JP2007184250A - Method of manufacturing spark plug - Google Patents

Method of manufacturing spark plug Download PDF

Info

Publication number
JP2007184250A
JP2007184250A JP2006321028A JP2006321028A JP2007184250A JP 2007184250 A JP2007184250 A JP 2007184250A JP 2006321028 A JP2006321028 A JP 2006321028A JP 2006321028 A JP2006321028 A JP 2006321028A JP 2007184250 A JP2007184250 A JP 2007184250A
Authority
JP
Japan
Prior art keywords
molded body
grinding
hole
roller
spark plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006321028A
Other languages
Japanese (ja)
Other versions
JP4773932B2 (en
Inventor
Takamitsu Mizuno
貴光 水野
Toshitaka Honda
稔貴 本田
Hiroyuki Tanabe
宏之 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2006321028A priority Critical patent/JP4773932B2/en
Publication of JP2007184250A publication Critical patent/JP2007184250A/en
Application granted granted Critical
Publication of JP4773932B2 publication Critical patent/JP4773932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a spark plug capable of restraining eccentricity or axial shift at a hole part of a molded body generated at the time of grinding of the molded body into a shape of an insulator after molding the molded body with raw material powder. <P>SOLUTION: In a manufacturing process of an insulator constituting the spark plug, a molded body 30 molded from raw material powder is put under a grinding process into a shape corresponding to the insulator. In the grinding process, the molded body 30 is made in contact with a rotating roller for grinding 35 under rotation or the like, and at the same time, is made in contact with a rotating roller for pressing 37 or the like, so that grinding is carried out by supporting the molded body 30 against frictional force received from the rotating roller for grinding 35 or the like. At this time, a position S1 where the rotating roller for pressing 37 or the like comes in contact with the molded body 30 is shifted from a position S2 where the rotating roller for grinding 35 or the like comes in contact with the molded body 30 by a given angle A larger than 180° and smaller than 270° in a rotation direction F1 of the molded body 30. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の点火に使用されるスパークプラグの製造方法であって、特にそのスパークプラグを構成する絶縁碍子の製造方法に関するものである。   The present invention relates to a method for manufacturing a spark plug used for ignition of an internal combustion engine, and more particularly to a method for manufacturing an insulator constituting the spark plug.

一般的に、自動車エンジン等の内燃機関に使用されるスパークプラグにおいては、長尺状の絶縁碍子が筒状の主体金具に挿し込まれた状態で保持されており、この絶縁碍子に形成された軸孔には、主体金具の先端側に溶接された接地電極と対向して火花放電ギャップを形成する中心電極と、これに高電圧を印加する端子電極とが挿入されている。   In general, in a spark plug used for an internal combustion engine such as an automobile engine, a long insulator is held in a state of being inserted into a cylindrical metal shell, and is formed on the insulator. A center electrode that forms a spark discharge gap facing the ground electrode welded to the front end side of the metal shell and a terminal electrode that applies a high voltage to the center electrode are inserted into the shaft hole.

このような絶縁碍子は、調製した原料粉末をプレス成形して、軸孔となるべき孔部を有する成形体を成形し、得られた成形体の外面を所定の絶縁碍子形状となるように研削した後、これを焼成することにより製造されるものである。   Such an insulator is formed by press-molding the prepared raw material powder, forming a molded body having a hole to be a shaft hole, and grinding the outer surface of the obtained molded body to have a predetermined insulator shape. Then, it is manufactured by firing.

上記成形体を研削する従来の研削工程では、図11に示すように、成形体50は、その軸線方向に沿って形成された孔部の後端側から挿通ピンP5を挿入した状態で支持されており、図示しない回転機構により図11中の矢印F5で示す方向に回転する。一方、成形体50を研削する研削用回転ローラ(回転砥石)55は、その周面55aが絶縁碍子の外形に対応した形状に形成されており、図示しない回転機構により、前記矢印F5と同方向である図11中の矢印F6で示す方向に回転する。そして、成形体50を、回転する研削用回転ローラ55の周面55aに接触させることにより、成形体50の外形を絶縁碍子に対応する形状に研削加工する(例えば、特許文献1参照。)。
特開2001−176637号公報
In the conventional grinding process for grinding the molded body, as shown in FIG. 11, the molded body 50 is supported in a state where the insertion pin P5 is inserted from the rear end side of the hole formed along the axial direction. It is rotated in a direction indicated by an arrow F5 in FIG. On the other hand, a grinding rotary roller (rotary grindstone) 55 for grinding the molded body 50 has a peripheral surface 55a formed in a shape corresponding to the outer shape of the insulator, and is rotated in the same direction as the arrow F5 by a rotation mechanism (not shown). Is rotated in the direction indicated by the arrow F6 in FIG. Then, by bringing the molded body 50 into contact with the peripheral surface 55a of the rotating grinding roller 55 for grinding, the outer shape of the molded body 50 is ground into a shape corresponding to the insulator (see, for example, Patent Document 1).
JP 2001-176737 A

近年では、内燃機関の高出力化に伴う燃焼室内における吸気及び排気バルブの占有面積の拡大等により、スパークプラグが小型化・小径化される傾向にあり、絶縁碍子についても小型化・小径化が要求されている。   In recent years, spark plugs have tended to be downsized and reduced in diameter due to the increase in the area occupied by intake and exhaust valves in the combustion chamber accompanying the increase in the output of internal combustion engines. It is requested.

しかしながら、絶縁碍子に関しては、横飛火防止のために設けられる主体金具との間のクリアランスや、所定の耐電性などを確保しなければならないため、その材質が絶縁性の高いものであったとしても、その外周面から軸孔までの厚みを薄くするのに限界がある。結果として、絶縁碍子の小径化の影響は軸孔の小径化として現れる。   However, with regard to the insulator, it is necessary to ensure the clearance between the metal shell provided to prevent side fire and the predetermined electric resistance, so even if the material is highly insulating. There is a limit to reducing the thickness from the outer peripheral surface to the shaft hole. As a result, the influence of the diameter reduction of the insulator appears as the diameter reduction of the shaft hole.

このため、絶縁碍子の製造工程において成形体の研削加工を行う際には、成形体の孔部に挿し込む挿通ピンとして比較的径の細いものを採用しなければならない。その結果、回転する研削用回転ローラから成形体が受ける摩擦力等によって挿通ピンが曲がってしまい、研削される成形体の先端側において偏心(同軸度の低下)や孔部の軸ズレなどが生じてしまうおそれがある。   For this reason, when the molded body is ground in the insulator manufacturing process, a relatively small diameter insertion pin to be inserted into the hole of the molded body must be employed. As a result, the insertion pin bends due to the frictional force that the molded body receives from the rotating grinding roller, causing eccentricity (decrease in coaxiality) and hole misalignment on the tip side of the molded body to be ground. There is a risk that.

このような不具合は、近年、長尺化されつつある比較的長いスパークプラグほど、絶縁碍子も長くなるため、より顕著に現われやすい。   Such a problem is more likely to appear more remarkably in recent years because the longer the spark plug that is being lengthened, the longer the insulator.

本発明は上記事情に鑑みてなされたものであり、その目的は、絶縁碍子を製造するにあたり、当該絶縁碍子の軸孔となるべき孔部を有する成形体を原料粉末にて成形した後、当該成形体を絶縁碍子形状に研削する際に発生する成形体の偏心や孔部の軸ズレなどを抑制することのできるスパークプラグの製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and the purpose thereof is to form a molded body having a hole portion to be a shaft hole of the insulator with a raw material powder in manufacturing the insulator. An object of the present invention is to provide a spark plug manufacturing method capable of suppressing the eccentricity of the molded body and the axial displacement of the hole that occur when the molded body is ground into an insulator shape.

以下、上記課題等を解決するのに適した各構成を項分けして説明する。なお、必要に応じて対応する構成に特有の作用効果等を付記する。   Hereinafter, each configuration suitable for solving the above-described problems will be described in terms of items. In addition, the effect etc. peculiar to the structure which respond | corresponds as needed are added.

構成1.本構成のスパークプラグの製造方法は、
原料粉末を軸孔となるべき孔部を有する成形体に成形する成形工程と、
所定の挿通ピンを前記成形体の孔部に差込み当該成形体を回転可能に支持し、回転する研削用回転ローラに対し前記成形体を接触させるとともに、前記成形体に対し押え手段を接触させて前記研削用回転ローラから受ける摩擦力に抗して前記成形体を支え、前記成形体の外周面を研削する研削工程と、
前記研削された成形体を焼成する焼成工程とを経て、
前記孔部を軸孔とし、中心電極及び端子電極を挿入・固定して形成した絶縁碍子を備えたスパークプラグの製造方法であって、
前記研削工程は、
少なくとも1つの前記押え手段が前記成形体に対し接触する位置を、前記成形体に対し前記研削用回転ローラが接触する位置から、前記挿通ピンを軸心として前記成形体の回転方向に180°より大きく270°より小さい所定角度ずれた位置としたことを特徴とする。
Configuration 1. The manufacturing method of the spark plug of this configuration is as follows:
A molding step of molding the raw material powder into a molded body having a hole to be a shaft hole;
A predetermined insertion pin is inserted into the hole of the molded body to rotatably support the molded body, and the molded body is brought into contact with a rotating rotating roller for grinding, and a pressing means is brought into contact with the molded body. A grinding step of supporting the molded body against the frictional force received from the grinding roller and grinding the outer peripheral surface of the molded body;
Through a firing step of firing the ground compact,
A method of manufacturing a spark plug including an insulator formed by inserting and fixing a center electrode and a terminal electrode, wherein the hole portion is a shaft hole,
The grinding step includes
The position where at least one pressing means comes into contact with the molded body from the position where the rotating roller for grinding comes into contact with the molded body is 180 ° in the rotation direction of the molded body around the insertion pin. The position is shifted by a predetermined angle which is largely smaller than 270 °.

換言すれば、少なくとも1つの前記押え手段が前記成形体に対し接触する位置を、前記成形体に対し前記研削用回転ローラが接触する位置から、前記挿通ピンを軸心として前記成形体の回転方向とは逆方向に90°より大きく180°より小さい所定角度ずれた位置としている。   In other words, the rotation direction of the molded body with the insertion pin as the axis from the position where the at least one pressing means contacts the molded body from the position where the grinding rotary roller contacts the molded body. The position is shifted by a predetermined angle larger than 90 ° and smaller than 180 ° in the opposite direction.

研削加工時、成形体に対しては、研削用回転ローラとの接点において動摩擦力が接線方向にかかるとともに、成形体を研削用回転ローラに押し付ける力の反力が法線方向にかかる。しかし、上記構成1のように研削用回転ローラ及び少なくとも1つの押え手段を上記位置関係で成形体に接触させることにより、少なくとも1つの押え手段によって前記接点方向の動摩擦力や法線方向の反力に抗して成形体を支持した状態で研削加工を行うことができる。   At the time of grinding, a dynamic frictional force is applied in the tangential direction at the contact point with the grinding rotary roller, and a reaction force of the force pressing the compact against the grinding rotary roller is applied in the normal direction. However, when the grinding rotary roller and at least one pressing means are brought into contact with the molded body in the above positional relationship as in the configuration 1, the dynamic frictional force in the contact direction and the reaction force in the normal direction are caused by at least one pressing means. Grinding can be performed in a state where the molded body is supported against the above.

従って、上記構成1によれば、成形体に研削加工を施す際に、成形体の孔部に挿し込む挿通ピンとして比較的径の細いものを採用した場合でも、回転する研削用回転ローラから成形体が受ける摩擦力等によって挿通ピンが曲がってしまうといった不具合の発生を抑制することができる。結果として、研削される成形体の先端側において偏心や孔部の軸ズレなどが生じてしまうことを抑制できる。   Therefore, according to the above configuration 1, when the molded body is ground, even if a relatively small diameter insertion pin is inserted into the hole of the molded body, the molded body is formed from the rotating rotating roller for grinding. Generation | occurrence | production of the malfunction that an insertion pin will bend by the frictional force etc. which a body receives can be suppressed. As a result, it is possible to suppress the occurrence of eccentricity and axial misalignment of the hole on the tip side of the molded body to be ground.

構成2.本構成のスパークプラグの製造方法は、
原料粉末を軸孔となるべき孔部を有する成形体に成形する成形工程と、
所定の挿通ピンを前記成形体の孔部に差込み当該成形体を回転可能に支持し、回転する研削用回転ローラに対し前記成形体を接触させるとともに、回転する押え用回転ローラを前記成形体に対し接触させて当該成形体に対し前記研削用回転ローラから受ける摩擦力に抗して回転する回転力を与え、前記成形体の外周面を研削する研削工程と、
前記研削された成形体を焼成する焼成工程とを経て、
前記孔部を軸孔とし、中心電極及び端子電極を挿入・固定して形成した絶縁碍子を備えたスパークプラグの製造方法であって、
前記研削工程は、
前記成形体に対し前記押え用回転ローラが接触する位置を、前記成形体に対し前記研削用回転ローラが接触する位置から、前記挿通ピンを軸心として前記成形体の回転方向に180°より大きく270°より小さい所定角度ずれた位置としたことを特徴とする。
Configuration 2. The manufacturing method of the spark plug of this configuration is as follows:
A molding step of molding the raw material powder into a molded body having a hole to be a shaft hole;
A predetermined insertion pin is inserted into the hole of the molded body, the molded body is rotatably supported, the molded body is brought into contact with a rotating grinding rotary roller, and a rotating presser rotating roller is attached to the molded body. A grinding step of applying a rotational force against the friction force received from the grinding rotary roller to contact the molded body and grinding the outer peripheral surface of the molded body;
Through a firing step of firing the ground compact,
A method of manufacturing a spark plug including an insulator formed by inserting and fixing a center electrode and a terminal electrode, wherein the hole portion is a shaft hole,
The grinding step includes
The position where the pressing rotary roller contacts the molded body is greater than 180 ° in the rotational direction of the molded body with the insertion pin as the axis from the position where the grinding rotary roller contacts the molded body. The position is shifted by a predetermined angle smaller than 270 °.

換言すれば、前記成形体に対し前記押え用回転ローラが接触する位置を、前記成形体に対し前記研削用回転ローラが接触する位置から、前記挿通ピンを軸心として前記成形体の回転方向とは逆方向に90°より大きく180°より小さい所定角度ずれた位置としている。   In other words, from the position where the pressing rotary roller contacts the molded body, from the position where the grinding rotary roller contacts the molded body, the rotation direction of the molded body with the insertion pin as an axis. Is a position shifted in the opposite direction by a predetermined angle greater than 90 ° and less than 180 °.

従って、上記構成2によれば、上記構成1と同様の作用効果が奏される。   Therefore, according to the said structure 2, the effect similar to the said structure 1 is show | played.

構成3.本構成のスパークプラグの製造方法は、上記構成1又は2において、
前記研削工程において、
前記成形体を軸線方向両側から支持することを特徴とする。
Configuration 3. The manufacturing method of the spark plug of this configuration is the above configuration 1 or 2,
In the grinding step,
The molded body is supported from both sides in the axial direction.

上記構成3によれば、研削工程において、成形体を軸線方向両側から支持することにより安定性を高め、上記構成1又は2の作用効果をより高めることができる。この構成3がより効果的に適用される成形体の形状は、一例として孔部の挿通ピンが当接する部分の径が3.0mm以下となるようなものが挙げられる。挿通ピンは成形体を研削加工する際に研削用回転ローラからの反力によって曲がらないようなものが好ましいが、過度に硬い材質からなる挿通ピンを使用すると、研削用回転ローラからの反力を受けたときに折損してしまうおそれがある。一般的には超硬合金と呼称される合金を使用すればよい。また、成形体の全長は長ければ長いほど研削用回転ローラからの反力を受けたときに曲がりやすくなる。このため絶縁碍子の軸方向の長さが68mm以上であるものに対してこの構成3が一層効果的に適用されるといえる。なお、スパークプラグとしての完成体の形状としては、主体金具のねじ径がM10以下、絶縁碍子の最も径大の部位の先端面から絶縁碍子の先端までの長さが30mm以上であるものとも言える。   According to the said structure 3, stability can be improved by supporting a molded object from an axial direction both sides in a grinding process, and the effect of the said structure 1 or 2 can be improved more. As an example of the shape of the molded body to which the configuration 3 is more effectively applied, a shape in which the diameter of the portion of the hole portion with which the insertion pin abuts is 3.0 mm or less can be given. The insertion pin is preferably one that does not bend due to the reaction force from the grinding roller when grinding the molded body. However, if an insertion pin made of an excessively hard material is used, the reaction force from the grinding rotation roller is reduced. There is a risk of breakage when received. In general, an alloy called a cemented carbide may be used. Further, the longer the overall length of the molded body, the easier it is to bend when receiving a reaction force from the rotating roller for grinding. For this reason, it can be said that this configuration 3 is more effectively applied to the insulator having an axial length of 68 mm or more. In addition, as a shape of the finished product as a spark plug, it can be said that the screw diameter of the metal shell is M10 or less, and the length from the tip surface of the largest diameter portion of the insulator to the tip of the insulator is 30 mm or more. .

以上のように、絶縁体となる成形体の偏心や軸ズレを解消する本発明は、成形体の研削加工における最終工程、すなわち仕上げ削り工程として備えていることが望ましい。逆説的には、仕上げ削り工程以前の研削工程、いわゆる荒削り工程においては必ずしも成形体を軸線方向両側から両持ちで支持する必要性はない。荒削り工程において偏心や軸ズレが多少生じてしまったとしても仕上げ削り工程にて整えることが可能であるためである。   As described above, the present invention for eliminating the eccentricity and axial misalignment of the molded body serving as the insulator is desirably provided as a final process in the grinding of the molded body, that is, a finishing process. Paradoxically, in the grinding process before the finishing process, that is, the so-called roughing process, it is not always necessary to support the compact from both sides in the axial direction. This is because even if some eccentricity or shaft misalignment occurs in the roughing process, it can be adjusted in the finishing process.

また、荒削り工程においては成形体を軸線方向両側から支持せず後端側からのみの片持ちで支持することによって、成形体の外周面の加工のみならず先端部の加工をも行うことが可能となる。このように同時に加工を行うことによって加工時間の短縮が見込める。そして、この荒削り工程後に改めて仕上げ削り工程を両持ちで行うことにより偏心や軸ズレ等の問題を解消することができるのである。   In the roughing process, it is possible to process not only the outer peripheral surface of the molded body but also the tip part by supporting the molded body with a cantilever only from the rear end side without supporting the molded body from both sides in the axial direction. It becomes. By simultaneously processing in this way, the processing time can be shortened. Then, after the rough cutting step, the finish cutting step is performed with both ends, thereby eliminating problems such as eccentricity and shaft misalignment.

以上の構成を備えるものが以下の構成4である。   The following configuration 4 includes the above configuration.

構成4.本構成のスパークプラグの製造方法は、上記構成1又は2において、
前記成形工程では、
前記成形体が、その先端部において前記孔部が塞がれた状態で成形されるとともに、
前記研削工程では、
前記成形体の後端部側から前記孔部に前記挿通ピンを挿通して、当該成形体をその後端部側から支持した状態で、当該成形体の外周面に荒削り加工を施すとともに、当該成形体の先端部を落とし前記孔部を貫通させる荒削り工程と、
前記成形体の孔部に前記挿通ピンを挿通して、当該成形体を軸線方向両側から支持した状態で、当該成形体の外周面に仕上削り加工を施す仕上削り工程とを備えていることを特徴とする。
Configuration 4. The manufacturing method of the spark plug of this configuration is the above configuration 1 or 2,
In the molding step,
While the molded body is molded in a state where the hole is closed at the tip,
In the grinding process,
While inserting the insertion pin into the hole from the rear end side of the molded body and supporting the molded body from the rear end side, the outer peripheral surface of the molded body is subjected to roughing and the molding is performed. A roughing step of dropping the tip of the body and penetrating the hole,
A finishing cutting step of finishing the outer peripheral surface of the molded body with the insertion pin inserted into the hole of the molded body and supporting the molded body from both sides in the axial direction. Features.

上記構成4によれば、荒削り工程では、先端部を削り落とすため成形体を片持ちで支持し、仕上削り工程では、より安定性を高めて加工を行うため成形体を両持ちで支持する。結果として、上記不具合の発生、すなわち成形体の先端側において偏心や孔部の軸ズレなどが生じてしまうことを抑制できる。   According to the above configuration 4, in the rough cutting process, the molded body is supported by cantilever in order to scrape off the tip portion, and in the finish cutting process, the molded body is supported by both ends in order to perform processing with higher stability. As a result, it is possible to suppress the occurrence of the above-described problems, that is, the occurrence of eccentricity or axial misalignment of the hole at the tip side of the molded body.

構成5.本構成のスパークプラグの製造方法は、上記構成4において、
前記荒削り工程の行われた後段階かつ前記仕上削り工程の行われる前段階において、前記成形体をその後端部側から支持した状態で、当該成形体の先端部に削り加工を施す先端部削り工程を行うことを特徴とする。
Configuration 5. The manufacturing method of the spark plug of this configuration is the above configuration 4,
In the stage after the rough cutting process and the stage before the finish cutting process, the tip part shaving process for shaving the tip part of the molded body in a state where the molded body is supported from the rear end side. It is characterized by performing.

上記構成5によれば、成形体を両持ちで支持する仕上削り工程の前段階で、成形体を片持ちで支持した状態で先端部削り工程を行うことによって、成形体の先端面から挿通ピンを突出させる必要がなく、より容易に先端部に加工を施すことができる。これに対し、仕上削り工程の後段階で、成形体を片持ちで支持した状態で先端部削り工程を行った場合には、上記不具合の発生が懸念される。   According to the configuration 5, the insertion pin is inserted from the front end surface of the molded body by performing the tip end cutting process in a state where the molded body is supported in a cantilevered manner before the finishing cutting process for supporting the molded body with both ends. It is not necessary to project the tip, and the tip can be processed more easily. On the other hand, when the tip portion cutting step is performed in a state where the molded body is supported in a cantilever stage after the finish cutting step, there is a concern about the occurrence of the above-described problem.

以下、本発明の一実施形態を図面を参照して説明する。まず、本発明のスパークプラグの製造方法により得られるスパークプラグについて説明する。図1は、スパークプラグを示す一部破断正面図である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. First, the spark plug obtained by the spark plug manufacturing method of the present invention will be described. FIG. 1 is a partially broken front view showing a spark plug.

スパークプラグ1は、長尺状の絶縁碍子2、これを保持する筒状の主体金具3などから構成されるものである。   The spark plug 1 is composed of a long insulator 2, a cylindrical metal shell 3 that holds the insulator 2, and the like.

絶縁碍子2には、自身の中心軸線に沿って軸孔4が貫通形成されている。そして、軸孔4の先端部(図1の下端部)側には中心電極5が挿入・固定され、後端部側には端子電極6が挿入・固定されている。軸孔4内における中心電極5と端子電極6との間には、抵抗体7が配置されており、この抵抗体7の両端部は導電性ガラスシール層8,9を介して、中心電極5と端子電極6とにそれぞれ電気的に接続されている。   A shaft hole 4 is formed through the insulator 2 along its own central axis. A center electrode 5 is inserted and fixed on the front end portion (lower end portion in FIG. 1) of the shaft hole 4, and a terminal electrode 6 is inserted and fixed on the rear end portion side. A resistor 7 is disposed between the center electrode 5 and the terminal electrode 6 in the shaft hole 4, and both ends of the resistor 7 are connected to the center electrode 5 via the conductive glass seal layers 8 and 9. And the terminal electrode 6 are electrically connected to each other.

より詳しくは、絶縁碍子2の軸孔4は、先端側に形成された小径孔部4aと、当該小径孔部4aの後方側においてこれよりも大径に形成された大径孔部4bとから構成されている。そして、小径孔部4aと大径孔部4bとの連接部には、テーパ面又はR面状の凸部受け面4cが形成されている。   More specifically, the shaft hole 4 of the insulator 2 includes a small-diameter hole portion 4a formed on the distal end side, and a large-diameter hole portion 4b formed larger in diameter on the rear side of the small-diameter hole portion 4a. It is configured. And the taper surface or the R-shaped convex part receiving surface 4c is formed in the connection part of the small diameter hole part 4a and the large diameter hole part 4b.

絶縁碍子2の軸孔4には、端子電極6と抵抗体7が大径孔部4b内に挿通された状態で収容され、中心電極5が小径孔部4a内に挿通された状態で収容されている。中心電極5は、絶縁碍子2の先端から突出し、端子電極6は絶縁碍子2の後端から突出している。なお、中心電極5の後端部には、その外周面から外向きに突出して固定用凸部5aが形成されており、当該固定用凸部5aが上記凸部受け面4cに係止されることにより、中心電極5が固定されている。   The terminal electrode 6 and the resistor 7 are accommodated in the shaft hole 4 of the insulator 2 in a state of being inserted into the large diameter hole portion 4b, and the center electrode 5 is accommodated in the state of being inserted into the small diameter hole portion 4a. ing. The center electrode 5 protrudes from the tip of the insulator 2, and the terminal electrode 6 protrudes from the rear end of the insulator 2. A fixing convex portion 5a is formed at the rear end portion of the center electrode 5 so as to protrude outward from the outer peripheral surface thereof, and the fixing convex portion 5a is locked to the convex portion receiving surface 4c. Thus, the center electrode 5 is fixed.

一方、絶縁碍子2は、その外形部において、後端側に形成されたコルゲーション部10と、軸線方向略中央部において周方向外向きに突出形成されたフランジ状の大径部11と、当該大径部11よりも先端側においてこれよりも細径に形成された中胴部12と、当該中胴部12よりも先端側においてこれより細径に形成された脚長部13とを備えている。絶縁碍子2のうち、大径部11、中胴部12、脚長部13を含む先端側は、筒状に形成された主体金具3の内部に収容されている。   On the other hand, the insulator 2 includes a corrugation portion 10 formed on the rear end side in the outer shape portion, a flange-shaped large diameter portion 11 formed to protrude outward in the circumferential direction at a substantially central portion in the axial direction, and the large portion. A middle body portion 12 formed with a smaller diameter on the distal end side than the diameter portion 11 and a leg length portion 13 formed with a smaller diameter on the distal side than the middle body portion 12 are provided. Of the insulator 2, the distal end side including the large-diameter portion 11, the middle trunk portion 12, and the leg long portion 13 is accommodated in a metal shell 3 formed in a cylindrical shape.

主体金具3は、低炭素鋼等の金属により筒状に形成されており、その外周面にスパークプラグ1をエンジンヘッドに取付けるためのねじ部(雄ねじ部)15が形成されている。ねじ部15の後端側の外周面には座部16が形成され、ねじ部15後端のねじ首17にはリング状のガスケット18が嵌め込まれている。さらに、主体金具3の後端部には、主体金具3をエンジンヘッドに取付ける際にレンチ等の工具を係合させるための断面六角形状の工具係合部19が形成されている。   The metal shell 3 is formed in a cylindrical shape from a metal such as low carbon steel, and a screw portion (male screw portion) 15 for attaching the spark plug 1 to the engine head is formed on the outer peripheral surface thereof. A seat portion 16 is formed on the outer peripheral surface on the rear end side of the screw portion 15, and a ring-shaped gasket 18 is fitted on the screw neck 17 on the rear end of the screw portion 15. Furthermore, a tool engaging portion 19 having a hexagonal cross section for engaging a tool such as a wrench when the metal shell 3 is attached to the engine head is formed at the rear end of the metal shell 3.

また、主体金具3の先端端面20には、略L字状の接地電極21が溶接されている。接地電極21は、自身先端の放電面21aと中心電極5の先端との間に所定の火花放電ギャップ22を空けて取付けられている。   A substantially L-shaped ground electrode 21 is welded to the tip end face 20 of the metal shell 3. The ground electrode 21 is attached with a predetermined spark discharge gap 22 between the discharge surface 21 a at the tip of the ground electrode 21 and the tip of the center electrode 5.

次にスパークプラグ1の製造方法、特に本発明の特徴部分である絶縁碍子2の製造方法について詳しく説明する。   Next, a method for manufacturing the spark plug 1, particularly a method for manufacturing the insulator 2, which is a characteristic part of the present invention, will be described in detail.

絶縁碍子2の製造工程では、まず、主成分をなすアルミナ粉末に対して焼結助剤として機能する添加元素系原料を配合し、原料粉末を調製する。そして、得られた原料粉末に対して、親水性結合剤及び溶媒としての水を添加し混合することにより成形用素地スラリーを得る。そして、成形用素地スラリーは、スプレードライ法等により噴霧乾燥されて、粒状の成形用素地造粒物に調整される。   In the manufacturing process of the insulator 2, first, an additive element material that functions as a sintering aid is blended with the alumina powder as a main component to prepare a raw material powder. Then, a green binder slurry is obtained by adding and mixing a hydrophilic binder and water as a solvent to the obtained raw material powder. Then, the forming substrate slurry is spray-dried by a spray drying method or the like, and adjusted to a granular forming substrate granulated product.

続く成形工程においては、得られた成形用素地造粒物をラバープレス型内に充填し、プレスピンを挿入した状態でラバープレス成形することにより、絶縁碍子2の原形をなす図2に示すような筒状の成形体30を得る。この成形体30には、前記プレスピンにより上記軸孔4となるべき孔部31が形成されることとなる。但し、プレス成形後の成形体30の先端部では孔部31が塞がれた状態となっている。   In the subsequent molding step, the obtained green granulated material for molding is filled in a rubber press mold and is subjected to rubber press molding with a press pin inserted, thereby forming the original shape of the insulator 2 as shown in FIG. A cylindrical molded body 30 is obtained. A hole 31 to be the shaft hole 4 is formed in the molded body 30 by the press pin. However, the hole 31 is closed at the tip of the molded body 30 after press molding.

次に、得られた成形体30の外形を絶縁碍子2に対応する形状に研削加工する研削工程が行われる。本実施形態における研削工程では、荒削り工程、先端部削り工程、仕上削り工程が順に行われる。ここで、これらの工程について図2〜4を参照して詳しく説明する。図2は、その荒削り工程における成形体30の形状やその支持形態等を説明するための断面模式図であり、図3は、仕上削り工程における成形体30の形状やその支持形態等を説明するための断面模式図である。また、図4は、研削加工で使用される研削用回転ローラ及び押え手段としての押え用回転ローラと、成形体30との接触位置関係を説明するための模式図である。   Next, a grinding step of grinding the outer shape of the obtained molded body 30 into a shape corresponding to the insulator 2 is performed. In the grinding process according to the present embodiment, a roughing process, a tip part cutting process, and a finish cutting process are sequentially performed. Here, these steps will be described in detail with reference to FIGS. FIG. 2 is a schematic cross-sectional view for explaining the shape of the molded body 30 and its supporting form in the rough cutting process, and FIG. 3 explains the shape of the molded body 30 and its supporting form in the finishing cutting process. It is a cross-sectional schematic diagram for this. FIG. 4 is a schematic diagram for explaining the contact position relationship between the compacting body 30 and a grinding rotary roller used in grinding and a pressing rotary roller as a pressing means.

荒削り工程では、図2に示す荒削り用の研削用回転ローラ35によって成形体30の外周面に荒削り加工を施すとともに、成形体30の先端部を削り落とし、孔部31を貫通させる加工が行われる。   In the roughing process, roughing is performed on the outer peripheral surface of the molded body 30 by the roughing rotating roller 35 for roughing shown in FIG. 2, and the tip of the molded body 30 is scraped off and the hole 31 is penetrated. .

この荒削り工程では、図2に示すように成形体30の後端部側から孔部31に挿通ピンP1を嵌め込んで、当該成形体30をその後端部側から回転可能に支持した状態で加工が行われる。   In this roughing process, as shown in FIG. 2, the insertion pin P1 is fitted into the hole 31 from the rear end side of the molded body 30, and the molded body 30 is processed while being rotatably supported from the rear end side. Is done.

荒削り工程で使用される研削用回転ローラ35は、その周面35aが絶縁碍子の外形にほぼ対応した形状となっており、その周面35aには砥粒層が形成されている。そして、研削用回転ローラ35は、図示しないモータの駆動により、挿通ピンP1の軸心G1の軸線方向と平行する回転軸心G2を中心に図2,4中の矢印F2で示す方向に回転するようになっている。   The grinding roller 35 used in the roughing process has a peripheral surface 35a substantially corresponding to the outer shape of the insulator, and an abrasive layer is formed on the peripheral surface 35a. And the rotation roller 35 for grinding rotates to the direction shown by the arrow F2 in FIG.2, 4 centering on the rotating shaft center G2 parallel to the axial direction of the shaft center G1 of the penetration pin P1 by the drive of the motor which is not shown in figure. It is like that.

一方、押え用回転ローラ37は、成形体30との摩擦抵抗が大きいシリコン樹脂等により構成されており、図示しないモータの駆動により、挿通ピンP1の軸心G1の軸線方向と平行する回転軸心G3を中心に図2,4中の矢印F3で示す方向に回転するようになっている。   On the other hand, the presser rotating roller 37 is made of silicon resin or the like having a large frictional resistance with the molded body 30 and is driven by a motor (not shown) to rotate in a rotational axis parallel to the axial direction of the axis G1 of the insertion pin P1. It rotates about G3 in the direction shown by arrow F3 in FIGS.

挿通ピンP1は、研削加工時において変形が生じにくいよう、全体が剛性の高い材質、例えば超硬合金等から構成されている。また、挿通ピンP1は、絶縁碍子2の小径孔部4aに対応した小径軸部と、大径孔部4bに対応した大径軸部とから構成され、全体として絶縁碍子2の軸孔4に対応した形状となっている。なお、挿通ピンP1には環状の押えゴム33が取付けられており、研削加工時の成形体30の位置決めを容易にしたり、研削用回転ローラ35が挿通ピンP1に接触して両者が損傷してしまうことを防止したりしている。   The insertion pin P1 is made of a material having high rigidity, such as a cemented carbide, so that deformation is less likely to occur during grinding. The insertion pin P1 includes a small-diameter shaft portion corresponding to the small-diameter hole portion 4a of the insulator 2 and a large-diameter shaft portion corresponding to the large-diameter hole portion 4b. It has a corresponding shape. An annular pressing rubber 33 is attached to the insertion pin P1 to facilitate positioning of the molded body 30 during grinding, or the grinding rotary roller 35 comes into contact with the insertion pin P1 and both are damaged. Or prevent it.

上記荒削り工程に続く先端部削り工程では、先端部削り用の研削用回転ローラ(図5参照)によって、成形体30の先端角部をR面状に削る加工が行われる。   In the tip portion cutting step subsequent to the rough cutting step, the tip corner portion of the molded body 30 is cut into an R surface by a grinding rotary roller for cutting the tip portion (see FIG. 5).

先端部削り工程では、上記荒削り工程と同様に、成形体30の後端部側から孔部31に挿通ピンP1を嵌め込んで、当該成形体30をその後端部側から回転可能に支持した状態で加工が行われる。図5に示すように、この先端部削り加工を行う際に使用する研削用回転ローラ39は、絶縁碍子2の先端面を形成するため、成形体30の長手方向(図5の左右方向)に略直角の面39aが成形体30の先端に当接するような形状とすることができる。また、この加工時は成形体30を後端側から片持ちで支持しているので絶縁碍子2の先端面となる部位を形成した時に孔部31は貫通することになる。しかし、挿通ピンP1が形成された面から突出することはなく、研削用回転ローラ39の略直角の面39aに接触してしまうことはないため、その面39aを回転軸G1に達するような面としておくことができる。   In the tip portion cutting step, as in the rough cutting step, the insertion pin P1 is fitted into the hole 31 from the rear end side of the molded body 30, and the molded body 30 is rotatably supported from the rear end side. Processing is performed at. As shown in FIG. 5, the grinding rotary roller 39 used when the tip portion is cut is formed in the longitudinal direction of the molded body 30 (left and right direction in FIG. 5) in order to form the tip surface of the insulator 2. The substantially right-angled surface 39 a can be shaped so as to abut the tip of the molded body 30. Further, since the molded body 30 is cantilevered from the rear end side during this processing, the hole portion 31 penetrates when the portion that becomes the front end surface of the insulator 2 is formed. However, since it does not protrude from the surface on which the insertion pin P1 is formed and does not come into contact with the substantially right-angled surface 39a of the grinding roller 39, the surface 39a reaches the rotation axis G1. Can be left as

但し、先端部削り用の研削用回転ローラ及び押え用回転ローラとしては、荒削り工程で使用される研削用回転ローラ35及び押え用回転ローラ37とは、材質等は同様であるが形状のやや異なるものが使用される。但し、その回転方向は、研削用回転ローラ35及び押え用回転ローラ37と同様である。つまり、先端部削り工程で使用される研削用回転ローラは回転軸心G2を中心に矢印F2で示す方向に回転し、押え用回転ローラは回転軸心G3を中心に矢印F3で示す方向に回転する。   However, the grinding rotary roller for pressing the tip and the pressing rotary roller are the same as the rotating rotary roller 35 and the pressing rotary roller 37 used in the roughing process, but the shape is slightly different. Things are used. However, the rotation direction is the same as that of the grinding rotary roller 35 and the pressing rotary roller 37. In other words, the grinding rotary roller used in the tip cutting process rotates around the rotation axis G2 in the direction indicated by the arrow F2, and the presser rotation roller rotates around the rotation axis G3 in the direction indicated by the arrow F3. To do.

次の仕上げ削り工程では、図3に示す仕上げ用の研削用回転ローラ36によって、成形体30の外周面に仕上削り加工を施す。   In the next finish-cutting step, a finish-cutting process is performed on the outer peripheral surface of the molded body 30 by the finishing grinding rotary roller 36 shown in FIG.

仕上削り工程では、図3に示すように、挿通ピンP1に加えて、さらに成形体30の先端側から孔部31に対し挿通ピンP2を嵌め込んで、成形体30を軸線方向両側から支持した状態で加工が行われる。   In the finish cutting step, as shown in FIG. 3, in addition to the insertion pin P1, the insertion pin P2 is further fitted into the hole 31 from the distal end side of the molded body 30 to support the molded body 30 from both sides in the axial direction. Processing is performed in the state.

挿通ピンP2は、挿通ピンP1と同様に剛性の高い材質から構成されているが、形状に関しては挿通ピンP1とは異なり、絶縁碍子2の小径孔部4aに対応した小径軸部のみを備えた形状となっている。また、挿通ピンP2には、成形体30抜け落ち防止用の環状の押えゴム34が取付けられている。   The insertion pin P2 is made of a material having high rigidity like the insertion pin P1, but the insertion pin P2 is different from the insertion pin P1 in terms of shape, and has only a small diameter shaft portion corresponding to the small diameter hole portion 4a of the insulator 2. It has a shape. An annular presser rubber 34 for preventing the molded body 30 from falling off is attached to the insertion pin P2.

仕上削り工程で使用される研削用回転ローラ36及び押え用回転ローラ38としては、荒削り工程で使用される研削用回転ローラ35及び押え用回転ローラ37とは、材質等は同様であるが形状のやや異なるものが使用される。例えば研削用回転ローラ36は、その周面36aが絶縁碍子の外形に対応した形状となっており(成形体30は焼成することによって収縮するためその寸法は異なる)、その周面36aには砥粒層が形成されている。但し、その回転方向は、研削用回転ローラ35及び押え用回転ローラ37と同様である。つまり、研削用回転ローラ36は回転軸心G2を中心に図3,4中の矢印F2で示す方向に回転し、押え用回転ローラ38は回転軸心G3を中心に図3,4中の矢印F3で示す方向に回転する。   The grinding rotary roller 36 and presser rotary roller 38 used in the finishing process are the same as the rotary rotary roller 35 and presser rotary roller 37 used in the roughing process, although the materials are the same. Somewhat different is used. For example, the grinding roller 36 has a peripheral surface 36a corresponding to the outer shape of the insulator (the molded body 30 shrinks when fired, so the dimensions thereof are different). A grain layer is formed. However, the rotation direction is the same as that of the grinding rotary roller 35 and the pressing rotary roller 37. That is, the grinding rotary roller 36 rotates about the rotational axis G2 in the direction indicated by the arrow F2 in FIGS. 3 and 4, and the presser rotary roller 38 rotates about the rotational axis G3 as shown by the arrows in FIGS. Rotate in the direction indicated by F3.

上記構成のもと、各工程においては、図4に示すように、成形体30を、回転する研削用回転ローラ35,36等に接触させるとともに、回転する押え用回転ローラ37,38等を成形体30に対し接触させて当該成形体30に対し研削用回転ローラ35,36等から受ける摩擦力に抗して図2〜4中の矢印F1で示す方向に回転する回転力を与えることにより、研削加工が行われる。   Based on the above configuration, in each step, as shown in FIG. 4, the compact 30 is brought into contact with the rotating grinding rollers 35, 36 and the like, and the rotating presser rollers 37, 38 and the like are molded. By applying a rotational force rotating in the direction indicated by the arrow F1 in FIGS. 2 to 4 against the friction force received from the grinding rotary rollers 35, 36 and the like by contacting the compact 30 and the compact 30. Grinding is performed.

次に、図4を参照して、挿通ピンP1の軸心G1の軸線方向に直交する直交平面上における、成形体30、研削用回転ローラ35及び押え用回転ローラ37の配置構成について説明する。なお、成形体30、研削用回転ローラ35及び押え用回転ローラ37の位置関係は、研削用回転ローラ35及び押え用回転ローラ37が他のローラ(例えば研削用回転ローラ36及び押え用回転ローラ38)に置き換わった場合でも同様の位置関係としてよい。   Next, with reference to FIG. 4, the arrangement configuration of the molded body 30, the grinding rotary roller 35, and the pressing rotary roller 37 on an orthogonal plane orthogonal to the axial direction of the axis G1 of the insertion pin P1 will be described. The positional relationship among the molded body 30, the grinding rotary roller 35, and the pressing rotary roller 37 is such that the grinding rotary roller 35 and the pressing rotary roller 37 are different rollers (for example, the grinding rotary roller 36 and the pressing rotary roller 38). The same positional relationship may be adopted even when the position is replaced with (

本実施形態では、挿通ピンP1の軸心G1と研削用回転ローラ35等の回転軸心G2を略同一水平面上に位置させるとともに、押え用回転ローラ37等の回転軸心G3を両軸心G1,G2よりやや下方に位置させている。より詳しくは、成形体30に対し押え用回転ローラ37等が接触する位置S1を、成形体30に対し研削用回転ローラ35等が接触する位置S2から、成形体30の回転方向F1に180°より大きく270°より小さい所定角度Aずらした位置としている。本実施形態では所定角度A=225°に設定している。つまり、両軸心G1,G2を結ぶ水平線に対し、挿通ピンP1の軸心G1と押え用回転ローラ37等の回転軸心G3とを結ぶ直線が、成形体30の回転方向F1に45°傾斜している。   In this embodiment, the shaft center G1 of the insertion pin P1 and the rotation shaft center G2 of the grinding roller 35 and the like are positioned on substantially the same horizontal plane, and the rotation shaft center G3 of the presser rotation roller 37 and the like are both shaft centers G1. , G2 is positioned slightly below. More specifically, the position S1 where the pressing rotary roller 37 and the like come into contact with the molded body 30 is 180 ° in the rotation direction F1 of the molded body 30 from the position S2 where the grinding rotary roller 35 and the like come into contact with the molded body 30. The position is shifted by a predetermined angle A that is larger and smaller than 270 °. In the present embodiment, the predetermined angle A is set to 225 °. That is, a straight line connecting the shaft center G1 of the insertion pin P1 and the rotation shaft center G3 of the pressing roller 37 or the like is inclined by 45 ° in the rotation direction F1 of the molded body 30 with respect to the horizontal line connecting both the shaft centers G1 and G2. is doing.

上記のように研削工程(仕上削り工程)を経た成形体30は、挿通ピンP1,P2から取り外された後、次の焼成工程へと送られる。   The molded body 30 that has undergone the grinding step (finishing step) as described above is removed from the insertion pins P1 and P2, and then sent to the next firing step.

焼成工程においては、研削加工された成形体30を、焼成温度1450℃〜1700℃の範囲内で焼成する。その後、さらに釉薬をかけて仕上焼成が施され、絶縁碍子2が完成する。   In the firing step, the molded body 30 that has been ground is fired within a firing temperature range of 1450 ° C to 1700 ° C. Then, further glaze is applied and finish baking is performed, and the insulator 2 is completed.

そして、このように製造された絶縁碍子2に対し、中心電極5及び端子電極6を挿入・固定するとともに、当該絶縁碍子2を主体金具3に取付けることで、スパークプラグ1が完成する。   The spark plug 1 is completed by inserting and fixing the center electrode 5 and the terminal electrode 6 to the insulator 2 manufactured in this way and attaching the insulator 2 to the metal shell 3.

以上詳述したように、研削加工時において、研削用回転ローラ35等及び押え用回転ローラ37等を上記位置関係で成形体30に接触させることにより、押え用回転ローラ37等によって研削用回転ローラ35等から受ける動摩擦力等に抗して成形体30を支持することができる。従って、本実施形態では、成形体30に研削加工を施す際に、成形体30の孔部31に挿し込む挿通ピンP1等として比較的径の細いものを採用した場合でも、挿通ピンP1等が曲がってしまうといった不具合の発生を抑制することができる。結果として、研削される成形体30の先端側において偏心や孔部の軸ズレなどが生じてしまうことを抑制できる。   As described above in detail, during grinding, the grinding rotary roller 35 and the press rotary roller 37 and the like are brought into contact with the molded body 30 in the above positional relationship, so that the press rotary roller 37 and the like rotate the grinding rotary roller. The molded body 30 can be supported against the dynamic frictional force received from 35 and the like. Therefore, in this embodiment, when the molded body 30 is ground, the insertion pin P1 or the like can be used even when a relatively small diameter is employed as the insertion pin P1 or the like that is inserted into the hole 31 of the molded body 30. Generation | occurrence | production of the malfunction that it will bend can be suppressed. As a result, it is possible to suppress the occurrence of eccentricity and axial misalignment of the hole on the tip side of the molded body 30 to be ground.

また、仕上削り工程では、成形体30を軸線方向両側から支持しているため、より確実に上記作用効果を得ることができる。さらに、この仕上削り工程の前段階で、成形体30を片持ちで支持した状態で先端部削り工程を行うようにしているため、先端部への加工をより容易に行うことができる。   Moreover, since the molded body 30 is supported from both sides in the axial direction in the finish cutting step, the above-described effects can be obtained more reliably. Furthermore, since the tip portion cutting step is performed in a state where the molded body 30 is supported in a cantilever manner before the finish cutting step, the tip portion can be processed more easily.

なお、上述した実施形態の記載内容に限定されず、例えば次のように実施してもよい。   In addition, it is not limited to the description content of embodiment mentioned above, For example, you may implement as follows.

(a)上記実施形態では、この発明を適用する絶縁碍子として図1に示した外形のものを例に挙げたが、もちろん、他の外形形状を有する絶縁碍子の研削加工にもこの発明を適用することができる。   (A) In the above embodiment, the insulator shown in FIG. 1 is given as an example of an insulator to which the present invention is applied. Of course, the present invention is also applied to grinding of insulators having other outer shapes. can do.

(b)上記実施形態では、研削工程において荒削り工程、先端部削り工程、仕上削り工程を順に行うこととしているが、これら全工程を1つの研削用回転ローラにより1工程で行うこととしてもよい。また、荒削り工程、仕上削り工程を経た後に、先端部削り工程を行うようにしてもよい。このようにすれば、先端部をより綺麗に仕上げることができる。また、予め先端部において孔部31が貫通した構成の成形体30の研削加工を行う際には、仕上削り工程のみならず全工程において、成形体30を軸線方向両側から支持する構成としてもよい。   (B) In the above-described embodiment, the roughing step, the tip portion cutting step, and the finishing cutting step are sequentially performed in the grinding step. However, all these steps may be performed in one step by one grinding rotary roller. Further, the tip portion cutting step may be performed after the rough cutting step and the finish cutting step. In this way, the tip can be finished more beautifully. In addition, when grinding the molded body 30 having a configuration in which the hole portion 31 penetrates in the tip portion in advance, the molded body 30 may be supported from both sides in the axial direction in all steps as well as the finish cutting process. .

(c)上記実施形態では、押え用回転ローラ37の外周面形状を成形体30に対応する凹凸を有する面として説明しているが、押え用回転ローラ37の外周面形状を何ら限定するものではない。また、成形体の軸線にわたってすべてを押さえる必要もなく、押さえる力(負荷)がかかったときに成形体30が折損しないように肉厚の厚い部分のみを押さえてもよい。例えば図6に示すように、押え用回転ローラとして、絶縁碍子2の大径部11となる部位に対応して配置された第1押え用ローラ37Aと、当該第1押え用ローラ37Aより成形体30の先端側に配置された第2押え用ローラ37Bとを備えるといったように、成形体30の厚みの違いに応じて複数箇所で成形体30を支える構成としてもよい。   (C) In the above embodiment, the outer peripheral surface shape of the pressing rotary roller 37 is described as a surface having irregularities corresponding to the molded body 30, but the outer peripheral surface shape of the pressing rotary roller 37 is not limited in any way. Absent. Further, it is not necessary to press all over the axis of the molded body, and only a thick portion may be pressed so that the molded body 30 does not break when a pressing force (load) is applied. For example, as shown in FIG. 6, as a pressing rotary roller, a first pressing roller 37A disposed corresponding to a portion to be the large diameter portion 11 of the insulator 2, and a molded body from the first pressing roller 37A. It is good also as a structure which supports the molded object 30 in multiple places according to the difference in the thickness of the molded object 30, such as providing the 2nd pressing roller 37B arrange | positioned at the front end side of 30.

なお、図6に示した例では、第1押え用ローラ37Aと第2押え用ローラ37Bとが同一回転軸(回転軸心G3)を中心に回転する構成となっているが、これに限らず、成形体30を支える複数の押え用ローラの回転軸が異なる構成としてもよい。例えば、図7,8に示す例では、第1押え用ローラ37Aと第2押え用ローラ37Bとが異なる回転軸を中心に回転する構成となっている。この場合、第1押え用ローラ37Aは、図示しないモータの駆動により、回転軸心G3aを中心に図7,8中の矢印F3aで示す方向に回転することにより、成形体30に対し研削用回転ローラ35から受ける摩擦力に抗して図7,8中の矢印F1で示す方向に回転する回転力を与える。第1押え用ローラ37Aの回転軸心G3aは、挿通ピンP1の軸心G1及び研削用回転ローラ35の回転軸心G2と略同一水平面上に位置している。   In the example shown in FIG. 6, the first pressing roller 37 </ b> A and the second pressing roller 37 </ b> B are configured to rotate around the same rotation axis (rotation axis G <b> 3). The rotation shafts of the plurality of pressing rollers that support the molded body 30 may be different from each other. For example, in the example shown in FIGS. 7 and 8, the first pressing roller 37A and the second pressing roller 37B are configured to rotate about different rotation axes. In this case, the first pressing roller 37A is rotated for grinding with respect to the compact 30 by rotating in the direction indicated by the arrow F3a in FIGS. 7 and 8 around the rotation axis G3a by driving a motor (not shown). A rotational force that rotates in the direction indicated by the arrow F1 in FIGS. The rotation axis G3a of the first pressing roller 37A is positioned on substantially the same horizontal plane as the axis G1 of the insertion pin P1 and the rotation axis G2 of the grinding rotation roller 35.

一方、第2押え用ローラ37Bは、成形体30から受ける摩擦力等により回転軸心G3bを中心に第1押え用ローラ37Aと同一方向(図7,8中の矢印F3bで示す方向)に回転する。また、第2押え用ローラ37Bが成形体30に対し接触する位置S1は、上記実施形態の押え用回転ローラ37と同様に、成形体30に対し研削用回転ローラ35が接触する位置S2から、成形体30の回転方向F1に225°ずれた位置となっている。   On the other hand, the second pressing roller 37B rotates in the same direction as the first pressing roller 37A (the direction indicated by the arrow F3b in FIGS. 7 and 8) around the rotation axis G3b due to the frictional force received from the molded body 30. To do. Further, the position S1 where the second pressing roller 37B comes into contact with the molded body 30 is the same as the pressing rotary roller 37 of the above embodiment, from the position S2 where the grinding rotary roller 35 comes into contact with the molded body 30. The position is shifted by 225 ° in the rotation direction F1 of the molded body 30.

このように複数の押え用ローラを用いれば、成形体30の厚みの違いに応じた径のローラを採用することができる。従って、成形体30の厚みが比較的薄い先端部近傍などの箇所においては、押え用ローラを研削用回転ローラ35に接触させることなく、押え用ローラが成形体30に対し接触する位置S1を、成形体30のより真下位置、つまり研削用回転ローラ35が接触する位置S2から270°ずれた位置に近づけることができ、より確実に研削用回転ローラ35から受ける動摩擦力等に抗して成形体30を支持することができる。   If a plurality of pressing rollers are used in this way, a roller having a diameter corresponding to the difference in thickness of the molded body 30 can be employed. Accordingly, in a location such as the vicinity of the tip portion where the thickness of the molded body 30 is relatively thin, the position S1 where the pressing roller contacts the molded body 30 without bringing the pressing roller into contact with the grinding rotation roller 35 is obtained. The molded body 30 can be brought closer to a position directly below the molded body 30, that is, a position shifted by 270 ° from the position S 2 where the grinding rotary roller 35 contacts, and the molded body is more reliably resisted by the dynamic friction force received from the grinding rotary roller 35. 30 can be supported.

なお、複数の押え用ローラを設ける場合、その数は上記2つに限定されず3つ以上でもよく、少なくともそのうちの1つが上記範囲、すなわち成形体30に対し研削用回転ローラ35が接触する位置S2から成形体30の回転方向F1に180°より大きく270°より小さい範囲において成形体30に対し接触する構成となっていれば、上記実施形態と同様の作用効果が奏される。   In the case where a plurality of pressing rollers are provided, the number is not limited to the above two but may be three or more, and at least one of them is in the above range, that is, the position where the grinding rotary roller 35 contacts the molded body 30. If it is the structure which contacts with respect to the molded object 30 in the range larger than 180 degrees and smaller than 270 degrees from S2 to the rotation direction F1 of the molded object 30, the effect similar to the said embodiment will be show | played.

また、荒削り工程ではピースタイムの向上のため、ローラではなくベルトで押さえつけてもよい。例えば図9に示すように、上記実施形態の押え用回転ローラ37に代えて、2つのテンションローラ41a,41bの間に掛けられたベルトB1を押え手段として採用し、成形体30を支える構成としてもよい。この場合、ベルトB1の撓みを利用して面接触で成形体30を支えることができるため、ローラに比べよりしっかりと成形体30を支えることができる。ベルトB1を押え手段として採用した場合、成形体30との接触面のうち、成形体30の回転方向F1の中央位置が本構成における押え手段(ベルトB1)が成形体30に対し接触する位置S1に相当する。なお、ベルトB1の表面は、略平面状であってもよいし、押え用回転ローラ37等と同様に、成形体30の外周形状に倣った凹凸形状としてもよい。勿論、荒削り工程だけでなく仕上削り工程においてもベルトB1を押え手段として採用してもよい。   In the roughing process, the belt may be pressed instead of a roller to improve the piece time. For example, as shown in FIG. 9, instead of the pressing rotary roller 37 of the above embodiment, a belt B1 hung between two tension rollers 41a and 41b is used as a pressing means to support the molded body 30. Also good. In this case, since the molded body 30 can be supported by surface contact using the bending of the belt B1, the molded body 30 can be supported more firmly than the roller. When the belt B1 is employed as the pressing means, the center position in the rotation direction F1 of the molded body 30 is the position S1 where the pressing means (belt B1) in this configuration contacts the molded body 30 in the contact surface with the molded body 30. It corresponds to. Note that the surface of the belt B <b> 1 may be substantially flat, or may have an uneven shape that follows the outer peripheral shape of the molded body 30, similar to the pressing rotary roller 37 and the like. Of course, the belt B1 may be used as the pressing means not only in the roughing process but also in the finishing process.

(d)上記実施形態では、仕上削り工程において、2つの挿通ピンP1,P2により、成形体30を軸線方向両側から支持する構成としているが、これに限らず、先端部において孔部31が貫通した構成の成形体30の研削加工を行う際には、成形体30の先後両端部から突き出す1つの挿通ピンを両側から支持することにより、成形体30を軸線方向両側から支持する構成としてもよい。例えば、図10に示すように、成形体30の後端側から孔部31に嵌め込み、成形体30の先端部より突出する挿通ピンP3を採用し、その突出する先端部を支持部材40により支持する構成としてもよい。   (D) In the above-described embodiment, in the finish cutting step, the molded body 30 is supported by the two insertion pins P1 and P2 from both sides in the axial direction. When the molded body 30 having the above-described configuration is ground, the molded body 30 may be supported from both sides in the axial direction by supporting one insertion pin protruding from both front and rear end portions of the molded body 30 from both sides. . For example, as shown in FIG. 10, an insertion pin P <b> 3 that fits into the hole 31 from the rear end side of the molded body 30 and protrudes from the distal end portion of the molded body 30 is employed, and the protruding distal end portion is supported by the support member 40. It is good also as composition to do.

(e)上記実施形態では、成形体30に対し押え用回転ローラ37等が接触する位置S1を、成形体30に対し研削用回転ローラ35等が接触する位置S2から、成形体30の回転方向F1に225°ずらした位置に設定している。これに限らず、押え用回転ローラ37等が接触する位置S1は、研削用回転ローラ35等が接触する位置S2から、成形体30の回転方向F1に180°より大きく270°より小さい範囲でずれた位置であれば、他の位置であってもよい。   (E) In the above embodiment, the rotation direction of the molded body 30 is determined from the position S1 where the pressing rotary roller 37 or the like contacts the molded body 30 and from the position S2 where the grinding rotary roller 35 or the like contacts the molded body 30. It is set at a position shifted by 225 ° to F1. Not limited to this, the position S1 where the presser rotating roller 37 and the like come in contact with each other is shifted from the position S2 where the grinding rotary roller 35 and the like come into contact with the rotation direction F1 of the molded body 30 in a range larger than 180 ° and smaller than 270 °. As long as it is a different position, it may be another position.

(f)上記実施形態では、挿通ピンP1の軸心G1の軸線方向に対し、研削用回転ローラ35等の回転軸心G2、及び、押え用回転ローラ37の回転軸心G3が平行に配置されている。これに限らず、研削用回転ローラ35等の回転軸心G2や、押え用回転ローラ37等の回転軸心G3が、挿通ピンP1の軸心G1の軸線方向に対し傾いた配置構成としてもよい。このような構成であっても、成形体30に対し押え用回転ローラ37等が接触する位置S1が、成形体30に対し研削用回転ローラ35等が接触する位置S2から、成形体30の回転方向F1に180°より大きく270°より小さい所定角度Aずれた位置となっていれば、上記実施形態と同様の作用効果を得ることができる。   (F) In the above embodiment, the rotational axis G2 of the grinding rotary roller 35 and the rotational axis G3 of the presser rotary roller 37 are arranged in parallel to the axial direction of the axial center G1 of the insertion pin P1. ing. Not limited to this, the rotational axis G2 such as the grinding rotary roller 35 and the rotational axis G3 such as the pressing rotary roller 37 may be arranged to be inclined with respect to the axial direction of the axis G1 of the insertion pin P1. . Even in such a configuration, the rotation of the molded body 30 from the position S1 where the pressing rotary roller 37 or the like contacts the molded body 30 is changed from the position S2 where the grinding rotary roller 35 or the like contacts the molded body 30. As long as the position is shifted by a predetermined angle A in the direction F1 larger than 180 ° and smaller than 270 °, it is possible to obtain the same effect as the above embodiment.

(g)上記実施形態では挿通ピンP1の軸心G1と研削用回転ローラ35の回転軸心G2を結ぶ直線を水平線として説明しているが、この直線が水平でなくてもよい。   (G) Although the straight line connecting the axis G1 of the insertion pin P1 and the rotation axis G2 of the grinding rotary roller 35 is described as a horizontal line in the above embodiment, this straight line may not be horizontal.

本実施形態のスパークプラグの全体を示す一部破断正面図である。It is a partially broken front view which shows the whole spark plug of this embodiment. 荒削り工程における成形体の形状やその支持形態等を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the shape of the molded object in the rough cutting process, its support form, etc. FIG. 仕上削り工程における成形体の形状やその支持形態等を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the shape of the molded object, its support form, etc. in a finishing cutting process. 成形体、研削用回転ローラ及び押え用回転ローラの配置構成を説明するための模式図である。It is a schematic diagram for demonstrating arrangement | positioning structure of a molded object, the rotation roller for grinding, and the rotation roller for pressing. 先端部削り加工を行う際に使用する研削用回転ローラの形状等を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the shape etc. of the rotating roller for grinding used when performing a tip part cutting process. 別の実施形態における成形体の支持形態を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the support form of the molded object in another embodiment. 別の実施形態における成形体の支持形態を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the support form of the molded object in another embodiment. 別の実施形態における成形体、研削用回転ローラ及び押え用ローラの配置構成を説明するための模式図である。It is a schematic diagram for demonstrating arrangement | positioning structure of the molded object in another embodiment, the rotating roller for grinding, and the pressing roller. 別の実施形態における成形体の支持形態を説明するための模式図である。It is a schematic diagram for demonstrating the support form of the molded object in another embodiment. 別の実施形態における挿通ピンの形状やその支持形態等を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the shape of the insertion pin in another embodiment, its support form, etc. 従来の研削工程を説明するための成形体及び研削用回転ローラの斜視図である。It is a perspective view of the molded object and the rotating roller for grinding for demonstrating the conventional grinding process.

符号の説明Explanation of symbols

1…スパークプラグ、2…絶縁碍子、3…主体金具、4…軸孔、5…中心電極、6…端子電極、30…成形体、31…孔部、35,36…研削用回転ローラ、37,38…押え用回転ローラ、G1…挿通ピンの軸心、G2…研削用回転ローラの回転軸心、G3…押え用回転ローラの回転軸心、F1…成形体の回転方向、F2…研削用回転ローラの回転方向、F3…押え用回転ローラの回転方向。   DESCRIPTION OF SYMBOLS 1 ... Spark plug, 2 ... Insulator, 3 ... Main metal fitting, 4 ... Shaft hole, 5 ... Center electrode, 6 ... Terminal electrode, 30 ... Molded object, 31 ... Hole part, 35, 36 ... Rotary roller for grinding, 37 , 38: Rotating roller for pressing, G1: Shaft center of inserting pin, G2: Rotating shaft center of rotating roller for grinding, G3: Rotating shaft center of rotating roller for pressing, F1: Rotating direction of molded body, F2: For grinding Rotating roller rotation direction, F3... Rotating roller rotating direction.

Claims (5)

原料粉末を軸孔となるべき孔部を有する成形体に成形する成形工程と、
所定の挿通ピンを前記成形体の孔部に差込み当該成形体を回転可能に支持し、回転する研削用回転ローラに対し前記成形体を接触させるとともに、前記成形体に対し押え手段を接触させて前記研削用回転ローラから受ける摩擦力に抗して前記成形体を支え、前記成形体の外周面を研削する研削工程と、
前記研削された成形体を焼成する焼成工程とを経て、
前記孔部を軸孔とし、中心電極及び端子電極を挿入・固定して形成した絶縁碍子を備えたスパークプラグの製造方法であって、
前記研削工程は、
少なくとも1つの前記押え手段が前記成形体に対し接触する位置を、前記成形体に対し前記研削用回転ローラが接触する位置から、前記挿通ピンを軸心として前記成形体の回転方向に180°より大きく270°より小さい所定角度ずれた位置としたことを特徴とするスパークプラグの製造方法。
A molding step of molding the raw material powder into a molded body having a hole to be a shaft hole;
A predetermined insertion pin is inserted into the hole of the molded body to rotatably support the molded body, and the molded body is brought into contact with a rotating rotating roller for grinding, and a pressing means is brought into contact with the molded body. A grinding step of supporting the molded body against the frictional force received from the grinding roller and grinding the outer peripheral surface of the molded body;
Through a firing step of firing the ground compact,
A method of manufacturing a spark plug including an insulator formed by inserting and fixing a center electrode and a terminal electrode, wherein the hole portion is a shaft hole,
The grinding step includes
The position where at least one pressing means comes into contact with the molded body from the position where the rotating roller for grinding comes into contact with the molded body is 180 ° in the rotation direction of the molded body around the insertion pin. A method for manufacturing a spark plug, characterized in that the position is shifted by a predetermined angle which is largely smaller than 270 °.
原料粉末を軸孔となるべき孔部を有する成形体に成形する成形工程と、
所定の挿通ピンを前記成形体の孔部に差込み当該成形体を回転可能に支持し、回転する研削用回転ローラに対し前記成形体を接触させるとともに、回転する押え用回転ローラを前記成形体に対し接触させて当該成形体に対し前記研削用回転ローラから受ける摩擦力に抗して回転する回転力を与え、前記成形体の外周面を研削する研削工程と、
前記研削された成形体を焼成する焼成工程とを経て、
前記孔部を軸孔とし、中心電極及び端子電極を挿入・固定して形成した絶縁碍子を備えたスパークプラグの製造方法であって、
前記研削工程は、
前記成形体に対し前記押え用回転ローラが接触する位置を、前記成形体に対し前記研削用回転ローラが接触する位置から、前記挿通ピンを軸心として前記成形体の回転方向に180°より大きく270°より小さい所定角度ずれた位置としたことを特徴とするスパークプラグの製造方法。
A molding step of molding the raw material powder into a molded body having a hole to be a shaft hole;
A predetermined insertion pin is inserted into the hole of the molded body, the molded body is rotatably supported, the molded body is brought into contact with a rotating grinding rotary roller, and a rotating presser rotating roller is attached to the molded body. A grinding step of applying a rotational force against the friction force received from the grinding rotary roller to contact the molded body and grinding the outer peripheral surface of the molded body;
Through a firing step of firing the ground compact,
A method of manufacturing a spark plug including an insulator formed by inserting and fixing a center electrode and a terminal electrode, wherein the hole portion is a shaft hole,
The grinding step includes
The position where the pressing rotary roller contacts the molded body is greater than 180 ° in the rotational direction of the molded body with the insertion pin as the axis from the position where the grinding rotary roller contacts the molded body. A spark plug manufacturing method characterized in that the position is shifted by a predetermined angle smaller than 270 °.
前記研削工程において、
前記成形体を軸線方向両側から支持することを特徴とする請求項1又は2に記載のスパークプラグの製造方法。
In the grinding step,
The method of manufacturing a spark plug according to claim 1, wherein the molded body is supported from both axial sides.
前記成形工程では、
前記成形体が、その先端部において前記孔部が塞がれた状態で成形されるとともに、
前記研削工程では、
前記成形体の後端部側から前記孔部に前記挿通ピンを挿通して、当該成形体をその後端部側から支持した状態で、当該成形体の外周面に荒削り加工を施すとともに、当該成形体の先端部を落とし前記孔部を貫通させる荒削り工程と、
前記成形体の孔部に前記挿通ピンを挿通して、当該成形体を軸線方向両側から支持した状態で、当該成形体の外周面に仕上削り加工を施す仕上削り工程とを備えていることを特徴とする請求項1又は2に記載のスパークプラグの製造方法。
In the molding step,
While the molded body is molded in a state where the hole is closed at the tip,
In the grinding process,
While inserting the insertion pin into the hole from the rear end side of the molded body and supporting the molded body from the rear end side, the outer peripheral surface of the molded body is subjected to roughing and the molding is performed. A roughing step of dropping the tip of the body and penetrating the hole,
A finishing cutting step of finishing the outer peripheral surface of the molded body with the insertion pin inserted into the hole of the molded body and supporting the molded body from both sides in the axial direction. The method of manufacturing a spark plug according to claim 1 or 2, characterized in that
前記荒削り工程の行われた後段階かつ前記仕上削り工程の行われる前段階において、前記成形体をその後端部側から支持した状態で、当該成形体の先端部に削り加工を施す先端部削り工程を行うことを特徴とする請求項4に記載のスパークプラグの製造方法。   A tip portion shaving step for shaving the tip of the molded body in a state where the molded body is supported from the rear end side in a stage after the roughing process and before the finishing shaving process. The method for manufacturing a spark plug according to claim 4, wherein:
JP2006321028A 2005-12-06 2006-11-29 Manufacturing method of spark plug Expired - Fee Related JP4773932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006321028A JP4773932B2 (en) 2005-12-06 2006-11-29 Manufacturing method of spark plug

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005351588 2005-12-06
JP2005351588 2005-12-06
JP2006321028A JP4773932B2 (en) 2005-12-06 2006-11-29 Manufacturing method of spark plug

Publications (2)

Publication Number Publication Date
JP2007184250A true JP2007184250A (en) 2007-07-19
JP4773932B2 JP4773932B2 (en) 2011-09-14

Family

ID=38340126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006321028A Expired - Fee Related JP4773932B2 (en) 2005-12-06 2006-11-29 Manufacturing method of spark plug

Country Status (1)

Country Link
JP (1) JP4773932B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135241A (en) * 2008-12-08 2010-06-17 Ngk Spark Plug Co Ltd Method of manufacturing spark plug
JP2010198951A (en) * 2009-02-26 2010-09-09 Ngk Spark Plug Co Ltd Insulator for spark plug and its manufacturing method as well as spark plug for internal combustion engine
JP2012238609A (en) * 2012-08-07 2012-12-06 Ngk Spark Plug Co Ltd Insulator for spark plug, manufacturing method thereof, and spark plug for internal combustion engine
JP2017061007A (en) * 2015-09-24 2017-03-30 日本特殊陶業株式会社 Manufacturing method of molded body, manufacturing method of oxygen sensor, and manufacturing method of spark plug
JP2017061008A (en) * 2015-09-24 2017-03-30 日本特殊陶業株式会社 Manufacturing method of molded body, manufacturing method of oxygen sensor, and manufacturing method of spark plug
CN110355626A (en) * 2019-06-21 2019-10-22 谢治高 A kind of rotor clamping tooling based on cylindrical grinder processing small type stepping motor
US11503234B2 (en) 2019-02-27 2022-11-15 Canon Kabushiki Kaisha Photoelectric conversion device, imaging system, radioactive ray imaging system, and movable object

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104097124B (en) * 2014-07-17 2017-10-24 株洲湘火炬火花塞有限责任公司 A kind of high intensity spark plug insulator grinding processing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558972A (en) * 1978-10-26 1980-05-02 Toyoda Mach Works Ltd Traverse grinding method and its device
JPS56157939A (en) * 1980-05-12 1981-12-05 Honda Motor Co Ltd Crankshaft work processor
JPS57126955A (en) * 1981-01-28 1982-08-06 Hitachi Zosen Corp Low temp. ni containing cast steel with improved toughness
JPS6119551A (en) * 1984-05-17 1986-01-28 Koyo Seiko Co Ltd Equipment for grinding outer peripheral surface of outer ring of rolling bearing with shaft
JPH0399553U (en) * 1990-01-31 1991-10-17
JPH0780762A (en) * 1993-09-17 1995-03-28 Ngk Insulators Ltd Grinding machining method of cylindrical ceramic body
JPH10193262A (en) * 1997-01-09 1998-07-28 Micron Seimitsu Kk Method and device for dressing grinding wheel for centerless grinding machine and centerless grinding machine
JP2001176637A (en) * 1999-12-17 2001-06-29 Ngk Spark Plug Co Ltd Manufacturing method of insulator for spark plug and grinding member using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558972A (en) * 1978-10-26 1980-05-02 Toyoda Mach Works Ltd Traverse grinding method and its device
JPS56157939A (en) * 1980-05-12 1981-12-05 Honda Motor Co Ltd Crankshaft work processor
JPS57126955A (en) * 1981-01-28 1982-08-06 Hitachi Zosen Corp Low temp. ni containing cast steel with improved toughness
JPS6119551A (en) * 1984-05-17 1986-01-28 Koyo Seiko Co Ltd Equipment for grinding outer peripheral surface of outer ring of rolling bearing with shaft
JPH0399553U (en) * 1990-01-31 1991-10-17
JPH0780762A (en) * 1993-09-17 1995-03-28 Ngk Insulators Ltd Grinding machining method of cylindrical ceramic body
JPH10193262A (en) * 1997-01-09 1998-07-28 Micron Seimitsu Kk Method and device for dressing grinding wheel for centerless grinding machine and centerless grinding machine
JP2001176637A (en) * 1999-12-17 2001-06-29 Ngk Spark Plug Co Ltd Manufacturing method of insulator for spark plug and grinding member using it

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135241A (en) * 2008-12-08 2010-06-17 Ngk Spark Plug Co Ltd Method of manufacturing spark plug
JP2010198951A (en) * 2009-02-26 2010-09-09 Ngk Spark Plug Co Ltd Insulator for spark plug and its manufacturing method as well as spark plug for internal combustion engine
JP4709910B2 (en) * 2009-02-26 2011-06-29 日本特殊陶業株式会社 Spark plug insulator, method of manufacturing the same, and spark plug for internal combustion engine
JP2012238609A (en) * 2012-08-07 2012-12-06 Ngk Spark Plug Co Ltd Insulator for spark plug, manufacturing method thereof, and spark plug for internal combustion engine
JP2017061007A (en) * 2015-09-24 2017-03-30 日本特殊陶業株式会社 Manufacturing method of molded body, manufacturing method of oxygen sensor, and manufacturing method of spark plug
JP2017061008A (en) * 2015-09-24 2017-03-30 日本特殊陶業株式会社 Manufacturing method of molded body, manufacturing method of oxygen sensor, and manufacturing method of spark plug
US11503234B2 (en) 2019-02-27 2022-11-15 Canon Kabushiki Kaisha Photoelectric conversion device, imaging system, radioactive ray imaging system, and movable object
CN110355626A (en) * 2019-06-21 2019-10-22 谢治高 A kind of rotor clamping tooling based on cylindrical grinder processing small type stepping motor
CN110355626B (en) * 2019-06-21 2021-10-08 台州大财猫科技有限公司 Rotor clamping tool for machining small stepping motor based on cylindrical grinding machine

Also Published As

Publication number Publication date
JP4773932B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4773932B2 (en) Manufacturing method of spark plug
JP4426495B2 (en) Spark plug for internal combustion engine
EP2672587B1 (en) Spark plug
JP4908549B2 (en) Spark plug
JP5048063B2 (en) Spark plug for internal combustion engine
KR20100049634A (en) Spark plug and its manufacturing method
KR20110136837A (en) Spark plug for internal combustion engine and method of manufacturing same
JP4520320B2 (en) Spark plug and method for manufacturing the same
KR20110128872A (en) Spark plug for internal combustion engine
JP2009231268A (en) Manufacturing method of insulator for spark plug and spark plug
JP5564123B2 (en) Spark plug and manufacturing method thereof
JP5118615B2 (en) Manufacturing method of spark plug
EP2768094B1 (en) Spark plug and method of manufacturing the same
WO2016038776A1 (en) Insulator and spark plug
JP6440653B2 (en) Spark plug
JP4709910B2 (en) Spark plug insulator, method of manufacturing the same, and spark plug for internal combustion engine
JP2005135783A (en) Spark plug
CN103828152B (en) Manufacturing method of main metal fitting for spark plug and manufacturing method of spark plug
EP3477801B1 (en) Spark plug
KR20140022468A (en) Spark plug
JP4422605B2 (en) Spark plug insulating body, spark plug manufacturing method, and spark plug
JP2010033989A (en) Spark plug for internal combustion engine
JP4947472B2 (en) Manufacturing method of spark plug
JP3277263B2 (en) Method of manufacturing spark plug for internal combustion engine
JP5400198B2 (en) Spark plug insulator, method of manufacturing the same, and spark plug for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4773932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees