JP2006185795A - Mold body for insulator of spark plug, manufacturing method of spark plug and spark plug - Google Patents

Mold body for insulator of spark plug, manufacturing method of spark plug and spark plug Download PDF

Info

Publication number
JP2006185795A
JP2006185795A JP2004379321A JP2004379321A JP2006185795A JP 2006185795 A JP2006185795 A JP 2006185795A JP 2004379321 A JP2004379321 A JP 2004379321A JP 2004379321 A JP2004379321 A JP 2004379321A JP 2006185795 A JP2006185795 A JP 2006185795A
Authority
JP
Japan
Prior art keywords
insulator
diameter cylindrical
spark plug
cylindrical portion
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004379321A
Other languages
Japanese (ja)
Other versions
JP4422605B2 (en
Inventor
Takamitsu Mizuno
貴光 水野
Toshitaka Honda
稔貴 本田
Hiroyuki Tanabe
宏之 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2004379321A priority Critical patent/JP4422605B2/en
Publication of JP2006185795A publication Critical patent/JP2006185795A/en
Application granted granted Critical
Publication of JP4422605B2 publication Critical patent/JP4422605B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a straight mold body for an insulator for a spark plug having an axial line formed into a straight line, and also to provide a park plug having excellent durability without impairing ignitability. <P>SOLUTION: This mold body 1 for an insulator includes: a large-diameter tube part 3 formed into a flange-like shape projecting in a direction perpendicular to the axial direction and having an axial length of 6-12 mm; a first small-diameter tube part 2 formed in a diameter smaller than that of the large-diameter tube part 3 on the side of one end of the large-diameter tube part 3 and having its outside diameter not larger than 10.8 mm; and a second small-diameter tube part 4 formed in a diameter smaller than that of the large-diameter tube part 3 on the side of the other end of the large-diameter tube part 3 and having its axial length not smaller than 30 mm. This mold body 1 for an insulator is formed into an insulator 11 of a spark plug 30 by baking a plurality of the mold bodies by erecting and aligning them in a sheath 20. The mold body 1 for an insulator is so formed that the large-diameter tube parts 3 of the plurality of the mold bodies 1 for insulators are brought into contact with one another when they are erected and aligned by setting the first small-diameter tube parts 2 lower than the second small-diameter tube parts 4 while tilting the sheath 20. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、スパークプラグの絶縁体用成形体、スパークプラグの製造方法及びスパークプラグに関する。   The present invention relates to a molded body for an insulator of a spark plug, a method for manufacturing a spark plug, and a spark plug.

従来、図6に示すスパークプラグ90が知られている。このスパークプラグ90は筒状の主体金具91を備えている。主体金具91内には、主体金具91の軸方向に延在し、両端を主体金具91の両端から突出させて絶縁体81が固定されている。絶縁体81の軸方向には軸孔85が貫設されている。また、主体金具91の軸方向には中心電極92が延在し、中心電極92の先端側は放電部をなすように絶縁体81の先端に配置され、中心電極92の後端は絶縁体81内で固定されている。さらに、主体金具91の軸方向には端子93が延在し、端子93の先端が絶縁体81内で中心電極92に電気的に接続され、端子93の後端が絶縁体81の後端から突出している。また、通常のスパークプラグでは、主体金具91に平行接地電極94の一端が固定され、この平行接地電極94の他端が中心電極92の放電部との間に放電ギャップを形成している。なお、主体金具自体が中心電極の放電部との間に放電ギャップを形成するスパークプラグも公知である。   Conventionally, a spark plug 90 shown in FIG. 6 is known. The spark plug 90 includes a cylindrical metal shell 91. An insulator 81 is fixed in the metal shell 91, extending in the axial direction of the metal shell 91, with both ends projecting from both ends of the metal shell 91. A shaft hole 85 is provided in the axial direction of the insulator 81. Further, the center electrode 92 extends in the axial direction of the metal shell 91, the front end side of the center electrode 92 is disposed at the front end of the insulator 81 so as to form a discharge portion, and the rear end of the center electrode 92 is the insulator 81. It is fixed inside. Further, the terminal 93 extends in the axial direction of the metal shell 91, the tip of the terminal 93 is electrically connected to the center electrode 92 in the insulator 81, and the rear end of the terminal 93 is connected to the rear end of the insulator 81. It protrudes. In a normal spark plug, one end of the parallel ground electrode 94 is fixed to the metal shell 91, and a discharge gap is formed between the other end of the parallel ground electrode 94 and the discharge portion of the center electrode 92. A spark plug is also known in which the metal shell itself forms a discharge gap with the discharge portion of the center electrode.

このスパークプラグ90の絶縁体81は、例えば特許文献1の図1に開示される絶縁体用成形体を焼成することにより得られる。図7に示すように、絶縁体用成形体71は、軸方向に対し直角方向に突出するフランジ状をなす大径筒部73と、大径筒部73の一端側で大径筒部73より小径に形成された第1小径筒部72と、大径筒部73の他端側で大径筒部73より小径に形成された第2小径筒部74とを有している。   The insulator 81 of the spark plug 90 is obtained, for example, by firing a molded body for an insulator disclosed in FIG. As shown in FIG. 7, the molded body 71 for insulator includes a large-diameter cylindrical portion 73 that forms a flange shape projecting in a direction perpendicular to the axial direction, and a large-diameter cylindrical portion 73 on one end side of the large-diameter cylindrical portion 73. It has a first small-diameter cylindrical portion 72 formed to have a small diameter, and a second small-diameter cylindrical portion 74 formed to have a smaller diameter than the large-diameter cylindrical portion 73 on the other end side of the large-diameter cylindrical portion 73.

第1工程において、この絶縁体用成形体71を成形した後、第2工程において、複数個の絶縁体用成形体71をさや内で起立かつ整列状態で焼成することにより、絶縁体81が得られる。絶縁体81において、スパークプラグ90の主体金具91内に固定されるダイヤ部83を大径筒部73が構成し、スパークプラグ90の端子93が一端から突出される本体部82を第1小径筒部72が構成し、スパークプラグ90の中心電極92が他端側で放電部をなす軸部84を第2小径筒部74が構成している。その後、主体金具91、絶縁体81、中心電極92、端子93及び平行接地電極94を組み付けてスパークプラグ90が得られる。   In the first step, after the molded body for insulator 71 is molded, in the second step, the plurality of molded bodies for insulator 71 are fired in an upright and aligned state in the sheath, thereby obtaining an insulator 81. It is done. In the insulator 81, the diamond portion 83 fixed in the metal shell 91 of the spark plug 90 is configured by the large diameter cylindrical portion 73, and the main body portion 82 from which the terminal 93 of the spark plug 90 protrudes from one end is defined as the first small diameter cylinder. The second small diameter cylindrical portion 74 constitutes a shaft portion 84 that is configured by the portion 72 and the center electrode 92 of the spark plug 90 forms a discharge portion on the other end side. Thereafter, the spark plug 90 is obtained by assembling the metal shell 91, the insulator 81, the center electrode 92, the terminal 93, and the parallel ground electrode 94.

このスパークプラグ90は、主体金具91のネジ部がエンジンのシリンダヘッドに螺合され、端子93がバッテリに通電されて使用される。これにより、このスパークプラグ90は、エンジンの燃焼室内において放電ギャップで火花放電を行ない、混合気の点火を行なうようになっている。   The spark plug 90 is used with the threaded portion of the metal shell 91 screwed into the cylinder head of the engine and the terminal 93 energized to the battery. As a result, the spark plug 90 performs spark discharge in the discharge gap in the combustion chamber of the engine and ignites the air-fuel mixture.

