JP2006186093A - Aluminum foil for electrolytic capacitor and manufacturing method thereof - Google Patents

Aluminum foil for electrolytic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP2006186093A
JP2006186093A JP2004377815A JP2004377815A JP2006186093A JP 2006186093 A JP2006186093 A JP 2006186093A JP 2004377815 A JP2004377815 A JP 2004377815A JP 2004377815 A JP2004377815 A JP 2004377815A JP 2006186093 A JP2006186093 A JP 2006186093A
Authority
JP
Japan
Prior art keywords
aluminum foil
rolling
aluminum
cubic
rolling direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004377815A
Other languages
Japanese (ja)
Inventor
Akira Yoshii
章 吉井
Hideo Watanabe
英雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2004377815A priority Critical patent/JP2006186093A/en
Publication of JP2006186093A publication Critical patent/JP2006186093A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide strong aluminum foil for an electrolytic capacitor that has a high rate of presence of a cubic crystal system and can form a deep pit in a depthwise direction. <P>SOLUTION: In the aluminum foil for electrolytic capacitors and the method for manufacturing it; 90% or higher cubic crystal systems are obtained with a purity of 99.9%, the grain shape is extended in a rolling direction, and the aspect ratio of the grain diameter in a direction in parallel with the rolling direction to a direction perpendicular to the rolling direction is set to a range of 1.1-1.5. After heat treatment is made at a temperature of 500-600°C, rolling machining is made again with a working rate of 11-50%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、90%以上の立方晶率を有する電解コンデンサ用アルミニウム箔およびそのの製造方法に関する。   The present invention relates to an aluminum foil for electrolytic capacitors having a cubic crystal ratio of 90% or more and a method for producing the same.

一般にアルミニウム電解コンデンサは、陽極酸化によりその表面に酸化アルミニウムの誘電体皮膜を形成させた陽極用アルミニウム箔と、酸化処理を施していない陰極用アルミニウム箔を電解質を挟んで対向させた構成とされており、前記陽極用アルミニウム箔としては、通常、純度99.99%程度の高純度アルミニウムが、また、前記陰極用アルミニウム箔として、通常、純度99.2〜99.8%程度の各種アルミニウム合金が使用されている。
しかし、この種のアルミニウム電解コンデンサにおいて、その静電容量を向上させる目的で、高純度アルミニウム箔によって形成される陽極については、微量の添加元素及び製造プロセスに関し、種々の研究がなされており、近年では高圧用は勿論、中圧用や低圧用の電解コンデンサも盛んに使用されている。
In general, an aluminum electrolytic capacitor is configured such that an anode aluminum foil having an aluminum oxide dielectric film formed on the surface thereof by anodic oxidation and a cathode aluminum foil not subjected to oxidation treatment are opposed to each other with an electrolyte interposed therebetween. As the aluminum foil for the anode, high-purity aluminum having a purity of about 99.99% is usually used, and as the aluminum foil for the cathode, various aluminum alloys having a purity of about 99.2 to 99.8% are usually used. in use.
However, in this type of aluminum electrolytic capacitor, for the purpose of improving its electrostatic capacity, various studies have been made on a small amount of additive elements and manufacturing processes for the anode formed of high-purity aluminum foil. However, not only high pressure but also medium and low pressure electrolytic capacitors are actively used.

これらの中でも電解コンデンサ用の中高圧用エッチング箔は、その表面にトンネルピットと呼ばれる穴を多数あけて粗面化し、高い静電容量が得られるように特性改善がなされており、この高い静電容量を得るためのエッチング技術は、年々向上される傾向にある。また、最近では、高い静電容量を確保するとともに、実用的な強度も兼ね備えることが要望されている。
しかし、容量を高めるためにエッチングピットの長さを単に長くすると、ピットの存在しない中央部分の箔厚が不足し、箔全体として強度低下を引き起こす問題がある。
また、従来のアルミニウム箔は、圧延により目的の厚さに加工する段階の最終焼鈍行程によってアルミニウム箔が十分に軟化されるため、アルミニウム箔の強度はほぼ一定である。従ってアルミニウム箔として強度を確保するためには、従来、エッチング技術においてピットの長さを調節するか、箔厚自体を厚くして強度を高めなくてはならず、ピットの形成に制約があった。
Among these, the medium- and high-pressure etching foils for electrolytic capacitors are roughened by making many holes called tunnel pits on the surface, and the characteristics have been improved so that high capacitance can be obtained. Etching technology for obtaining capacity tends to be improved year by year. In addition, recently, it has been demanded to ensure high capacitance and to have practical strength.
However, if the length of the etching pit is simply increased in order to increase the capacity, there is a problem that the foil thickness in the central portion where no pit exists is insufficient and the strength of the foil as a whole is reduced.
Further, the strength of the aluminum foil is almost constant because the aluminum foil is sufficiently softened by the final annealing process at the stage of processing to the target thickness by rolling. Therefore, in order to ensure the strength as an aluminum foil, conventionally, the length of the pits must be adjusted in the etching technique, or the foil thickness itself must be increased to increase the strength, and there has been a restriction on the formation of pits. .

このアルミニウム箔の表面に形成するピットは、アルミニウムの結晶の(100)面に対し垂直に発生するので、高容量、高強度を得るためには、アルミニウム箔の結晶における立方晶率を高くする必要がある。
本発明者らの研究によれば、アルミニウムの立方晶を成長させるためには、冷間圧延の途中で200〜300℃の焼鈍(中間焼鈍)を行い、立方晶の核となる結晶粒を成長させた後、再度圧延(付加的圧延)を行い、先の結晶粒に歪を与え、最終焼鈍時に立方晶が優先成長する状況を整える必要があると考えている。
Since the pits formed on the surface of the aluminum foil are perpendicular to the (100) plane of the aluminum crystal, it is necessary to increase the cubic ratio in the aluminum foil crystal in order to obtain high capacity and high strength. There is.
According to the research by the present inventors, in order to grow aluminum cubic crystals, annealing at 200 to 300 ° C. (intermediate annealing) is performed in the middle of cold rolling to grow crystal grains serving as the nucleus of the cubic crystals. After that, rolling (additional rolling) is performed again, and the previous crystal grains are distorted, so that it is necessary to prepare a situation in which cubic crystals preferentially grow during final annealing.

ところで従来、アルミニウム箔を製造する場合に、熱間圧延、冷間圧延、中間焼鈍、冷間圧延、450℃以上の最終焼鈍を経た純度99.96質量%以上、立方晶方位率60体積%以上のアルミニウム原箔に、粗面化処理に先立って冷間加工率0.3%〜10%の低歪加工を行った後、最終焼鈍する製造方法が知られている。(特許文献1参照)
特開2003−119555号公報
By the way, conventionally, when manufacturing aluminum foil, purity 99.96 mass% or more and cubic orientation rate 60 volume% or more after hot rolling, cold rolling, intermediate annealing, cold rolling, final annealing at 450 ° C. or higher. A manufacturing method is known in which a low annealing process with a cold working rate of 0.3% to 10% is performed on the raw aluminum foil prior to the roughening treatment, followed by final annealing. (See Patent Document 1)
JP 2003-119555 A

先の特許文献1に記載の方法にあっては、アルミニウム箔の表面内層部に存在する転位組織のサイズを円相当径で0.3μm未満のものを面積率で10%以下とし、円相当径で8μm超であるものを面積率で10%以下とすることにより、亜粒界あるいは転位セルのサイズのばらつきを制御し、ピットの均一生成を良好とすることができるものであったが、アルミニウム箔の強度向上の面では十分な効果を期待できるものではなかった。
また、先の特許文献1にも記載の如く、圧延加工時の加工率を上げると立方晶が再結晶化し、立方晶率が低下する傾向があるので、立方晶率を低下させることなく強度の高いアルミニウム箔を得ることができる技術の登場が望まれている。
In the method described in Patent Document 1, the size of the dislocation structure existing in the surface inner layer portion of the aluminum foil is less than 0.3 μm in terms of the equivalent circle diameter, and the area ratio is 10% or less. In the case where the area ratio is over 8 μm, the area ratio is 10% or less, so that the variation in the size of subgrain boundaries or dislocation cells can be controlled and the uniform generation of pits can be improved. In terms of improving the strength of the foil, a sufficient effect could not be expected.
Further, as described in the above-mentioned Patent Document 1, when the processing rate at the time of rolling is increased, the cubic crystal is recrystallized, and the cubic crystal rate tends to decrease. Therefore, the strength can be increased without decreasing the cubic rate. The advent of technology that can obtain high aluminum foil is desired.

本発明は上記事情に鑑みてなされたもので、加工後の熱処理を制御することで立方晶を破壊することなく高い加工率で冷間加工を行うことができ、立方晶率が高く、強度も高いという電解コンデンサ用アルミニウム箔の提供を目的とする。   The present invention has been made in view of the above circumstances, and by controlling the heat treatment after processing, it is possible to perform cold working at a high processing rate without destroying the cubic crystal, the cubic rate is high, and the strength is also high. The purpose is to provide a high aluminum foil for electrolytic capacitors.

本発明者は上述の課題に鑑みて研究した結果、アルミニウム箔を製造する工程において90%以上の立方晶率が得られているアルミニウム箔を圧延加工する際、変形した結晶粒のアスペクト比を1.1〜1.5の範囲としておくことで、高立方晶率を保ったまま、再結晶組織から圧延加工組織に変化させることができ、結晶粒を加工組織に変化させることにより、箔強度を飛躍的に高めることができるとの知見に基づき本願発明に到達した。
上記目的を達成するために本発明は、純度99.9%以上のアルミニウムからなり、90%以上の立方晶が得られており、それらの粒形が圧延方向へ引き延ばされ、圧延方向に垂直な方向に対する圧延方向に平行な方向の粒径のアスペクト比が1.1〜1.5の範囲とされてなる電解コンデンサ用アルミニウム箔である。
また、その製造方法は、500〜600℃の温度で熱処理を行った後、11〜50%の加工率で再圧延加工を行うことを特徴とする。
更に本発明は、前記11〜50%の加工率で行う再圧延加工の後、100〜300℃の温度で2〜12時間、転位除去のための焼鈍を行うことを特徴とする。
As a result of studies conducted in view of the above-mentioned problems, the present inventor has determined that the aspect ratio of the deformed crystal grains is 1 when rolling the aluminum foil in which a cubic crystal ratio of 90% or more is obtained in the process of manufacturing the aluminum foil. By keeping the range of .1 to 1.5, the recrystallized structure can be changed to the rolled structure while maintaining the high cubic rate, and the foil strength can be reduced by changing the crystal grains to the processed structure. The present invention has been reached based on the knowledge that it can be dramatically improved.
In order to achieve the above object, the present invention is made of aluminum having a purity of 99.9% or more, and 90% or more of cubic crystals are obtained, and their grain shape is stretched in the rolling direction. It is an aluminum foil for electrolytic capacitors in which the aspect ratio of the grain size in the direction parallel to the rolling direction with respect to the vertical direction is in the range of 1.1 to 1.5.
In addition, the manufacturing method is characterized in that after heat treatment is performed at a temperature of 500 to 600 ° C., re-rolling is performed at a processing rate of 11 to 50%.
Furthermore, the present invention is characterized by performing annealing for removing dislocations at a temperature of 100 to 300 ° C. for 2 to 12 hours after the rerolling performed at a processing rate of 11 to 50%.

以下に本発明において限定する事項について説明する。
結晶粒のアスペクト比
結晶粒のアスペクト比が1.1未満の場合、圧延に伴う結晶粒の変形量が少ないため、強度の向上が見込めない。逆に結晶粒のアスペクト比が1.5を超える場合、圧延に伴う変形量が多すぎるために、立方晶が一部破壊されて正常なエッチングができなくなる傾向になる。
前記再圧延加工を導入すると、アルミニウム箔の組織中に転位が導入されることとなり、この導入された転位により後の粗面化処理において電解エッチングに伴ってピットの成長が阻害される場合が考えられるので、このような場合のためには100〜300℃で2〜12時間、より好ましくは100〜250℃の温度で2〜12時間の熱処理を行うことで転位の除去ができる。
転位の除去という面において、100℃未満の温度で熱処理したのでは、転位除去が不十分になりやすく、250℃を越える温度で熱処理したのでは再結晶が始まって立方晶率が低下する。なお、この転位除去行程については、適用する電解エッチング条件によって必要性が変わるので、常に転位除去行程が必要な訳ではなく、略しても差し支えない。
The matters limited in the present invention will be described below.
Aspect ratio of crystal grains When the aspect ratio of the crystal grains is less than 1.1, the amount of deformation of the crystal grains accompanying the rolling is small, so that an improvement in strength cannot be expected. On the other hand, when the aspect ratio of the crystal grains exceeds 1.5, the amount of deformation accompanying the rolling is too large, so that the cubic crystals are partially broken and normal etching cannot be performed.
When the re-rolling process is introduced, dislocations are introduced into the structure of the aluminum foil, and the introduced dislocations may inhibit the growth of pits along with electrolytic etching in the subsequent roughening treatment. Therefore, for such a case, dislocation can be removed by performing a heat treatment at 100 to 300 ° C. for 2 to 12 hours, more preferably at a temperature of 100 to 250 ° C. for 2 to 12 hours.
In terms of removal of dislocations, if heat treatment is performed at a temperature of less than 100 ° C., dislocation removal tends to be insufficient, and if heat treatment is performed at a temperature exceeding 250 ° C., recrystallization starts and the cubic rate decreases. Note that the necessity of this dislocation removal process varies depending on the electrolytic etching conditions to be applied. Therefore, the dislocation removal process is not always necessary and may be omitted.

次に本発明に適用するべきアルミニウム箔について更に詳述する。
本発明に係る主に中高圧用として用いる電解コンデンサ用アルミニウム箔は、99.9%以上の純アルミニウムを主体としている。
ここで、本発明のアルミニウム箔に含まれるAl以外の元素として、不純物としてのFeを5ppm〜50ppmの範囲、Siを5〜50ppmの範囲、Cuを1〜100ppm程度含有していても良い。また、その他不可避不純物を総量として5〜30ppm程度含有していても良い。
本発明に適用されるアルミニウム箔の立方晶率は90%以上
立方晶率が90%未満では、垂直に発生するピット数が少なくなり、容量及び強度の面で不足となる。
Next, the aluminum foil to be applied to the present invention will be described in detail.
The aluminum foil for electrolytic capacitors mainly used for medium to high pressure according to the present invention is mainly composed of 99.9% or more pure aluminum.
Here, as an element other than Al contained in the aluminum foil of the present invention, Fe as impurities may be contained in a range of 5 ppm to 50 ppm, Si may be contained in a range of 5 to 50 ppm, and Cu may be contained in an amount of about 1 to 100 ppm. Moreover, you may contain about 5-30 ppm of other inevitable impurities as a total amount.
When the cubic rate of the aluminum foil applied to the present invention is 90% or more and less than 90%, the number of vertically generated pits decreases, resulting in insufficient capacity and strength.

本発明によれば、高い立方晶率であり、深いエッチングピットの形成が可能であり、高容量かつ高強度の電解コンデンサ用アルミニウム箔を提供することができる。
また、本発明のような製造方法を採用すると、適切なアスペクト比であり、立方晶率が高く、強度の高い電解コンデンサ用のアルミニウム箔を得ることができる。
According to the present invention, it is possible to provide an aluminum foil for electrolytic capacitors having a high cubic crystal ratio, capable of forming deep etching pits, and having a high capacity and high strength.
Moreover, when the manufacturing method as in the present invention is employed, an aluminum foil for electrolytic capacitors having an appropriate aspect ratio, a high cubic crystal ratio, and a high strength can be obtained.

本発明を実施して得られる電解コンデンサ用アルミニウム箔は、99.9%以上の純アルミニウムを主体としてなる。その他、本発明のアルミニウム箔に適用できるアルミニウムに含まれる不純物の一例として、Fe:5〜50ppm、Si:5〜50ppm、Cu:1〜100ppm、その他の不可避不純物を5〜30ppm程度含んでいる組成であっても良い。   The aluminum foil for electrolytic capacitors obtained by carrying out the present invention is mainly composed of 99.9% or more pure aluminum. In addition, as an example of impurities contained in aluminum that can be applied to the aluminum foil of the present invention, Fe: 5 to 50 ppm, Si: 5 to 50 ppm, Cu: 1 to 100 ppm, and a composition containing about 5 to 30 ppm of other inevitable impurities It may be.

本発明の電解コンデンサ用アルミニウム箔にあっては、箔厚0.1〜0.2mmの範囲、純度99.9%以上のアルミニウムからなるアルミニウム箔であり、立方晶率が90%以上となる。   The aluminum foil for electrolytic capacitors of the present invention is an aluminum foil made of aluminum having a foil thickness in the range of 0.1 to 0.2 mm and a purity of 99.9% or more, and has a cubic crystal ratio of 90% or more.

このようにして所定の厚さとして得られ、90%以上の立方晶が得られているアルミニウム箔を更に圧延加工して最終的な目的の厚さとするとともに、ここで変形させた結果として得られるアルミニウム箔での結晶粒のアスペクト比(圧延方向に平行な粒径/圧延方向に垂直方向の粒径)を1.1〜1.5の範囲とする。この圧延加工により結晶粒を再結晶組織から圧延加工組織に変化させることができ、これによりアルミニウム箔としての強度を飛躍的に高めることができる。
本実施形態において立方晶率とは、アルミニウム箔から、画像解析装置にて30cmの分の面積を取り込み、(100)方位の結晶粒占有率を算出した値を立方晶率と定義する。
次に、本実施形態のアルミニウム箔において、結晶粒のアスペクト比が1.1未満の場合、圧延に伴う結晶粒の変形量が少ないため、強度の向上が見込めない。逆に結晶粒のアスペクト比が1.5を超えた場合、圧延に伴う変形量が多すぎるために、立方晶が一部破壊されて正常なエッチングができなくなる傾向になる。
In this way, the aluminum foil obtained as a predetermined thickness and having a cubic crystal of 90% or more is further rolled to obtain a final target thickness, and obtained as a result of deformation here. The aspect ratio of the crystal grains in the aluminum foil (grain size parallel to the rolling direction / grain size perpendicular to the rolling direction) is set in the range of 1.1 to 1.5. By this rolling process, the crystal grains can be changed from a recrystallized structure to a rolled structure, and thereby the strength as an aluminum foil can be dramatically increased.
In the present embodiment, the cubic crystal ratio is defined as a cubic crystal ratio obtained by taking an area of 30 cm 2 from an aluminum foil using an image analysis apparatus and calculating a crystal grain occupancy ratio in the (100) orientation.
Next, in the aluminum foil of this embodiment, when the aspect ratio of the crystal grains is less than 1.1, the strength cannot be improved because the deformation amount of the crystal grains accompanying rolling is small. On the other hand, when the aspect ratio of the crystal grains exceeds 1.5, the amount of deformation accompanying the rolling is too large, so that the cubic crystals are partially broken and normal etching cannot be performed.

ところで、先に行った再圧延加工を導入すると、アルミニウム箔の組織中に転位が導入されることとなり、この導入された転位により後の粗面化処理において電解エッチングに伴ってピットの成長が阻害される場合が考えられるので、このような場合のためには再圧延加工後のアルミニウム箔を100〜300℃で2〜12時間、より好ましくは100〜250℃の温度で2〜12時間、熱処理を行うことで転位の除去ができる。
転位の除去という面において、100℃未満の温度で熱処理したのでは、転位除去が不十分になりやすく、250℃を越える温度で熱処理したのでは再結晶が始まって立方晶率が低下する。なお、この転位除去行程については、適用する電解エッチング条件によって必要性が変わるので、常に転位除去行程が必要な訳ではなく、略しても差し支えない。
By the way, when the re-rolling process performed earlier is introduced, dislocations are introduced into the structure of the aluminum foil, and this introduced dislocation inhibits pit growth accompanying electrolytic etching in the subsequent roughening treatment. In such a case, the aluminum foil after the re-rolling process is heat-treated at 100 to 300 ° C. for 2 to 12 hours, more preferably at a temperature of 100 to 250 ° C. for 2 to 12 hours. The dislocation can be removed by performing
In terms of removal of dislocations, if heat treatment is performed at a temperature of less than 100 ° C., dislocation removal tends to be insufficient, and if heat treatment is performed at a temperature exceeding 250 ° C., recrystallization starts and the cubic rate decreases. Note that the necessity of the dislocation removal process varies depending on the electrolytic etching conditions to be applied. Therefore, the dislocation removal process is not always necessary and may be omitted.

なお、先のような箔厚で、立方晶率が90%以上のアルミニウム箔であり、先のアスペクト比と再圧延加工した後のアルミニウム箔ならば、電解コンデンサ用としての粗面化処理時において、過溶解や過析出をより一層生じることが無く、より均一なエッチング面を得ることができる。   If the aluminum foil has a foil thickness as described above and a cubic ratio of 90% or more, and the aluminum foil after re-rolling with the above aspect ratio, the roughening treatment for an electrolytic capacitor is performed. Further, over-dissolution and over-precipitation are not further generated, and a more uniform etched surface can be obtained.

Fe:10ppm、Si:10ppm、Cu50ppm、その他不可避不純物、残部Alの組成のアルミニウム合金を溶解した後、鋳造し、厚さ600mmの複数のスラブを得た。このスラブに対して熱間圧延と冷間圧延と中間焼鈍と冷間圧延を経て厚さ0.2mmのアルミニウム箔を得た。このアルミニウム箔に550℃にて6時間加熱する熱処理を行ったところ、立方晶率95%のアルミニウム箔を得ることができた。
更にこのアルミニウム箔に再圧延加工を施し、以下の表1に示す厚さのアルミニウム箔試料を得た。この得られたアルミニウム箔試料においては、再圧延加工後のアルミニウム箔試料の結晶のアスペクト比(圧延方向に平行な方向の粒径/圧延方向に垂直な方向の粒径)を測定した。また、これらのアルミニウム箔試料の耐力を測定した。
それらの測定結果をまとめて表1に示す。
次に、再圧延後のアルミニウム箔の試料の一部のものに対し、再熱処理を施し、更に以下の条件にて電解エッチングして粗面化し、静電容量を測定した。その結果を以下の表1に併せて示す。
○エッチング:3mol/l硫酸+1mol/l塩酸:75℃の溶液を用いて0.2mA/cmの定電流を120秒印加する条件
An aluminum alloy having a composition of Fe: 10 ppm, Si: 10 ppm, Cu 50 ppm, other inevitable impurities, and the balance Al was melted and cast to obtain a plurality of slabs having a thickness of 600 mm. This slab was subjected to hot rolling, cold rolling, intermediate annealing and cold rolling to obtain an aluminum foil having a thickness of 0.2 mm. When this aluminum foil was heat-treated at 550 ° C. for 6 hours, an aluminum foil having a cubic crystal ratio of 95% could be obtained.
Further, this aluminum foil was subjected to re-rolling to obtain an aluminum foil sample having a thickness shown in Table 1 below. In the obtained aluminum foil sample, the crystal aspect ratio (grain size in the direction parallel to the rolling direction / particle size in the direction perpendicular to the rolling direction) of the aluminum foil sample after rerolling was measured. Moreover, the proof stress of these aluminum foil samples was measured.
The measurement results are summarized in Table 1.
Next, a part of the sample of the aluminum foil after the rerolling was reheated, and further roughened by electrolytic etching under the following conditions, and the capacitance was measured. The results are also shown in Table 1 below.
Etching: 3 mol / l sulfuric acid + 1 mol / l hydrochloric acid: conditions for applying a constant current of 0.2 mA / cm 2 for 120 seconds using a solution at 75 ° C.

Figure 2006186093
Figure 2006186093

表1に示す結果から、試料No.1〜14の試料にあっては熱処理後の加工率を13〜50%の範囲とすることでアスペクト比1.1〜1.5の範囲であり、立方晶率94%以上であって94〜96%の範囲であり、耐力に優れ、静電容量も高いアルミニウム箔を得ることができた。具体的に各試料の耐力において30〜58N/mmの範囲、比較例1に対する静電容量100〜104%の範囲の優れた値が得られた。
表1の試料No.1〜6の試料は熱処理後の再圧延加工率を13〜50%の範囲で漸次増加した試料であるが、立方晶率をほとんど低下させることなく耐力を向上できていることが明らかである。これらに対して熱処理後の再圧延加工率を0%あるいは5%とした比較例1、2は耐力が著しく不足し、逆に加工率を60%とした比較例3は耐力は高いものの静電容量が大幅に低下した。
また、試料No.7〜14は再熱処理温度を施した試料であるが、高い立方晶率を維持したまま耐力を更に高いレベルに維持することができた。
次に、実施例1、6の比較で強度差が生じるのは加工硬化に起因する。再加熱により再結晶が促進された結果として再結晶粒を大きくすることができる。
From the results shown in Table 1, the samples Nos. 1 to 14 have an aspect ratio in the range of 1.1 to 1.5 by changing the processing rate after heat treatment to a range of 13 to 50%. An aluminum foil having a crystallinity of 94% or more and a range of 94 to 96%, excellent proof stress, and high electrostatic capacity could be obtained. Specifically, excellent values in the range of 30 to 58 N / mm 2 in the proof stress of each sample and in the range of capacitance of 100 to 104% with respect to Comparative Example 1 were obtained.
Samples Nos. 1 to 6 in Table 1 are samples in which the re-rolling rate after heat treatment is gradually increased in the range of 13 to 50%, but the yield strength can be improved without substantially reducing the cubic rate. It is clear. On the other hand, Comparative Examples 1 and 2 in which the re-rolling rate after heat treatment was 0% or 5% were remarkably insufficient in proof stress. The capacity has dropped significantly.
Samples Nos. 7 to 14 were samples subjected to a reheat treatment temperature, and the proof stress could be maintained at a higher level while maintaining a high cubic crystal ratio.
Next, the difference in strength in the comparison between Examples 1 and 6 is due to work hardening. As a result of promoting recrystallization by reheating, the recrystallized grains can be enlarged.

Claims (3)

純度99.9%以上のアルミニウムからなり、90%以上の立方晶率が得られており、それらの粒形が圧延方向へ引き延ばされ、圧延方向に垂直な方向に対する圧延方向に平行な方向の粒径のアスペクト比が1.1〜1.5の範囲とされてなる電解コンデンサ用アルミニウム箔。   It is made of aluminum with a purity of 99.9% or more, and a cubic crystal ratio of 90% or more is obtained. Their grain shape is elongated in the rolling direction, and the direction parallel to the rolling direction with respect to the direction perpendicular to the rolling direction. The aluminum foil for electrolytic capacitors in which the aspect ratio of the particle diameter is 1.1 to 1.5. 純度99.9%以上のアルミニウムからなり、90%以上の立方晶率が得られており、それらの粒形が圧延方向へ引き延ばされ、圧延方向に垂直な方向に対する圧延方向に平行な方向の粒径のアスペクト比が1.1〜1.5の範囲とされてなる電解コンデンサ用アルミニウム箔の製造方法であり、
500〜600℃の温度で熱処理を行った後、11〜50%の加工率で再圧延加工を行うことを特徴とする電解コンデンサ用アルミニウム箔の製造方法。
It is made of aluminum with a purity of 99.9% or more, and a cubic crystal ratio of 90% or more is obtained. Their grain shape is elongated in the rolling direction, and the direction parallel to the rolling direction with respect to the direction perpendicular to the rolling direction. Is a method for producing an aluminum foil for electrolytic capacitors, wherein the aspect ratio of the particle diameter is 1.1 to 1.5.
A method for producing an aluminum foil for electrolytic capacitors, comprising performing a heat treatment at a processing rate of 11 to 50% after performing a heat treatment at a temperature of 500 to 600 ° C.
前記11〜50%の加工率で行う再圧延加工の後、100〜300℃の温度で2〜12時間、焼鈍を行うことを特徴とする請求項2に記載の電解コンデンサ用アルミニウム箔の製造方法。



The method for producing an aluminum foil for an electrolytic capacitor according to claim 2, wherein annealing is performed at a temperature of 100 to 300 ° C for 2 to 12 hours after the rerolling performed at a processing rate of 11 to 50%. .



JP2004377815A 2004-12-27 2004-12-27 Aluminum foil for electrolytic capacitor and manufacturing method thereof Withdrawn JP2006186093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004377815A JP2006186093A (en) 2004-12-27 2004-12-27 Aluminum foil for electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004377815A JP2006186093A (en) 2004-12-27 2004-12-27 Aluminum foil for electrolytic capacitor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006186093A true JP2006186093A (en) 2006-07-13

Family

ID=36738989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004377815A Withdrawn JP2006186093A (en) 2004-12-27 2004-12-27 Aluminum foil for electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006186093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004021A1 (en) * 2020-06-29 2022-01-06 Tdk株式会社 Thin film capacitor and electronic circuit board equipped with same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004021A1 (en) * 2020-06-29 2022-01-06 Tdk株式会社 Thin film capacitor and electronic circuit board equipped with same
WO2022004013A1 (en) * 2020-06-29 2022-01-06 Tdk株式会社 Thin film capacitor, production method therefor, and electronic circuit board comprising thin film capacitor

Similar Documents

Publication Publication Date Title
JP5498750B2 (en) Aluminum through foil and method for producing the same
JP4300041B2 (en) Aluminum material for electrolytic capacitor electrode and electrolytic capacitor
JP2009062595A (en) Aluminum foil material
JP2012167348A (en) Method for producing aluminum foil for electrolytic capacitor
JP2007046093A (en) Aluminum foil for electrolytic capacitor electrode, and manufacturing method therefor
JP4521771B2 (en) Aluminum material for electrolytic capacitor electrodes
JP2006186093A (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP2002173748A (en) Method for producing high purity aluminum foil
JPH1081945A (en) Aluminum foil for electrolytic capacitor electrode and its production
JP2602357B2 (en) Aluminum alloy foil for electrolytic capacitor electrodes
JP3776788B2 (en) Aluminum foil for electrolytic capacitor electrode and manufacturing method thereof
JP4827103B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP2007169690A (en) Aluminum foil for electrolytic capacitor
JP4964437B2 (en) Aluminum alloy material for electrolytic capacitor and method for producing the same, anode material for electrolytic capacitor, method for producing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP5036740B2 (en) Method for producing aluminum material for electrolytic capacitor electrode
JP2006152394A (en) Aluminum foil for electrolytic capacitor
JP4539911B2 (en) Aluminum foil for electrode capacitor anode and manufacturing method thereof
JP5523731B2 (en) Aluminum foil for electrolytic capacitor cathode and manufacturing method thereof
JP2009270138A (en) Aluminum foil for electrolytic capacitor
JP3496160B2 (en) Method for producing aluminum alloy foil for electrolytic capacitor electrode
JP2010100917A (en) Aluminum foil for electrolytic capacitor electrode
JP2006169571A (en) Aluminum foil for electrolytic capacitor and manufacturing method therefor
JPH0372703B2 (en)
JP2007169689A (en) Aluminum foil for electrolytic capacitor
JP3899479B2 (en) Aluminum foil for electrolytic capacitor electrode

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304