JP2006187681A - Treatment method and system for organic waste - Google Patents

Treatment method and system for organic waste Download PDF

Info

Publication number
JP2006187681A
JP2006187681A JP2004381859A JP2004381859A JP2006187681A JP 2006187681 A JP2006187681 A JP 2006187681A JP 2004381859 A JP2004381859 A JP 2004381859A JP 2004381859 A JP2004381859 A JP 2004381859A JP 2006187681 A JP2006187681 A JP 2006187681A
Authority
JP
Japan
Prior art keywords
organic waste
liquid
iron
treatment
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004381859A
Other languages
Japanese (ja)
Inventor
Taku Ike
卓 池
Takehiro Kato
雄大 加藤
Hiroshi Mizutani
洋 水谷
Nobuyuki Ukai
展行 鵜飼
Tomoaki Omura
友章 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004381859A priority Critical patent/JP2006187681A/en
Publication of JP2006187681A publication Critical patent/JP2006187681A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method and a system for organic waste where, in treatment for organic waste provided with a methane fermenter, soluble sludge can be removed without causing the reduction of pH, and further, the miniaturization of apparatus is made possible. <P>SOLUTION: In the treatment system for organic waste provided with: a regulation tank 11 for performing the acid production reaction or solubilization of organic waste; a methane fermenter 12 for performing the methane production reaction of the organic waste whose molecules are made low in the regulation tank; and activated sludge treatment equipment 13 for subjecting the treated liquid exhausted from the methane fermenter to activated sludge treatment, an iron electrolytic cell 17 into which the organic waste drawn out from the regulation tank 11 is introduced is provided, iron ions are eluted by electrolytic reaction in the electrolytic cell 17, the iron electrolytic solution containing the iron ions is returned to the regulation tank 11, and soluble sludge such as phosphorous and COD (Chemical Oxygen Demand) contained in the organic waste is subjected to flocculation separation by the iron ion. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機性廃棄物に含有される有機物、リン、窒素等の汚濁物質を分解除去する有機性廃棄物の処理方法及びシステムに関し、特に、メタン発酵設備を備えた有機性廃棄物の処理方法及びシステムに関する。   The present invention relates to an organic waste processing method and system for decomposing and removing pollutants such as organic matter, phosphorus and nitrogen contained in organic waste, and in particular, processing of organic waste provided with a methane fermentation facility. It relates to a method and a system.

し尿、家畜糞尿、厨芥ごみ、有機性汚泥、生活廃水、工場廃水等の有機性廃棄物には、SS(浮遊物質)、窒素、リン、BOD(生物化学的酸素要求量)、COD(化学的酸素要求量)などの環境や人体に悪影響を及ぼす汚濁物質が含有されており、これらを除去するために様々な処理方法が開発、実用化されている。
このような有機性廃棄物の処理としては、固液分離によるSSの除去、各種微生物の作用を利用した有機物、窒素の分解除去、凝集処理によるリン、CODの除去等の処理が適宜組み合わせて行われる。
特に、近年は有機性廃棄物を単に無害化して廃棄するだけでなく、廃棄物中の有価物をエネルギー源、再生物として回収して再利用することが推進されている。そのうちの一つとしてメタン発酵が挙げられ、メタン発酵により回収されたメタンガスは駆動設備、発電設備等の燃料として有効利用することができる。
For organic waste such as human waste, livestock manure, garbage, organic sludge, domestic wastewater, factory wastewater, SS (floating matter), nitrogen, phosphorus, BOD (biochemical oxygen demand), COD (chemical Contaminating substances that adversely affect the environment and the human body, such as oxygen demand, are contained, and various treatment methods have been developed and put to practical use in order to remove them.
Such organic waste treatment is appropriately combined with removal of SS by solid-liquid separation, organic matter utilizing the action of various microorganisms, decomposition and removal of nitrogen, removal of phosphorus and COD by agglomeration treatment, and the like. Is called.
In particular, in recent years, organic waste has not only been made harmless and discarded, but it has also been promoted to collect and reuse valuable materials in the waste as energy sources and recycled materials. One of them is methane fermentation, and the methane gas recovered by methane fermentation can be effectively used as fuel for driving equipment, power generation equipment and the like.

メタン発酵設備を備えた従来の一般的な有機性廃棄物の処理システムを図10に示す。この処理システムは、同図に示されるようにメタン発酵を行なうメタン処理設備100と、メタン発酵後の処理水の無害化処理を行う水処理設備200とから構成される。
その処理フローは、まず前処理設備51にて発酵不適合物の除去等の前処理を行なった後、調整槽52にて酸生成反応を行い、低分子化した有機性廃棄物をさらにメタン発酵槽53に導入してメタン生成反応を行ない、廃棄物中の有機物を分解除去するとともにメタンガスを生成する。生成したメタンガスは、脱硫塔62にて脱硫された後に発電設備等に送られる。一方、メタン発酵槽53にて発生した消化汚泥の一部は汚泥返送ライン60より調整槽52に返送され、他の一部は汚泥導入ライン61を介して活性汚泥処理設備54に導入される。
FIG. 10 shows a conventional general organic waste processing system equipped with a methane fermentation facility. As shown in the figure, this treatment system includes a methane treatment facility 100 that performs methane fermentation, and a water treatment facility 200 that performs detoxification treatment of treated water after methane fermentation.
In the treatment flow, first, pretreatment such as removal of fermentation incompatible materials is performed in the pretreatment facility 51, then an acid generation reaction is performed in the adjustment tank 52, and the organic waste reduced in molecular weight is further converted into a methane fermentation tank. It introduce | transduces into 53, performs methane production | generation reaction, decomposes and removes the organic substance in waste, and produces | generates methane gas. The generated methane gas is desulfurized in the desulfurization tower 62 and then sent to a power generation facility or the like. On the other hand, a part of the digested sludge generated in the methane fermentation tank 53 is returned to the adjustment tank 52 from the sludge return line 60, and the other part is introduced to the activated sludge treatment facility 54 via the sludge introduction line 61.

活性汚泥処理設備54で好気性菌の作用によりBOD、窒素(窒素化合物を含む)を除去された処理液は固液分離設備55に導かれ、ここで固液分離される。固液分離された分離液は、凝集剤・pH調整剤56を供給されて凝集分離設備57に導入され、分離液に含有するリン(リン酸イオン等のリン化合物を含む)、COD等の溶解性汚濁物質が凝集除去される。さらに、高度処理設備58にて殺菌処理、活性炭吸着等の高度処理が行われた後に放流していた。前記凝集剤には、硫酸アルミニウム(Al(SO)や塩化第二鉄(FeCl)等が用いられていた。
また、別の従来例として図11に示すように、メタン発酵槽53の後段に固液分離設備63を備えたものがある。固液分離した分離液は水処理設備200で処理し、分離汚泥は前記調整槽51に返送して循環させるようにしている。
The treatment liquid from which BOD and nitrogen (including nitrogen compounds) have been removed by the action of aerobic bacteria in the activated sludge treatment facility 54 is guided to the solid-liquid separation facility 55 where it is separated into solid and liquid. The separated and separated liquid is supplied with a flocculant / pH adjuster 56 and introduced into a flocculent separation facility 57 to dissolve phosphorus (including phosphorus compounds such as phosphate ions) and COD contained in the liquid. Volatile contaminants are agglomerated and removed. Furthermore, after advanced treatments such as sterilization treatment and activated carbon adsorption were performed in the advanced treatment equipment 58, they were discharged. As the flocculant, aluminum sulfate (Al 2 (SO 4 ) 3 ), ferric chloride (FeCl 3 ), or the like has been used.
As another conventional example, as shown in FIG. 11, there is one provided with a solid-liquid separation facility 63 in the subsequent stage of the methane fermentation tank 53. The separated liquid is treated by the water treatment facility 200, and the separated sludge is returned to the adjustment tank 51 for circulation.

しかしながら、これらの従来の処理システムでは、有機性廃棄物に含有する有機物、窒素、リンの全てを除去しようとすると、活性汚泥処理及びその固液分離設備と、凝集分離設備とが夫々必要であった。上記したような凝集剤は酸性を有するため、凝集剤の添加により被処理水のpHが低下してしまい生物処理において活性阻害が生じてしまう。従って、これを防ぐためにメタン発酵及び活性汚泥等の生物処理と、凝集処理とを別工程で行なう必要がある。これにより、固液分離装置を夫々別に設ける必要が生じ、装置の大型化が問題となっていた。また、凝集剤を供給した後にpH調整を行なわなければならず、pH調整剤等の添加剤の使用によりランニングコストの増加、及び処理が煩雑化するという問題があった。   However, these conventional treatment systems require activated sludge treatment and its solid-liquid separation equipment, and agglomeration separation equipment, respectively, in order to remove all of the organic matter, nitrogen and phosphorus contained in the organic waste. It was. Since the flocculant as described above has acidity, the addition of the flocculant lowers the pH of the water to be treated, resulting in activity inhibition in biological treatment. Therefore, in order to prevent this, it is necessary to perform biological treatment such as methane fermentation and activated sludge, and agglomeration treatment in separate steps. As a result, it is necessary to separately provide a solid-liquid separation device, and an increase in the size of the device has been a problem. In addition, pH adjustment must be performed after supplying the flocculant, and there is a problem in that the running cost is increased due to the use of an additive such as a pH adjuster, and the processing becomes complicated.

一方、凝集処理設備を具備しない水処理装置において、窒素、リンを除去する技術が特許文献1(特開2003−71454号公報)に開示されている。この水処理装置は、第一、第二嫌気ろ床槽、接触ばっ気槽、沈殿槽、リン除去用の電解槽を循環させ、沈殿槽の後段に窒素除去電解槽を設置した構成である。リン除去用の電解槽では、電気分解により金属イオンを供給し、この金属イオンにより被処理水中のリン化合物を凝集させて除去している。
また、窒素、リンを除去する電解槽については、例えば特許文献2(特開2003−230883号公報)に開示されている。この電解槽は、被処理水中に一対の電極を浸漬し、アノードを構成する電極より鉄イオンを溶出させ、被処理水中のリン化合物をリン酸鉄として沈殿処理し、カソードにおいて窒素化合物を還元処理するようにしたものである。
On the other hand, Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-71454) discloses a technique for removing nitrogen and phosphorus in a water treatment apparatus that does not include a coagulation treatment facility. This water treatment apparatus has a configuration in which a first and second anaerobic filter bed tank, a contact aeration tank, a precipitation tank, and an electrolytic tank for phosphorus removal are circulated, and a nitrogen removal electrolytic tank is installed at the subsequent stage of the precipitation tank. In the electrolytic cell for removing phosphorus, metal ions are supplied by electrolysis, and the phosphorus compounds in the water to be treated are aggregated and removed by the metal ions.
An electrolytic cell for removing nitrogen and phosphorus is disclosed in, for example, Patent Document 2 (Japanese Patent Laid-Open No. 2003-230883). This electrolytic bath immerses a pair of electrodes in the water to be treated, elutes iron ions from the electrode constituting the anode, precipitates the phosphorus compound in the water to be treated as iron phosphate, and reduces the nitrogen compound at the cathode. It is what you do.

特開2003−71454号公報JP 2003-71454 A 特開2003−230883号公報JP 2003-230883 A

上記したように、メタン発酵槽を備えた有機性廃棄物の処理では、メタン発酵後の固液分離設備に加え、生物処理後の固液分離設備、凝集分離設備などと複数の固液分離設備が必要となり、設備が大掛かりとなるという問題があった。これは、リン、COD等の溶解性汚濁物質の除去の際に凝集処理と生物処理を一体化できないことが原因であった。即ち、単にメタン発酵設備や活性汚泥処理設備に凝集剤を注入した場合、凝集剤が一般的にpH2程度の酸性であるため処理対象液のpHが極端に低下し、微生物の活動に阻害を与え、メタン発酵設備ではメタンガス生成機能の低下、水処理設備ではBOD、窒素除去機能が低下してしまうためである。また、活性汚泥処理設備後段で凝集剤を注入した場合、凝集剤が一般的に酸性であるため、凝集処理後にpH調整剤として苛性ソーダ等を注入する必要があり、ランニングコストが増加するという問題もあった。   As described above, in the treatment of organic waste equipped with a methane fermentation tank, in addition to solid-liquid separation equipment after methane fermentation, solid-liquid separation equipment after biological treatment, agglomeration separation equipment, and a plurality of solid-liquid separation equipment Is necessary, and there is a problem that the facility becomes large. This is because the aggregation treatment and the biological treatment cannot be integrated when removing soluble pollutants such as phosphorus and COD. That is, when a flocculant is simply injected into a methane fermentation facility or an activated sludge treatment facility, the flocculant is generally acidic at about pH 2, so the pH of the liquid to be treated is extremely lowered, which impedes microbial activity. This is because the methane fermentation facility reduces the methane gas generation function, and the water treatment facility decreases the BOD and nitrogen removal function. In addition, when the flocculant is injected after the activated sludge treatment facility, the flocculant is generally acidic, so it is necessary to inject caustic soda as a pH adjuster after the flocculant treatment, which increases the running cost. there were.

そこで、特許文献1、2に記載のように凝集剤を利用しない水処理設備も提案されているが、これはメタン発酵に適用したものではなく、メタン発酵槽を備えた処理システムにおいては酸性の凝集剤を利用するものが殆どであった。
従って、本発明は上記従来技術の問題点に鑑み、メタン発酵槽を備えた有機性廃棄物の処理において、pHの低下を引き起こすことなく溶解性汚濁物質を除去することができ、さらに装置の小型化を可能とした有機性廃棄物の処理方法及びシステムを提供することを目的とする。
Thus, water treatment facilities that do not use a flocculant as described in Patent Documents 1 and 2 have also been proposed, but this is not applied to methane fermentation, and is acidic in a treatment system equipped with a methane fermentation tank. Most of them used a flocculant.
Therefore, in view of the problems of the prior art described above, the present invention can remove soluble pollutants without causing a decrease in pH in the treatment of organic waste provided with a methane fermentation tank. An object of the present invention is to provide a method and system for treating organic waste that can be converted into an organic waste.

そこで、本発明はかかる課題を解決するために、
有機性廃棄物の酸生成反応若しくは可溶化を行なう調整工程と、該調整工程により低分子化された有機性廃棄物のメタン生成反応を行なうメタン発酵工程と、該メタン発酵工程後の処理液を活性汚泥処理する活性汚泥処理工程と、を備えた有機性廃棄物の処理方法において、
前記調整工程から引き抜いた有機性廃棄物中に電解反応により鉄イオンを溶出させる鉄電解工程を設け、該溶出した鉄イオンを含有する鉄電解液を前記調整工程に返送して、該鉄イオンにより溶解性汚濁物質を凝集させることを特徴とする。
Therefore, in order to solve this problem, the present invention provides:
An adjustment step for performing an acid generation reaction or solubilization of organic waste, a methane fermentation step for performing a methane generation reaction of an organic waste reduced in molecular weight by the adjustment step, and a treatment liquid after the methane fermentation step An activated sludge treatment step for treating activated sludge, and a method for treating organic waste,
An iron electrolysis step for eluting iron ions by an electrolytic reaction is provided in the organic waste extracted from the adjustment step, and the iron electrolyte containing the eluted iron ions is returned to the adjustment step, It is characterized by aggregating soluble pollutants.