特開2000−100546号公報Japanese Patent Laid-Open No. 2000-100500

しかし、上記従来の絶縁体用成形体等では、絶縁体の軸線が直線とならず曲がりが生じる場合があることが明らかとなった。このような絶縁体を用いたスパークプラグでは、例えば接地電極を有するものにおいては、主体金具と絶縁体との間で偏芯が生じ、中心電極と主体金具とが絶縁体を通じて放電するいわゆる横飛火が発生し易くなる。この横飛火が頻繁に発生すると、放電ギャップにおける火花放電が弱くなり、着火性に問題を生じるのみならず、絶縁体の表面が溝状に削られるいわゆるチャンネリングが発生し、耐久性が低下することとなってしまう。   However, it has been clarified that in the above-described conventional molded body for an insulator, the axis of the insulator does not become a straight line but may be bent. In a spark plug using such an insulator, for example, in a case having a ground electrode, eccentricity occurs between the metal shell and the insulator, and the center electrode and the metal shell discharge through the insulator, so-called side fire. Is likely to occur. If this side fire occurs frequently, the spark discharge in the discharge gap becomes weak, causing not only a problem in ignitability, but also the so-called channeling in which the surface of the insulator is cut into a groove shape, and the durability is lowered. It will be.

特に、近年は、エンジンのシリンダヘッド上部のスペースの確保等の問題より、小径のスパークプラグが要求されている。また、放電部の放熱(熱引き)を十分に図るため、主体金具のネジ部が長いスパークプラグも要求されている。このような要求に応え、小径かつ長尺化した絶縁体を製造しようとしても、そのような絶縁体用成形体は特に焼成工程において自立することが困難であり、倒れたり傾いたりしてしまい、結果として軸線が直線とならず、曲がった絶縁体として焼成されてしまうことが多かった。この原因としては、スパークプラグの絶縁体のダイヤ部を形成する絶縁体用成形体の大径筒部の軸方向の寸法が短く、互いに十分支持しあうことができなかったことが考えられる。   In particular, in recent years, spark plugs with a small diameter have been required due to problems such as securing a space above the cylinder head of the engine. In addition, a spark plug having a long threaded portion of the metal shell is also required in order to sufficiently dissipate heat (dissipate heat) in the discharge part. In response to such a demand, even when trying to produce a small-diameter and long-sized insulator, such a molded body for an insulator is difficult to stand by in particular in the firing process, and falls or tilts, As a result, the axis was not straight and was often fired as a bent insulator. As a cause of this, it is conceivable that the axial dimension of the large-diameter cylindrical portion of the molded body for insulator forming the diamond portion of the insulator of the spark plug was short and could not be supported sufficiently.

本発明は、上記従来の実情に鑑みてなされたものであって、軸線が直線となる真直ぐな絶縁体を得ることができるスパークプラグの絶縁体用成形体を提供することを解決すべき第1の課題としている。   The present invention has been made in view of the above-described conventional situation, and is to solve the problem by providing a molded body for an insulator of a spark plug capable of obtaining a straight insulator having a straight axis. As an issue.

また、本発明は、横飛火の発生を抑制し、着火性を損なうことなく、かつ優れた耐久性を発揮できるスパークプラグを提供することを解決すべき第2の課題としている。   Moreover, this invention makes it the 2nd problem which should be solved to provide the spark plug which can suppress the generation | occurrence | production of side-fire and can exhibit the outstanding durability, without impairing ignitability.

本発明者らは上記課題を解決するために鋭意研究を行った。そして、スパークプラグの絶縁体用成形体の形状等に着目することにより上記課題を解決できることを発見し、本発明を完成するに至った。   The present inventors have intensively studied to solve the above problems. And it discovered that the said subject could be solved by paying attention to the shape etc. of the molded object for insulators of a spark plug, and came to complete this invention.

すなわち、本発明のスパークプラグの絶縁体用成形体は、軸方向に対し直角方向に突出するフランジ状をなし、自身の軸方向長さが6〜12mmの大径筒部と、該大径筒部の一端側で該大径筒部より小径に形成され、自身の外径が10.8mm以下の第1小径筒部と、該大径筒部の他端側で該大径筒部より小径に形成され、自身の軸方向長さが30mm以上の第2小径筒部とを有し、   That is, the molded article for an insulator of a spark plug according to the present invention has a flange shape protruding in a direction perpendicular to the axial direction, and has a large-diameter cylindrical portion having an axial length of 6 to 12 mm, and the large-diameter cylinder. A first small-diameter cylindrical portion having an outer diameter of 10.8 mm or less and a smaller diameter than the large-diameter cylindrical portion on the other end side of the large-diameter cylindrical portion. A second small-diameter cylindrical portion having an axial length of 30 mm or more,

複数個がさや内で起立かつ整列状態にされて焼成されることにより、スパークプラグの主体金具内に固定されるダイヤ部を該大径筒部が構成し、該スパークプラグの端子が一端から突出される本体部を該第1小径筒部が構成し、該スパークプラグの中心電極が他端側で放電部をなす軸部を該第2小径筒部が構成して該スパークプラグの絶縁体とされるスパークプラグの絶縁体用成形体において、
前記さやを傾斜させながら前記第1小径筒部を前記第2小径筒部に対して下方として起立かつ整列させる際、複数個の前記絶縁体用成形体の前記大径筒部同士が互いに当接するように成形されていることを特徴とする。
The large-diameter cylindrical portion constitutes a diamond portion fixed in the metal shell of the spark plug by firing a plurality of standing and aligned in the sheath, and the terminal of the spark plug protrudes from one end The first small-diameter cylindrical portion is configured as a main body portion, and the second small-diameter cylindrical portion is configured as a shaft portion in which the center electrode of the spark plug forms a discharge portion on the other end side. In a molded body for an insulator of a spark plug to be
When the first small-diameter cylindrical portion is raised and aligned with respect to the second small-diameter cylindrical portion while the sheath is inclined, the large-diameter cylindrical portions of the plurality of molded bodies for insulator come into contact with each other. It is shaped as follows.

本発明のスパークプラグの絶縁体用成形体は、さやを傾斜させながら第1小径筒部を第2小径筒部に対して下方として起立かつ整列させる際、互いの大径筒部同士が当接するように成形されている。これにより、絶縁体用成形体同士が大径筒部で互いに支えあうこととなり、焼成前及び焼成中に傾いたり転倒したりすることを防止できる。   When the first small-diameter cylindrical portion is stood and aligned with the second small-diameter cylindrical portion while the sheath is inclined, the large-diameter cylindrical portions abut against each other. It is shaped as follows. Thereby, the molded bodies for insulators support each other with the large-diameter cylindrical portion, and it is possible to prevent tilting or overturning before firing and during firing.

発明者らの試験結果によれば、本発明の絶縁体用成形体は、大径筒部の軸方向長さが6〜12mmであり、第1小径筒部の外径が10.8mm以下であり、第2小径部の軸方向長さが30mm以上である場合に特に効果が大きい。上記不具合が特に小径でかつ長尺化した絶縁体において顕著だからである。   According to the test results of the inventors, the molded body for insulator according to the present invention has an axial length of the large-diameter cylindrical portion of 6 to 12 mm and an outer diameter of the first small-diameter cylindrical portion of 10.8 mm or less. In particular, the effect is particularly great when the axial length of the second small diameter portion is 30 mm or more. This is because the above-mentioned problem is particularly remarkable in an insulator having a small diameter and a long length.

したがって、本発明のスパークプラグの絶縁体用成形体によれば、軸線が直線となる真直ぐな絶縁体を得ることができる。   Therefore, according to the molded article for an insulator of a spark plug of the present invention, a straight insulator having an axis that is a straight line can be obtained.

また、本発明の絶縁体用成形体は、互いの大径筒部同士が当接するように成形されているため、隣接する絶縁体用成形体の大径筒部に潜り込むことを防止することができる。このため、大径筒部によるダイヤ部に欠けを生じ難く、高い歩留まりで絶縁体を製造することができる。   In addition, since the molded body for insulator of the present invention is molded so that the large-diameter cylindrical portions are in contact with each other, it can be prevented from entering into the large-diameter cylindrical portion of the adjacent molded body for insulator. it can. For this reason, it is hard to produce a crack in the diamond part by a large diameter cylinder part, and an insulator can be manufactured with a high yield.

本発明の絶縁体用成形体は、一つの周りに六つが存在するように前記さや内に整列されることが好ましい。これにより、絶縁体用成形体同士は、第1小径筒部の端面と平行な方向のうちのあらゆる方向から支え合うことができる。このため、特に、焼成前及び焼成中に絶縁体用成形体が傾いたり転倒したりすることを防止する効果が大きくなる。   It is preferable that the molded body for insulator of the present invention is aligned in the sheath so that there are six around one. Thereby, the molded object for insulators can be supported from all directions among the directions parallel to the end surface of a 1st small diameter cylinder part. For this reason, especially the effect which prevents that the molded object for insulators inclines or falls before baking and during baking becomes large.

発明者らの試験結果によれば、本発明の絶縁体用成形体は、本体部の外径が9.0mm以下であり、ダイヤ部における他端部の縁から軸部の端面までの軸方向の長さが25mm以上であり、ダイヤ部の軸方向の長さが5〜10mmの絶縁体にされる場合に特に効果が大きい。上記不具合が特に小径でかつ長尺化した絶縁体において顕著だからである。   According to the test results of the inventors, the molded body for insulator of the present invention has an outer diameter of the main body portion of 9.0 mm or less, and the axial direction from the edge of the other end of the diamond portion to the end face of the shaft portion This is particularly effective when the insulator is 25 mm or more in length and the length of the diamond portion in the axial direction is 5 to 10 mm. This is because the above-mentioned problem is particularly remarkable in an insulator having a small diameter and a long length.

本発明のスパークプラグの製造方法は、軸方向に対し直角方向に突出するフランジ状をなし、自身の軸方向長さが6〜12mmの大径筒部と、該大径筒部の一端側で該大径筒部より小径に形成され、自身の外径が10.8mm以下の第1小径筒部と、該大径筒部の他端側で該大径筒部より小径に形成され、自身の軸方向長さが30mm以上の第2小径筒部とを有するスパークプラグの絶縁体用成形体を成形する第1工程と、
複数個の該絶縁体用成形体をさや内で起立かつ整列状態で焼成することにより、該大径筒部からなり、該スパークプラグの主体金具内に固定されるダイヤ部と、該第1小径筒部からなり、該スパークプラグの端子が一端から突出される本体部と、該第2小径筒部からなり、該スパークプラグの中心電極が他端側で放電部をなす軸部とを有する該スパークプラグの絶縁体を得る第2工程とを備えたスパークプラグの製造方法において、
前記第1工程は、前記第2工程時に前記さやを傾斜させながら前記第1小径筒部を前記第2小径筒部に対して下方として起立かつ整列させる際、複数個の前記絶縁体用成形体の前記大径筒部同士が互いに当接するように各該絶縁体用成形体を成形することを特徴とする。
The spark plug manufacturing method of the present invention has a flange shape projecting in a direction perpendicular to the axial direction, and has a large-diameter cylindrical portion having an axial length of 6 to 12 mm, and one end side of the large-diameter cylindrical portion. The first small-diameter cylindrical portion having a smaller diameter than the large-diameter cylindrical portion, and having an outer diameter of 10.8 mm or less, and the other end of the large-diameter cylindrical portion is smaller in diameter than the large-diameter cylindrical portion, A first step of forming a molded body for an insulator of a spark plug having a second small diameter cylindrical portion having an axial length of 30 mm or more;
A plurality of the molded bodies for insulator are fired in an upright and aligned state in a sheath to form the large diameter cylindrical portion, the diamond portion fixed in the metal shell of the spark plug, and the first small diameter A main body portion that includes a cylindrical portion, and a terminal of the spark plug that protrudes from one end; and a shaft portion that includes the second small-diameter cylindrical portion and the center electrode of the spark plug forms a discharge portion on the other end side. In the manufacturing method of a spark plug comprising the second step of obtaining an insulator of the spark plug,
In the first step, when the first small-diameter cylindrical portion is raised and aligned with respect to the second small-diameter cylindrical portion while tilting the sheath in the second step, a plurality of the molded bodies for insulator are formed. Each of the molded bodies for an insulator is formed such that the large-diameter cylindrical portions are in contact with each other.

本発明の製造方法では、まず、第1工程において、スパークプラグの絶縁体用成形体を成形する。そして、第2工程において、複数個の該絶縁体用成形体をさや内で起立かつ整列状態で焼成することにより、スパークプラグの絶縁体を得る。   In the manufacturing method of the present invention, first, in a first step, a molded body for an insulator of a spark plug is molded. Then, in the second step, the plurality of molded bodies for insulator are fired in an upright and aligned state in the sheath, thereby obtaining an insulator for a spark plug.

本発明の製造方法は、第1工程において、第2工程時にさやを傾斜させながら絶縁体用成形体の第1小径筒部を第2小径筒部に対して下方として起立かつ整列させる際、複数個の絶縁体用成形体の大径筒部同士が互いに当接するように絶縁体用成形体を成形するのである。このため、軸線が直線となる真直ぐな絶縁体が得られることから、横飛火の発生を抑制し、着火性を損なうことなく、かつ優れた耐久性を発揮できるスパークプラグを製造することができる。   The manufacturing method according to the present invention includes a plurality of methods for raising and aligning the first small-diameter cylindrical portion of the molded article for insulator as a lower side with respect to the second small-diameter cylindrical portion while tilting the sheath in the first step. The molded body for insulator is molded so that the large-diameter cylindrical portions of the individual molded bodies for insulator are in contact with each other. For this reason, since a straight insulator whose axis is a straight line can be obtained, it is possible to manufacture a spark plug that suppresses the occurrence of side fire and can exhibit excellent durability without impairing ignitability.

また、本発明のスパークプラグは、筒状の主体金具と、該主体金具の軸方向に延在するように該主体金具内に固定され、軸孔を有する筒状の絶縁体と、該主体金具の軸方向に延在し、先端側が放電部をなすように該絶縁体の先端に配置され、後端が該絶縁体内に固定された中心電極と、該主体金具の軸方向に延在し、先端が該絶縁体内で該中心電極に電気的に接続され、後端を該絶縁体の後端から突出させる端子とを備え、該主体金具に一端が固定された接地電極の他端が該放電部との間に該放電ギャップを形成するか、又は該主体金具自体が該放電部との間に放電ギャップを形成するスパークプラグにおいて、
前記絶縁体は上記絶縁体用成形体が焼成されたものであることを特徴とする。
The spark plug of the present invention includes a cylindrical metal shell, a cylindrical insulator fixed in the metal shell so as to extend in the axial direction of the metal shell, and having a shaft hole, and the metal shell. Extending at the front end side of the insulator so as to form a discharge portion, the rear end is fixed in the insulator, and extends in the axial direction of the metal shell, A terminal having a tip electrically connected to the central electrode in the insulator and a rear end projecting from the rear end of the insulator, the other end of the ground electrode having one end fixed to the metal shell being the discharge In the spark plug in which the discharge gap is formed with the discharge portion or the metal shell itself forms the discharge gap with the discharge portion,
The insulator is a product obtained by firing the molded body for insulator.

本発明のスパークプラグは、絶縁体の軸線が直線となる真直ぐなものであることから、横飛火の発生を抑制し、着火性を損なうことなく、かつ優れた耐久性を発揮できる。   Since the spark plug of the present invention is a straight one in which the axis of the insulator is a straight line, the occurrence of side fire is suppressed, and excellent durability can be exhibited without impairing ignitability.

以下、図面を参照しつつ、試験品1〜18により本発明を説明する。   Hereinafter, the present invention will be described with reference to test products 1 to 18 with reference to the drawings.

第1工程として、まずAl23粉末、SiO2粉末等の原料粉末、フラックス(副成分)やバインダ等と水とを含むスラリを用意する。このスラリをスプレードライ法によって造粒し、得られた造粒粉末を用いたラバープレス法により、試験品1〜18の絶縁体用成形体1を成形する。 As the first step, first, a slurry containing raw material powder such as Al 2 O 3 powder and SiO 2 powder, flux (subcomponent), binder and the like and water is prepared. The slurry is granulated by a spray drying method, and the molded body 1 for an insulator of test products 1 to 18 is molded by a rubber press method using the obtained granulated powder.

各絶縁体用成形体1は、図1(A)に示すように、フランジ状をなす大径筒部3と、大径筒部3の一端側で大径筒部3より小径に形成された第1小径筒部2と、大径筒部3の他端側で大径筒部3より小径に形成された第2小径筒部4とを有している。また、絶縁体用成形体1の軸方向には、プレスピンによる軸孔5が貫設されている。   As shown in FIG. 1 (A), each molded body 1 for an insulator is formed with a large-diameter cylindrical portion 3 having a flange shape and a diameter smaller than that of the large-diameter cylindrical portion 3 on one end side of the large-diameter cylindrical portion 3. It has the 1st small diameter cylinder part 2, and the 2nd small diameter cylinder part 4 formed in the other end side of the large diameter cylinder part 3 in the diameter smaller than the large diameter cylinder part 3. FIG. Further, a shaft hole 5 is formed by a press pin in the axial direction of the molded body 1 for insulator.

これらの絶縁体用成形体1は、第2小径筒部4の外周面が他端側に向かうほど小径となっている。次いで、絶縁体用成形体1は研削工程を経て外形が整えられる。この際、第1小径筒部2の一端側の外周面にはコルゲーションを設けたりするが、特に小型の絶縁体を製造する場合にはコルゲーションを設けない場合もある。   These molded bodies for insulator 1 have a smaller diameter as the outer peripheral surface of the second small-diameter cylindrical portion 4 is directed to the other end side. Next, the outer shape of the molded body 1 for insulator is adjusted through a grinding process. At this time, corrugation is provided on the outer peripheral surface on the one end side of the first small-diameter cylindrical portion 2, but there is a case where the corrugation is not provided particularly when a small-sized insulator is manufactured.

このようにして形成された絶縁体用成形体1は、例えば試験品1については、第1小径筒部2の外径Φ0が10.8mmであり、大径筒部3の他端側の縁から第2小径筒部4の端面までの軸方向の長さL0が27.6mmであり、大径筒部3の軸方向の長さD0が6.0mmである。これら試験品1〜18の絶縁体用成形体1の寸法を表1に示す。   In the molded body 1 for an insulator thus formed, for example, for the test product 1, the outer diameter Φ0 of the first small-diameter cylindrical portion 2 is 10.8 mm, and the edge on the other end side of the large-diameter cylindrical portion 3 To the end face of the second small-diameter cylindrical portion 4 is 27.6 mm in the axial direction L0, and the axial length D0 of the large-diameter cylindrical portion 3 is 6.0 mm. Table 1 shows the dimensions of the molded body 1 for an insulator of these test products 1-18.

Figure 2006185795
Figure 2006185795

第2工程として、各絶縁体用成形体1を焼成する。この際、各絶縁体用成形体1は、図2(A)、(B)及び図3に示すように、複数個がさや20内で起立かつ整列状態にされる。図2(A)、(B)は水平方向から見た一部断面の側面図であり、図3は上方から見た平面図である。図2(A)、(B)では、絶縁体用成形体1は水平面に対して傾斜されたさや20内の底面に整列されていく途中の状態を示している。ここで、通常、各絶縁体用成形体1は、図2(A)のように、さや20内の底面に整列される。絶縁体用成形体1は互いの大径筒部3同士が当接するように成形されているため、隣接する絶縁体用成形体1の大径筒部3に潜りこむことを防止することができ、また、並べる際に大径筒部3を基点として整列できるため、図2(B)に示すような各絶縁体用成形体1がさや20内の底面に垂直ではない状態を防ぎ、大径筒部3に欠けを生じることや絶縁体として曲がりを生じることを回避することができる。図3は、さや20内に整列された絶縁体用成形体1の平面図である。絶縁体用成形体1はこの状態で焼成温度1560°Cにて1時間程度焼成される。   As a 2nd process, each molded object 1 for insulators is baked. At this time, as shown in FIGS. 2A, 2 </ b> B, and FIG. 3, a plurality of the molded bodies 1 for insulators are erected and aligned in the sheath 20. 2A and 2B are side views of a partial cross section viewed from the horizontal direction, and FIG. 3 is a plan view viewed from above. 2A and 2B show a state in which the molded body for insulator 1 is in the process of being aligned with the bottom surface of the sheath 20 that is inclined with respect to the horizontal plane. Here, normally, each insulator molded body 1 is aligned with the bottom surface in the sheath 20 as shown in FIG. Since the molded body 1 for an insulator is molded so that the large-diameter cylindrical portions 3 are in contact with each other, it is possible to prevent the insulating molded body 1 from entering the large-diameter cylindrical portion 3 of the adjacent molded body 1 for an insulator. In addition, since the large-diameter cylindrical portions 3 can be aligned at the base point when they are arranged, each of the insulator molded bodies 1 as shown in FIG. 2 (B) is prevented from being perpendicular to the bottom surface in the sheath 20 and has a large diameter. It is possible to avoid occurrence of chipping in the cylindrical portion 3 and bending as an insulator. FIG. 3 is a plan view of the insulator molded body 1 aligned in the sheath 20. In this state, the insulator molded body 1 is fired at a firing temperature of 1560 ° C. for about 1 hour.

この際、各絶縁体用成形体1は、一つの絶縁体用成形体1の回りに六つの絶縁体用成形体1が存在するように、かつ第1小径筒部2の端面を下方として、さや20内に整列される。   At this time, each molded body 1 for insulator is such that there are six molded bodies 1 for insulator around one molded body 1 for insulator, and the end surface of the first small-diameter cylindrical portion 2 is downward, Aligned within the sheath 20.

ここで、各絶縁体用成形体1は、従来に比較して6mm以上と十分に長い大径筒部を有していることから、さや20を傾斜させながら第1小径筒部2の端面を下方として起立かつ整列させる際、互いの大径筒部3同士が線接触で当接する。   Here, since each molded body 1 for insulator has a large-diameter cylindrical portion that is sufficiently longer than 6 mm as compared with the conventional case, the end surface of the first small-diameter cylindrical portion 2 is formed while the sheath 20 is inclined. When standing and aligning as the lower side, the large-diameter cylindrical portions 3 come into contact with each other by line contact.

こうして、図1(B)に示す絶縁体11が得られる。絶縁体11のダイヤ部13は絶縁体用成形体1の大径筒部3が構成し、絶縁体11の本体部12は絶縁体用成形体1の第1小径筒部2が構成し、絶縁体11の軸部14は第2小径筒部4が構成している。また、絶縁体11の軸方向には、軸孔15が貫設されている。   Thus, the insulator 11 shown in FIG. 1B is obtained. The diamond portion 13 of the insulator 11 is constituted by the large-diameter cylindrical portion 3 of the molded body 1 for insulator, and the main body portion 12 of the insulator 11 is constituted by the first small-diameter cylindrical portion 2 of the molded body 1 for insulator. The shaft portion 14 of the body 11 is constituted by the second small diameter cylindrical portion 4. A shaft hole 15 is provided in the axial direction of the insulator 11.

例えば、試験品1の絶縁体11は、本体部12の外径Φ1が9.0mmであり、ダイヤ部13の他端側の縁から軸部14の端面までの軸方向の長さL1が23mmであり、ダイヤ部13の軸方向の長さD1が5.0mmである。これら試験品1〜18の絶縁体11の寸法を表2に示す。   For example, the insulator 11 of the test article 1 has an outer diameter Φ1 of the main body portion 12 of 9.0 mm, and an axial length L1 from the edge on the other end side of the diamond portion 13 to the end face of the shaft portion 14 is 23 mm. The length D1 in the axial direction of the diamond portion 13 is 5.0 mm. Table 2 shows the dimensions of the insulators 11 of these test products 1 to 18.

Figure 2006185795
Figure 2006185795

試験品1〜18の絶縁体11について、先振れ量H1を求めた。以下、先振れ量H1の求め方及び評価を説明する。   For the insulators 11 of the test products 1 to 18, the runout amount H1 was obtained. Hereinafter, how to determine the amount of run-out H1 and evaluation will be described.

(1)求め方
絶縁体11を示す図4において、軸部14を円筒状をなす胴部14aと、テーパ面を含む脚長部14bとに分けて説明する。まず、矢印で示す胴部14aの中間位置を複数の図示しないローラで保持する。また、ダイヤルゲージ(ピーコック社製PCN−7A)の測定部40を脚長部14bの先端部に当接させ、その位置でのダイヤルゲージの指示を0とする。そして、ローラを回転させることによって絶縁体11を回転させる。この際、絶縁体11が曲がっていれば、脚長部14bの先端部が移動し、それに伴ってダイヤルゲージの指示が振れることとなる。このダイヤルゲージの指示の最小値と最大値とを読み取り、その差を求めることによって先振れ量H1が求まる。
(1) How to Find In FIG. 4 showing the insulator 11, the shaft portion 14 will be described by dividing it into a cylindrical body portion 14a and a leg length portion 14b including a tapered surface. First, an intermediate position of the body portion 14a indicated by an arrow is held by a plurality of rollers (not shown). In addition, the measurement part 40 of the dial gauge (PCN-7A manufactured by Peacock) is brought into contact with the tip of the leg length part 14b, and the dial gauge instruction at that position is set to zero. And the insulator 11 is rotated by rotating a roller. At this time, if the insulator 11 is bent, the distal end portion of the leg length portion 14b moves, and accordingly, the dial gauge instruction swings. The minimum amount and maximum value of the dial gauge instruction are read and the difference is obtained to determine the amount of forward swing H1.

(2)評価
先振れ量H1が0.1mm以下の場合に○とした。また、先振れ量H1が0.1mmより大きい場合に×と判定した。その結果を表3に示す。
(2) Evaluation “O” was given when the runout amount H1 was 0.1 mm or less. Moreover, when the runout amount H1 was larger than 0.1 mm, it was determined as x. The results are shown in Table 3.

Figure 2006185795
Figure 2006185795

表3より、試験品1、4、5、7、10、11、13、16〜18の絶縁体11は軸線が直線となる真直ぐなものであることがわかる。これは、これらの絶縁体用成形体11同士が大径筒部3で互いに支えあうこととなり、焼成前及び焼成中に傾いたり転倒したりすることを防止しているからである。特に、一つの絶縁体用成形体1の回りに六つの絶縁体用成形体1が存在するようにさや20内に整列させたため、第1小径筒部2の端面と平行な方向のうちのあらゆる方向から支え合ったものと思われる。   From Table 3, it can be seen that the insulators 11 of the test products 1, 4, 5, 7, 10, 11, 13, 16 to 18 are straight ones whose axis is a straight line. This is because these molded bodies for insulator 11 support each other with the large-diameter cylindrical portion 3 and prevent tilting or overturning before and during firing. In particular, since it is aligned in the sheath 20 so that there are six insulator molded bodies 1 around one insulator molded body 1, any of the directions parallel to the end face of the first small-diameter cylindrical portion 2 can be used. It seems that they supported each other from the direction.

したがって、これらのスパークプラグの絶縁体用成形体1によれば、軸線が直線となる真直ぐな絶縁体11を製造できることがわかる。   Therefore, it can be seen that according to these spark plug insulator molded bodies 1, it is possible to manufacture a straight insulator 11 whose axis is a straight line.

また、これらの絶縁体用成形体1は、互いの大径筒部3同士が当接するように成形されていたため、隣接する絶縁体用成形体1の大径筒部3に潜り込むことを防止することができた。このため、大径筒部3によるダイヤ部13に欠けを生じ難く、高い歩留まりで絶縁体11を製造することができる。   Moreover, since these molded bodies 1 for insulators are molded so that the large-diameter cylindrical portions 3 are in contact with each other, they are prevented from entering the large-diameter cylindrical portions 3 of the adjacent molded bodies 1 for insulators. I was able to. For this reason, the diamond part 13 by the large diameter cylindrical part 3 is hard to be chipped, and the insulator 11 can be manufactured with a high yield.

そして、表3において、外径Φ1が9.0mm以下、長さL1が25mm以上である試験品3、4、6、7、8、9、10、12、13、14、15、16の絶縁体11を見れば、長さD1が3.5mmの場合に先振れ量H1が全て×となっている(試験品3、6、8、14)。換言すれば、外径Φ0が10.8mm以下、長さL0が30mm以上である試験品3、4、6、7、8、9、10、12、13、14、15、16の絶縁体用成形体1を見れば、長さD0が4.2mmの場合に先振れ量H1が全て×となっている(試験品3、6、8、14)。   In Table 3, the insulation of test products 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16 having an outer diameter Φ1 of 9.0 mm or less and a length L1 of 25 mm or more. If the body 11 is seen, when the length D1 is 3.5 mm, the amount of forward swing H1 is all x (test products 3, 6, 8, 14). In other words, for insulators of test products 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16 having an outer diameter Φ0 of 10.8 mm or less and a length L0 of 30 mm or more. Looking at the molded body 1, when the length D0 is 4.2 mm, the runout amount H1 is all x (test products 3, 6, 8, and 14).

それに対して、試験品3、4、6、7、8、9、10、12、13、14、15、16の絶縁体11において、長さD1が5〜10mmの場合の先振れ量H1は、試験品9、12、15を除き、○である。換言すれば、試験品3、4、6、7、8、9、10、12、13、14、15、16の絶縁体用成形体1において、長さD0が6〜12mmの場合の先振れ量H1は、試験品9、12、15を除き、○である。   On the other hand, in the insulator 11 of the test products 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, the runout amount H1 when the length D1 is 5 to 10 mm is , Except for the test products 9, 12, and 15. In other words, in the molded article for insulator 1 of the test products 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, the runout when the length D0 is 6 to 12 mm The amount H1 is ◯ except for the test products 9, 12, and 15.

これにより、外径Φ1が9.0mm以下、長さL1が25mm以上、長さD1が5〜10mmの絶縁体11であれば、換言すれば、外径Φ0が10.8mm以下、長さL0が30mm以上、長さD0が6〜12mmの絶縁体用成形体1であれば、高い歩留まりで軸線が直線となる真直ぐな絶縁体11を製造できることがわかる。この絶縁体11の先振れ量H1は後述する施釉の後でも求めることができる。   Thus, if the insulator 11 has an outer diameter Φ1 of 9.0 mm or less, a length L1 of 25 mm or more, and a length D1 of 5 to 10 mm, in other words, the outer diameter Φ0 is 10.8 mm or less and the length L0. Is 30 mm or more and the length D0 is 6 to 12 mm, it can be seen that a straight insulator 11 having a high yield and a straight axis can be produced. The forward deflection amount H1 of the insulator 11 can be obtained even after glazing described later.

次に、試験品1〜18の絶縁体11に主体金具31、中心電極32、端子33及び平行接地電極34を組み付けて、図5に示すスパークプラグ30を得た。なお、組み付けてスパークプラグ30とする前に、各絶縁体11には釉薬を施釉している。この釉薬の組成及び施釉箇所は従来より公知のものと同じである。   Next, the metal shell 31, the center electrode 32, the terminal 33, and the parallel ground electrode 34 were assembled | attached to the insulator 11 of the test products 1-18, and the spark plug 30 shown in FIG. 5 was obtained. Note that glaze is applied to each insulator 11 before the spark plug 30 is assembled. The composition of the glaze and the location of the glaze are the same as those conventionally known.

このスパークプラグ30は筒状の主体金具31を備えている。主体金具31内には、主体金具31の軸方向に延在し、両端を主体金具31の両端から突出させて絶縁体11が固定されている。また、主体金具31の軸方向には中心電極32が延在し、中心電極32の先端側は放電部をなすように絶縁体11の先端に配置され、中心電極32の後端は絶縁体11内で固定されている。さらに、主体金具31の軸方向には端子33が延在し、端子33の先端が絶縁体11内で中心電極32に電気的に接続され、後端を絶縁体11の後端から突出させている。主体金具31には平行接地電極34の一端が固定され、この平行接地電極34の他端が中心電極32の放電部との間に放電ギャップを形成している。   The spark plug 30 includes a cylindrical metal shell 31. The insulator 11 is fixed in the metal shell 31 so as to extend in the axial direction of the metal shell 31 and project both ends from both ends of the metal shell 31. A central electrode 32 extends in the axial direction of the metal shell 31, the distal end side of the central electrode 32 is disposed at the distal end of the insulator 11 so as to form a discharge portion, and the rear end of the central electrode 32 is disposed at the insulator 11. It is fixed inside. Further, the terminal 33 extends in the axial direction of the metal shell 31, the tip of the terminal 33 is electrically connected to the center electrode 32 in the insulator 11, and the rear end protrudes from the rear end of the insulator 11. Yes. One end of the parallel ground electrode 34 is fixed to the metal shell 31, and a discharge gap is formed between the other end of the parallel ground electrode 34 and the discharge portion of the center electrode 32.

試験品1〜18の絶縁体11を用いて組付けた各スパークプラグ30について、偏芯量H2を求めた。以下、偏芯量H2の求め方及び評価を説明する。   The eccentricity H2 was calculated | required about each spark plug 30 assembled | attached using the insulator 11 of the test products 1-18. Hereinafter, how to calculate and evaluate the eccentricity H2 will be described.

(1)求め方
絶縁体11と主体金具31との組付け後において、スパークプラグ30の先端側から画像を撮影する。この際、平行接地電極34を切断したり、主体金具31の外側へ折り曲げたりして、画像撮影の妨げとならないようにしている。なお、この撮影には、例えばニコン社製CNC画像測定システムNEXIVを用いることができる。
(1) How to Obtain After the insulator 11 and the metal shell 31 are assembled, an image is taken from the front end side of the spark plug 30. At this time, the parallel ground electrode 34 is cut or bent to the outside of the metal shell 31 so as not to hinder image shooting. For this photographing, for example, a CNC image measurement system NEXIV manufactured by Nikon Corporation can be used.

撮影した画像をパーソナルコンピュータ等で処理し、主体金具31の内周円の中心点及び絶縁体11の先端面の外周円の中心点を座標化する。そして、その2点間距離を算出することにより、偏芯量H2が求まる。なお、撮影した画像は適宜、解析、画質補正等を行ってもよい。   The captured image is processed by a personal computer or the like, and the center point of the inner circle of the metallic shell 31 and the center point of the outer circle of the tip surface of the insulator 11 are coordinated. And the eccentric amount H2 is calculated | required by calculating the distance between the two points. Note that the captured image may be subjected to analysis, image quality correction, and the like as appropriate.

(2)評価
偏芯量H2についても、0.1mm以下の場合に○とした。また、偏芯量H2が0.1mmより大きい場合に×と判定した。その結果を表4に示す。
(2) Evaluation The eccentricity H2 was also evaluated as ◯ when it was 0.1 mm or less. Moreover, it determined with x when eccentricity H2 was larger than 0.1 mm. The results are shown in Table 4.

Figure 2006185795
Figure 2006185795

表4より、試験品1、2、4〜7、9〜13、15〜18の絶縁体11を用いれば、横飛火の発生を抑制し、着火性を損なうことなく、かつ優れた耐久性を発揮できるスパークプラグを製造できることがわかる。   From Table 4, if the insulators 11 of the test products 1, 2, 4 to 7, 9 to 13, and 15 to 18 are used, the occurrence of side fire is suppressed, and the excellent durability is obtained without impairing the ignitability. It turns out that the spark plug which can be demonstrated can be manufactured.

そして、表4において、外径Φ1が9.0mm以下、長さL1が25mm以上である試験品3、4、6、7、8、9、10、12、13、14、15、16の絶縁体11を見れば、長さD1が3.5mmの場合に偏芯量H2が×となる事態を生じる(試験品3、8、14)。換言すれば、外径Φ0が10.8mm以下、長さL0が30mm以上である試験品3、4、6、7、8、9、10、12、13、14、15、16の絶縁体用成形体1を見れば、長さD0が4.2mmの場合に偏芯量H2が×となる事態を生じる(試験品3、8、14)。   And in Table 4, the insulation of the test products 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16 having an outer diameter Φ1 of 9.0 mm or less and a length L1 of 25 mm or more. When the body 11 is viewed, a situation occurs in which the eccentricity H2 becomes x when the length D1 is 3.5 mm (test products 3, 8, and 14). In other words, for insulators of test products 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16 having an outer diameter Φ0 of 10.8 mm or less and a length L0 of 30 mm or more. If the molded object 1 is seen, when the length D0 is 4.2 mm, the eccentricity H2 will become x (test product 3, 8, 14).

それに対して、試験品3、4、6、7、8、9、10、12、13、14、15、16の絶縁体11において、長さD1が5〜10mmの場合には、偏芯量H2がすべて○である(試験品4、6、7、9、10、12、13、15、16)。換言すれば、試験品3、4、6、7、8、9、10、12、13、14、15、16の絶縁体用成形体1において、長さD0が6〜12mmの場合には、偏芯量H2がすべて○である(試験品4、6、7、9、10、12、13、15、16)。   On the other hand, when the length D1 is 5 to 10 mm in the insulators 11 of the test products 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, the amount of eccentricity H2 is all (circle) (test goods 4, 6, 7, 9, 10, 12, 13, 15, 16). In other words, when the length D0 is 6 to 12 mm in the molded body for insulator 1 of the test products 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, The eccentricity H2 is all ◯ (test products 4, 6, 7, 9, 10, 12, 13, 15, 16).

これにより、外径Φ1が9.0mm以下、長さL1が25mm以上、長さD1が5〜10mmの絶縁体11であれば、優れたスパークプラグ30を製造できることがわかる。換言すれば、外径Φ0が10.8mm以下、長さL0が30mm以上、長さD0が6〜12mmの絶縁体用成形体11であれば、優れたスパークプラグ30を製造できることがわかる。   Accordingly, it can be seen that an excellent spark plug 30 can be manufactured if the insulator 11 has an outer diameter Φ1 of 9.0 mm or less, a length L1 of 25 mm or more, and a length D1 of 5 to 10 mm. In other words, it can be seen that an excellent spark plug 30 can be manufactured if the molded body 11 for an insulator has an outer diameter Φ0 of 10.8 mm or less, a length L0 of 30 mm or more, and a length D0 of 6 to 12 mm.

以上において、本発明を試験品1〜18に即して説明したが、本発明は上記試験品1〜18に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。   In the above, the present invention has been described with reference to the test products 1 to 18. However, the present invention is not limited to the test products 1 to 18, and can be appropriately modified and applied without departing from the spirit of the present invention. Needless to say.

本発明は高出力を達成するエンジンに利用可能である。   The present invention is applicable to an engine that achieves high output.

試験例1〜18に係り、図(A)は絶縁体用成形体の断面図、図(B)は絶縁体の断面図である。In connection with Test Examples 1 to 18, FIG. (A) is a cross-sectional view of a molded body for an insulator, and FIG. (B) is a cross-sectional view of the insulator. 試験例1〜18に係り、さや内に整列された絶縁体用成形体の一部断面の側面図である。It is a side view of the partial cross section of the molded object for insulators which concerns on Test Examples 1-18 and was arranged in the sheath. 試験例1〜18に係り、さや内に整列された絶縁体用成形体の平面図である。It is a top view of the molded object for insulators which concerns on Test Examples 1-18 and was arranged in the sheath. 試験例1〜18に係り、先振れ量を試験するための絶縁体用成形体の正面図である。It is a front view of the molded object for insulators concerning Test Examples 1-18 for testing the amount of runout. 試験例1〜18に係り、スパークプラグの断面図である。It is sectional drawing of a spark plug in connection with Test Examples 1-18. 従来のスパークプラグの断面図である。It is sectional drawing of the conventional spark plug. 従来の絶縁体用成形体の断面図である。It is sectional drawing of the conventional molded object for insulators.

符号の説明Explanation of symbols

1…絶縁体用成形体
2…第1小径筒部
3…大径筒部
4…第2小径筒部
11…絶縁体
12…本体部
13…ダイヤ部
14…軸部
15…軸孔
20…さや
30…スパークプラグ
31…主体金具
32…中心電極
33…端子
34…平行接地電極
DESCRIPTION OF SYMBOLS 1 ... Molded body for insulators 2 ... 1st small diameter cylinder part 3 ... Large diameter cylinder part 4 ... 2nd small diameter cylinder part 11 ... Insulator 12 ... Main body part 13 ... Diamond part 14 ... Shaft part 15 ... Shaft hole 20 ... Saya 30 ... Spark plug 31 ... Metal shell 32 ... Center electrode 33 ... Terminal 34 ... Parallel ground electrode

Claims (5)

軸方向に対し直角方向に突出するフランジ状をなし、自身の軸方向長さが6〜12mmの大径筒部と、該大径筒部の一端側で該大径筒部より小径に形成され、自身の外径が10.8mm以下の第1小径筒部と、該大径筒部の他端側で該大径筒部より小径に形成され、自身の軸方向長さが30mm以上の第2小径筒部とを有し、
複数個がさや内で起立かつ整列状態にされて焼成されることにより、スパークプラグの主体金具内に固定されるダイヤ部を該大径筒部が構成し、該スパークプラグの端子が一端から突出される本体部を該第1小径筒部が構成し、該スパークプラグの中心電極が他端側で放電部をなす軸部を該第2小径筒部が構成して該スパークプラグの絶縁体とされるスパークプラグの絶縁体用成形体において、
前記さやを傾斜させながら前記第1小径筒部を前記第2小径筒部に対して下方として起立かつ整列させる際、複数個の前記絶縁体用成形体の前記大径筒部同士が互いに当接するように成形されていることを特徴とするスパークプラグの絶縁体用成形体。
It has a flange shape that protrudes in a direction perpendicular to the axial direction, and has a large-diameter cylindrical portion having an axial length of 6 to 12 mm and a smaller diameter than the large-diameter cylindrical portion on one end side of the large-diameter cylindrical portion. A first small-diameter cylindrical portion having an outer diameter of 10.8 mm or less and a smaller diameter than the large-diameter cylindrical portion at the other end of the large-diameter cylindrical portion, and an axial length of 30 mm or more. 2 having a small diameter cylindrical portion,
The large-diameter cylindrical portion constitutes a diamond portion fixed in the metal shell of the spark plug by firing a plurality of standing and aligned in the sheath, and the terminal of the spark plug protrudes from one end The first small-diameter cylindrical portion is configured as a main body portion, and the second small-diameter cylindrical portion is configured as a shaft portion in which the center electrode of the spark plug forms a discharge portion on the other end side. In a molded body for an insulator of a spark plug to be
When the first small-diameter cylindrical portion is raised and aligned with respect to the second small-diameter cylindrical portion while the sheath is inclined, the large-diameter cylindrical portions of the plurality of molded bodies for insulator come into contact with each other. A molded body for an insulator of a spark plug, which is molded as described above.
前記絶縁体用成形体は、一つの周りに六つが存在するように前記さや内に整列されることを特徴とする請求項1記載のスパークプラグの絶縁体用成形体。   2. The molded body for an insulator of a spark plug according to claim 1, wherein the molded body for an insulator is aligned in the sheath so that there are six around one. 前記本体部の外径が9.0mm以下であり、前記ダイヤ部における前記他端側の縁から前記軸部の端面までの軸方向長さが25mm以上であり、該ダイヤ部の軸方向長さが5〜10mmの前記絶縁体にされることを特徴とする請求項1又は2記載のスパークプラグの絶縁体用成形体。   The outer diameter of the main body portion is 9.0 mm or less, the axial length from the edge on the other end side to the end surface of the shaft portion in the diamond portion is 25 mm or more, and the axial length of the diamond portion The molded body for an insulator of a spark plug according to claim 1 or 2, wherein the insulator is 5 to 10 mm. 軸方向に対し直角方向に突出するフランジ状をなし、自身の軸方向長さが6〜12mmの大径筒部と、該大径筒部の一端側で該大径筒部より小径に形成され、自身の外径が10.8mm以下の第1小径筒部と、該大径筒部の他端側で該大径筒部より小径に形成され、自身の軸方向長さが30mm以上の第2小径筒部とを有するスパークプラグの絶縁体用成形体を成形する第1工程と、
複数個の該絶縁体用成形体をさや内で起立かつ整列状態で焼成することにより、該大径筒部からなり、該スパークプラグの主体金具内に固定されるダイヤ部と、該第1小径筒部からなり、該スパークプラグの端子が一端から突出される本体部と、該第2小径筒部からなり、該スパークプラグの中心電極が他端側で放電部をなす軸部とを有する該スパークプラグの絶縁体を得る第2工程とを備えたスパークプラグの製造方法において、
前記第1工程は、前記第2工程時に前記さやを傾斜させながら前記第1小径筒部を前記第2小径筒部に対して下方として起立かつ整列させる際、複数個の前記絶縁体用成形体の前記大径筒部同士が互いに当接するように各該絶縁体用成形体を成形することを特徴とするスパークプラグの製造方法。
It has a flange shape that protrudes in a direction perpendicular to the axial direction, and has a large-diameter cylindrical portion having an axial length of 6 to 12 mm and a smaller diameter than the large-diameter cylindrical portion on one end side of the large-diameter cylindrical portion. A first small-diameter cylindrical portion having an outer diameter of 10.8 mm or less and a smaller diameter than the large-diameter cylindrical portion at the other end of the large-diameter cylindrical portion, and an axial length of 30 mm or more. A first step of forming a molded body for an insulator of a spark plug having two small diameter cylindrical portions;
A plurality of the molded bodies for insulator are fired in an upright and aligned state in a sheath to form the large diameter cylindrical portion, the diamond portion fixed in the metal shell of the spark plug, and the first small diameter A main body portion that includes a cylindrical portion, and a terminal of the spark plug that protrudes from one end; and a shaft portion that includes the second small-diameter cylindrical portion and the center electrode of the spark plug forms a discharge portion on the other end side. In the manufacturing method of a spark plug comprising the second step of obtaining an insulator of the spark plug,
In the first step, when the first small-diameter cylindrical portion is raised and aligned with respect to the second small-diameter cylindrical portion while tilting the sheath in the second step, a plurality of the molded bodies for insulator are formed. A method for manufacturing a spark plug, comprising molding each of the molded bodies for an insulator so that the large-diameter cylindrical portions are in contact with each other.
筒状の主体金具と、該主体金具の軸方向に延在するように該主体金具内に固定され、軸孔を有する筒状の絶縁体と、該主体金具の軸方向に延在し、先端側が放電部をなすように該絶縁体の先端に配置され、後端が該絶縁体内に固定された中心電極と、該主体金具の軸方向に延在し、先端が該絶縁体内で該中心電極に電気的に接続され、後端を該絶縁体の後端から突出させる端子とを備え、該主体金具に一端が固定された接地電極の他端が該放電部との間に該放電ギャップを形成するか、又は該主体金具自体が該放電部との間に放電ギャップを形成するスパークプラグにおいて、
前記絶縁体は、請求項1乃至3のいずれか1項記載の絶縁体用成形体が焼成されたものであることを特徴とするスパークプラグ。
A cylindrical metal shell, a cylindrical insulator fixed in the metal shell so as to extend in the axial direction of the metal shell, and having an axial hole, and extending in the axial direction of the metal shell, The center electrode is disposed at the tip of the insulator so that the side forms a discharge portion, the rear end is fixed in the insulator, and extends in the axial direction of the metal shell, and the tip is the center electrode in the insulator And a terminal for projecting the rear end from the rear end of the insulator, and the other end of the ground electrode having one end fixed to the metal shell forms the discharge gap between the discharge portion and the discharge portion. In the spark plug that is formed or the metal shell itself forms a discharge gap with the discharge part,
4. The spark plug according to claim 1, wherein the insulator is obtained by firing the insulator molded body according to any one of claims 1 to 3.
JP2004379321A 2004-12-28 2004-12-28 Spark plug insulating body, spark plug manufacturing method, and spark plug Expired - Fee Related JP4422605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004379321A JP4422605B2 (en) 2004-12-28 2004-12-28 Spark plug insulating body, spark plug manufacturing method, and spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004379321A JP4422605B2 (en) 2004-12-28 2004-12-28 Spark plug insulating body, spark plug manufacturing method, and spark plug

Publications (2)

Publication Number Publication Date
JP2006185795A true JP2006185795A (en) 2006-07-13
JP4422605B2 JP4422605B2 (en) 2010-02-24

Family

ID=36738747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004379321A Expired - Fee Related JP4422605B2 (en) 2004-12-28 2004-12-28 Spark plug insulating body, spark plug manufacturing method, and spark plug

Country Status (1)

Country Link
JP (1) JP4422605B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066669A1 (en) * 2007-11-19 2009-05-28 Ngk Spark Plug Co., Ltd. Deflection inspecting device for spark plug insulator, deflection inspecting method for spark plug insulator, and manufacturing method for spark plug insulator
CN107078470A (en) * 2014-10-27 2017-08-18 日本特殊陶业株式会社 The manufacture method of insulator for spark plug
WO2020021905A1 (en) * 2018-07-23 2020-01-30 日本特殊陶業株式会社 Spark plug manufacturing method
JP2022014979A (en) * 2020-07-08 2022-01-21 日本特殊陶業株式会社 Method of manufacturing insulator for spark plug

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066669A1 (en) * 2007-11-19 2009-05-28 Ngk Spark Plug Co., Ltd. Deflection inspecting device for spark plug insulator, deflection inspecting method for spark plug insulator, and manufacturing method for spark plug insulator
US7938706B2 (en) 2007-11-19 2011-05-10 Ngk Spark Plug Co., Ltd. Deflection inspecting device for spark plug insulator, deflection inspecting method for spark plug insulator, and manufacturing method for spark plug insulator
KR101467597B1 (en) * 2007-11-19 2014-12-01 니혼도꾸슈도교 가부시키가이샤 Deflection inspecting device for spark plug insulator, deflection inspecting method for spark plug insulator, and manufacturing method for spark plug insulator
CN107078470A (en) * 2014-10-27 2017-08-18 日本特殊陶业株式会社 The manufacture method of insulator for spark plug
WO2020021905A1 (en) * 2018-07-23 2020-01-30 日本特殊陶業株式会社 Spark plug manufacturing method
JP2020017337A (en) * 2018-07-23 2020-01-30 日本特殊陶業株式会社 Method of manufacturing spark plug
JP2022014979A (en) * 2020-07-08 2022-01-21 日本特殊陶業株式会社 Method of manufacturing insulator for spark plug
JP7261767B2 (en) 2020-07-08 2023-04-20 日本特殊陶業株式会社 Method for manufacturing spark plug insulator

Also Published As

Publication number Publication date
JP4422605B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP4426495B2 (en) Spark plug for internal combustion engine
US8106572B2 (en) Spark plug and process for producing the spark plug
JP4700638B2 (en) Spark plug for internal combustion engine
US9124073B2 (en) Spark plug
US10784654B2 (en) Spark plug
WO2009116541A1 (en) Spark plug
JP5245578B2 (en) Spark plug for internal combustion engine
JP4422605B2 (en) Spark plug insulating body, spark plug manufacturing method, and spark plug
US8952602B2 (en) Spark plug
JP2007184250A (en) Method of manufacturing spark plug
JP2006210142A (en) Method for manufacturing spark plug and its insulator
CN107453209A (en) Spark plug
WO2018070129A1 (en) Spark plug and manufacturing method thereof
JP5616858B2 (en) Spark plug
US10541517B2 (en) Spark plug for internal combustion engine and method for manufacturing the same
JP2012256590A (en) Spark plug
WO2018003320A1 (en) Spark plug
JP3081974B2 (en) Spark plug
JP7015272B2 (en) Spark plug
US20180191138A1 (en) Spark plug
JP5816126B2 (en) Spark plug
JP2006085997A (en) Spark plug for internal combustion engine
JP6273187B2 (en) Spark plug
JP6734889B2 (en) Spark plug
JP4955527B2 (en) Method for manufacturing insulator for spark plug, firing container, and method for manufacturing spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4422605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091228

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees