および光学性能解析方法に関し、特に、レーザービームプリンタやデジタル複写機等で用いられる光走査装置の走査レンズ(fθ光学系)など光学素子を製造する際にその製造される光学素子の光学性能を解析する技術に関するものである。   The present invention relates to an optical element manufacturing apparatus, an optical element manufacturing method, and an optical performance analysis method, and in particular, manufactures an optical element such as a scanning lens (fθ optical system) of an optical scanning device used in a laser beam printer, a digital copying machine, or the like. The present invention relates to a technique for analyzing the optical performance of the manufactured optical element.

従来、レーザービームプリンタやデジタル複写機等の画像形成装置に用いられる光走査装置においては、レンズの高性能化や低コスト化を目的として、走査レンズ(fθ光学系)に長尺の非球面トーリックレンズが用いられている。このような走査レンズは、ポリゴンミラー等の光偏向器で偏向された光束を、被走査面上に結像させるために、主走査方向に長いレンズ形状を有している。   2. Description of the Related Art Conventionally, in an optical scanning device used in an image forming apparatus such as a laser beam printer or a digital copying machine, a long aspheric toric is used as a scanning lens (fθ optical system) for the purpose of improving the performance and cost of the lens. A lens is used. Such a scanning lens has a long lens shape in the main scanning direction in order to form an image of a light beam deflected by an optical deflector such as a polygon mirror on the surface to be scanned.

通常、このような長尺の走査レンズは、プラスチックを材料として射出成形によって形成される。そして、このようにして形成されたプラスチックレンズは、レンズ形状や成形条件に依存して、副走査方向において複屈折や屈折率分布が生じる。   Usually, such a long scanning lens is formed by injection molding using plastic as a material. The plastic lens formed in this way has birefringence and refractive index distribution in the sub-scanning direction depending on the lens shape and molding conditions.

複屈折は、一般に、その発生要因によって大きく2つに分けられる。一つはレンズ成形品中の流動残留応力による分子配向歪に起因して発生する複屈折であり、もう1つは金型に充填後の冷却過程における熱応力に起因して発生する複屈折である。前者の分子配向歪による複屈折は射出成形の金型充填時にせん断応力によって変形した高分子鎖が、金型に充填後元の状態に戻ろうとするが戻りきれないうちにガラス転移点以下に冷却固化されるため発生する。一方、後者の熱応力による複屈折は高分子鎖の形態が変形した状態が平衡状態に戻ったとしても、さらに不均一な冷却、例えば温度分布の差による不均一な収縮に起因する局所歪による応力のために発生する。そして、これら流動残留応力による複屈折と熱応力による複屈折の程度を比較すると、流動残留応力による複屈折よりも熱応力による複屈折の方が2桁以上大きく、支配的である。   In general, birefringence is roughly divided into two types depending on the generation factor. One is birefringence caused by molecular orientation distortion due to flow residual stress in the lens molding, and the other is birefringence caused by thermal stress in the cooling process after filling the mold. is there. Birefringence due to molecular orientation strain in the former is due to the polymer chain deformed by shear stress when filling the mold in injection molding, trying to return to the original state after filling the mold, but before returning to its original state, it cools below the glass transition point. It occurs because it is solidified. On the other hand, the birefringence due to the latter thermal stress is caused by local strain caused by non-uniform cooling due to, for example, non-uniform shrinkage due to a difference in temperature distribution, even if the state of the polymer chain deformed returns to the equilibrium state. Generated due to stress. When comparing the birefringence due to the flow residual stress and the birefringence due to the thermal stress, the birefringence due to the thermal stress is more dominant by two orders of magnitude than the birefringence due to the flow residual stress.

また、屈折率分布は、成形直後のレンズが、レンズ外形の周囲からレンズ中心の肉厚の部分に向かって冷却が進む過程で発生する。冷却の始まる外周部では温度勾配が大きく急速に冷却が進行するので、屈折率分布が生じる。一方、レンズ中心の肉厚の部分は、比較的一様な温度勾配で冷却が進行するため、屈折率分布が生じにくい。   Further, the refractive index distribution is generated in the process in which the lens immediately after molding is cooled from the periphery of the lens outer shape toward the thick portion at the center of the lens. At the outer periphery where cooling begins, the temperature gradient is large and the cooling proceeds rapidly, resulting in a refractive index distribution. On the other hand, the thick portion at the center of the lens is cooled with a relatively uniform temperature gradient, so that a refractive index distribution is unlikely to occur.

さらに、プラスチックレンズは、成形後の使用環境下での内部残留応力の緩和に伴う変化についても考慮することが好ましい。成形直後に要求精度を満たしていても、その後の使用環境によりレンズ内部の残留応力が変化し光学特性や形状精度が変化することがある。通常、この光学特性や形状精度の変化を知るために、成形後の成形品に対し、想定される使用環境下でのヒートサイクル環境試験が実施されるが、この試験には多くの時間を要する。また、必要に応じて予めレンズ内部の残留応力を緩和するためにアニール処理が行われるが、残留応力を緩和するためのアニール条件の決定には試行錯誤が必要であり、その後の使用環境下での光学特性や形状精度の変化を知るためには、同様に上記のヒートサイクル環境試験を実施することが好ましいが、そのために多くの時間を要する。   Furthermore, it is preferable that the plastic lens also take into account changes accompanying relaxation of internal residual stress in the use environment after molding. Even if the required accuracy is satisfied immediately after molding, the residual stress inside the lens may change depending on the subsequent use environment, and the optical characteristics and shape accuracy may change. Usually, in order to know the change in the optical characteristics and shape accuracy, a heat cycle environmental test is performed on the molded product after molding under the assumed use environment, but this test takes a lot of time. . In addition, annealing treatment is performed in advance to relieve the residual stress inside the lens as necessary, but determination of the annealing conditions for relieving the residual stress requires trial and error. In order to know the change in the optical characteristics and the shape accuracy, it is preferable to carry out the heat cycle environmental test as described above. However, it takes a lot of time.

従来の光学性能解析
成形品の複屈折や屈折率など光学性能の解析の従来例として、特許文献1には、3次元流動解析から得られたせん断応力に注目して、その累積結果として決まる残留歪、屈折率の特性、複屈折の特性、偏光特性、透過波面の特性、像面湾曲の特性を推測できることが記載されている。しかしながら、流動過程以降の成形収縮に伴う変形や残留応力を定量的に予測するための具体的な手段の記載はなく、3次元流動解析から得られたせん断応力から間接的に複屈折分布などの光学性能を定性的に推測しているのみであり、残留応力と光学性能を直接的にしかも定量的に予測できない点で不十分である。
As a conventional example of analysis of optical performance such as birefringence and refractive index of a conventional optical performance analysis molded article, Patent Document 1 focuses on the shear stress obtained from three-dimensional flow analysis, and determines the residual as a cumulative result. It describes that distortion, refractive index characteristics, birefringence characteristics, polarization characteristics, transmitted wavefront characteristics, and field curvature characteristics can be estimated. However, there is no description of specific means for quantitatively predicting deformation and residual stress accompanying molding shrinkage after the flow process, and indirectly such as birefringence distribution from shear stress obtained from three-dimensional flow analysis. The optical performance is only estimated qualitatively, which is insufficient in that the residual stress and the optical performance cannot be predicted directly and quantitatively.

また、特許文献2には、光学部品を載置する部材の熱変形量を演算する熱および構造解析部と、光学部品間を通過する光の軌跡を解析する光学解析部を備えた光学系設計システムにおいて、熱および構造解析部から出力される解析結果と、光学系データの初期値に基づき、部材に熱変形が生じた後の光学部品の位置を演算する変換部を設けた光及び構造の複合解析システムが記載されている。しかしこの例においても、流動解析と構造解析を実施して成形品の残留応力を計算し、直接的に屈折率や複屈折などの光学特性を予測することは示唆されていない。   Patent Document 2 discloses an optical system design including a heat and structure analysis unit that calculates the amount of thermal deformation of a member on which an optical component is placed, and an optical analysis unit that analyzes a trajectory of light passing between the optical components. In the system, based on the analysis result output from the heat and structure analysis unit and the initial value of the optical system data, the light and structure of the light and structure provided with the conversion unit for calculating the position of the optical component after the member is thermally deformed A complex analysis system is described. However, in this example as well, it is not suggested to perform the flow analysis and the structural analysis to calculate the residual stress of the molded product and directly predict the optical characteristics such as the refractive index and birefringence.

これに対し、非特許文献1には、樹脂流動に関する粘弾性構成方程式としてLeonovモデルを使用して流動時の応力を算出し、応力光学則(Brewesterの法則)を適用して成形品の複屈折を予測する方法が示されている。しかしながら、適用している粘弾性構成方程式(Leonovモデル)は樹脂流動に関するものであり、その後の複屈折に支配的な影響を与える成形品の冷却時の金型拘束に伴う熱応力とその応力緩和現象は考慮しておらず、正確に複屈折を予測できているとはいえない。   On the other hand, Non-Patent Document 1 uses the Leonov model as a viscoelastic constitutive equation for resin flow to calculate the stress at the time of flow, and applies the stress optical law (Breester's law) to the birefringence of the molded product. The method of predicting is shown. However, the applied viscoelastic constitutive equation (Leonov model) is related to resin flow, and it has a dominant influence on the subsequent birefringence. The phenomenon is not taken into account, and it cannot be said that birefringence can be accurately predicted.

ここで、プラスチック成形品のより高精度な光学性能を解析により予測するためには、従来の定常温度解析より求めた金型キャビティ表面温度を用いた充填保圧冷却解析、収縮開始点と室温間の収縮歪に基づく線形弾性解析(熱応力解析)を行う方法では不十分である。   Here, in order to predict the more accurate optical performance of plastic molded products by analysis, filling pressure holding cooling analysis using mold cavity surface temperature obtained from conventional steady-state temperature analysis, between shrinkage start point and room temperature The method of performing linear elastic analysis (thermal stress analysis) based on the shrinkage strain is not sufficient.

例えば、プラスチック成形品の光学性能は形状精度と同様に成形開始時から成形品取出し時までの時間、およびその間の冷却勾配により大きく変化することが知られており、通常の場合、冷却時間が短い場合よりも長い場合の方が屈折率や複屈折が低減することが知られている。   For example, it is known that the optical performance of plastic molded products varies greatly depending on the time from the start of molding to the time of taking out the molded product, and the cooling gradient during that time, as well as the shape accuracy. In normal cases, the cooling time is short. It is known that the refractive index and birefringence are reduced when the length is longer than the case.

これは、周知のように、樹脂がクリープや応力緩和に代表される粘弾性的な性質を持つ材料であることに起因しており、金型内でより高い温度でより長く保持されることで、成形品内の内部応力が緩和されることによる。   As is well known, this is due to the fact that the resin is a material having viscoelastic properties typified by creep and stress relaxation, and it is kept longer at a higher temperature in the mold. This is because the internal stress in the molded article is relaxed.

さらに、樹脂が金型内で冷却固化する時、成形品は金型に拘束されて自由収縮が妨げられ、内部応力が蓄積された部分が多く存在する。これは金型内の拘束された部分では、他の拘束されない部分と比べ、応力レベルや時間変化の程度が異なり、成形品が取り出された時点で、例えばスプリングバックのような応力の解放に伴う変形が生じるからである。   Further, when the resin is cooled and solidified in the mold, the molded product is restrained by the mold and free shrinkage is prevented, and there are many portions where internal stress is accumulated. This is because the stress level and the degree of time change are different in the constrained part in the mold compared to other unconstrained parts, and it is accompanied by the release of stress such as spring back when the molded product is taken out. This is because deformation occurs.

以上の従来例に対し、本出願人は、特許文献3において、プラスチック光学素子のような高精度な形状精度が要求される成形品に対し、流動保圧冷却解析から構造解析に至る全過程で、金型および成形品を同時に考慮した解析モデルを使用し、特に、成形時の温度、圧力因子の影響を考慮し、また、樹脂の応力緩和やクリープなどの粘弾性的な性質や、成形品と金型の非定常的な熱移動並びに型拘束の影響を同時に考慮することにより、成形品が離型後室温に達した時点での形状精度を精度よく求めることができることを示した。   In contrast to the above-described conventional example, the applicant of the present invention disclosed in Patent Document 3 in the entire process from flow holding pressure cooling analysis to structural analysis for a molded product that requires high precision shape accuracy such as a plastic optical element. Analytical models that take into account molds and molded products at the same time, especially the effects of temperature and pressure factors during molding, viscoelastic properties such as resin stress relaxation and creep, and molded products It was shown that the shape accuracy at the time when the molded product reached room temperature after mold release can be obtained with high accuracy by taking into account the effects of unsteady heat transfer and mold restraint.

特開2001−277323号公報JP 2001-277323 A 特開平6−288864号公報JP-A-6-288864 特開2001−293748号公報JP 2001-293748 A 「射出成形品における残留応力の予測」;成形加工、Vol.2、No.4、317(1990)“Prediction of residual stress in injection molded products”; Molding, Vol. 2, no. 4, 317 (1990)

本願は、上記特許文献3に記載の技術をさらに発展させ、特許文献3において成形品の形状精度と同時に成形品内部の熱収縮変形に伴う残留応力が算出されることに着目し、これに応力光学則(Brewesterの法則)を適用することによって、成形品内部の複屈折分布を正確に算出できることを示す。また、成形品が離型後室温に達した時点でのレンズ内部の複屈折を、さらに緩和するためのアニール処理や、実際の使用環境を模したヒートサイクル環境試験における成形品内部の複屈折の経時変化を予め予測可能とすることを示す。   The present application further develops the technique described in Patent Document 3, and pays attention to the fact that Patent Document 3 calculates the residual stress accompanying thermal shrinkage deformation inside the molded product at the same time as the shape accuracy of the molded product. It shows that the birefringence distribution inside the molded product can be accurately calculated by applying the optical law (Breester's law). In addition, the birefringence inside the lens when the molded product reaches room temperature after the mold release, annealing treatment to further relax, and the birefringence inside the molded product in a heat cycle environment test simulating the actual use environment It shows that a change with time can be predicted in advance.

すなわち、本発明の目的は、レーザービームプリンターやデジタル複写機等の画像形成装置に使用される光走査装置の走査レンズ(fθ光学系)など光学素子を対象とし、この光学素子の製造における残留応力や光学性能を直接的にかつ定量的に求め、また、成形品内部の複屈折の経時変化を予め予測することにより高性能な光学素子を製造することが可能な光学素子製造装置、光学素子製造方法、および光学性能解析方法を提供することにある。   That is, an object of the present invention is directed to an optical element such as a scanning lens (fθ optical system) of an optical scanning device used in an image forming apparatus such as a laser beam printer or a digital copying machine, and residual stress in the production of this optical element. Optical element manufacturing apparatus and optical element manufacturing capable of manufacturing high-performance optical elements by directly and quantitatively determining optical performance and optical performance, and predicting birefringence change with time in the molded product in advance It is to provide a method and an optical performance analysis method.

そのために本発明では、金型を用いて光学素子を成形することにより光学素子を製造する光学素子製造装置であって、前記金型および前記光学素子の成形品の伝熱解析と前記成形品の熱流体解析を行って、当該金型の温度と当該成形品の圧力および温度を算出する流動解析手段と、前記算出された圧力および温度を初期値として、前記金型と前記成形品との型拘束および樹脂の粘弾性特性を考慮した構造解析を行って残留応力分布を算出し、該算出された残留応力分布を初期値として、前記成形品の使用環境に応じたヒートサイクル条件またはアニール条件の少なくとも一方を設定して前記成形品の残留応力分布を算出する構造解析手段と、該構造解析手段によって最終的に算出された残留応力分布から複屈折分布を算出し、該複屈折分布を基準として、所定の光学性能を満たすように光学素子の成形条件を定める光学性能解析手段と、を具えたことを特徴とする。   Therefore, in the present invention, an optical element manufacturing apparatus for manufacturing an optical element by molding an optical element using a mold, the heat transfer analysis of the mold and the molded product of the optical element, and the molded product Flow analysis means for performing thermal fluid analysis to calculate the temperature of the mold and the pressure and temperature of the molded product, and using the calculated pressure and temperature as initial values, the mold of the mold and the molded product The residual stress distribution is calculated by conducting a structural analysis taking into account the restraint and the viscoelastic properties of the resin, and the calculated residual stress distribution is used as an initial value for the heat cycle condition or annealing condition according to the use environment of the molded product. A structural analysis means for calculating the residual stress distribution of the molded product by setting at least one of the two, a birefringence distribution is calculated from the residual stress distribution finally calculated by the structural analysis means, and the birefringence distribution is calculated As standards, it is characterized in that comprises a optical performance analysis means for determining the molding conditions of the optical element so as to satisfy a predetermined optical performance.

また、金型を用いて光学素子を成形することにより光学素子を製造するための光学素子製造方法であって、前記金型および前記光学素子の成形品の伝熱解析と前記成形品の熱流体解析を行って、当該金型の温度と当該成形品の圧力および温度を算出する流動解析工程と、前記算出された圧力および温度を初期値として、前記金型と前記成形品との型拘束および樹脂の粘弾性特性を考慮した構造解析を行って残留応力分布を算出し、該算出された残留応力分布を初期値として、前記成形品の使用環境に応じたヒートサイクル条件またはアニール条件の少なくとも一方を設定して前記成形品の残留応力分布を算出する構造解析工程と、該構造解析手段によって最終的に算出された残留応力分布から複屈折分布を算出し、該複屈折分布を基準として、所定の光学性能を満たすように光学素子の成形条件を定める光学性能解析工程と、を有したことを特徴とする。   An optical element manufacturing method for manufacturing an optical element by molding an optical element using a mold, wherein the heat transfer analysis of the mold and the molded product of the optical element and the thermal fluid of the molded product Analyzing the flow and calculating the temperature of the mold and the pressure and temperature of the molded product, and using the calculated pressure and temperature as initial values, the mold constraint between the mold and the molded product, and Residual stress distribution is calculated by conducting a structural analysis taking into account the viscoelastic properties of the resin, and the calculated residual stress distribution is used as an initial value, and at least one of heat cycle conditions and annealing conditions according to the use environment of the molded product The birefringence distribution is calculated from the structural analysis step of calculating the residual stress distribution of the molded product by setting the residual stress distribution finally calculated by the structural analysis means, and based on the birefringence distribution Characterized in that had, optical performance analysis step of determining the molding conditions of the optical element so as to satisfy a predetermined optical performance.

さらに、金型を用いて光学素子を成形することにより光学素子を製造する際の光学素子の光学性能解析方法であって、前記金型および前記光学素子の成形品の伝熱解析と前記成形品の熱流体解析を行って、当該金型の温度と当該成形品の圧力および温度を算出する流動解析工程と、前記算出された圧力および温度を初期値として、前記金型と前記成形品との型拘束および樹脂の粘弾性特性を考慮した構造解析を行って残留応力分布を算出し、該算出された残留応力分布を初期値として、前記成形品の使用環境に応じたヒートサイクル条件またはアニール条件の少なくとも一方を設定して前記成形品の残留応力分布を算出する構造解析工程と、該構造解析手段によって最終的に算出された残留応力分布から複屈折分布を算出し、該複屈折分布を基準として、所定の光学性能を評価する光学性能解析工程と、を有したことを特徴とする。   Furthermore, it is an optical performance analysis method of an optical element when an optical element is manufactured by molding an optical element using a mold, the heat transfer analysis of the mold and the molded product of the optical element, and the molded product The flow analysis step of calculating the temperature of the mold and the pressure and temperature of the molded product, and the calculated pressure and temperature as initial values, the mold and the molded product Residual stress distribution is calculated by performing structural analysis in consideration of mold constraint and resin viscoelastic properties, and the calculated residual stress distribution is used as an initial value, and heat cycle conditions or annealing conditions according to the use environment of the molded product A structural analysis step of calculating the residual stress distribution of the molded product by setting at least one of the above, a birefringence distribution is calculated from the residual stress distribution finally calculated by the structural analysis means, and the birefringence distribution is calculated. As standards, it is characterized in that anda optical performance analysis step of evaluating a predetermined optical performance.

以上の構成によれば、記成形品について算出された残留応力分布を初期値として、前記成形品の使用環境に応じたヒートサイクル条件またはアニール条件の少なくとも一方を設定して前記成形品の残留応力分布を算出し、この最終的に算出された残留応力分布から複屈折分布を算出し、この複屈折分布を基準として、所定の光学性能を満たすように光学素子の成形条件を定めるので、残留応力を緩和するためのアニール処理や、実際の使用環境を模したヒートサイクル環境試験における成形品内部の複屈折の経時変化を予め予測して光学素子の製造を行うことができる。   According to the above configuration, with the residual stress distribution calculated for the molded article as an initial value, the residual stress of the molded article is set by setting at least one of a heat cycle condition or an annealing condition according to the use environment of the molded article. The distribution is calculated, the birefringence distribution is calculated from the finally calculated residual stress distribution, and the molding conditions of the optical element are determined so as to satisfy the predetermined optical performance based on this birefringence distribution. An optical element can be manufactured by predicting in advance the time-dependent change in birefringence inside a molded article in an annealing process for relaxing the heat treatment or a heat cycle environment test simulating an actual use environment.

以下、図面を参照して本発明の実施形態を詳細に説明する。
図1は、本発明の一実施形態に係る光学素子製造装置の解析処理の構成およびその手順を示す図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a configuration of analysis processing and its procedure of an optical element manufacturing apparatus according to an embodiment of the present invention.

図1に示すように、本装置は、形状を定義して有限要素法解析のための要素分割を行って解析モデルを作成する形状定義部1、金型と樹脂の伝熱解析を含み、充填保圧冷却過程の解析を行う流動解析部2、樹脂のクリープ、応力緩和などの粘弾性的な性質と樹脂冷却時の金型と成形品との間の型拘束を考慮した構造解析を行う構造解析部3、および構造解析部3によって得られた成形品の残留応力結果を利用して複屈折解析を行う光学性能解析部4を有して構成される。具体的には、これらの各部は、コンピュータがプログラムに従った以下に示す処理を実行することにより構成されるものである。   As shown in FIG. 1, this apparatus includes a shape defining unit 1 that defines a shape and divides an element for finite element analysis to create an analysis model, a heat transfer analysis between a mold and a resin, Flow analysis part 2 for analyzing pressure-holding cooling process, structure for structural analysis considering viscoelastic properties such as resin creep and stress relaxation, and mold constraint between mold and molded product during resin cooling The analysis unit 3 and the optical performance analysis unit 4 that performs birefringence analysis using the residual stress result of the molded product obtained by the structure analysis unit 3 are configured. Specifically, each of these units is configured by a computer executing the following processing according to a program.

形状定義
形状定義部1において、形状定義およびメッシュ分割を行う(S1)。このステップS1の処理では、CADシステムにより、解析対象となる金型と成形品の形状を定義した後、要素分割プリプロセッサで有限要素法などの要素分割を行い、解析モデルを作成する。
In the shape definition shape definition unit 1, shape definition and mesh division are performed (S1). In the process of step S1, the CAD system defines the shape of the mold to be analyzed and the molded product, and then performs element division such as a finite element method by an element division preprocessor to create an analysis model.

流動解析
次に、流動解析部2において、流動解析によって樹脂が金型内に充填して保圧冷却される過程を解析する(S3)。解析プログラムとしては、市販されている汎用流体解析ソフトウェアを使用し、これに樹脂の非ニュートン流体としての性質である粘性が温度とせん断速度に依存する関係式、すなわち粘性方程式と、保圧解析時に必要となる圧力と温度と比容積の関係式であるPVT状態方程式とをソフトウェアに付属のユーザーサブルーチンを利用して定義する。また、上記流動解析を行うため、樹脂と金型の物性データ(粘性、比容積、熱伝導率、比熱など)、成形条件(射出速度、樹脂温度、保圧値、保圧時間など)および解析条件を定義して、流動解析用の入力データを作成する(S2)。この入力データに基づき、樹脂が金型内に充填する過程、およびその後の保圧冷却過程での金型を含めた流動解析(S3)を実施し、圧力、温度などの解析結果を得る(S4)。
Flow Analysis Next, the flow analysis unit 2 analyzes the process in which resin is filled in the mold by the flow analysis and is kept pressure-cooled (S3). As the analysis program, commercially available general-purpose fluid analysis software is used, and this is a relational expression in which the viscosity, which is the property of a resin as a non-Newtonian fluid, depends on temperature and shear rate, that is, a viscosity equation and a holding pressure analysis. A PVT equation of state, which is a relational expression of required pressure, temperature and specific volume, is defined using a user subroutine attached to the software. In addition, in order to perform the above flow analysis, physical property data (viscosity, specific volume, thermal conductivity, specific heat, etc.) of resin and mold, molding conditions (injection speed, resin temperature, pressure holding value, pressure holding time, etc.) and analysis Conditions are defined and input data for flow analysis is created (S2). Based on this input data, a flow analysis (S3) including the process of filling the mold into the mold and the mold in the subsequent holding pressure cooling process is performed to obtain the analysis results such as pressure and temperature (S4). ).

構造解析
次に、構造解析部3において、流動解析部2で得られた温度、圧力の初期データ、荷重、拘束などの各種境界条件を含む形状入力データに基づき、樹脂の粘弾性的特性(応力緩和)および金型内での冷却時の樹脂と金型間の型拘束(接触状態)を考慮した構造解析を実施し(S5)、この構造解析に基づいて残留応力の解析結果を得る(S6)。
Structural analysis Next, in the structural analysis unit 3, the viscoelastic properties (stress of the resin) are determined based on the shape input data including various boundary conditions such as initial data of temperature, pressure, load, and restraint obtained in the flow analysis unit 2. A structural analysis is performed in consideration of mold restraint (contact state) between the resin and the mold during cooling in the mold (S5), and a residual stress analysis result is obtained based on this structural analysis (S6). ).

光学性能解析
そして最後に、光学性能解析部4において、上記構造解析から得られた最終成形品の残留応力を用いて、光学性能解析を行い(S7)、成形品内部の複屈折分布を算出する(S8)。
Optical performance analysis Finally, the optical performance analysis unit 4 performs an optical performance analysis using the residual stress of the final molded product obtained from the structural analysis (S7), and calculates the birefringence distribution inside the molded product. (S8).

以上の処理によって得られる解析結果を評価し、成形品の光学性能が要求される許容値内に収まっている場合は処理を終了する。一方、成形品の光学性能が要求される許容値内に収まっていない場合はステップS1の処理に戻り、成形品形状、金型設計、成形条件パラメータを変更して繰り返し解析を行うことにより、成形品の光学性能の最適化を図る。   The analysis result obtained by the above processing is evaluated, and if the optical performance of the molded product is within the required tolerance, the processing is terminated. On the other hand, if the optical performance of the molded product is not within the required tolerance, the process returns to step S1, and the molding is performed by changing the shape of the molded product, the mold design, and the molding condition parameters and repeatedly performing the analysis. Optimize product optical performance.

構造解析詳細
図2は、図1に示したステップS5の構造解析処理の詳細を示す図であり、この処理では型拘束(金型内で冷却時の樹脂−金型間の接触状態)による応力緩和(樹脂の粘弾性的特性)を考慮して、最終的に成形品の残留応力を得る。
Detailed Structural Analysis FIG. 2 is a diagram showing details of the structural analysis processing in step S5 shown in FIG. 1, in which stress due to mold restraint (contact state between resin and mold during cooling in the mold) is shown. In consideration of relaxation (viscoelastic properties of the resin), the residual stress of the molded product is finally obtained.

既に流動解析(S3)によって、要素節点データ、境界条件(温度、荷重、拘束)などの構造解析用入力データ、および温度、圧力の流動解析結果が作成されているので、これらのデータを利用(S10)して、構造解析を行う。   The flow analysis (S3) has already created element analysis data, input data for structural analysis such as boundary conditions (temperature, load, constraint), and flow analysis results of temperature and pressure. Use these data ( S10) and structural analysis is performed.

まず、ステップS11で所定時間の間隔で、順次非定常熱伝導解析を行い、構造解析においてもその後の金型と成形品全体が冷却されて行く状態を求める。この処理によって、上記所定時間が経過する毎に成形品の任意位置における温度、応力の変化が求まるので、これによりPVT状態方程式から熱収縮歪みが求まり、この値を逐次使用して構造解析を行う。図6は、PVT状態方程式から計算される比容積、温度、圧力の関係を示す図である。   First, in step S11, unsteady heat conduction analysis is sequentially performed at predetermined time intervals, and a state in which the subsequent mold and the entire molded product are cooled is obtained also in the structural analysis. By this process, every time the predetermined time elapses, a change in temperature and stress at an arbitrary position of the molded product is obtained. Thus, a heat shrinkage strain is obtained from the PVT equation of state, and this value is sequentially used for structural analysis. . FIG. 6 is a diagram showing the relationship between specific volume, temperature, and pressure calculated from the PVT equation of state.

(構造解析における粘弾性応力解析)
次のステップS12では、粘弾性応力解析を行う。すなわち、金型の部分を変形体(弾性体)として考え、また、樹脂である成形品部を熱レオロジー的に単純な材料(つまり、時間−温度換算則が適用可能なモデル)として考え、シフト関数とプロニー級数による緩和弾性係数の関数近似が可能な線形粘弾性モデルを導入して粘弾性応力解析を行う。応力緩和関数(プロニー級数)、シフト関数は、それぞれ以下の数式(1)、(2)を用いる。なお、時間−温度換算則とは、ある基準とする温度T0をとったとき、それより高温での挙動はその基準温度上では短時間の挙動に、上記基準より低温での挙動はその基準上では長時間の挙動に対応するという法則である。すなわち、時間と温度とは等価に換算できることになる。
(Viscoelastic stress analysis in structural analysis)
In the next step S12, viscoelastic stress analysis is performed. That is, the mold part is considered as a deformable body (elastic body), and the resin molded part is considered as a thermorheologically simple material (that is, a model to which the time-temperature conversion law can be applied), and shifted. A viscoelastic stress analysis is performed by introducing a linear viscoelastic model capable of approximating a relaxation elastic modulus by a function and a Prony series. As the stress relaxation function (Prony series) and the shift function, the following mathematical formulas (1) and (2) are used, respectively. Note that the time-temperature conversion rule is that when a certain temperature T 0 is taken, behavior at a higher temperature is a short-time behavior at the reference temperature, and behavior at a lower temperature than the above criteria is the standard. Above is the law that corresponds to long-time behavior. That is, time and temperature can be equivalently converted.

構造解析プログラムは、市販されている汎用非線形構造解析プログラムを使用し、樹脂である成形品部については時間−温度換算則が適用可能な熱レオロジー的に単純な材料と考え、プロニー級数(数式(1))による緩和弾性係数の定義が可能な線形粘弾性モデルを用い、シフト関数(数式(2))についてはユーザーサブルーチンを使用して定義することにより解析を行う。   The structural analysis program uses a commercially available general-purpose non-linear structural analysis program, and the molded product part, which is a resin, is considered to be a thermorheologically simple material to which the time-temperature conversion rule can be applied. The linear viscoelastic model capable of defining the relaxation elastic modulus according to 1)) is used, and the shift function (Equation (2)) is analyzed using a user subroutine.

Figure 2006187941
Figure 2006187941

ここで、G:平衡弾性率、t’:緩和時間、λn:緩和時間係数である。
log10T(T)= C0+C1・T+C2・T2+・・・+Cn・Tn …… (2)
ここで、log10T(T):温度シフトファクタ、Cn:係数、T:温度である。
Here, G ∞ is the equilibrium elastic modulus, t ′ is the relaxation time, and λ n is the relaxation time coefficient.
log 10 AT (T) = C 0 + C 1 · T + C 2 · T 2 +... + C n · T n (2)
Here, log 10 AT (T): temperature shift factor, C n : coefficient, and T: temperature.

(構造解析における粘弾性物性)
本ステップS12の粘弾性による構造解析を実施する際、成形品である樹脂の温度挙動は、流動時には金型壁面近傍が固化状態であるが、成形品の内部は溶融状態にあり、この2つの相が混在した状態で徐々に冷却固化していく。従って、樹脂の緩和弾性係数は固化状態のみならず溶融状態の両方が必要である。樹脂の粘弾性特性を動的粘弾性試験法により、固化状態(強制捩じり法)と溶融状態(せん断法)についてそれぞれ測定して両者を重ね合わせることにより、固化−溶融全域の緩和弾性係数(プロニー級数)、時間−温度換算則(シフト関数)を算出する。図4は、数式(1)に示すプロニー級数近似して、温度に対する緩和弾性係数G(t)の関係を示す図である。また、図5は、数式(2)に示す多項式により近似して得られたシフト関数(時間−温度移動因子)の図である。
(Viscoelastic properties in structural analysis)
When the structural analysis by viscoelasticity in this step S12 is performed, the temperature behavior of the resin that is the molded product is in the solidified state near the mold wall surface during flow, but the interior of the molded product is in a molten state. It gradually cools and solidifies in a mixed state. Therefore, the relaxation elastic modulus of the resin requires both a solid state and a molten state. By measuring the viscoelastic properties of the resin in the solidified state (forced torsion method) and the molten state (shearing method) using the dynamic viscoelasticity test method and superimposing the two, the relaxation elastic modulus of the entire solidification-melting region (Prony series), time-temperature conversion rule (shift function) is calculated. FIG. 4 is a diagram showing the relationship of the relaxation elastic modulus G (t) with respect to temperature by approximating the Prony series shown in Equation (1). FIG. 5 is a diagram of a shift function (time-temperature transfer factor) obtained by approximation using the polynomial shown in Equation (2).

ステップS13により、以上説明した成形品と金型の非定常熱伝導解析(S11)、型拘束による応力緩和を考慮した粘弾性応力解析(S12)を、成形条件である上記時間間隔をカウントして得られる所定の離型時間(成形品取出し時間)になるまで繰り返す。   In step S13, the unsteady heat conduction analysis (S11) between the molded product and the mold described above, and the viscoelastic stress analysis (S12) taking into account the stress relaxation due to the mold restraint, the time interval as the molding condition is counted. The process is repeated until a predetermined release time (mold take-out time) is obtained.

次に、ステップS14、S15では、離型(成形品が金型による拘束から解放)した後、成形品について、大気中で自然冷却されて室温に至るまで、金型を除外した成形品のみを対象とした非定常熱伝導解析(S14)および粘弾性応力解析(S15)を行う(S16)。なお、この室温も予め定められたものであり、本実施形態では、この室温に至る時間を予め定め、上記と同様時間間隔をカウントしてこの室温に至ったことを判断する。   Next, in steps S14 and S15, after releasing the mold (the molded product is released from the restraint by the mold), only the molded product excluding the mold is cooled until it is naturally cooled to the room temperature. The target unsteady heat conduction analysis (S14) and viscoelastic stress analysis (S15) are performed (S16). Note that this room temperature is also determined in advance, and in the present embodiment, the time to reach this room temperature is determined in advance, and the time interval is counted as described above to determine that this room temperature has been reached.

成形品が室温に達する十分な所定時間が経過したと判断すると(S16)、成形品について、経時変化による非定常熱伝導解析(S17)、粘弾性応力解析(S18)を行う。   When it is determined that a sufficient predetermined time for the molded product to reach room temperature has passed (S16), the molded product is subjected to unsteady heat conduction analysis (S17) and viscoelastic stress analysis (S18) due to changes over time.

前述したように、プラスチックレンズは、その成形品精度を向上させるには、成形後の使用環境下での内部残留応力の緩和に伴う変化をも考慮する必要がある。成形直後において要求精度を満たしていても、その後の使用環境によりレンズ内部の残留応力が変化して光学特性や形状精度が変化することがある。通常、この光学特性や形状精度の変化を知るため、成形後の成形品に対し、想定される使用環境下でのヒートサイクル環境試験が実施されるが、この試験には多くの時間を要する。また、必要に応じてレンズ内部の残留応力を予め緩和するためにアニール処理が行われるが、残留応力を緩和するためのアニール条件の決定には試行錯誤が必要であり、その後の使用環境下での光学特性や形状精度の変化を知るには、同様にヒートサイクル環境試験の実施が必要であり、これによって多くの時間を要することになる。   As described above, in order to improve the accuracy of the molded product of the plastic lens, it is necessary to take into account the change accompanying relaxation of the internal residual stress in the use environment after molding. Even if the required accuracy is satisfied immediately after molding, the residual stress inside the lens changes depending on the subsequent use environment, and the optical characteristics and shape accuracy may change. Usually, in order to know the change in the optical characteristics and the shape accuracy, a heat cycle environment test under an assumed use environment is performed on the molded product after molding, but this test takes a lot of time. In addition, annealing treatment is performed in advance to relieve the residual stress inside the lens as necessary, but determination of the annealing conditions for relieving the residual stress requires trial and error. In order to know the change in the optical characteristics and the shape accuracy, it is necessary to conduct a heat cycle environmental test, which requires a lot of time.

そこで、本発明の一実施形態では、成形後の成形品のヒートサイクル環境試験やアニール処理を行ったときの成形品内部残留応力の変化を解析により求めるべく、ステップS17、S18では、以上の処理で求めた成形品内部の残留応力に基づき、図15(a)、(b)および図16(a)、(b)にて後述されるように、ヒートサイクル環境試験およびアニール処理と同じ条件を設定し、非定常熱伝導解析、および粘弾性応力解析を行う。なお、この解析はヒートサイクル環境試験およびアニール処理のいずれか一方を用いてもよい。   Therefore, in one embodiment of the present invention, in steps S17 and S18, the above processing is performed in order to obtain a change in the residual stress inside the molded product when the heat cycle environment test or annealing treatment of the molded product after molding is performed. 15 (a), (b) and FIGS. 16 (a), (b), as will be described later, based on the residual stress inside the molded product obtained in (5), the same conditions as in the heat cycle environment test and annealing treatment are used. Set and conduct unsteady heat conduction analysis and viscoelastic stress analysis. This analysis may use either a heat cycle environment test or an annealing treatment.

そして、上記と同様にカウントされる、経時変換の所定時間が経過すると(S19)、経時変化の解析を経た最終的な成形品内部の残留応力を基に光学性能である複屈折分布を計算する(S20,S21)。これにより、その後の光学性能解析(S7)で、最終的なレンズ内部の光学性能を評価することが可能となる。   Then, when a predetermined time for conversion with time, which is counted in the same manner as described above, has elapsed (S19), a birefringence distribution that is optical performance is calculated based on the residual stress inside the final molded product that has undergone analysis of changes over time. (S20, S21). This makes it possible to evaluate the final optical performance inside the lens in the subsequent optical performance analysis (S7).

光学性能解析詳細
次に、図1のステップS7に示した、成形品の残留応力から成形品の光学性能である複屈折分布を計算する、光学性能解析について説明する。図3はこの処理の詳細を示すフローチャートであり、複屈折分布を計算するための手順を示している。
Details of Optical Performance Analysis Next, the optical performance analysis for calculating the birefringence distribution, which is the optical performance of the molded product, from the residual stress of the molded product shown in step S7 of FIG. 1 will be described. FIG. 3 is a flowchart showing details of this process, and shows a procedure for calculating the birefringence distribution.

最初に、前記の応力緩和を考慮した構造解析を行って最終的に求めた成形品の残留応力の結果(S30)から主応力を計算して主応力差を求める(S31,S32)。3次元解析の場合には、σ1、σ2、σ3の3つの値として計算することができる。樹脂の複屈折は成形品内部の残留応力分布と密接な関連があり、この関係は応力光学則(Brewesterの法則)に基づき次式で表わすことができる。
Δn=C・Δσ ……… (3)
ここで、Δn:複屈折、C:応力光学係数(光弾性係数)、Δσ:主応力差
上記数式(3)より複屈折が算出できる(S33,S34)。算出した複屈折を基に成形品のレンズ光路の評価を行う(S35,S36)。
First, the main stress is calculated from the residual stress result (S30) finally obtained by performing the structural analysis in consideration of the stress relaxation, and the main stress difference is obtained (S31, S32). In the case of a three-dimensional analysis, it can be calculated as three values σ 1 , σ 2 , and σ 3 . The birefringence of the resin is closely related to the residual stress distribution inside the molded product, and this relationship can be expressed by the following equation based on the stress optical law (Breester's law).
Δn = C · Δσ (3)
Here, Δn: birefringence, C: stress optical coefficient (photoelastic coefficient), Δσ: main stress difference The birefringence can be calculated from the above formula (3) (S33, S34). The lens optical path of the molded product is evaluated based on the calculated birefringence (S35, S36).

[実施例]
解析対象形状&成形条件
外形長さ102mm、幅11.6mmの矩形形状に、半径R1=259.2mm、半径R2=156.12mmの光学面形状を有するトーリックレンズ形状を例として、成形後のレンズ成形品内部の複屈折を解析により求める。
[Example]
Shape to be analyzed and molding conditions An example of a toric lens shape having an optical surface shape of radius R1 = 259.2 mm and radius R2 = 156.12 mm in a rectangular shape having an outer length of 102 mm and a width of 11.6 mm The birefringence inside the molded product is obtained by analysis.

解析全体の流れは、前述した図1、図2および図3に示す解析手順に従う。図7に解析対象のレンズ成形品形状をメッシュ分割した解析モデルを示す。図8はレンズ形状の金型も含めた金型全体モデルの解析モデルを示す図である。なお、レンズ幅の中心で長手方向に左右対称であるので、1/2のモデルとなっている。この金型全体モデルは、固定側、可動側それぞれの金型および成形品から構成されるモデルである。全体で7000要素程度の要素数に分割されている。   The flow of the whole analysis follows the analysis procedure shown in FIG. 1, FIG. 2, and FIG. FIG. 7 shows an analysis model obtained by dividing the shape of the lens molded product to be analyzed into meshes. FIG. 8 is a diagram showing an analysis model of the overall mold model including a lens-shaped mold. Since the lens width is symmetric in the longitudinal direction at the center of the lens width, the model is ½. This overall mold model is a model composed of a mold and a molded product on each of the fixed side and the movable side. The total number of elements is divided into about 7000 elements.

このレンズ成形品の成形条件は以下に示す通りである。
・使用樹脂 ポリオレフィン系樹脂
・樹脂温度 270℃
・充填時間 3.0sec
・金型温度 120℃(一定)
・保圧圧力 金型内実測値85MPa
・保圧時間 30sec
・冷却時間 120sec
The molding conditions of this lens molded product are as shown below.
-Resin used Polyolefin resin-Resin temperature 270 ° C
・ Filling time 3.0sec
Mold temperature 120 ℃ (constant)
・ Pressure holding pressure Actual measured value in the mold 85MPa
・ Pressure holding time 30 sec
・ Cooling time 120sec

流動解析
最初に、樹脂が金型内に充填して保圧冷却される過程を流動解析により行うが、成形品および金型間の熱移動を考慮するために、充填から保圧冷却過程全体に対して非定常熱伝導解析も同時に行う。解析プログラムは、市販されている汎用流体解析ソフトウェアを使用し、これに樹脂の非ニュートン流体としての性質である粘性が温度およびせん断速度に依存するCross−WLF式に基づく粘性方程式と、保圧解析時に必要となる圧力、温度、比容積の関係式であるTaitのPVT状態方程式をソフトウェアに付属のユーザーサブルーチンを利用して定義する。
Flow analysis First, the process of filling the mold into the mold and holding and cooling is performed by flow analysis. From the filling to the holding and cooling process in order to consider the heat transfer between the molded product and the mold. On the other hand, unsteady heat conduction analysis is also performed. The analysis program uses commercially available general-purpose fluid analysis software, and the viscosity equation based on the Cross-WLF equation in which the viscosity, which is the property of the resin as a non-Newtonian fluid, depends on the temperature and shear rate, and pressure retention analysis A Tait PVT equation of state, which is a relational expression of pressure, temperature, and specific volume that is sometimes required, is defined using a user subroutine attached to the software.

図9は、保圧冷却過程中における樹脂の流動が停止した時点(本解析例では、保圧開始後、15sec後)の成形品/金型全体の温度分布を示す図である。   FIG. 9 is a diagram showing the temperature distribution of the entire molded product / mold at the time when the resin flow stops during the holding pressure cooling process (in this analysis example, 15 seconds after the start of holding pressure).

構造解析
次に、構造解析は流動解析時に使用した要素分割モデルをそのまま用い、流動解析時での樹脂の流動が停止した時点での温度・圧力の最終結果を初期データとして構造解析を行う。そして、離型時まで成形品および金型間の非定常温度解析と、型拘束を考慮した構造解析を熱解析と連成しながら行っていく。本解析では、金型および成形品の部分を共に変形体として解析し、成形品について粘弾性を考慮した熱応力解析を行う。
Structural analysis Next, the structural analysis uses the element division model used in the flow analysis as it is, and performs the structural analysis using the final results of temperature and pressure at the time when the flow of the resin in the flow analysis stops as initial data. Then, the unsteady temperature analysis between the molded product and the mold and the structural analysis considering the mold constraint are performed while being coupled with the thermal analysis until the mold release. In this analysis, the mold and the molded part are both analyzed as a deformed body, and the molded product is subjected to thermal stress analysis considering viscoelasticity.

また、金型と成形品の界面は接触解析問題として考え、冷却固化に伴う成形品表面と金型表面での接触、解離などの型拘束の影響を考慮する。接触判定時には成形品と金型間熱通過率を設定し、解離判定時には成形品表面とキャビティ空間の間が断熱となる熱伝達率の設定を行い解析を進めていく。解析プログラムは、市販されている汎用非線形構造解析プログラムを使用し、樹脂である成形品部について、時間−温度換算則が適用可能な熱レオロジー的に単純な材料と考え、前述したプロニー級数による応力緩和関数の近似が可能な線形粘弾性構成式(数式(1))とシフト関数(数式(2))を、解析入力データおよびユーザーサブルーチンを用いて定義して解析を行う。   In addition, the interface between the mold and the molded product is considered as a contact analysis problem, and the influence of mold constraints such as contact and dissociation between the molded product surface and the mold surface due to cooling and solidification is considered. At the time of contact determination, the heat transfer rate between the molded product and the mold is set, and at the time of dissociation determination, the heat transfer coefficient is set so as to insulate between the surface of the molded product and the cavity space, and the analysis proceeds. The analysis program uses a commercially available general-purpose nonlinear structural analysis program, and considers the molded part part, which is a resin, as a thermorheologically simple material to which the time-temperature conversion law can be applied, and stress due to the aforementioned Prony series. A linear viscoelastic constitutive expression (formula (1)) and a shift function (formula (2)) capable of approximating the relaxation function are defined using analysis input data and a user subroutine for analysis.

また、この過程では、同時に時間刻み毎における成形品の任意の場所における温度、圧力(静水圧)を求め、前述したPVT状態方程式から比容積を算出し、熱収縮歪を計算することで、圧力(静水圧)の影響を考慮した解析を行う。なお、本解析で使用した粘弾性物性値は、前述の実施形態で示したポリオレフィン系樹脂である。   In this process, the temperature and pressure (hydrostatic pressure) at any place of the molded product at every time increment are obtained, the specific volume is calculated from the above-mentioned PVT equation of state, and the heat shrinkage strain is calculated. Perform analysis considering the effect of (hydrostatic pressure). In addition, the viscoelastic property value used in this analysis is the polyolefin resin shown in the above-mentioned embodiment.

以上の計算を成形品取り出し時間である離型時間(本解析では、冷却時間120sec)まで行い、この時間に達した時点で、離型処理(成形品が金型による拘束から解放)を行う。その後、成形品および金型間での熱伝導条件を、成形品から大気への熱伝導境界条件に変更して、引き続き大気中での自然放冷に伴う自由収縮挙動を成形品が室温になるまで非定常熱伝導解析と粘弾性応力解析を繰り返し計算を進め、最終的な変形量、残留応力、残留歪等の計算結果を出力する。図10は、離型直後のレンズ成形品・金型全体の温度分布を示す。   The above calculation is performed until a mold release time (in this analysis, a cooling time of 120 sec), which is a molded product take-out time, and when this time is reached, a mold release process (the molded product is released from restraint by the mold) is performed. After that, the heat conduction condition between the molded product and the mold is changed to the boundary condition of heat conduction from the molded product to the atmosphere, and then the free shrinkage behavior due to natural cooling in the atmosphere continues to the room temperature. Unsteady heat conduction analysis and viscoelastic stress analysis are repeatedly calculated until final deformation, residual stress, residual strain, and other calculation results are output. FIG. 10 shows the temperature distribution of the entire lens molded product / mold immediately after mold release.

次に、経時変化を考慮した非定常熱伝導解析と粘弾性応力解析と行う。ここで、このような経時変化を考慮しない構造解析結果に基づいて行われる復屈折計算により算出された複屈折の値は、1.0E−4のオーダーであり、複屈折の値としては、1.0E−5のオーダーまで低減化することが望ましい。   Next, unsteady heat conduction analysis and viscoelastic stress analysis are performed in consideration of changes over time. Here, the birefringence value calculated by the birefringence calculation performed based on the structural analysis result that does not consider such a change with time is on the order of 1.0E-4, and the birefringence value is 1 It is desirable to reduce to the order of 0.0E-5.

このため、得られた成形品に対して、アニール処理を想定した解析を行い、複屈折の低減化が可能かどうかの検討を行う。本実施例での樹脂は、ポリオレフィン系樹脂でありTg点が138℃であるので、図15(a)に示すように、アニール処理温度150℃、アニール時間を5時間にそれぞれ設定した解析を行った。   For this reason, an analysis assuming an annealing treatment is performed on the obtained molded product to examine whether birefringence can be reduced. Since the resin in this example is a polyolefin resin and has a Tg point of 138 ° C., as shown in FIG. 15 (a), an analysis was performed with the annealing temperature set at 150 ° C. and the annealing time set at 5 hours. It was.

具体的な解析手法は、図2に示したステップS17、S18における、成形品が室温に達する十分な時間が経過した後の成形品内部の残留応力に基づいて、上記設定したアニール処理条件で、非定常熱伝導解析、粘弾性応力解析(図2のS17、S18)を行う。そして、最終的に成形品内部の残留応力を基に光学性能である複屈折分布を計算する(図2のS20,S21)。これにより、レンズ内部の複屈折を評価することが可能となる。   A specific analysis method is the above-described annealing treatment conditions based on the residual stress inside the molded product after a sufficient time for the molded product to reach room temperature in steps S17 and S18 shown in FIG. Unsteady heat conduction analysis and viscoelastic stress analysis (S17 and S18 in FIG. 2) are performed. And finally, birefringence distribution which is optical performance is calculated based on the residual stress inside the molded product (S20, S21 in FIG. 2). This makes it possible to evaluate the birefringence inside the lens.

図15(b)は、アニール処理後のレンズ成形品中央部断面(図14のR1−2間)の複屈折の結果を示す図である。上記アニール条件で複屈折を1.0E−5のオーダーまで低減化することが可能であることがわかる。   FIG. 15B is a diagram showing the result of birefringence of the cross section (between R1-2 in FIG. 14) of the lens molded product after the annealing treatment. It can be seen that birefringence can be reduced to the order of 1.0E-5 under the annealing conditions.

次に、アニール処理により低減化したレンズ成形品の複屈折が、ヒートサイクル環境試験によりさらにどの程度変化するかを解析により検証する。   Next, it is verified by analysis how much the birefringence of the lens molded product reduced by the annealing treatment changes by the heat cycle environmental test.

対象レンズが組み込まれる製品は、−20℃から60℃の範囲での使用環境が想定されているので、ヒートサイクル環境試験条件としては、図16(a)に示すように室温からスタートして−20℃に5時間保持し、その後60℃で5時間保持して再び−20℃で5時間保持するサイクルを5回繰り返したときのレンズ内部の複屈折を評価する。   Since the product in which the target lens is incorporated is assumed to be used in the range of −20 ° C. to 60 ° C., the heat cycle environment test conditions start from room temperature as shown in FIG. The birefringence inside the lens is evaluated when the cycle of holding at 20 ° C. for 5 hours, then holding at 60 ° C. for 5 hours and again holding at −20 ° C. for 5 hours is repeated five times.

具体的な解析手法は、アニール処理時の解析手法と同一である。   The specific analysis method is the same as the analysis method during annealing.

図16(b)は、ヒートサイクル環境試験後のレンズ成形品中央部断面(R1−2間)の複屈折結果を示した図である。最初にアニール処理で複屈折を1.0E−5のオーダーまで低減化(図15(b))しているため、その後のヒートサイクル環境試験では複屈折の変化は少ないことがわかる。   FIG. 16B is a diagram showing the birefringence result of the cross section (between R1-2) of the lens molded product after the heat cycle environment test. Since the birefringence is first reduced to the order of 1.0E-5 by the annealing treatment (FIG. 15B), it is understood that the change in birefringence is small in the subsequent heat cycle environment test.

光学性能解析
次に、成形品の残留応力から成形品の光学性能である複屈折分布を計算する方法について述べる。複屈折分布を計算するための手順は、前述の図3に従う。
Optical Performance Analysis Next, a method for calculating the birefringence distribution which is the optical performance of the molded product from the residual stress of the molded product will be described. The procedure for calculating the birefringence distribution follows FIG.

最初に、前記の応力緩和を考慮した構造解析を行って最終的に求めた成形品の残留応力の結果(S30)から主応力を計算して主応力差を求める(S31,S32)。3次元解析の場合には、最大主応力σ1、中間主応力σ2、最小主応力σ3の3つの値として計算することができる。図11は、レンズ成形品中央部断面の最大主応力の分布を示した図である。また、図12は同様に最小主応力の分布を示した図である。これらの主応力値から主応力差を求めることができる。なお、図13はレンズ成形品中央部断面の最大主応力、中間主応力、最小主応力の方向を示した図である。最大主応力方向はレンズの長手方向、中間主応力方向はレンズの幅方向、最小主応力方向はレンズの光軸方向を概ね表している。 First, the main stress is calculated from the residual stress result (S30) finally obtained by performing the structural analysis in consideration of the stress relaxation, and the main stress difference is obtained (S31, S32). In the case of a three-dimensional analysis, the maximum principal stress σ 1 , the intermediate principal stress σ 2 , and the minimum principal stress σ 3 can be calculated. FIG. 11 is a diagram showing the distribution of the maximum principal stress in the cross section of the central part of the lens molded product. Similarly, FIG. 12 is a diagram showing the distribution of the minimum principal stress. The principal stress difference can be obtained from these principal stress values. FIG. 13 is a diagram showing the directions of the maximum principal stress, the intermediate principal stress, and the minimum principal stress in the cross section of the central part of the lens molded product. The maximum principal stress direction generally represents the longitudinal direction of the lens, the intermediate principal stress direction generally represents the width direction of the lens, and the minimum principal stress direction generally represents the optical axis direction of the lens.

前述したように、複屈折は成形品内部の残留応力分布から求まる主応力差と関連があり、この関係は応力光学則(Brewesterの法則)に基づき次式で表わせる。
Δn=C・Δσ ……… (3)
Δn:複屈折、C:応力光学係数(光弾性係数)、Δσ:主応力差
上記数式(3)より複屈折を算出できる(S33,S34)。算出した複屈折を基に成形品のレンズ光路の評価を行う(S35,S36)。
As described above, the birefringence is related to the main stress difference obtained from the residual stress distribution inside the molded product, and this relationship can be expressed by the following equation based on the stress optical law (Breester's law).
Δn = C · Δσ (3)
Δn: birefringence, C: stress optical coefficient (photoelastic coefficient), Δσ: main stress difference Birefringence can be calculated from the above formula (3) (S33, S34). The lens optical path of the molded product is evaluated based on the calculated birefringence (S35, S36).

図14(b)は、レンズ成形品中央部断面(図14(a))の光軸方向R1−2間について、Δσ12、Δσ23、Δσ31の3つの主応力差に基づく複屈折分布Δn12、Δn23、Δn31を表した図である。本実施例では、レンズ成形品中央部断面の光軸方向が図14(a)に示すR1−2方向であることから、Δn23の値に注目することにより光学性能の評価が可能である。 FIG. 14B shows a birefringence distribution Δn based on three main stress differences of Δσ 12 , Δσ 23 , and Δσ 31 in the optical axis direction R1-2 in the cross section of the central part of the lens molded product (FIG. 14A). 12 is a diagram showing Δn 23 , Δn 31 . In this embodiment, the optical axis of the lens moldings central cross section because it is R1-2 direction shown in FIG. 14 (a), can be evaluated in the optical performance by noting the value of [Delta] n 23.

以上のように、レンズ成形品内部の複屈折分布を本解析手法により定量的に予測することが可能である。また成形後の成形品のヒートサイクル環境試験やアニール処理を行った時の成形品内部残留応力の変化を解析により事前に求めて評価することができる。   As described above, the birefringence distribution inside the lens molded product can be quantitatively predicted by this analysis method. Further, it is possible to obtain and evaluate the change in the internal residual stress of the molded product in advance by analysis when the molded product is subjected to a heat cycle environmental test or annealing treatment.

本発明の一実施形態に係る光学素子製造装置の構成およびそれによる解析処理手順を示す図である。It is a figure which shows the structure of the optical element manufacturing apparatus which concerns on one Embodiment of this invention, and the analysis processing procedure by it. 図1に示す構造解析処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of the structure analysis process shown in FIG. 図1に示す光学性能解析処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of the optical performance analysis process shown in FIG. 温度に対する緩和弾性係数G(t)の関係の一例を示す図である。It is a figure which shows an example of the relationship of the relaxation elastic modulus G (t) with respect to temperature. シフト関数により時間−温度移動因子を多項式で近似した結果を示す図である。It is a figure which shows the result of having approximated the time-temperature transfer factor with the polynomial by the shift function. PVT状態方程式から計算される比容積、温度、圧力の関係を示す図である。It is a figure which shows the relationship of the specific volume calculated from a PVT equation of state, temperature, and a pressure. 本発明の一実施例における具体的な成形品の形状を示す図である。It is a figure which shows the shape of the specific molded article in one Example of this invention. 上記成形品の金型全体の形状を、5000要素程度に分割した解析モデルを示す図である。It is a figure which shows the analysis model which divided | segmented the shape of the whole metal mold | die of the said molded article into about 5000 elements. 樹脂の流動が停止した時点での金型・成形品全体の温度分布を示す図である。It is a figure which shows the temperature distribution of the metal mold | die and the molded article at the time of the flow of resin stopping. 離型直後の金型・成形品全体の温度分布を示す図である。It is a figure which shows the temperature distribution of the metal mold | die and the whole molded article immediately after mold release. レンズ成形品中央部断面の最大主応力の分布を示した図である。It is the figure which showed distribution of the largest principal stress of a lens molded product center part cross section. レンズ成形品中央部断面の最小主応力の分布を示した図である。It is the figure which showed distribution of the minimum principal stress of a lens molded product center part cross section. レンズ成形品中央部断面の最大主応力、中間主応力、最小主応力の方向を示した図である。It is the figure which showed the direction of the maximum principal stress of a lens molded product center part cross section, intermediate | middle principal stress, and minimum principal stress. (a)は、レンズ成形品中央部断面を示した図、(b)は、レンズ成形品中央部断面のR1−2間の複屈折Δnを示した図である。(A) is the figure which showed the lens molded product center part cross section, (b) is the figure which showed birefringence (DELTA) n between R1-2 of the lens molded product center part cross section. (a)は、アニール処理条件を示した図、(b)は、アニール処理後のレンズ成形品中央部断面(R1−2間)の複屈折Δnを示した図である。(A) is the figure which showed annealing treatment conditions, (b) is the figure which showed birefringence (DELTA) n of the lens molded article center part cross section (between R1-2) after annealing treatment. (a)は、ヒートサイクル環境試験条件を示した図、(b)は、アニール処理後のレンズ成形品に対して、ヒートサイクル環境試験を実施した後の、レンズ成形品中央部断面(R1−2間)の複屈折Δnを示した図である。(A) is the figure which showed the heat cycle environment test conditions, (b) is a lens molded product cross section (R1-) after implementing a heat cycle environmental test with respect to the lens molded product after annealing. It is the figure which showed birefringence (DELTA) n of (between 2).

符号の説明Explanation of symbols

1 形状定義部
2 流動解析部
3 構造解析部
4 光学性能解析部
DESCRIPTION OF SYMBOLS 1 Shape definition part 2 Flow analysis part 3 Structure analysis part 4 Optical performance analysis part

Claims (3)

金型を用いて光学素子を成形することにより光学素子を製造する光学素子製造装置であって、
前記金型および前記光学素子の成形品の伝熱解析と前記成形品の熱流体解析を行って、当該金型の温度と当該成形品の圧力および温度を算出する流動解析手段と、
前記算出された圧力および温度を初期値として、前記金型と前記成形品との型拘束および樹脂の粘弾性特性を考慮した構造解析を行って残留応力分布を算出し、該算出された残留応力分布を初期値として、前記成形品の使用環境に応じたヒートサイクル条件またはアニール条件の少なくとも一方を設定して前記成形品の残留応力分布を算出する構造解析手段と、
該構造解析手段によって最終的に算出された残留応力分布から複屈折分布を算出し、該複屈折分布を基準として、所定の光学性能を満たすように光学素子の成形条件を定める光学性能解析手段と、
を具えたことを特徴とする光学素子製造装置。
An optical element manufacturing apparatus for manufacturing an optical element by molding an optical element using a mold,
Flow analysis means for performing heat transfer analysis of the mold and the molded article of the optical element and thermal fluid analysis of the molded article to calculate the temperature of the mold and the pressure and temperature of the molded article;
Using the calculated pressure and temperature as initial values, the residual stress distribution is calculated by performing a structural analysis in consideration of the mold constraint between the mold and the molded product and the viscoelastic properties of the resin, and the calculated residual stress. Structural analysis means for calculating a residual stress distribution of the molded product by setting at least one of a heat cycle condition or an annealing condition according to a use environment of the molded product as an initial value of the distribution,
An optical performance analyzing means for calculating a birefringence distribution from the residual stress distribution finally calculated by the structure analyzing means, and for determining molding conditions of the optical element so as to satisfy a predetermined optical performance based on the birefringence distribution; ,
An optical element manufacturing apparatus comprising:
金型を用いて光学素子を成形することにより光学素子を製造するための光学素子製造方法であって、
前記金型および前記光学素子の成形品の伝熱解析と前記成形品の熱流体解析を行って、当該金型の温度と当該成形品の圧力および温度を算出する流動解析工程と、
前記算出された圧力および温度を初期値として、前記金型と前記成形品との型拘束および樹脂の粘弾性特性を考慮した構造解析を行って残留応力分布を算出し、該算出された残留応力分布を初期値として、前記成形品の使用環境に応じたヒートサイクル条件またはアニール条件の少なくとも一方を設定して前記成形品の残留応力分布を算出する構造解析工程と、
該構造解析手段によって最終的に算出された残留応力分布から複屈折分布を算出し、該複屈折分布を基準として、所定の光学性能を満たすように光学素子の成形条件を定める光学性能解析工程と、
を有したことを特徴とする光学素子製造方法。
An optical element manufacturing method for manufacturing an optical element by molding an optical element using a mold,
A flow analysis step of performing heat transfer analysis of the molded product of the mold and the optical element and thermal fluid analysis of the molded product, and calculating a temperature of the mold and a pressure and a temperature of the molded product;
Using the calculated pressure and temperature as initial values, the residual stress distribution is calculated by performing a structural analysis in consideration of the mold constraint between the mold and the molded product and the viscoelastic properties of the resin, and the calculated residual stress. A structural analysis step of calculating a residual stress distribution of the molded product by setting at least one of a heat cycle condition or an annealing condition according to a use environment of the molded product as an initial value of the distribution;
An optical performance analysis step of calculating a birefringence distribution from the residual stress distribution finally calculated by the structural analysis means, and determining molding conditions of the optical element so as to satisfy a predetermined optical performance based on the birefringence distribution; ,
An optical element manufacturing method characterized by comprising:
金型を用いて光学素子を成形することにより光学素子を製造する際の光学素子の光学性能解析方法であって、
前記金型および前記光学素子の成形品の伝熱解析と前記成形品の熱流体解析を行って、当該金型の温度と当該成形品の圧力および温度を算出する流動解析工程と、
前記算出された圧力および温度を初期値として、前記金型と前記成形品との型拘束および樹脂の粘弾性特性を考慮した構造解析を行って残留応力分布を算出し、該算出された残留応力分布を初期値として、前記成形品の使用環境に応じたヒートサイクル条件またはアニール条件の少なくとも一方を設定して前記成形品の残留応力分布を算出する構造解析工程と、
該構造解析手段によって最終的に算出された残留応力分布から複屈折分布を算出し、該複屈折分布を基準として、所定の光学性能を評価する光学性能解析工程と、
を有したことを特徴とする光学性能解析方法。
An optical element performance analysis method for producing an optical element by molding an optical element using a mold,
A flow analysis step of performing heat transfer analysis of the molded product of the mold and the optical element and thermal fluid analysis of the molded product, and calculating a temperature of the mold and a pressure and a temperature of the molded product;
Using the calculated pressure and temperature as initial values, the residual stress distribution is calculated by performing a structural analysis in consideration of the mold constraint between the mold and the molded product and the viscoelastic properties of the resin, and the calculated residual stress. A structural analysis step of calculating a residual stress distribution of the molded product by setting at least one of a heat cycle condition or an annealing condition according to a use environment of the molded product as an initial value of the distribution;
An optical performance analysis step of calculating a birefringence distribution from the residual stress distribution finally calculated by the structural analysis means, and evaluating a predetermined optical performance based on the birefringence distribution;
An optical performance analysis method characterized by comprising:
JP2005001392A 2005-01-06 2005-01-06 Optical element manufacturing apparatus, optical element manufacturing method and optical capacity analyzing method Pending JP2006187941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005001392A JP2006187941A (en) 2005-01-06 2005-01-06 Optical element manufacturing apparatus, optical element manufacturing method and optical capacity analyzing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005001392A JP2006187941A (en) 2005-01-06 2005-01-06 Optical element manufacturing apparatus, optical element manufacturing method and optical capacity analyzing method

Publications (1)

Publication Number Publication Date
JP2006187941A true JP2006187941A (en) 2006-07-20

Family

ID=36795563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005001392A Pending JP2006187941A (en) 2005-01-06 2005-01-06 Optical element manufacturing apparatus, optical element manufacturing method and optical capacity analyzing method

Country Status (1)

Country Link
JP (1) JP2006187941A (en)

Similar Documents

Publication Publication Date Title
Babenko et al. Evaluation of heat transfer at the cavity-polymer interface in microinjection moulding based on experimental and simulation study
Kim et al. Residual stress distributions and their influence on post-manufacturing deformation of injection-molded plastic parts
Tao et al. Quantitatively measurement and analysis of residual stresses in molded aspherical glass lenses
Yu et al. A comprehensive study on frictional dependence and predictive accuracy of viscoelastic model for optical glass using compression creep test
Jin et al. Analysis and design for reducing residual stress and distortion after ejection of injection molded part with metal-insert
Huang et al. Fundamental study and theoretical analysis in a constrained-surface stereolithography system
JP2007093596A (en) Method and program for measuring relaxation modulus, recording medium with program recorded, and manufacturing method of forming mold
JP2007083602A (en) Method for forecasting molding shrinkage rate of injection-molded article
JP2004160700A (en) Simulation apparatus for injection molding process and method for estimating shape precision
JP2001293748A (en) Injection molding process simulation apparatus and shape accuracy estimating method
JP4378011B2 (en) Mold design equipment and mold shape design method
Kim et al. Birefringence in injection‐compression molding of amorphous polymers: Simulation and experiment
JP2002148232A (en) Analytical method for thermal deformation of injection- molded article
Bataineh et al. Prediction of local part-mold and ejection force in injection molding
JP2006187941A (en) Optical element manufacturing apparatus, optical element manufacturing method and optical capacity analyzing method
JPH0622840B2 (en) Molding process simulation system
JP2019181801A (en) Shrinkage rate prediction device, shrinkage rate prediction model learning device, and program
Joshi Thermo-mechanical characterization of glass and its effect on predictions of stress state, birefringence and fracture in precision glass molded lenses
JP3949010B2 (en) Injection molding simulation method
JP2003011199A (en) Device for simulating injection molding process and method for predicting shape precision
JP2004160912A (en) Optical element and manufacturing apparatus therefor
Sandu et al. Prediction of polymer flow length by coupling finite element simulation with artificial neural network
Gershon et al. Thermoplastic polymer shrinkage in emerging molding processes
JP2000289076A (en) Method for simulating resin molding
JP2009298035A (en) Method for designing mold