本発明では、酸性の凝集剤を用いていないためpHを低下させずにリン、COD等の溶解性汚濁物質の凝集処理を行なうことができ、さらに鉄電解反応によりOHが生成されるため対象液がアルカリ側に移行し、酸生成反応又は可溶化によるpHの低下を防止することができる。従って、メタン発酵においてアルカリ剤等の添加剤を供給することなく対象液をメタン発酵に適した性状とすることができる。また、従来のように凝集処理設備を別に設ける必要がないため、装置の小型化が可能となる。
前記鉄電解工程にて溶出した鉄イオンは、メタン発酵での嫌気性微生物の活性維持のための栄養源としても利用することができる。
In the present invention, since an acidic flocculant is not used, agglomeration treatment of soluble pollutants such as phosphorus and COD can be performed without lowering the pH, and OH is generated by an iron electrolysis reaction. The liquid moves to the alkali side, and a decrease in pH due to acid generation reaction or solubilization can be prevented. Therefore, it is possible to make the target liquid suitable for methane fermentation without supplying an additive such as an alkaline agent in methane fermentation. Moreover, since it is not necessary to provide a separate aggregating treatment facility as in the prior art, the apparatus can be miniaturized.
Iron ions eluted in the iron electrolysis step can also be used as a nutrient source for maintaining the activity of anaerobic microorganisms in methane fermentation.

また、有機性廃棄物の酸生成反応若しくは可溶化を行なう調整工程と、該調整工程により低分子化された有機性廃棄物のメタン生成反応を行なうメタン発酵工程と、該メタン発酵工程後の処理液を活性汚泥処理する活性汚泥処理工程と、を備えた有機性廃棄物の処理方法において、
前記メタン発酵工程から引き抜いた有機性廃棄物中に電解反応により鉄イオンを溶出させる鉄電解工程を設け、該溶出した鉄イオンを含有する鉄電解液を前記メタン発酵工程に返送して、該鉄イオンにより溶解性汚濁物質を凝集させることを特徴とする。
In addition, an adjustment step for performing an acid generation reaction or solubilization of organic waste, a methane fermentation step for performing a methane generation reaction of organic waste having a low molecular weight by the adjustment step, and a treatment after the methane fermentation step An activated sludge treatment step for treating the liquid with activated sludge, and a method for treating organic waste comprising:
An iron electrolysis process for eluting iron ions by an electrolytic reaction is provided in the organic waste extracted from the methane fermentation process, and an iron electrolyte containing the eluted iron ions is returned to the methane fermentation process, and the iron It is characterized by aggregating soluble pollutants by ions.

一般に、前記メタン発酵では、メタンガスの生成とともに硫化水素が生成する。この硫化水素はメタンガスの品質低下を招くのみならず、メタン発酵に阻害を及ぼす場合がある。本発明によれば前記鉄電解で溶出された鉄イオンがメタン発酵工程に返送されるため、難溶性の硫化鉄が生成され、硫化水素の生成を最小限に抑えることが可能となる。従って、高品質のメタンガスを製造でき、また、回収したメタンガスの脱硫設備を不要或いは小規模化できる。
勿論、本発明においてもメタン発酵槽内のpHを低下させることなく凝集効果を有する鉄イオンを添加し、後段の水処理設備を簡素化することが可能である。
In general, in the methane fermentation, hydrogen sulfide is generated along with the generation of methane gas. This hydrogen sulfide not only degrades the quality of methane gas but may also inhibit methane fermentation. According to the present invention, since iron ions eluted by the iron electrolysis are returned to the methane fermentation process, hardly soluble iron sulfide is generated, and generation of hydrogen sulfide can be minimized. Therefore, high-quality methane gas can be produced, and the recovered methane gas desulfurization equipment can be unnecessary or downsized.
Of course, also in the present invention, iron ions having an aggregating effect can be added without lowering the pH in the methane fermenter, and the subsequent water treatment facility can be simplified.

また、有機性廃棄物の酸生成反応若しくは可溶化を行なう調整工程と、該調整工程により低分子化された有機性廃棄物のメタン生成反応を行なうメタン発酵工程と、該メタン発酵工程後の処理液を活性汚泥処理する活性汚泥処理工程と、を備えた有機性廃棄物の処理方法において、
前記活性汚泥処理工程から引き抜いた処理液中に電解反応により鉄イオンを溶出させる鉄電解工程を設け、該溶出した鉄イオンを含有する鉄電解液を前記活性汚泥処理工程に返送して、該鉄イオンにより溶解性汚濁物質を凝集させることを特徴とする。
In addition, an adjustment step for performing an acid generation reaction or solubilization of organic waste, a methane fermentation step for performing a methane generation reaction of organic waste having a low molecular weight by the adjustment step, and a treatment after the methane fermentation step An activated sludge treatment step for treating the liquid with activated sludge, and a method for treating organic waste comprising:
An iron electrolysis step for eluting iron ions by an electrolytic reaction is provided in the treatment liquid extracted from the activated sludge treatment step, and the iron electrolyte containing the eluted iron ions is returned to the activated sludge treatment step, It is characterized by aggregating soluble pollutants by ions.

本発明によれば、前記メタン発酵工程にて有機性廃棄物に含有されるBODの多くが除去されるため、前記活性汚泥処理工程には、COD、リン、窒素の含有濃度が高い処理液が供給される。従って、この活性汚泥処理工程に鉄電解工程を設けることにより、ここで確実にリン、COD濃度を低減することができ、溶解性汚濁物質の除去効率を向上させることができる。   According to the present invention, since most of the BOD contained in the organic waste is removed in the methane fermentation step, the activated sludge treatment step includes a treatment liquid having a high concentration of COD, phosphorus, and nitrogen. Supplied. Therefore, by providing an iron electrolysis step in this activated sludge treatment step, the concentration of phosphorus and COD can be reliably reduced and the removal efficiency of soluble pollutants can be improved.

さらに、前記鉄電解液の少なくとも一部を、前記調整工程若しくは前記メタン発酵工程の希釈水として利用することが好ましい。前記鉄電解液中には、有機物、COD、窒素、リンが殆ど含まれないため、この鉄電解液の一部を前記調整工程又はメタン発酵工程に返送することにより、希釈水としての働きの他に、処理水中に残留する鉄イオンがさらなる凝集効果をもたらすとともに、槽内のpH低下の抑制、及び硫化水素の発生抑制に寄与できる。   Furthermore, it is preferable to use at least a part of the iron electrolyte as dilution water in the adjustment step or the methane fermentation step. Since the iron electrolyte contains almost no organic matter, COD, nitrogen, and phosphorus, a part of this iron electrolyte is returned to the adjustment process or the methane fermentation process, so that it functions as dilution water. In addition, the iron ions remaining in the treated water bring about a further agglomeration effect, and can contribute to the suppression of the pH drop in the tank and the suppression of the generation of hydrogen sulfide.

さらにまた、前記メタン発酵工程の後に第1の固液分離工程を設け、該第1の固液分離工程により固液分離された分離液を前記活性汚泥処理工程にて活性汚泥処理することを特徴とする。このように、メタン発酵工程の後に固液分離工程を設けることによって、活性汚泥処理工程におけるSS濃度の調整が容易となる。   Furthermore, a first solid-liquid separation step is provided after the methane fermentation step, and the separated sludge separated by the first solid-liquid separation step is activated sludge treated in the activated sludge treatment step. And Thus, by providing the solid-liquid separation process after the methane fermentation process, the SS concentration in the activated sludge treatment process can be easily adjusted.

また、有機性廃棄物の酸生成反応若しくは可溶化を行なう調整工程と、該調整工程により低分子化された有機性廃棄物のメタン生成反応を行なうメタン発酵工程と、該メタン発酵後の処理液を固液分離する第1の固液分離工程と、該固液分離した分離液を活性汚泥処理する活性汚泥処理工程と、を備えた有機性廃棄物の処理方法において、
前記固液分離した分離液の少なくとも一部を引き抜き、該引き抜いた分離液中に電解反応により鉄イオンを溶出させる鉄電解工程を設け、該溶出した鉄イオンを含有する鉄電解液を前記調整工程、前記メタン発酵工程、若しくは前記活性汚泥処理工程の何れかに導入することを特徴とする。
このように、固液分離後のSS濃度が低い分離液に鉄電解を行なうことにより、配管の閉塞、発泡の危険性が低く、安定運転が可能で安全性の高い処理を提供することが可能となる。
In addition, an adjustment process for performing an acid generation reaction or solubilization of organic waste, a methane fermentation process for performing a methane generation reaction of organic waste having a low molecular weight by the adjustment process, and a treatment liquid after the methane fermentation In a method for treating organic waste, comprising: a first solid-liquid separation step for solid-liquid separation; and an activated sludge treatment step for treating the separated liquid-liquid separation with activated sludge.
At least a part of the separated liquid-solid separated liquid is drawn out, and an iron electrolysis process is provided in the drawn-out separated liquid to elute iron ions by an electrolytic reaction, and the iron electrolyte containing the eluted iron ions is adjusted in the step And introduced into either the methane fermentation step or the activated sludge treatment step.
In this way, by performing iron electrolysis on a separated liquid with a low SS concentration after solid-liquid separation, it is possible to provide a highly safe process with low risk of clogging and foaming, stable operation, and high safety. It becomes.

また、有機性廃棄物の酸生成反応若しくは可溶化を行なう調整工程と、該調整工程により低分子化された有機性廃棄物のメタン生成反応を行なうメタン発酵工程と、該メタン発酵後の処理液を固液分離する第1の固液分離工程と、該固液分離した分離液を活性汚泥処理する活性汚泥処理工程と、活性汚泥処理後の処理液を固液分離する第2の固液分離工程と、を備えた有機性廃棄物の処理方法において、
前記第1の固液分離工程若しくは前記第2の固液分離工程の分離液、或いはプロセス用水の少なくとも一部を引き抜き、該引き抜いた分離液若しくはプロセス用水中に電解反応により鉄イオンを溶出させる鉄電解工程を設け、該溶出した鉄イオンを含有する鉄電解液を前記調整工程、前記メタン発酵工程、若しくは前記活性汚泥処理工程に導入することを特徴とする。
In addition, an adjustment process for performing an acid generation reaction or solubilization of organic waste, a methane fermentation process for performing a methane generation reaction of organic waste having a low molecular weight by the adjustment process, and a treatment liquid after the methane fermentation A first solid-liquid separation step for solid-liquid separation, an activated sludge treatment step for treating the separated solid-liquid separation with activated sludge, and a second solid-liquid separation for solid-liquid separation of the treated liquid after activated sludge treatment And a method for treating organic waste comprising:
Iron from which at least a part of the separation liquid in the first solid-liquid separation step or the second solid-liquid separation step or process water is withdrawn, and iron ions are eluted by electrolytic reaction in the withdrawn separation liquid or process water. An electrolysis process is provided, and the iron electrolyte containing the eluted iron ions is introduced into the adjustment process, the methane fermentation process, or the activated sludge treatment process.

本発明のように、前記鉄電解工程へ供給する液として、メタン発酵後の固液分離液又は活性汚泥処理後の固液分離液又はプロセス用水を用いることにより、SS濃度、窒素濃度が低い中で鉄電解を行なうことができ、配管の閉塞、発泡の危険性が低く、安定運転が可能で安全性の高い処理を提供することが可能となる。   As in the present invention, as a liquid supplied to the iron electrolysis step, a solid-liquid separation liquid after methane fermentation, a solid-liquid separation liquid after activated sludge treatment, or process water is used, so that the SS concentration and the nitrogen concentration are low. Thus, iron electrolysis can be carried out, the risk of blockage of the piping and foaming is low, stable operation is possible, and a highly safe treatment can be provided.

さらに、前記活性汚泥処理工程にて、液状有機性廃棄物を投入して前記処理液とともに活性汚泥処理することが好適である。このように、外部より液状有機性廃棄物を活性汚泥処理工程に供給することにより、活性汚泥処理における水素供与体の供給を不要或いは低減することが可能となる。
さらにまた、前記活性汚泥処理工程の後に設けた第2の固液分離工程により固液分離した分離液を電解反応により脱窒素処理する電解脱窒素工程を設けたことを特徴とする。一般に前記電解脱窒素処理では、次亜塩素酸系のHCl生成によりpHが低下するため、pHの調整が必要となるが、本発明では鉄電解工程によりpHをアルカリ側に移行させるため、pH調整に用いる薬品量を抑制若しくは不要化できる。
Furthermore, in the activated sludge treatment step, it is preferable to add liquid organic waste and perform the activated sludge treatment together with the treatment liquid. Thus, by supplying liquid organic waste to the activated sludge treatment step from the outside, it becomes possible to eliminate or reduce the supply of hydrogen donors in the activated sludge treatment.
Furthermore, the present invention is characterized in that an electrolytic denitrification step is provided in which the separated liquid separated by the second solid-liquid separation step provided after the activated sludge treatment step is denitrogenated by an electrolytic reaction. In general, the electrolytic denitrification treatment requires pH adjustment because the pH decreases due to the formation of hypochlorous acid-based HCl, but in the present invention, the pH is adjusted to shift to the alkali side by the iron electrolysis process. The amount of chemicals used for control can be reduced or eliminated.

さらにシステムの発明として、有機性廃棄物の酸生成反応若しくは可溶化を行なう調整槽と、該調整槽にて低分子化した有機性廃棄物のメタン生成反応を行なうメタン発酵槽と、該メタン発酵槽から排出する処理液を活性汚泥処理する活性汚泥処理設備と、を備えた有機性廃棄物の処理システムにおいて、
前記調整槽から引き抜いた有機性廃棄物を導入する鉄電解槽を設け、該鉄電解槽は鉄を含む陽極と導電性の陰極とが対向配置され、前記有機性廃棄物に浸漬された電極間に通電することにより鉄イオンを溶出するようにし、
前記溶出した鉄イオンを含有する鉄電解液を前記調整槽に返送するようにしたことを特徴とする。
Furthermore, the invention of the system includes an adjustment tank for performing an acid generation reaction or solubilization of organic waste, a methane fermentation tank for performing a methane generation reaction of organic waste having a low molecular weight in the adjustment tank, and the methane fermentation In an organic waste treatment system comprising activated sludge treatment equipment for treating activated sludge from a treatment liquid discharged from a tank,
An iron electrolytic cell for introducing the organic waste drawn out from the adjustment tank is provided, and the iron electrolytic cell has an anode containing iron and a conductive cathode disposed opposite to each other, and between the electrodes immersed in the organic waste. The iron ions are eluted by energizing the
The iron electrolyte containing the eluted iron ions is returned to the adjustment tank.

また、有機性廃棄物の酸生成反応若しくは可溶化を行なう調整槽と、該調整槽にて低分子化した有機性廃棄物のメタン生成反応を行なうメタン発酵槽と、該メタン発酵槽から排出する処理液を活性汚泥処理する活性汚泥処理設備と、を備えた有機性廃棄物の処理システムにおいて、
前記メタン発酵槽から引き抜いた有機性廃棄物を導入する鉄電解槽を設け、該鉄電解槽は鉄を含む陽極と導電性の陰極とが対向配置され、前記有機性廃棄物に浸漬された電極間に通電することにより鉄イオンを溶出するようにし、
前記溶出した鉄イオンを含有する鉄電解液を前記メタン発酵槽に返送するようにしたことを特徴とする。
Moreover, the adjustment tank which performs the acid production reaction or solubilization of organic waste, the methane fermentation tank which performs the methane production reaction of the organic waste having a low molecular weight in the adjustment tank, and the methane fermentation tank are discharged. In an organic waste treatment system comprising an activated sludge treatment facility for treating the treatment liquid with activated sludge,
An iron electrolytic cell for introducing organic waste extracted from the methane fermentation tank is provided, and the iron electrolytic cell is an electrode in which an anode containing iron and a conductive cathode are arranged opposite to each other and immersed in the organic waste The iron ions are eluted by energizing them in between,
The iron electrolyte containing the eluted iron ions is returned to the methane fermentation tank.

また、有機性廃棄物の酸生成反応若しくは可溶化を行なう調整槽と、該調整槽にて低分子化した有機性廃棄物のメタン生成反応を行なうメタン発酵槽と、該メタン発酵槽から排出する処理液を活性汚泥処理する活性汚泥処理設備と、を備えた有機性廃棄物の処理システムにおいて、
前記活性汚泥処理設備から引き抜いた処理液を導入する鉄電解槽を設け、該鉄電解槽は鉄を含む陽極と導電性の陰極とが対向配置され、前記処理液に浸漬された電極間に通電することにより鉄イオンを溶出するようにし、
前記溶出した鉄イオンを含有する鉄電解液を前記活性汚泥処理設備に返送するようにしたことを特徴とする。
Moreover, the adjustment tank which performs the acid production reaction or solubilization of organic waste, the methane fermentation tank which performs the methane production reaction of the organic waste having a low molecular weight in the adjustment tank, and the methane fermentation tank are discharged. In an organic waste treatment system comprising an activated sludge treatment facility for treating the treatment liquid with activated sludge,
An iron electrolyzer is provided for introducing a treatment liquid extracted from the activated sludge treatment facility, and the iron electrolyzer is provided with an anode containing iron and a conductive cathode facing each other, and an electric current is passed between the electrodes immersed in the treatment liquid. To elute iron ions,
The iron electrolyte containing the eluted iron ions is returned to the activated sludge treatment facility.

さらに、前記鉄電解液の少なくとも一部を、前記調整槽若しくは前記メタン発酵槽の希釈水として利用することが好適である。
さらにまた、前記メタン発酵槽の後段に第1の固液分離設備を設け、固液分離された分離液を前記活性汚泥処理設備にて活性汚泥処理することが好ましい。
Furthermore, it is preferable to use at least a part of the iron electrolyte as dilution water for the adjustment tank or the methane fermentation tank.
Furthermore, it is preferable that a first solid-liquid separation facility is provided after the methane fermentation tank, and the separated liquid separated is subjected to activated sludge treatment using the activated sludge treatment facility.

また、有機性廃棄物の酸生成反応若しくは可溶化を行なう調整槽と、該調整槽にて低分子化した有機性廃棄物のメタン生成反応を行なうメタン発酵槽と、該メタン発酵後の処理液を固液分離する第1の固液分離設備と、該固液分離した分離液を活性汚泥処理する活性汚泥処理設備と、を備えた有機性廃棄物の処理システムにおいて、
前記固液分離した分離液の少なくとも一部を導入する鉄電解槽を設け、該鉄電解槽は鉄を含む陽極と導電性の陰極とが対向配置され、前記分離液に浸漬された電極間に通電することにより鉄イオンを溶出するようにし、
前記溶出した鉄イオンを含有する鉄電解液を前記調整槽、前記メタン発酵槽、若しくは前記活性汚泥処理設備に導入するようにしたことを特徴とする。
In addition, an acid generation reaction or solubilization of the organic waste, a methane fermentation tank for performing a methane generation reaction of the organic waste having a low molecular weight in the adjustment tank, and a treatment liquid after the methane fermentation In an organic waste treatment system comprising: a first solid-liquid separation facility for solid-liquid separation; and an activated sludge treatment facility for treating activated sludge for the separated liquid-liquid separation,
An iron electrolytic cell for introducing at least a part of the separated liquid-solid separated liquid is provided, and the iron electrolytic cell has an anode containing iron and a conductive cathode disposed opposite to each other, and between the electrodes immersed in the separated liquid. The iron ions are eluted by energization,
The iron electrolyte containing the eluted iron ions is introduced into the adjustment tank, the methane fermentation tank, or the activated sludge treatment facility.

また、有機性廃棄物の酸生成反応若しくは可溶化を行なう調整槽と、該調整槽にて低分子化した有機性廃棄物のメタン生成反応を行なうメタン発酵槽と、該メタン発酵後の処理液を固液分離する第1の固液分離設備と、該固液分離した分離液を活性汚泥処理する活性汚泥処理設備と、活性汚泥処理した処理液を固液分離する第2の固液分離設備と、を備えた有機性廃棄物の処理システムにおいて、
前記第1の固液分離設備若しくは前記第2の固液分離設備の分離液、或いはプロセス用水の少なくとも一部を導入する鉄電解槽を設け、該鉄電解槽は鉄を含む陽極と導電性の陰極とが対向配置され、前記分離液若しくはプロセス用水に浸漬された電極間に通電することにより鉄イオンを溶出するようにし、
前記溶出した鉄イオンを含有する鉄電解液を前記調整槽、前記メタン発酵槽、若しくは前記活性汚泥処理設備に導入するようにしたことを特徴とする。
In addition, an acid generation reaction or solubilization of the organic waste, a methane fermentation tank for performing a methane generation reaction of the organic waste having a low molecular weight in the adjustment tank, and a treatment liquid after the methane fermentation Solid-liquid separation first solid-liquid separation equipment, activated sludge treatment equipment for treating activated sludge with the solid-liquid separated separation liquid, and second solid-liquid separation equipment for solid-liquid separation of the treatment liquid treated with activated sludge In an organic waste treatment system comprising:
An iron electrolytic cell for introducing at least a part of the separation liquid of the first solid-liquid separation facility or the second solid-liquid separation facility or process water is provided, and the iron electrolytic cell is electrically conductive with an anode containing iron. The cathode is arranged oppositely, and iron ions are eluted by energizing between the electrodes immersed in the separation liquid or process water,
The iron electrolyte containing the eluted iron ions is introduced into the adjustment tank, the methane fermentation tank, or the activated sludge treatment facility.

さらに、前記活性汚泥処理設備に液状有機性廃棄物を投入して前記処理液とともに活性汚泥処理することが好ましい。
さらにまた、前記活性汚泥処理設備の後段に設けた第2の固液分離設備からの分離液を電解反応により脱窒素処理する電解脱窒素装置を設けたことを特徴とする。
また、前記第1の固液分離設備若しくは前記第2の固液分離設備は、膜分離手段を備えていることが好ましい。
Furthermore, it is preferable to introduce liquid organic waste into the activated sludge treatment facility and perform the activated sludge treatment together with the treatment liquid.
Furthermore, the present invention is characterized in that an electrolytic denitrification apparatus is provided that denitrifies the separated liquid from the second solid-liquid separation equipment provided at the subsequent stage of the activated sludge treatment equipment by an electrolytic reaction.
The first solid-liquid separation facility or the second solid-liquid separation facility preferably includes a membrane separation means.

また、前記第1の固液分離設備若しくは前記第2の固液分離設備にて固液分離された分離汚泥を原料とする堆肥化設備を設けたことを特徴とする。この堆肥化設備により製造した堆肥中には、原料とする分離汚泥中に残留するFeイオンが存在するため、堆肥の必須元素であるFeイオンを含有する高品質の堆肥とすることができる。   Further, the present invention is characterized in that a composting facility using a separated sludge separated as a raw material by the first solid-liquid separation facility or the second solid-liquid separation facility is provided. In the compost produced by this composting facility, Fe ions remaining in the separated sludge as a raw material are present, and therefore, high-quality compost containing Fe ions, which are essential elements of compost, can be obtained.

以上記載のごとく本発明によれば、鉄電解により処理対象液をアルカリ側へ移行させつつ凝集剤となる鉄イオンを添加でき、メタン発酵槽、活性汚泥設備のpHを低下させることなく凝集処理を行うことが可能となるため、水処理設備での固液分離設備の一段化を図ることができ、省スペース化が可能となる。
また、アルカリ側に移行した鉄電解液を利用しているため、メタン発酵槽でのpH低下による発酵阻害を防ぐことができる。
さらに、メタン発酵での硫化物イオンと添加鉄イオンとの反応により、回収ガス中の有害成分である硫化水素の生成を抑制することができる。
さらにまた、メタン発酵での嫌気性微生物栄養源として、鉄イオンの補給ができ、微生物の活性を維持することができる。
As described above, according to the present invention, iron ions as a coagulant can be added while transferring the liquid to be treated to the alkali side by iron electrolysis, and coagulation treatment can be performed without lowering the pH of the methane fermentation tank and activated sludge equipment. Therefore, it is possible to achieve a single-stage solid-liquid separation facility in the water treatment facility, thereby saving space.
Moreover, since the iron electrolyte which moved to the alkali side is used, fermentation inhibition due to pH reduction in the methane fermentation tank can be prevented.
Furthermore, the reaction of sulfide ions and added iron ions in methane fermentation can suppress the production of hydrogen sulfide, which is a harmful component in the recovered gas.
Furthermore, as an anaerobic microorganism nutrient source in methane fermentation, iron ions can be supplemented and the activity of microorganisms can be maintained.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
本実施例では、例えばし尿、家畜糞尿、厨芥ごみ、有機性汚泥、生活廃水、工場廃水等の有機性廃棄物を処理対象としている。
図1乃至図9は、本実施例1乃至9に係る有機性廃棄物の処理システムを夫々示す図である。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
In this embodiment, for example, organic waste such as human waste, livestock manure, garbage, organic sludge, domestic wastewater, and factory wastewater is treated.
1 to 9 are diagrams showing organic waste processing systems according to Examples 1 to 9, respectively.

図1に示されるように、本実施例1に係る有機性廃棄物の処理システムは、大きく分けてメタン発酵設備100と、水処理設備200の組み合わせからなる。
メタン発酵設備100は、有機性廃棄物をメタン発酵に適したものとする前処理設備10と、前処理した有機性廃棄物に対して酸生成反応及び/又は可溶化を行なう調整槽11と、調整した有機性廃棄物に対してメタン生成反応を行なうメタン発酵槽12と、前記調整槽11内の有機性廃棄物の少なくとも一部を用いて電解反応により鉄イオンを溶出させる鉄電解槽17と、を含む。前記メタン発酵槽12から排出する処理液(消化汚泥)の一部は返送汚泥21として前記調整槽11に返送し、循環させる。
水処理設備200は、前記メタン発酵槽12から排出する処理液22に対して活性汚泥処理を行う活性汚泥処理設備13と、活性汚泥処理にて発生した処理液を固液分離する第2の固液分離設備14と、固液分離した分離液に高度処理を施す高度処理設備15と、固液分離した分離汚泥に汚泥処理を施す汚泥処理設備16と、を含む。
As shown in FIG. 1, the organic waste treatment system according to the first embodiment is roughly composed of a combination of a methane fermentation facility 100 and a water treatment facility 200.
The methane fermentation facility 100 includes a pretreatment facility 10 that makes organic waste suitable for methane fermentation, a conditioning tank 11 that performs an acid generation reaction and / or solubilization on the pretreated organic waste, A methane fermentation tank 12 for performing a methane generation reaction on the adjusted organic waste, and an iron electrolytic tank 17 for eluting iron ions by an electrolytic reaction using at least a part of the organic waste in the adjustment tank 11; ,including. A part of the treatment liquid (digested sludge) discharged from the methane fermentation tank 12 is returned to the adjustment tank 11 as a return sludge 21 and circulated.
The water treatment facility 200 includes an activated sludge treatment facility 13 that performs activated sludge treatment on the treatment liquid 22 discharged from the methane fermentation tank 12, and a second solid that separates the treatment liquid generated in the activated sludge treatment. It includes a liquid separation facility 14, an advanced treatment facility 15 that performs advanced treatment on the separated liquid-solid separation liquid, and a sludge treatment facility 16 that performs sludge treatment on the separated sludge after solid-liquid separation.

前記前処理設備10は、メタン発酵不適物を除去する各種選別機又は固液混在状態の有機性廃棄物を均一化する破砕機等からなる。
前記調整槽11は、有機性廃棄物にメタン生成反応の前段である酸生成反応及び/又は可溶化を行なうものであり、さらに有機性廃棄物の水量調整、濃度調整、廃棄物の混合等も行なう。
前記メタン発酵槽12は、有機性廃棄物を嫌気性細菌の作用によりメタンや二酸化炭素に還元分解する周知の装置を用いることができ、槽内を30〜40℃とした中温発酵、50〜55℃とした高温発酵の何れでも良い。また、メタン発酵槽12内のSS濃度をメタン発酵に適した値に維持するために、該メタン発酵槽12から引き抜かれた返送汚泥21を前記調整槽11に返送し、循環させている。
該メタン発酵槽12で生成されたメタンガス20は、後段の脱硫設備(不図示)によりガス中に含有される硫化水素を除去された後に、有効利用される。脱硫設備としては、鉄系脱硫剤を充填させた脱硫塔等が挙げられる。メタンガス利用先としては、例えばメタンガスをガスエンジン、ボイラの燃料として利用した駆動設備、発電設備等が挙げられる。
尚、前記調整槽11と前記メタン発酵槽12は一体化させても良い。即ち、同一槽内で時間差を以ってこれらの反応を順次行なわせるようにすることもできる。
The pretreatment facility 10 includes various sorters for removing methane fermentation unsuitable materials or a crusher for homogenizing organic waste in a solid-liquid mixed state.
The said adjustment tank 11 performs the acid production | generation reaction and / or solubilization which are the pre-stages of a methane production | generation reaction to organic waste, Furthermore, water quantity adjustment of organic waste, density | concentration adjustment, mixing of waste, etc. are also carried out. Do.
The said methane fermentation tank 12 can use the well-known apparatus which reduces and decomposes organic waste into methane and a carbon dioxide by the effect | action of anaerobic bacteria, The intermediate temperature fermentation which made the inside of a tank 30-30 degreeC, 50-55 Any of high-temperature fermentation at ℃. In order to maintain the SS concentration in the methane fermentation tank 12 at a value suitable for methane fermentation, the return sludge 21 drawn from the methane fermentation tank 12 is returned to the adjustment tank 11 and circulated.
The methane gas 20 generated in the methane fermentation tank 12 is effectively used after removing hydrogen sulfide contained in the gas by a subsequent desulfurization facility (not shown). Examples of the desulfurization equipment include a desulfurization tower filled with an iron-based desulfurization agent. Examples of the methane gas usage destination include a drive facility using methane gas as fuel for a gas engine and boiler, a power generation facility, and the like.
The adjusting tank 11 and the methane fermentation tank 12 may be integrated. That is, these reactions can be performed sequentially in the same tank with a time difference.

前記活性汚泥処理設備13は、前記メタン発酵槽12にて発生した処理液(消化汚泥)22を導入し、微生物の作用により処理液中に含有されるBOD、窒素等を除去するものである。例えば、曝気槽と沈殿槽とを組み合わせた設備、生物膜を具備した設備、硝化槽と脱窒槽と曝気槽を備え硝化脱窒を行なう設備等が挙げられる。活性汚泥処理設備13に導入される処理液は、予めpH調整、栄養塩類の添加を行なう他、適切なBOD負荷となるように必要に応じてメタノール、酢酸又はBOD等の水素供与体を供給する。   The activated sludge treatment facility 13 introduces the treatment liquid (digested sludge) 22 generated in the methane fermentation tank 12 and removes BOD, nitrogen, etc. contained in the treatment liquid by the action of microorganisms. For example, facilities combining an aeration tank and a precipitation tank, facilities equipped with a biofilm, facilities equipped with a nitrification tank, a denitrification tank and an aeration tank, and the like for nitrification and denitrification are included. The treatment liquid introduced into the activated sludge treatment facility 13 is adjusted in advance with pH, added with nutrients, and supplied with a hydrogen donor such as methanol, acetic acid, or BOD as necessary to obtain an appropriate BOD load. .

前記第2の固液分離設備14は、前記活性汚泥処理設備13から排出される処理液を固液分離する設備であり、例えば、膜分離方式、重力沈降方式、浮上分離方式、機械分離方式或いはこれらの任意の組み合わせが挙げられるが、特に膜分離であることが好ましい。この場合、浸漬膜、チューブラー膜、回転平膜等の分離膜を用いることができ、特に浸漬型の膜モジュールであることが好適である。該膜モジュールにはMF膜(精密ろ過膜)、UF膜(限外ろ過膜)等を用いることができる。
前記高度処理設備15は、前記第2の固液分離設備14にて固液分離された分離液に対してさらに放流基準に見合う処理を施す設備であり、活性炭吸着、砂ろ過、オゾン酸化、各種消毒等の高度処理を行なう設備である。
前記汚泥処理設備16は、前記第2の固液分離設備14にて処理水と分離された固形分に対して、堆肥化処理、埋立処理等を行う設備である。
The second solid-liquid separation facility 14 is a facility for solid-liquid separation of the treatment liquid discharged from the activated sludge treatment facility 13, for example, a membrane separation method, a gravity sedimentation method, a flotation separation method, a mechanical separation method, Any combination of these may be mentioned, but membrane separation is particularly preferred. In this case, a separation membrane such as an immersion membrane, a tubular membrane, and a rotating flat membrane can be used, and an immersion type membrane module is particularly preferable. An MF membrane (microfiltration membrane), a UF membrane (ultrafiltration membrane) or the like can be used for the membrane module.
The advanced treatment facility 15 is a facility that further performs a treatment that meets the discharge standard on the separated liquid separated by the second solid-liquid separation facility 14, such as activated carbon adsorption, sand filtration, ozone oxidation, It is a facility that performs advanced processing such as disinfection.
The sludge treatment facility 16 is a facility that performs a composting treatment, a landfill treatment, or the like on the solid content separated from the treated water by the second solid-liquid separation facility 14.

また、本実施例の特徴的な構成として、前記調整槽11に鉄電解槽17を付設した構成となっている。該鉄電解槽17は、槽内に陽極と陰極とからなる一対の電極が離間させて対向配置されている。該電極は複数設けられていても良い。前記陽極及び前記陰極には、電流を印加する電源が夫々接続されている。これらの電極は導電性材料から形成され、このうち少なくとも陽極側は、鉄若しくは鉄を含有する合金を含む材料とする。
前記鉄電解槽17には、前記調整槽11内の有機性廃棄物の少なくとも一部が引き抜かれて導入される。該有機性廃棄物に浸漬された電極間には電流が印加され、下記反応式により電解反応する。
(陽極) Fe → Fe2++2e
(陰極) HO+2e → 2OH+2H
この反応により陽極の鉄が第2鉄イオン(Fe2+)として液中に溶出する、さらに液中の溶存酸素の作用により第3鉄イオン(Fe3+)まで酸化する。
Further, as a characteristic configuration of the present embodiment, an iron electrolysis tank 17 is attached to the adjustment tank 11. In the iron electrolysis tank 17, a pair of electrodes composed of an anode and a cathode are spaced apart from each other in the tank. A plurality of the electrodes may be provided. A power source for applying a current is connected to each of the anode and the cathode. These electrodes are made of a conductive material, and at least the anode side is a material containing iron or an iron-containing alloy.
At least a part of the organic waste in the adjustment tank 11 is extracted and introduced into the iron electrolysis tank 17. A current is applied between the electrodes immersed in the organic waste, and an electrolytic reaction occurs according to the following reaction formula.
(Anode) Fe → Fe 2+ + 2e
(Cathode) H 2 O + 2e → 2OH + 2H 2
By this reaction, the iron of the anode is eluted in the liquid as ferric ions (Fe 2+ ), and further oxidized to ferric ions (Fe 3+ ) by the action of dissolved oxygen in the liquid.

前記鉄電解槽17に導入された有機性廃棄物に含有されるリンの殆どは、リン酸イオンとして存在する。前記電気分解により生成されたFe3+は、前記リン酸イオンと反応して下記反応式によりリン酸鉄を生成する。尚、Fe2+もリン酸イオンの凝集反応に寄与することは勿論である。
Fe3+ + PO 3− → FePO
第3鉄イオンを利用した凝集反応において、必要とされる鉄イオンはモル当量でFe/P=1.5/1となるため、1.5以上の鉄イオンが供給されるような電位差を前記電極に与えることが好ましい。また、前記鉄電解槽17は、電極の付着物質を除去するために一定期間毎に逆電圧をかけたり、処理を停止して洗浄したりして電解効率を維持することが好ましい。
前記生成したリン酸鉄、及び残存した鉄イオン(Fe3+,Fe2+)を含有する有機性廃棄物は、前記調整槽11に返送されるようになっている。
Most of the phosphorus contained in the organic waste introduced into the iron electrolyzer 17 is present as phosphate ions. Fe 3+ produced by the electrolysis reacts with the phosphate ions to produce iron phosphate according to the following reaction formula. Of course, Fe 2+ also contributes to the aggregation reaction of phosphate ions.
Fe 3+ + PO 4 3− → FePO 4
In the agglutination reaction using ferric ions, the required iron ions are Fe / P = 1.5 / 1 in molar equivalents, so that the potential difference is such that iron ions of 1.5 or more are supplied. It is preferable to give to an electrode. In addition, it is preferable that the iron electrolytic cell 17 maintain electrolytic efficiency by applying a reverse voltage every predetermined period in order to remove the substances adhering to the electrodes, or by stopping the treatment and washing.
The organic waste containing the produced iron phosphate and the remaining iron ions (Fe 3+ , Fe 2+ ) is returned to the adjustment tank 11.

本実施例1における処理フローを説明する。まず有機性廃棄物は前記前処理設備10にて前処理された後、前記調整槽11内に導かれ、ここで酸生成反応及び/又は可溶化が行なわれる。該調整槽11内の有機性廃棄物の一部又は全量は前記鉄電解槽17に導入され、該鉄電解槽17にて溶出した鉄イオンにより有機性廃棄物中のリンが除去され、また該鉄イオンを含有する鉄電解液が前記調整槽11に戻されることにより、該調整槽11及びこれ以降のメタン発酵槽12、活性汚泥処理設備13にてリン、COD等の溶解性汚濁物質の凝集が進行する。   A processing flow in the first embodiment will be described. First, the organic waste is pretreated in the pretreatment facility 10 and then introduced into the adjustment tank 11 where acid generation reaction and / or solubilization is performed. Part or all of the organic waste in the adjustment tank 11 is introduced into the iron electrolysis tank 17, and phosphorus in the organic waste is removed by iron ions eluted in the iron electrolysis tank 17. By returning the iron electrolyte containing iron ions to the adjustment tank 11, aggregation of soluble pollutants such as phosphorus and COD in the adjustment tank 11 and the subsequent methane fermentation tank 12 and activated sludge treatment equipment 13. Progresses.

前記調整槽11では、酸生成反応及び/又は可溶化により有機性廃棄物が加水分解して低分子化する過程で、pHが下がる現象が起こる。該調整槽11内のpHが下がりすぎると酸廃現象が発生し、反応活性が阻害される惧れがある。しかし、本実施例では、調整槽11内の電解反応により、陰極からOHが生成して液がアルカリ側に移行するため、調整槽11内のpHを低下させることなく凝集効果を有する鉄イオンを供給することができる。従って、アルカリ剤等の添加剤を供給することなくメタン発酵に適した性状とすることができる。ここで、生成された鉄イオンにより凝集した凝集物は、後段の固液分離装置14にて分離、回収される。 In the adjustment tank 11, a phenomenon occurs in which the pH is lowered in the process of hydrolyzing the organic waste due to the acid generation reaction and / or solubilization to lower the molecular weight. If the pH in the adjustment tank 11 is too low, an acid waste phenomenon may occur and reaction activity may be hindered. However, in this embodiment, OH is generated from the cathode by the electrolytic reaction in the adjustment tank 11 and the liquid moves to the alkali side, so that the iron ion having an aggregating effect without lowering the pH in the adjustment tank 11. Can be supplied. Therefore, it can be set as the property suitable for methane fermentation, without supplying additives, such as an alkaline agent. Here, the agglomerates aggregated by the generated iron ions are separated and collected by the solid-liquid separation device 14 at the subsequent stage.

本実施例のように、調整槽11に鉄電解槽17を付設することによりメタン発酵槽17内のpHを低下させることなく、凝集効果をもつ鉄イオンを供給することができ、後段の水処理設備(固液分離設備)を簡素化することができる。
また、前記汚泥処理設備16を堆肥化設備とすることが好適である。この堆肥化設備により製造した堆肥中には、原料とする分離汚泥中に残留する鉄イオンが存在するため、堆肥の必須元素であるFeイオンを含有した高品質の堆肥とすることができる。
As in this embodiment, by attaching the iron electrolysis tank 17 to the adjustment tank 11, iron ions having an aggregating effect can be supplied without lowering the pH in the methane fermentation tank 17, and the subsequent water treatment Equipment (solid-liquid separation equipment) can be simplified.
The sludge treatment facility 16 is preferably a composting facility. In the compost produced by this composting facility, iron ions remaining in the separated sludge as a raw material are present, so that high quality compost containing Fe ions, which are essential elements of compost, can be obtained.

図2に本実施例2に係る有機性廃棄物の処理システムの概略構成を示す。以下、実施例2乃至実施例9において、上記した実施例1と同様の構成についてはその詳細な説明を省略する。
本実施例2における処理システムは、メタン発酵設備100と、水処理設備200の組み合わせからなり、前記メタン発酵設備100は、有機性廃棄物を前処理する前処理設備10と、前処理した有機性廃棄物に対して酸生成反応及び/又は可溶化を行なう調整槽11と、調整した有機性廃棄物に対してメタン生成反応を行なうメタン発酵槽12と、該メタン発酵槽12内の有機性廃棄物の少なくとも一部を用いて電解反応により鉄イオンを溶出させる鉄電解槽17と、を含む。
水処理設備200は、前記メタン発酵槽12にて発生した処理液に対して活性汚泥処理を行う活性汚泥処理設備13と、活性汚泥処にて発生した処理液を固液分離する第2の固液分離設備14と、分離液に高度処理を施す高度処理設備15と、分離汚泥に汚泥処理を施す汚泥処理設備16と、を含む。
FIG. 2 shows a schematic configuration of an organic waste processing system according to the second embodiment. Hereinafter, in the second to ninth embodiments, detailed description of the same configurations as those of the first embodiment is omitted.
The processing system in the present Example 2 consists of the combination of the methane fermentation equipment 100 and the water treatment equipment 200, and the said methane fermentation equipment 100 is the pre-processing equipment 10 which pre-processes organic waste, and the pre-processed organic property. An adjustment tank 11 that performs acid generation reaction and / or solubilization on waste, a methane fermentation tank 12 that performs methane generation reaction on the adjusted organic waste, and organic waste in the methane fermentation tank 12 And an iron electrolytic cell 17 for eluting iron ions by an electrolytic reaction using at least a part of the product.
The water treatment facility 200 includes an activated sludge treatment facility 13 that performs activated sludge treatment on the treatment liquid generated in the methane fermentation tank 12, and a second solid that separates the treatment liquid generated in the activated sludge treatment. A liquid separation facility 14, an advanced treatment facility 15 that performs advanced treatment on the separated liquid, and a sludge treatment facility 16 that performs sludge treatment on the separated sludge are included.

本実施例2における処理フローを説明する。有機性廃棄物は前記前処理設備10にて前処理が行なわれた後、前記調整槽11内に導かれ、ここで酸生成反応及び/又は可溶化が行なわれる。該調整槽11にて調整された有機性廃棄物は前記メタン発酵槽12に導入され、メタン生成反応が行なわれる。一方、該メタン発酵槽12内の有機性廃棄物の一部又は全量が引き抜かれて前記鉄電解槽17に導入され、該鉄電解槽17にて溶出した鉄イオンにより有機性廃棄物中のリン、COD等の溶解性汚濁物質が凝集され、また該鉄イオンを含有する鉄電解液が前記メタン発酵槽12に戻されることにより、該メタン発酵槽12及びこれ以降の活性汚泥処理設備13にて凝集反応が進行する。   A processing flow in the second embodiment will be described. The organic waste is pretreated in the pretreatment facility 10 and then introduced into the adjustment tank 11 where acid generation reaction and / or solubilization is performed. The organic waste adjusted in the adjustment tank 11 is introduced into the methane fermentation tank 12, and a methane production reaction is performed. On the other hand, a part or all of the organic waste in the methane fermentation tank 12 is extracted and introduced into the iron electrolysis tank 17, and phosphorus ions in the organic waste are extracted by the iron ions eluted from the iron electrolysis tank 17. In the methane fermentation tank 12 and subsequent activated sludge treatment equipment 13, the soluble pollutant such as COD is agglomerated and the iron electrolyte containing the iron ions is returned to the methane fermentation tank 12. Aggregation reaction proceeds.

また、前記メタン発酵槽12内では、メタンガスの生成とともに、有機性廃棄物中の硫黄成分から硫化水素(HS)が生成する。この硫化水素は、メタンガスの品質低下を招くのみならず、メタン発酵に阻害を及ぼす場合がある。しかし、本実施例によれば前記鉄電解槽17で溶出した鉄イオンがメタン発酵槽12内に供給されるため、難溶性の硫化鉄(FeS)が生成され、硫化水素の生成を最小限に抑えることが可能となる。
このように本実施例2によれば、メタン発酵槽12に鉄電解槽17を付設することにより、メタン発酵槽12内のpHを低下させることなく凝集効果を有する鉄イオンを供給することができ、後段の水処理設備を簡素化することが可能となるとともに、メタン発酵槽12での硫化水素の発生を抑制することができる。
メタン発酵槽12での硫化水素の発生抑制が可能となると、高品質のメタンガスを製造でき、また、回収したメタンガスの脱硫設備を不要或いは小規模化できる。また、脱硫剤を充填した脱硫塔を備えている場合、脱硫剤の交換頻度を低減することができ、ランニングコストを削減できる。
Further, in the methane fermentation tank 12, together with the generation of methane gas, hydrogen sulfide from the sulfur component of the organic waste in (H 2 S) is produced. This hydrogen sulfide not only causes deterioration in the quality of methane gas, but may also inhibit methane fermentation. However, according to the present embodiment, since iron ions eluted in the iron electrolyzer 17 are supplied into the methane fermentation tank 12, hardly soluble iron sulfide (FeS) is generated, and generation of hydrogen sulfide is minimized. It becomes possible to suppress.
Thus, according to the present Example 2, by attaching the iron electrolysis tank 17 to the methane fermentation tank 12, iron ions having an aggregating effect can be supplied without lowering the pH in the methane fermentation tank 12. In addition, it is possible to simplify the downstream water treatment facility and to suppress the generation of hydrogen sulfide in the methane fermentation tank 12.
If the generation of hydrogen sulfide in the methane fermentation tank 12 can be suppressed, high-quality methane gas can be produced, and desulfurization equipment for recovered methane gas can be eliminated or reduced in scale. Moreover, when the desulfurization tower filled with the desulfurization agent is provided, the replacement frequency of the desulfurization agent can be reduced, and the running cost can be reduced.

図3に本実施例3に係る有機性廃棄物の処理システムの概略構成を示す。
本実施例3における処理システムは、メタン発酵設備100と、水処理設備200の組み合わせからなり、前記メタン発酵設備100は、有機性廃棄物を前処理する前処理設備10と、前処理した有機性廃棄物に対して酸生成反応及び/又は可溶化を行なう調整槽11と、調整した有機性廃棄物に対してメタン生成反応を行なうメタン発酵槽12と、を含む。
水処理設備200は、前記メタン発酵槽12にて発生した処理液に対して活性汚泥処理を行う活性汚泥処理設備13と、活性汚泥処にて発生した処理液を固液分離する第2の固液分離設備14と、分離液に高度処理を施す高度処理設備15と、分離汚泥に汚泥処理を施す汚泥処理設備16と、前記活性汚泥処理設備13内の処理液の少なくとも一部を用い電解反応を行って鉄イオンを溶出させる鉄電解槽17を含む。
さらに、前記第2の固液分離設備14からの分離液の少なくとも一部を分岐させ、前記調整槽11又は前記メタン発酵槽12の希釈水23として導入するようにしている。
FIG. 3 shows a schematic configuration of an organic waste processing system according to the third embodiment.
The treatment system in the present Example 3 consists of a combination of a methane fermentation facility 100 and a water treatment facility 200, and the methane fermentation facility 100 includes a pretreatment facility 10 that pretreats organic waste, and a pretreated organic material. The adjustment tank 11 which performs an acid production | generation reaction and / or solubilization with respect to a waste, and the methane fermentation tank 12 which performs a methane production | generation reaction with respect to the adjusted organic waste are included.
The water treatment facility 200 includes an activated sludge treatment facility 13 that performs activated sludge treatment on the treatment liquid generated in the methane fermentation tank 12, and a second solid that separates the treatment liquid generated in the activated sludge treatment. Electrolytic reaction using at least part of the treatment liquid in the liquid separation equipment 14, the advanced treatment equipment 15 that performs advanced treatment on the separated liquid, the sludge treatment equipment 16 that performs sludge treatment on the separated sludge, and the activated sludge treatment equipment 13. And an iron electrolytic cell 17 for eluting iron ions.
Furthermore, at least a part of the separated liquid from the second solid-liquid separation facility 14 is branched and introduced as the dilution water 23 of the adjustment tank 11 or the methane fermentation tank 12.

本実施例3における処理フローを説明する。有機性廃棄物は前記前処理設備10にて前処理が行なわれた後、前記調整槽11内に導かれ、ここで酸生成反応及び/又は可溶化が行なわれる。該調整槽11にて調整された有機性廃棄物は前記メタン発酵槽12に導入され、メタン生成反応が行なわれる。メタン発酵槽12にて発生した処理液の一部は、返送汚泥21として前記調整槽11に返送されるとともに、他の処理液22は活性汚泥処理設備13に導入される。該活性汚泥処理設備13では活性汚泥処理が施される一方、その処理液の少なくとも一部が引き抜かれて前記鉄電解槽17に導入され、該鉄電解槽17にて電解反応により鉄イオンが溶出する。該鉄イオンを含有する鉄電解液は前記活性汚泥処理設備13に戻されることにより、処理液中のリン、COD等の溶解性汚濁物質が凝集分離される。凝集物は後段の固液分離設備14により分離液と分離され、汚泥処理設備16にて処理される。   A processing flow in the third embodiment will be described. The organic waste is pretreated in the pretreatment facility 10 and then introduced into the adjustment tank 11 where acid generation reaction and / or solubilization is performed. The organic waste adjusted in the adjustment tank 11 is introduced into the methane fermentation tank 12, and a methane production reaction is performed. A part of the treatment liquid generated in the methane fermentation tank 12 is returned to the adjustment tank 11 as a return sludge 21, and the other treatment liquid 22 is introduced into the activated sludge treatment facility 13. In the activated sludge treatment facility 13, activated sludge treatment is performed, and at least a part of the treatment liquid is drawn out and introduced into the iron electrolysis tank 17, and iron ions are eluted by an electrolytic reaction in the iron electrolysis tank 17. To do. The iron electrolyte containing the iron ions is returned to the activated sludge treatment facility 13 so that soluble pollutants such as phosphorus and COD in the treatment liquid are aggregated and separated. The agglomerates are separated from the separated liquid by the subsequent solid-liquid separation equipment 14 and processed by the sludge treatment equipment 16.

前記メタン発酵槽12では有機性廃棄物中に含有されるBODの多くが除去されているため、前記活性汚泥処理設備13には、COD、リン、窒素の含有濃度が高い処理液が供給される。従って、該活性汚泥処理設備13に鉄電解槽17を付設することにより、ここで確実にリン、COD濃度を低減することができ、溶解性汚濁物質の除去効率を向上させることができる。
また、前記第2の固液分離設備14にて固液分離された分離液は、有機物、COD、窒素、リンの殆どが除去されているため、その一部を希釈水23として前記調整槽11及び/又はメタン発酵槽12に返送することにより、希釈水としての働きの他に、分離液中に残留する鉄イオンがさらなる凝集効果をもたらすとともに、槽内のpH低下の抑制、及び硫化水素の発生抑制に寄与できる。
Since most of the BOD contained in the organic waste is removed in the methane fermentation tank 12, the activated sludge treatment facility 13 is supplied with a treatment liquid having a high concentration of COD, phosphorus, and nitrogen. . Therefore, by attaching the iron electrolyzer 17 to the activated sludge treatment facility 13, the concentration of phosphorus and COD can be surely reduced, and the removal efficiency of soluble pollutants can be improved.
In addition, since most of the organic matter, COD, nitrogen, and phosphorus is removed from the separated liquid separated by the second solid-liquid separation facility 14, a part of the separated liquid is used as the dilution water 23, and the adjustment tank 11. And / or by returning to the methane fermentation tank 12, in addition to the function as dilution water, iron ions remaining in the separation liquid bring about a further agglomeration effect, suppression of pH drop in the tank, and hydrogen sulfide It can contribute to the generation suppression.

図4に本実施例4に係る有機性廃棄物の処理システムの概略構成を示す。
本実施例4における処理システムは、メタン発酵設備100と、水処理設備200の組み合わせからなり、前記メタン発酵設備100は、有機性廃棄物に前処理を行なう前処理設備10と、前処理した有機性廃棄物に対して酸生成反応及び/又は可溶化を行なう調整槽11と、調整した有機性廃棄物に対してメタン生成反応を行なうメタン発酵槽12と、メタン発酵により発生した処理液を固液分離する第1の固液分離設備18と、固液分離した分離汚泥に堆肥化処理等を施す汚泥処理設備16と、前記調整槽11内の有機性廃棄物を少なくとも一部用いて電気分解を行って鉄イオンを溶出させる鉄電解槽17と、を含む。また、前記第1の固液分離設備18にて分離した分離液25の一部を前記調整槽11(又はメタン発酵槽12)に返送するとともに、分離液25の他の一部を活性汚泥処理設備13に導入するようになっている。さらに、前記第1の固液分離設備18からの分離汚泥の一部は返送汚泥24として前記調整槽11に返送するようにしている。
水処理設備200は、前記第1の固液分離設備18からの分離液25に対して活性汚泥処理を行う活性汚泥処理設備13と、活性汚泥処にて発生した処理液を固液分離する第2の固液分離設備14と、分離液に高度処理を施す高度処理設備15と、を含み、分離汚泥26を前記汚泥処理設備16に導入するようになっている。
FIG. 4 shows a schematic configuration of an organic waste processing system according to the fourth embodiment.
The treatment system according to the fourth embodiment is composed of a combination of a methane fermentation facility 100 and a water treatment facility 200. The methane fermentation facility 100 includes a pretreatment facility 10 that pretreats organic waste and a pretreated organic material. The adjustment tank 11 that performs acid generation reaction and / or solubilization on the organic waste, the methane fermentation tank 12 that performs methane generation reaction on the adjusted organic waste, and the treatment liquid generated by methane fermentation are solidified. The first solid-liquid separation facility 18 for liquid separation, the sludge treatment facility 16 for subjecting the separated sludge separated to solid-liquid separation to composting, etc., and electrolysis using at least a part of the organic waste in the adjustment tank 11 And an iron electrolytic cell 17 for eluting iron ions. In addition, a part of the separation liquid 25 separated by the first solid-liquid separation facility 18 is returned to the adjustment tank 11 (or the methane fermentation tank 12), and another part of the separation liquid 25 is subjected to activated sludge treatment. It is designed to be introduced into the facility 13. Further, a part of the separated sludge from the first solid-liquid separation facility 18 is returned to the adjustment tank 11 as a return sludge 24.
The water treatment facility 200 performs solid-liquid separation of the activated sludge treatment facility 13 that performs the activated sludge treatment on the separated liquid 25 from the first solid-liquid separation facility 18 and the treatment liquid generated in the activated sludge treatment. 2 and the advanced treatment equipment 15 for subjecting the separated liquid to advanced treatment, and the separated sludge 26 is introduced into the sludge treatment equipment 16.

本実施例4における処理フローを説明する。有機性廃棄物は前記前処理設備10にて前処理が行なわれた後、前記調整槽11内に導かれ、ここで酸生成反応及び/又は可溶化が行なわれる。同時に、調整槽11内の有機性廃棄物の少なくとも一部は前記鉄電解槽17に導入され、該鉄電解槽17にて電解反応により鉄イオンが溶出され、該鉄イオンを含有する鉄電解液は前記調整槽11に導入されて、有機性廃棄物に含有される溶解性汚濁物質が凝集分離される。
さらに調整槽11から排出された有機性廃棄物はメタン発酵槽12に導入されてメタン生成反応が行なわれ、ここで発生した処理液は前記第1の固液分離設備18にて固液分離された後に汚泥処理設備16にて分離汚泥の処理が行われる。
一方、前記固液分離された分離液25は、前記活性汚泥処理設備13にて活性汚泥処理された後に第2の固液分離設備にて固液分離され、分離液は高度処理設備15へ、分離汚泥26は前記汚泥処理設備へ導入される。
A processing flow in the fourth embodiment will be described. The organic waste is pretreated in the pretreatment facility 10 and then introduced into the adjustment tank 11 where acid generation reaction and / or solubilization is performed. At the same time, at least a part of the organic waste in the adjustment tank 11 is introduced into the iron electrolysis tank 17, and iron ions are eluted by an electrolytic reaction in the iron electrolysis tank 17, and an iron electrolyte containing the iron ions. Is introduced into the adjusting tank 11 and the soluble pollutant contained in the organic waste is agglomerated and separated.
Further, the organic waste discharged from the adjustment tank 11 is introduced into the methane fermentation tank 12 to perform a methane production reaction, and the treatment liquid generated here is solid-liquid separated by the first solid-liquid separation facility 18. After that, the sludge treatment facility 16 processes the separated sludge.
On the other hand, the solid-liquid separated separation liquid 25 is subjected to activated sludge treatment in the activated sludge treatment facility 13 and then solid-liquid separated in a second solid-liquid separation facility. The separated sludge 26 is introduced into the sludge treatment facility.

本実施例のように、メタン発酵槽12の後段に第1の固液分離設備18を設置することによって、活性汚泥処理設備13内におけるSS濃度の調整が容易となる。また、前記第1の固液分離設備18から排出されるリン、SSが一部除去された分離液25を前記調整槽11(又はメタン発酵槽12)の希釈水として用いることによって、メタン発酵設備100の負荷を低減することが可能となる。   As in the present embodiment, the SS concentration in the activated sludge treatment facility 13 can be easily adjusted by installing the first solid-liquid separation facility 18 in the subsequent stage of the methane fermentation tank 12. Further, by using the separation liquid 25 from which the phosphorus and SS discharged from the first solid-liquid separation facility 18 are partially removed as dilution water for the adjustment tank 11 (or the methane fermentation tank 12), a methane fermentation facility 100 loads can be reduced.

図5に本実施例5に係る有機性廃棄物の処理システムの概略構成を示す。
本実施例5における処理システムは、メタン発酵設備100と、水処理設備200の組み合わせからなり、前記メタン発酵設備100は、有機性廃棄物に前処理を行なう前処理設備10と、前処理した有機性廃棄物に対して酸生成反応及び/又は可溶化を行なう調整槽11と、調整した有機性廃棄物に対してメタン生成反応を行なうメタン発酵槽12と、メタン発酵により発生した処理液を固液分離する第1の固液分離設備18と、分離汚泥に堆肥化処理等を施す汚泥処理設備16と、前記分離液25の一部又は全量を用いて電解反応を行なって鉄イオンを溶出させる鉄電解槽17と、を含む。また、前記分離液25の一部は前記調整槽11(又はメタン発酵槽12)に返送し、該分離液25の他の一部は活性汚泥処理設備13に導入するようにしている。
水処理設備200は、前記第1の固液分離設備18からの分離液25に対して活性汚泥処理を行う活性汚泥処理設備13と、活性汚泥処にて発生した処理液を固液分離する第2の固液分離設備14と、分離液に高度処理を施す高度処理設備15と、を含む。
FIG. 5 shows a schematic configuration of an organic waste processing system according to the fifth embodiment.
The treatment system in Example 5 is composed of a combination of a methane fermentation facility 100 and a water treatment facility 200. The methane fermentation facility 100 includes a pretreatment facility 10 that pretreats organic waste and a pretreated organic material. The adjustment tank 11 that performs acid generation reaction and / or solubilization on the organic waste, the methane fermentation tank 12 that performs methane generation reaction on the adjusted organic waste, and the treatment liquid generated by methane fermentation are solidified. The first solid-liquid separation facility 18 for liquid separation, the sludge treatment facility 16 for subjecting the separated sludge to composting and the like, and an electrolytic reaction using part or all of the separation liquid 25 are performed to elute iron ions. And an iron electrolytic cell 17. A part of the separation liquid 25 is returned to the adjustment tank 11 (or the methane fermentation tank 12), and the other part of the separation liquid 25 is introduced into the activated sludge treatment facility 13.
The water treatment facility 200 performs solid-liquid separation of the activated sludge treatment facility 13 that performs the activated sludge treatment on the separated liquid 25 from the first solid-liquid separation facility 18 and the treatment liquid generated in the activated sludge treatment. 2 solid-liquid separation equipment 14 and an advanced treatment equipment 15 for subjecting the separated liquid to advanced treatment.

本実施例5における処理フローを説明する。有機性廃棄物は前記前処理設備10にて前処理が行なわれた後、前記調整槽11内に導かれ、ここで酸生成反応及び/又は可溶化が行なわれ、次にメタン発酵槽12に導入されてメタン生成反応が行なわれる。メタン発酵槽12にて発生した処理液は前記第1の固液分離設備18にて固液分離される。
固液分離された分離液25の一部又は全量は前記鉄電解槽17に導入され、該鉄電解槽17にて電解反応により鉄イオンが溶出される。該鉄イオンを含有する鉄電解液は前記調整槽11(又はメタン発酵槽12)又は前記活性汚泥処理設備13に導入される。この鉄電解液により液中の溶解性汚濁物質が凝集分離され、凝集物は第1、第2の固液分離設備18、14により処理液から分離、除去される。
A processing flow in the fifth embodiment will be described. The organic waste is pretreated in the pretreatment facility 10 and then introduced into the adjustment tank 11 where acid generation reaction and / or solubilization is performed. It is introduced and a methanogenesis reaction is performed. The treatment liquid generated in the methane fermentation tank 12 is solid-liquid separated by the first solid-liquid separation facility 18.
Part or all of the separated liquid 25 separated into solid and liquid is introduced into the iron electrolysis tank 17, and iron ions are eluted in the iron electrolysis tank 17 by an electrolytic reaction. The iron electrolyte containing the iron ions is introduced into the adjustment tank 11 (or methane fermentation tank 12) or the activated sludge treatment facility 13. Dissolved contaminants in the liquid are agglomerated and separated by the iron electrolyte, and the agglomerates are separated and removed from the treatment liquid by the first and second solid-liquid separation facilities 18 and 14.

本実施例では、前記メタン発酵槽12の後段に第1の固液分離設備18を設置し、さらに該第1の固液分離設備18からの分離液を前記鉄電解槽17に導入し、鉄イオンを溶出させた後に前記調整槽11(又はメタン発酵槽12)或いは活性汚泥処理設備13に導入している。このように、固液分離後のSS濃度が低い分離液に鉄電解を行なうことにより、配管の閉塞、発泡の危険性が低く、安定運転が可能で安全性の高いシステムを提供することが可能となる。   In the present embodiment, a first solid-liquid separation facility 18 is installed at a subsequent stage of the methane fermentation tank 12, and a separation liquid from the first solid-liquid separation facility 18 is further introduced into the iron electrolyzer 17. After the ions are eluted, they are introduced into the adjustment tank 11 (or methane fermentation tank 12) or the activated sludge treatment facility 13. In this way, by performing iron electrolysis on the separation liquid with a low SS concentration after solid-liquid separation, it is possible to provide a highly safe system with low risk of clogging and foaming, stable operation, and high safety. It becomes.

図6に本実施例6に係る有機性廃棄物の処理システムの概略構成を示す。
本実施例6における処理システムは、メタン発酵設備100と、水処理設備200の組み合わせからなり、前記メタン発酵設備100は、有機性廃棄物に前処理を行なう前処理設備10と、前処理した有機性廃棄物に対して酸生成反応及び/又は可溶化を行なう調整槽11と、調整した有機性廃棄物に対してメタン生成反応を行なうメタン発酵槽12と、メタン発酵により発生した処理液を固液分離する第1の固液分離設備18と、分離汚泥に堆肥化処理等を施す汚泥処理設備16と、を含む。また、前記固液分離設備18の分離液25は活性汚泥処理設備13に導入され、分離汚泥の一部は返送汚泥24として前記調整槽11に返送されるようになっている。
FIG. 6 shows a schematic configuration of an organic waste processing system according to the sixth embodiment.
The treatment system in Example 6 is composed of a combination of a methane fermentation facility 100 and a water treatment facility 200. The methane fermentation facility 100 includes a pretreatment facility 10 that pretreats organic waste and a pretreated organic material. The adjustment tank 11 that performs acid generation reaction and / or solubilization on the organic waste, the methane fermentation tank 12 that performs methane generation reaction on the adjusted organic waste, and the treatment liquid generated by methane fermentation are solidified. A first solid-liquid separation facility 18 for liquid separation and a sludge treatment facility 16 for subjecting the separated sludge to composting and the like are included. Further, the separation liquid 25 of the solid-liquid separation facility 18 is introduced into the activated sludge treatment facility 13, and a part of the separated sludge is returned to the adjustment tank 11 as a return sludge 24.

水処理設備200は、前記第1の固液分離設備18からの分離液25に対して活性汚泥処理を行う活性汚泥処理設備13と、活性汚泥処にて発生した処理液を固液分離する第2の固液分離設備14と、固液分離した分離液に高度処理を施す高度処理設備15と、前記活性汚泥処理設備13内の処理液の少なくとも一部を用いて電解反応を行って鉄イオンを溶出させる鉄電解槽17と、を含む。また、前記鉄電解槽17で溶出させた鉄イオンを含む鉄電解液の少なくとも一部を希釈水27として前記調整槽11及び/又は前記メタン発酵槽12に返送するようにしている。さらに、分離汚泥26を前記汚泥処理設備16に導入するようにしている。   The water treatment facility 200 performs solid-liquid separation of the activated sludge treatment facility 13 that performs the activated sludge treatment on the separated liquid 25 from the first solid-liquid separation facility 18 and the treatment liquid generated in the activated sludge treatment. The solid-liquid separation equipment 14, the advanced treatment equipment 15 for subjecting the separated solid-liquid separation to advanced treatment, and at least a part of the treatment liquid in the activated sludge treatment equipment 13 are subjected to an electrolytic reaction to produce iron ions. And an iron electrolytic cell 17 that elutes. In addition, at least a part of the iron electrolyte containing iron ions eluted in the iron electrolysis tank 17 is returned to the adjustment tank 11 and / or the methane fermentation tank 12 as dilution water 27. Further, the separated sludge 26 is introduced into the sludge treatment facility 16.

本実施例6における処理フローを説明する。有機性廃棄物は前記前処理設備10にて前処理が行なわれた後、前記調整槽11内に導かれ、ここで酸生成反応及び/又は可溶化が行なわれ、次にメタン発酵槽12に導入されてメタン生成反応が行なわれる。メタン発酵槽12にて発生した処理液は前記第1の固液分離設備18にて固液分離される。固液分離された分離液25は活性汚泥処理設備13に導入される。
前記活性汚泥処理設備13では、前記分離液25の活性汚泥処理が行なわれるとともに、その少なくとも一部が引き抜かれて前記鉄電解槽17に導入され、該鉄電解槽17にて電解反応により溶出した鉄イオンにより有機性廃棄物中のリン、CODが凝集除去され、また該鉄イオンを含有する鉄電解液が前記活性汚泥処理設備13に戻されることにより、リン、CODが凝集分離される。さらに、前記鉄電解槽17から排出される鉄電解液の少なくとも一部は、希釈水27として前記調整槽11及び/又は前記メタン発酵槽12に返送される。
A processing flow in the sixth embodiment will be described. The organic waste is pretreated in the pretreatment facility 10 and then introduced into the adjustment tank 11 where acid generation reaction and / or solubilization is performed. It is introduced and a methanogenesis reaction is performed. The treatment liquid generated in the methane fermentation tank 12 is solid-liquid separated by the first solid-liquid separation facility 18. The separated liquid 25 separated into the solid and liquid is introduced into the activated sludge treatment facility 13.
In the activated sludge treatment facility 13, activated sludge treatment of the separation liquid 25 is performed, and at least a part thereof is drawn out and introduced into the iron electrolysis tank 17, and is eluted by an electrolytic reaction in the iron electrolysis tank 17. Phosphorus and COD in the organic waste are agglomerated and removed by the iron ions, and the iron electrolyte containing the iron ions is returned to the activated sludge treatment facility 13 to agglomerate and separate phosphorus and COD. Furthermore, at least a part of the iron electrolyte discharged from the iron electrolyzer 17 is returned to the adjustment tank 11 and / or the methane fermentation tank 12 as diluted water 27.

本実施例によれば、メタン発酵槽12の後段に第1の固液分離設備18を設置しているため、活性汚泥処理設備13内のSS濃度管理が容易となると同時に、前記活性汚泥処理設備13に付設した鉄電解槽17から排出する鉄電解液の少なくとも一部を前記調整槽11及び/又は前記メタン発酵槽12に導入しているため、リン、COD等の凝集効率が高く、確実にこれらの溶解性汚濁物質を除去することが可能となる。   According to the present embodiment, since the first solid-liquid separation facility 18 is installed at the subsequent stage of the methane fermentation tank 12, the SS concentration in the activated sludge treatment facility 13 can be easily managed, and at the same time, the activated sludge treatment facility. 13 is introduced into the adjustment tank 11 and / or the methane fermentation tank 12 because at least a part of the iron electrolyte discharged from the iron electrolytic tank 17 attached to 13 is high, and the aggregation efficiency of phosphorus, COD, etc. is high and reliably These soluble pollutants can be removed.

図7に本実施例7に係る有機性廃棄物の処理システムの概略構成を示す。
本実施例7における処理システムは、メタン発酵設備100と、水処理設備200の組み合わせからなり、前記メタン発酵設備100は、有機性廃棄物に前処理を行う前処理設備10と、前処理した有機性廃棄物に対して酸生成反応及び/又は可溶化を行なう調整槽11と、調整した有機性廃棄物に対してメタン生成反応を行なうメタン発酵槽12と、メタン発酵により発生した処理液を固液分離する第1の固液分離設備18と、分離汚泥に堆肥化処理等を施す汚泥処理設備16と、を含む。また、前記第1の固液分離設備18にて分離した分離汚泥の一部を、返送汚泥24として前記調整槽11(又はメタン発酵槽12)に返送し、分離液25を活性汚泥処理設備13に導入するようにしている。
水処理設備200は、前記分離液25に対して活性汚泥処理を行う活性汚泥処理設備13と、活性汚泥処にて発生した処理液を固液分離する第2の固液分離設備14と、を含み、前記固液分離設備18、14により固液分離した分離液28の少なくとも一部を前記鉄電解槽17に供給するようにしている。
FIG. 7 shows a schematic configuration of an organic waste processing system according to the seventh embodiment.
The treatment system according to the seventh embodiment includes a combination of a methane fermentation facility 100 and a water treatment facility 200. The methane fermentation facility 100 includes a pretreatment facility 10 that pretreats organic waste, and a pretreated organic material. The adjustment tank 11 that performs acid generation reaction and / or solubilization on the organic waste, the methane fermentation tank 12 that performs methane generation reaction on the adjusted organic waste, and the treatment liquid generated by methane fermentation are solidified. A first solid-liquid separation facility 18 for liquid separation and a sludge treatment facility 16 for subjecting the separated sludge to composting and the like are included. In addition, a part of the separated sludge separated by the first solid-liquid separation facility 18 is returned to the adjustment tank 11 (or the methane fermentation tank 12) as a return sludge 24, and the separated liquid 25 is activated sludge treatment facility 13. To be introduced to.
The water treatment facility 200 includes an activated sludge treatment facility 13 that performs activated sludge treatment on the separation liquid 25, and a second solid-liquid separation facility 14 that solid-liquid separates the treatment liquid generated in the activated sludge treatment. In addition, at least a part of the separated liquid 28 separated and solid-liquid separated by the solid-liquid separation facilities 18, 14 is supplied to the iron electrolyzer 17.

本実施例7における処理フローを説明する。有機性廃棄物は前記前処理設備10にて前処理が行なわれた後、前記調整槽11内に導かれ、ここで酸生成反応及び/又は可溶化が行なわれ、次にメタン発酵槽12に導入されてメタン生成反応が行なわれ、ここで発生した処理液は前記第1の固液分離設備18にて固液分離された後に汚泥処理設備16にて分離汚泥の処理が行われる。一方、固液分離された分離液25は活性汚泥処理設備13にて活性汚泥処理された後に前記第2の固液分離設備14にて固液分離され、分離液は高度処理設備15に導入される。さらに、前記固液分離設備18、14にて固液分離された分離液28の少なくとも一部は分岐され、前記鉄電解槽17に導入される。ここで、電解反応により溶出した鉄イオンを含有する鉄電解液は前記調整槽11及び/又は前記メタン発酵槽12に導入され、有機性廃棄物中のリン、CODが凝集除去される。   A processing flow in the seventh embodiment will be described. The organic waste is pretreated in the pretreatment facility 10 and then introduced into the adjustment tank 11 where acid generation reaction and / or solubilization is performed. After being introduced, a methane production reaction is performed, and the treatment liquid generated here is subjected to solid-liquid separation by the first solid-liquid separation facility 18 and then the separated sludge is treated by the sludge treatment facility 16. On the other hand, the separated liquid 25 is subjected to activated sludge treatment in the activated sludge treatment facility 13 and then separated into solid and liquid in the second solid-liquid separation facility 14, and the separated solution is introduced into the advanced treatment facility 15. The Further, at least a part of the separated liquid 28 separated by the solid-liquid separation equipment 18, 14 is branched and introduced into the iron electrolysis tank 17. Here, the iron electrolyte containing iron ions eluted by the electrolytic reaction is introduced into the adjustment tank 11 and / or the methane fermentation tank 12, and phosphorus and COD in the organic waste are agglomerated and removed.

本実施例のように鉄電解槽17への供給液として、メタン発酵後の固液分離液又は水処理設備における固液分離液を用いることにより、SS濃度、窒素濃度が低い中で鉄電解を行なうことができ、配管の閉塞、発泡の危険性が低く、安定運転が可能で安全性の高いシステムを提供することが可能となる。
また、前記鉄電解槽17への供給液は、プロセス用水29を利用することもできる。ここでプロセス用水とは、排水処理水を高水質化してシステム内で再利用可能とした水をいう。このように、SS、窒素分が殆ど含有されないプロセス用水29を用いることにより、安定した鉄イオンの供給が可能となる。尚、メタン発酵処理においては、従来より希釈水としてプロセス用水を利用するシステムが多く用いられているが、この希釈水を鉄電解槽17の供給液とすることが最も好ましく、これによりランニングコストの削減が可能となる。
By using a solid-liquid separation liquid after methane fermentation or a solid-liquid separation liquid in a water treatment facility as a supply liquid to the iron electrolysis tank 17 as in this embodiment, iron electrolysis is performed in a low SS concentration and nitrogen concentration. Therefore, it is possible to provide a highly safe system with low risk of blockage and foaming, stable operation, and high safety.
Moreover, the process water 29 can also be utilized for the supply liquid to the iron electrolyzer 17. Here, the process water refers to water that is made reusable in the system by improving the quality of the wastewater treated water. As described above, by using the process water 29 containing almost no SS and nitrogen, it is possible to supply iron ions stably. In the methane fermentation treatment, a system that uses process water as dilution water is conventionally used in many cases. However, it is most preferable to use this dilution water as a feed solution for the iron electrolyzer 17, thereby reducing running costs. Reduction is possible.

図8に本実施例8に係る有機性廃棄物の処理システムの概略構成を示す。
本実施例8における処理システムは、上記した実施例1〜7の構成に適用できるものであり、その特徴的な構成は、水処理設備200において、前記第1の固液分離設備18にて分離された分離液25を他の液状有機性廃棄物と併せて活性汚泥処理設備13に導入し、活性汚泥処理を行う点である。前記液状有機性廃棄物は、例えば、し尿、家畜糞尿、有機性汚泥、生活廃水、工場廃水等の有機性廃棄物を対象とすることができる。該液状有機性廃棄物を一旦受入貯留設備30に貯留した後、SS濃度等を考慮して前記分離液25に適宜混合し、活性汚泥処理設備13にて処理を行うものである。
FIG. 8 shows a schematic configuration of an organic waste processing system according to the eighth embodiment.
The treatment system according to the eighth embodiment can be applied to the configurations of the above-described first to seventh embodiments. The characteristic configuration of the water treatment facility 200 is the separation at the first solid-liquid separation facility 18. The separated liquid 25 is introduced into the activated sludge treatment facility 13 together with other liquid organic waste, and activated sludge treatment is performed. The liquid organic waste can be, for example, organic waste such as human waste, livestock manure, organic sludge, domestic wastewater, and factory wastewater. The liquid organic waste is temporarily stored in the receiving storage facility 30 and then mixed with the separation liquid 25 in consideration of the SS concentration and the like, and processed in the activated sludge processing facility 13.

通常、メタン発酵により発生した処理液を活性汚泥処理するには、活性汚泥処理の前段でメタノール等の水素供与体を供給することが多い。これは、メタン発酵により有機物の殆どが除去されてしまうためである。しかし、本実施例によれば、他の液状有機性廃棄物を活性汚泥処理設備13に供給することにより、水素供与体の供給を不要或いは低減することが可能となる。尚、本実施例において併せて処理する液状有機性廃棄物は、窒素含有率が低く、且つ炭素含有率が高いものが好ましい。   Usually, in order to treat activated sludge with a treatment liquid generated by methane fermentation, a hydrogen donor such as methanol is often supplied before the activated sludge treatment. This is because most of the organic substances are removed by methane fermentation. However, according to the present embodiment, by supplying other liquid organic waste to the activated sludge treatment facility 13, the supply of the hydrogen donor can be unnecessary or reduced. In addition, the liquid organic waste processed together in the present embodiment preferably has a low nitrogen content and a high carbon content.

図9に本実施例9に係る有機性廃棄物の処理システムの概略構成を示す。
本実施例9における処理システムは、上記した実施例1〜8の構成に適用できるものである。本実施例は、水処理設備200において、前記第2の固液分離設備14にて分離された分離液を電解脱窒素装置31に導入するようにしている。該電解脱窒素装置31では、分離液を電気分解することにより、次亜塩素酸系の強酸化物質を生成し、該強酸化物質の酸化作用により分離液に含有される窒素分を除去する電解槽を備え、窒素除去機能の安定化を図っている。
電解脱窒素処理は、次亜塩素酸系のHCl生成によりpHが低下するため、pHの調整が必要となる。本実施例では鉄電解槽17を設けているため、pHをアルカリ側に移行させることができ、pH調整に用いる薬品量を抑制若しくは不要化できる。
FIG. 9 shows a schematic configuration of an organic waste processing system according to the ninth embodiment.
The processing system according to the ninth embodiment can be applied to the configurations of the first to eighth embodiments. In the present embodiment, in the water treatment facility 200, the separated liquid separated by the second solid-liquid separation facility 14 is introduced into the electrolytic denitrification apparatus 31. In the electrolytic denitrification apparatus 31, electrolysis is performed to generate a hypochlorous acid-based strong oxidizing substance by electrolyzing the separated liquid, and to remove nitrogen contained in the separated liquid by the oxidizing action of the strong oxidizing substance. A tank is provided to stabilize the nitrogen removal function.
In the electrolytic denitrogenation treatment, the pH is lowered due to the generation of hypochlorous acid-based HCl, and thus pH adjustment is required. In this embodiment, since the iron electrolytic cell 17 is provided, the pH can be shifted to the alkali side, and the amount of chemicals used for pH adjustment can be suppressed or eliminated.

本発明の実施例1に係るシステムを示す概略構成図であって、調整槽に鉄電解槽を付設した図である。It is a schematic block diagram which shows the system which concerns on Example 1 of this invention, Comprising: It is the figure which attached the iron electrolyzer to the adjustment tank. 本発明の実施例2に係るシステムを示す概略構成図であって、メタン発酵槽に鉄電解槽を付設した図である。It is a schematic block diagram which shows the system which concerns on Example 2 of this invention, Comprising: It is the figure which attached the iron electrolyzer to the methane fermentation tank. 本発明の実施例3に係るシステムを示す概略構成図であって、活性汚泥処理設備に鉄電解槽を付設した図である。It is a schematic block diagram which shows the system which concerns on Example 3 of this invention, Comprising: It is the figure which attached the iron electrolyzer to the activated sludge processing equipment. 本発明の実施例4に係るシステムを示す概略構成図であって、メタン発酵設備側に固液分離設備を設けた図である。It is a schematic block diagram which shows the system which concerns on Example 4 of this invention, Comprising: It is the figure which provided the solid-liquid separation equipment in the methane fermentation equipment side. 本発明の実施例5に係るシステムを示す概略構成図であって、メタン発酵設備側に固液分離設備を設け、分離液ラインに鉄電解槽を付設した図である。It is a schematic block diagram which shows the system which concerns on Example 5 of this invention, Comprising: It is the figure which provided the solid-liquid separation equipment in the methane fermentation equipment side, and attached the iron electrolytic cell to the separation liquid line. 本発明の実施例6に係るシステムを示す概略構成図であって、鉄電解液を調整槽に導入するラインを設けた図である。It is a schematic block diagram which shows the system which concerns on Example 6 of this invention, Comprising: It is the figure which provided the line which introduces an iron electrolyte into an adjustment tank. 本発明の実施例7に係るシステムを示す概略構成図であって、メタン発酵又は水処理後の固液分離液を鉄電解槽に導入するラインを設けた図である。It is a schematic block diagram which shows the system which concerns on Example 7 of this invention, Comprising: It is the figure which provided the line which introduces the solid-liquid separation liquid after methane fermentation or water treatment into an iron electrolyzer. 本発明の実施例8に係るシステムを示す概略構成図であって、液状有機性廃棄物を活性汚泥処理設備に投入するようにした図である。It is a schematic block diagram which shows the system which concerns on Example 8 of this invention, Comprising: It is the figure which injected | thrown-in liquid organic waste to the activated sludge processing equipment. 本発明の実施例9に係るシステムを示す概略構成図であって、水処理設備に電解脱窒素装置を設けた図である。It is a schematic block diagram which shows the system which concerns on Example 9 of this invention, Comprising: It is the figure which provided the electrolytic denitrification apparatus in the water treatment facility. 従来の有機性廃棄物の処理システムを示す図である。It is a figure which shows the processing system of the conventional organic waste. 従来の有機性廃棄物の処理システムを示す図である。It is a figure which shows the processing system of the conventional organic waste.

符号の説明Explanation of symbols

10 前処理設備
11 調整槽
12 メタン発酵槽
13 活性汚泥処理設備
14 第2の固液分離設備
15 高度処理設備
16 汚泥処理設備
17 鉄電解槽
18 第1の固液分離設備
20 メタンガス
21、24 返送汚泥
22 処理液
23 一部希釈水
25、28 分離液
26 分離汚泥
27 鉄電解液
29 プロセス用水
31 電解脱窒素装置
100 メタン発酵設備
200 水処理設備
DESCRIPTION OF SYMBOLS 10 Pretreatment equipment 11 Adjustment tank 12 Methane fermentation tank 13 Activated sludge treatment equipment 14 Second solid-liquid separation equipment 15 Advanced treatment equipment 16 Sludge treatment equipment 17 Iron electrolysis tank 18 First solid-liquid separation equipment 20 Methane gas 21, 24 Return Sludge 22 Treatment liquid 23 Partially diluted water 25, 28 Separation liquid 26 Separation sludge 27 Iron electrolyte 29 Process water 31 Electrolytic denitrification equipment 100 Methane fermentation equipment 200 Water treatment equipment

Claims (20)

有機性廃棄物の酸生成反応若しくは可溶化を行なう調整工程と、該調整工程により低分子化された有機性廃棄物のメタン生成反応を行なうメタン発酵工程と、該メタン発酵工程後の処理液を活性汚泥処理する活性汚泥処理工程と、を備えた有機性廃棄物の処理方法において、
前記調整工程から引き抜いた有機性廃棄物中に電解反応により鉄イオンを溶出させる鉄電解工程を設け、該溶出した鉄イオンを含有する鉄電解液を前記調整工程に返送して、該鉄イオンにより溶解性汚濁物質を凝集させることを特徴とする有機性廃棄物の処理方法。
An adjustment step for performing an acid generation reaction or solubilization of organic waste, a methane fermentation step for performing a methane generation reaction of an organic waste reduced in molecular weight by the adjustment step, and a treatment liquid after the methane fermentation step An activated sludge treatment step for treating activated sludge, and a method for treating organic waste,
An iron electrolysis step for eluting iron ions by an electrolytic reaction is provided in the organic waste extracted from the adjustment step, and the iron electrolyte containing the eluted iron ions is returned to the adjustment step, A method for treating organic waste, comprising aggregating soluble pollutants.
有機性廃棄物の酸生成反応若しくは可溶化を行なう調整工程と、該調整工程により低分子化された有機性廃棄物のメタン生成反応を行なうメタン発酵工程と、該メタン発酵工程後の処理液を活性汚泥処理する活性汚泥処理工程と、を備えた有機性廃棄物の処理方法において、
前記メタン発酵工程から引き抜いた有機性廃棄物中に電解反応により鉄イオンを溶出させる鉄電解工程を設け、該溶出した鉄イオンを含有する鉄電解液を前記メタン発酵工程に返送して、該鉄イオンにより溶解性汚濁物質を凝集させることを特徴とする有機性廃棄物の処理方法。
An adjustment step for performing an acid generation reaction or solubilization of organic waste, a methane fermentation step for performing a methane generation reaction of an organic waste reduced in molecular weight by the adjustment step, and a treatment liquid after the methane fermentation step An activated sludge treatment step for treating activated sludge, and a method for treating organic waste,
An iron electrolysis process for eluting iron ions by an electrolytic reaction is provided in the organic waste extracted from the methane fermentation process, and an iron electrolyte containing the eluted iron ions is returned to the methane fermentation process, and the iron A method for treating organic waste, comprising aggregating soluble pollutants with ions.
有機性廃棄物の酸生成反応若しくは可溶化を行なう調整工程と、該調整工程により低分子化された有機性廃棄物のメタン生成反応を行なうメタン発酵工程と、該メタン発酵工程後の処理液を活性汚泥処理する活性汚泥処理工程と、を備えた有機性廃棄物の処理方法において、
前記活性汚泥処理工程から引き抜いた処理液中に電解反応により鉄イオンを溶出させる鉄電解工程を設け、該溶出した鉄イオンを含有する鉄電解液を前記活性汚泥処理工程に返送して、該鉄イオンにより溶解性汚濁物質を凝集させることを特徴とする有機性廃棄物の処理方法。
An adjustment step for performing an acid generation reaction or solubilization of organic waste, a methane fermentation step for performing a methane generation reaction of an organic waste reduced in molecular weight by the adjustment step, and a treatment liquid after the methane fermentation step An activated sludge treatment step for treating activated sludge, and a method for treating organic waste,
An iron electrolysis step for eluting iron ions by an electrolytic reaction is provided in the treatment liquid extracted from the activated sludge treatment step, and the iron electrolyte containing the eluted iron ions is returned to the activated sludge treatment step, A method for treating organic waste, comprising aggregating soluble pollutants with ions.
前記鉄電解液の少なくとも一部を、前記調整工程若しくは前記メタン発酵工程の希釈水として利用することを特徴とする請求項3記載の有機性廃棄物の処理方法。   The method for treating organic waste according to claim 3, wherein at least a part of the iron electrolyte is used as dilution water in the adjustment step or the methane fermentation step. 前記メタン発酵工程の後に第1の固液分離工程を設け、該第1の固液分離工程により固液分離された分離液を前記活性汚泥処理工程にて活性汚泥処理することを特徴とする請求項1乃至3の何れかに記載の有機性廃棄物の処理方法。   A first solid-liquid separation step is provided after the methane fermentation step, and the separated liquid separated by the first solid-liquid separation step is subjected to activated sludge treatment in the activated sludge treatment step. Item 4. A method for treating organic waste according to any one of Items 1 to 3. 有機性廃棄物の酸生成反応若しくは可溶化を行なう調整工程と、該調整工程により低分子化された有機性廃棄物のメタン生成反応を行なうメタン発酵工程と、該メタン発酵後の処理液を固液分離する第1の固液分離工程と、該固液分離した分離液を活性汚泥処理する活性汚泥処理工程と、を備えた有機性廃棄物の処理方法において、
前記固液分離した分離液の少なくとも一部を引き抜き、該引き抜いた分離液中に電解反応により鉄イオンを溶出させる鉄電解工程を設け、該溶出した鉄イオンを含有する鉄電解液を前記調整工程、前記メタン発酵工程、若しくは前記活性汚泥処理工程の何れかに導入することを特徴とする有機性廃棄物の処理方法。
An adjustment process for acid generation reaction or solubilization of organic waste, a methane fermentation process for methane generation reaction of organic waste having a low molecular weight by the adjustment process, and a treatment liquid after the methane fermentation are solidified. In a method for treating organic waste, comprising: a first solid-liquid separation step for liquid separation; and an activated sludge treatment step for treating the separated liquid-liquid separation with activated sludge.
At least a part of the separated liquid-solid separated liquid is drawn out, and an iron electrolysis process is provided in the drawn-out separated liquid to elute iron ions by an electrolytic reaction, and the iron electrolyte containing the eluted iron ions is adjusted in the step A method for treating organic waste, which is introduced into either the methane fermentation step or the activated sludge treatment step.
有機性廃棄物の酸生成反応若しくは可溶化を行なう調整工程と、該調整工程により低分子化された有機性廃棄物のメタン生成反応を行なうメタン発酵工程と、該メタン発酵後の処理液を固液分離する第1の固液分離工程と、該固液分離した分離液を活性汚泥処理する活性汚泥処理工程と、活性汚泥処理後の処理液を固液分離する第2の固液分離工程と、を備えた有機性廃棄物の処理方法において、
前記第1の固液分離工程若しくは前記第2の固液分離工程の分離液、或いはプロセス用水の少なくとも一部を引き抜き、該引き抜いた分離液若しくはプロセス用水中に電解反応により鉄イオンを溶出させる鉄電解工程を設け、該溶出した鉄イオンを含有する鉄電解液を前記調整工程、前記メタン発酵工程、若しくは前記活性汚泥処理工程に導入することを特徴とする有機性廃棄物の処理方法。
An adjustment process for acid generation reaction or solubilization of organic waste, a methane fermentation process for methane generation reaction of organic waste having a low molecular weight by the adjustment process, and a treatment liquid after the methane fermentation are solidified. A first solid-liquid separation step for liquid separation, an activated sludge treatment step for treating the separated liquid-liquid separation with activated sludge, and a second solid-liquid separation step for solid-liquid separation of the treated liquid after activated sludge treatment; In a method for treating organic waste comprising
Iron from which at least a part of the separation liquid in the first solid-liquid separation step or the second solid-liquid separation step or process water is withdrawn, and iron ions are eluted by electrolytic reaction in the withdrawn separation liquid or process water. An organic waste treatment method characterized by providing an electrolysis step and introducing an iron electrolyte containing the eluted iron ions into the adjustment step, the methane fermentation step, or the activated sludge treatment step.
前記活性汚泥処理工程にて、液状有機性廃棄物を投入して前記処理液とともに活性汚泥処理することを特徴とする請求項1、2、3、6、7の何れかに記載の有機性廃棄物の処理方法。   The organic waste according to any one of claims 1, 2, 3, 6, and 7, wherein in the activated sludge treatment step, liquid organic waste is introduced and the activated sludge is treated together with the treatment liquid. How to handle things. 前記活性汚泥処理工程の後に設けた第2の固液分離工程により固液分離した分離液を電解反応により脱窒素処理する電解脱窒素工程を設けたことを特徴とする請求項1、2、3、6、7、8の何れかに記載の有機性廃棄物の処理方法。   The electrolytic denitrification process of denitrifying the separated liquid separated by the second solid-liquid separation process provided after the activated sludge treatment process by an electrolytic reaction is provided. , 6, 7, or 8. The method for treating organic waste according to any one of the above. 有機性廃棄物の酸生成反応若しくは可溶化を行なう調整槽と、該調整槽にて低分子化した有機性廃棄物のメタン生成反応を行なうメタン発酵槽と、該メタン発酵槽から排出する処理液を活性汚泥処理する活性汚泥処理設備と、を備えた有機性廃棄物の処理システムにおいて、
前記調整槽から引き抜いた有機性廃棄物を導入する鉄電解槽を設け、該鉄電解槽は鉄を含む陽極と導電性の陰極とが対向配置され、前記有機性廃棄物に浸漬された電極間に通電することにより鉄イオンを溶出するようにし、
前記溶出した鉄イオンを含有する鉄電解液を前記調整槽に返送するようにしたことを特徴とするメタン発酵槽を備えた有機性廃棄物の処理システム。
An adjustment tank that performs an acid generation reaction or solubilization of organic waste, a methane fermentation tank that performs a methane generation reaction of organic waste that has been reduced in molecular weight in the adjustment tank, and a treatment liquid that is discharged from the methane fermentation tank In an organic waste treatment system equipped with activated sludge treatment equipment for treating activated sludge,
An iron electrolytic cell for introducing the organic waste drawn out from the adjustment tank is provided, and the iron electrolytic cell has an anode containing iron and a conductive cathode disposed opposite to each other, and between the electrodes immersed in the organic waste. The iron ions are eluted by energizing the
An organic waste treatment system comprising a methane fermentation tank, wherein the iron electrolyte containing the eluted iron ions is returned to the adjustment tank.
有機性廃棄物の酸生成反応若しくは可溶化を行なう調整槽と、該調整槽にて低分子化した有機性廃棄物のメタン生成反応を行なうメタン発酵槽と、該メタン発酵槽から排出する処理液を活性汚泥処理する活性汚泥処理設備と、を備えた有機性廃棄物の処理システムにおいて、
前記メタン発酵槽から引き抜いた有機性廃棄物を導入する鉄電解槽を設け、該鉄電解槽は鉄を含む陽極と導電性の陰極とが対向配置され、前記有機性廃棄物に浸漬された電極間に通電することにより鉄イオンを溶出するようにし、
前記溶出した鉄イオンを含有する鉄電解液を前記メタン発酵槽に返送するようにしたことを特徴とするメタン発酵槽を備えた有機性廃棄物の処理システム。
An adjustment tank that performs an acid generation reaction or solubilization of organic waste, a methane fermentation tank that performs a methane generation reaction of organic waste that has been reduced in molecular weight in the adjustment tank, and a treatment liquid that is discharged from the methane fermentation tank In an organic waste treatment system equipped with activated sludge treatment equipment for treating activated sludge,
An iron electrolytic cell for introducing organic waste extracted from the methane fermentation tank is provided, and the iron electrolytic cell is an electrode in which an anode containing iron and a conductive cathode are arranged opposite to each other and immersed in the organic waste The iron ions are eluted by energizing them in between,
An organic waste treatment system comprising a methane fermentation tank, wherein the iron electrolyte containing the eluted iron ions is returned to the methane fermentation tank.
有機性廃棄物の酸生成反応若しくは可溶化を行なう調整槽と、該調整槽にて低分子化した有機性廃棄物のメタン生成反応を行なうメタン発酵槽と、該メタン発酵槽から排出する処理液を活性汚泥処理する活性汚泥処理設備と、を備えた有機性廃棄物の処理システムにおいて、
前記活性汚泥処理設備から引き抜いた処理液を導入する鉄電解槽を設け、該鉄電解槽は鉄を含む陽極と導電性の陰極とが対向配置され、前記処理液に浸漬された電極間に通電することにより鉄イオンを溶出するようにし、
前記溶出した鉄イオンを含有する鉄電解液を前記活性汚泥処理設備に返送するようにしたことを特徴とするメタン発酵槽を備えた有機性廃棄物の処理システム。
An adjustment tank that performs an acid generation reaction or solubilization of organic waste, a methane fermentation tank that performs a methane generation reaction of organic waste that has been reduced in molecular weight in the adjustment tank, and a treatment liquid that is discharged from the methane fermentation tank In an organic waste treatment system equipped with activated sludge treatment equipment for treating activated sludge,
An iron electrolyzer is provided for introducing a treatment liquid extracted from the activated sludge treatment facility, and the iron electrolyzer is provided with an anode containing iron and a conductive cathode facing each other, and an electric current is passed between the electrodes immersed in the treatment liquid. To elute iron ions,
An organic waste treatment system comprising a methane fermentation tank, wherein the iron electrolyte containing the eluted iron ions is returned to the activated sludge treatment facility.
前記鉄電解液の少なくとも一部を、前記調整槽若しくは前記メタン発酵槽の希釈水として利用することを特徴とする請求項12記載の有機性廃棄物の処理システム。   The organic waste treatment system according to claim 12, wherein at least part of the iron electrolyte is used as dilution water in the adjustment tank or the methane fermentation tank. 前記メタン発酵槽の後段に第1の固液分離設備を設け、固液分離された分離液を前記活性汚泥処理設備にて活性汚泥処理することを特徴とする請求項10乃至12の何れかに記載の有機性廃棄物の処理システム。   The first solid-liquid separation facility is provided in the subsequent stage of the methane fermentation tank, and the activated sludge treatment is performed on the separated liquid-separated liquid in the activated sludge treatment facility. The organic waste treatment system described. 有機性廃棄物の酸生成反応若しくは可溶化を行なう調整槽と、該調整槽にて低分子化した有機性廃棄物のメタン生成反応を行なうメタン発酵槽と、該メタン発酵後の処理液を固液分離する第1の固液分離設備と、該固液分離した分離液を活性汚泥処理する活性汚泥処理設備と、を備えた有機性廃棄物の処理システムにおいて、
前記固液分離した分離液の少なくとも一部を導入する鉄電解槽を設け、該鉄電解槽は鉄を含む陽極と導電性の陰極とが対向配置され、前記分離液に浸漬された電極間に通電することにより鉄イオンを溶出するようにし、
前記溶出した鉄イオンを含有する鉄電解液を前記調整槽、前記メタン発酵槽、若しくは前記活性汚泥処理設備に導入するようにしたことを特徴とするメタン発酵槽を備えた有機性廃棄物の処理システム。
A control tank that performs an acid generation reaction or solubilization of organic waste, a methane fermentation tank that performs a methane generation reaction of organic waste having a low molecular weight in the control tank, and a treatment liquid after the methane fermentation are solidified. In an organic waste treatment system comprising: a first solid-liquid separation facility for liquid separation; and an activated sludge treatment facility for treating activated sludge for the separated liquid-liquid separation,
An iron electrolytic cell for introducing at least a part of the separated liquid-solid separated liquid is provided, and the iron electrolytic cell has an anode containing iron and a conductive cathode disposed opposite to each other, and between the electrodes immersed in the separated liquid. The iron ions are eluted by energization,
Treatment of organic waste provided with a methane fermentation tank, wherein the iron electrolyte containing the eluted iron ions is introduced into the adjustment tank, the methane fermentation tank, or the activated sludge treatment facility system.
有機性廃棄物の酸生成反応若しくは可溶化を行なう調整槽と、該調整槽にて低分子化した有機性廃棄物のメタン生成反応を行なうメタン発酵槽と、該メタン発酵後の処理液を固液分離する第1の固液分離設備と、該固液分離した分離液を活性汚泥処理する活性汚泥処理設備と、活性汚泥処理した処理液を固液分離する第2の固液分離設備と、を備えた有機性廃棄物の処理システムにおいて、
前記第1の固液分離設備若しくは前記第2の固液分離設備の分離液、或いはプロセス用水の少なくとも一部を導入する鉄電解槽を設け、該鉄電解槽は鉄を含む陽極と導電性の陰極とが対向配置され、前記分離液若しくはプロセス用水に浸漬された電極間に通電することにより鉄イオンを溶出するようにし、
前記溶出した鉄イオンを含有する鉄電解液を前記調整槽、前記メタン発酵槽、若しくは前記活性汚泥処理設備に導入するようにしたことを特徴とするメタン発酵槽を備えた有機性廃棄物の処理システム。
A control tank that performs an acid generation reaction or solubilization of organic waste, a methane fermentation tank that performs a methane generation reaction of organic waste having a low molecular weight in the control tank, and a treatment liquid after the methane fermentation are solidified. A first solid-liquid separation facility for liquid separation, an activated sludge treatment facility for treating the separated liquid-liquid separation with activated sludge, a second solid-liquid separation facility for solid-liquid separation of the treated liquid treated with activated sludge, In the organic waste treatment system with
An iron electrolytic cell for introducing at least a part of the separation liquid of the first solid-liquid separation facility or the second solid-liquid separation facility or process water is provided, and the iron electrolytic cell is electrically conductive with an anode containing iron. The cathode is arranged oppositely, and iron ions are eluted by energizing between the electrodes immersed in the separation liquid or process water,
Treatment of organic waste provided with a methane fermentation tank, wherein the iron electrolyte containing the eluted iron ions is introduced into the adjustment tank, the methane fermentation tank, or the activated sludge treatment facility system.
前記活性汚泥処理設備に液状有機性廃棄物を投入して前記処理液とともに活性汚泥処理することを特徴とする請求項10、11、12、15、16の何れかに記載の有機性廃棄物の処理システム。   The organic waste according to any one of claims 10, 11, 12, 15, and 16, wherein liquid organic waste is charged into the activated sludge treatment facility and activated sludge is treated together with the treatment liquid. Processing system. 前記活性汚泥処理設備の後段に設けた第2の固液分離設備からの分離液を電解反応により脱窒素処理する電解脱窒素装置を設けたことを特徴とする請求項10、11、12、15、16、17の何れかに記載の有機性廃棄物の処理システム。   The electrolytic denitrification apparatus which denitrifies the separated liquid from the 2nd solid-liquid separation equipment provided in the back | latter stage of the said activated sludge processing equipment by an electrolytic reaction was provided, , 16 or 17, an organic waste treatment system. 前記第1の固液分離設備若しくは前記第2の固液分離設備は、膜分離手段を備えていることを特徴とする請求項14、15、16の何れかに記載の有機性廃棄物の処理システム。   The organic waste treatment according to any one of claims 14, 15, and 16, wherein the first solid-liquid separation facility or the second solid-liquid separation facility includes a membrane separation means. system. 前記第1の固液分離設備若しくは前記第2の固液分離設備にて固液分離された分離汚泥を原料とする堆肥化設備を設けたことを特徴とする請求項14、15、16の何れかに記載の有機性廃棄物の処理システム。
17. A composting facility using a separated sludge separated by solid-liquid separation in the first solid-liquid separation facility or the second solid-liquid separation facility as a raw material. Organic waste processing system according to crab.
JP2004381859A 2004-12-28 2004-12-28 Treatment method and system for organic waste Withdrawn JP2006187681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004381859A JP2006187681A (en) 2004-12-28 2004-12-28 Treatment method and system for organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004381859A JP2006187681A (en) 2004-12-28 2004-12-28 Treatment method and system for organic waste

Publications (1)

Publication Number Publication Date
JP2006187681A true JP2006187681A (en) 2006-07-20

Family

ID=36795341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004381859A Withdrawn JP2006187681A (en) 2004-12-28 2004-12-28 Treatment method and system for organic waste

Country Status (1)

Country Link
JP (1) JP2006187681A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102642985A (en) * 2012-04-23 2012-08-22 南京师范大学 Method and system for treatment and recycling of feces and waste from livestock and poultry culture
JP2014023984A (en) * 2012-07-25 2014-02-06 Sumitomo Heavy Industries Environment Co Ltd Methane fermentation system and methane fermentation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102642985A (en) * 2012-04-23 2012-08-22 南京师范大学 Method and system for treatment and recycling of feces and waste from livestock and poultry culture
JP2014023984A (en) * 2012-07-25 2014-02-06 Sumitomo Heavy Industries Environment Co Ltd Methane fermentation system and methane fermentation method

Similar Documents

Publication Publication Date Title
JP4040028B2 (en) Method and system for treating water to be treated containing organic matter and nitrogen compound
KR20170010679A (en) Treatnent system for organic livestock wastewater by electrolytic oxidation and treatment method thereof
CN105776738A (en) Method and device for pre-treating organic wastewater
JP4774120B2 (en) Apparatus and method for treating radioactive nitrate waste liquid
JP4017657B1 (en) Treatment method of wastewater containing organic matter
JP4667909B2 (en) Organic waste treatment method and equipment
JP2003126861A (en) Method and apparatus for water treatment
JP2006110482A (en) Method and system for treating liquid organic waste
CN104787949A (en) Method and device for treating refuse leachate through photoelectric Fenton oxidation reaction based on modified gas diffusion electrode
CN105692972A (en) Industrial wastewater advanced treatment and cyclic utilization method
JP2006297205A (en) Processing method of organic waste and its apparatus
WO2009099209A1 (en) Apparatus and method for treatment of radioactive nitrate salt liquid waste
KR19990026365A (en) Wastewater Treatment Method and Apparatus by Fenton Oxidation and Electric Electrolysis
JP3917956B2 (en) Organic waste treatment system and treatment method
KR100769997B1 (en) Processing method of high thickness organic sewage by sequencing and Batch type AB S(Acksang-Busick-System)
KR100644758B1 (en) Destruction process of excess activated sludge comes from sewage, waste water treatment and equipment thereof
JP4298602B2 (en) Method and apparatus for anaerobic digestion treatment of organic sludge
KR100343637B1 (en) Treatment of leachate
JP2006239626A (en) Treatment method of waste and treatment apparatus
JP2006187681A (en) Treatment method and system for organic waste
KR101849803B1 (en) Method and device for anaerobically treating wastewater containing terephthalic acid
JP2005185967A (en) Treatment method and treatment apparatus for organic waste water
JP2005144366A (en) Waste water treatment system
JP4648872B2 (en) Wastewater treatment method for wastewater containing high concentration organic matter
KR102563906B1 (en) Nitrogen treatment system using electrochemical process for high concentration organic wastewater treatment

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304