JP2006183163A - Polyester latently crimpable conjugated fiber - Google Patents

Polyester latently crimpable conjugated fiber Download PDF

Info

Publication number
JP2006183163A
JP2006183163A JP2004376089A JP2004376089A JP2006183163A JP 2006183163 A JP2006183163 A JP 2006183163A JP 2004376089 A JP2004376089 A JP 2004376089A JP 2004376089 A JP2004376089 A JP 2004376089A JP 2006183163 A JP2006183163 A JP 2006183163A
Authority
JP
Japan
Prior art keywords
polyester
latent crimpable
viscosity
component
dtex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004376089A
Other languages
Japanese (ja)
Inventor
Tomoo Mizumura
知雄 水村
Ryoji Tsukamoto
亮二 塚本
Yuki Oka
有希 岡
Munemitsu Kamiyama
統光 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2004376089A priority Critical patent/JP2006183163A/en
Publication of JP2006183163A publication Critical patent/JP2006183163A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyester latently crimpable conjugated fiber that has good fiber-forming property, good high-order processability because the elicitation of the crimp in drawing is suitably suppressed and can produce fabrics having satisfactory stretchability, excellent feeling and good appearance. <P>SOLUTION: In the latent crimpable conjugated fiber in which two kinds of polyester components having different intrinsic viscosity are laminated side by side, the difference of the intrinsic viscosity between the high viscosity and the low viscosity is in the range of 0.1 to 0.4; the crimping rate is more than 1.5% after treatment with boiling water for 20 min under the load of 17.6 μN/dtex; a crimping rate is from 30 to 50% after treatment with boiling water for 30 min under the load of more than 1.5 cN/dtex; the strength is more than 1.5 cN/dtex; and the elongation is from 30 to 70%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固有粘度が異なる2種類のポリエステルがサイドバイサイド型に貼り合わされたポリエステル潜在捲縮性複合繊維に関する。さらに詳しくは、製糸性、高次加工性に優れ、高いストレッチ性能や、ハリ、コシといった風合いと欠点の少ない外観を有する布帛が得られるポリエステル潜在捲縮性複合繊維に関する。   The present invention relates to a polyester latent crimpable conjugate fiber in which two types of polyesters having different intrinsic viscosities are bonded to each other in a side-by-side manner. More specifically, the present invention relates to a polyester latent crimpable conjugate fiber that is excellent in yarn-making property and high-order processability, has high stretch performance, and has a texture such as firmness and stiffness, and an appearance with few defects.

固有粘度の異なるポリエステルをサイドバイサイドに複合したポリエステル複合繊維は潜在捲縮性能を有する繊維素材として衣料用布帛に使用されている。布帛に適度のストレッチ性を付与するポリエステル複合繊維を得るためには、2種のポリエステルの固有粘度差を大きくし、繊維にしたときの熱収縮差を大きくして潜在捲縮性を充分に付与しておくことが必要である。   Polyester composite fibers obtained by compounding polyesters having different intrinsic viscosities side by side are used in clothing fabrics as fiber materials having latent crimping performance. In order to obtain a polyester composite fiber that imparts appropriate stretchability to the fabric, the difference in intrinsic viscosity between the two types of polyester is increased, and the difference in thermal shrinkage when made into fibers is increased to sufficiently impart latent crimpability. It is necessary to keep it.

例えば、特許3119389号には、1.5μN/dtexの荷重下、沸水30分処理後の捲縮率が50%を越える潜在捲縮糸を用いて織編物を製造することにより、深みのある色彩と良好な風合を有する織編物が得られることが示されている。   For example, in Japanese Patent No. 3119389, a deep color is produced by producing a woven or knitted fabric using a latent crimped yarn having a crimp rate exceeding 50% after 30 minutes of boiling water treatment under a load of 1.5 μN / dtex. It is shown that a woven or knitted fabric having a good texture can be obtained.

しかしながら、1.5μN/dtexの荷重下、沸水30分処理後の捲縮率が50%を越える潜在捲縮糸は、延伸糸として巻き上げた段階で、既にかなりの捲縮が顕在化してコイル状を呈したものとなる。このような延伸糸をパッケージから解舒して撚糸あるいは製織編する際には、糸導のガイド等に引っ掛かって破断したり、過度な歪みを受けて製織編後に染色欠点として発現したりして、不具合を誘発する原因となる。このため、高次加工での取扱い性の面において改善が望まれている。   However, under the load of 1.5 μN / dtex, the latent crimped yarn having a crimp rate of more than 50% after being treated for 30 minutes with boiling water is already in the coiled state when the wound yarn is wound up as a drawn yarn. Will be presented. When unwinding such a drawn yarn from a package and twisting or weaving or knitting, it may be caught by a guide or the like of the yarn guide and broken, or it may appear as a dyeing defect after weaving and knitting due to excessive distortion. , Causing a malfunction. For this reason, improvement in the surface of the handleability in high-order processing is desired.

特許第3119389号公報Japanese Patent No. 3119389 特開2000−144518号公報JP 2000-144518 A

本発明は、上記従来技術を背景になされたもので、その目的は、製糸性が良好であり、延伸における捲縮の顕在化を適度に抑えることができるため高次加工性が良く、且つ、十分なストレッチ性と優れた風合いや外観を有する布帛が得られるポリエステル潜在捲縮性繊維を提供することにある。   The present invention has been made against the background of the above-described prior art, and the purpose thereof is good yarn-making property, and since it is possible to moderately suppress the manifestation of crimp in stretching, high-order workability is good, and An object of the present invention is to provide a polyester latent crimpable fiber from which a fabric having sufficient stretchability and excellent texture and appearance can be obtained.

本発明者らは、上記従来技術に鑑み、鋭意検討を重ねた結果、本発明を完成するに至った。すなわち、本発明の目的は、固有粘度の異なる2種類のポリエステル成分がサイドバイサイド型に貼り合されている潜在捲縮性複合繊維であって、高粘度ポリエステル成分と低粘度ポリエステル成分との固有粘度の差が0.1〜0.4の範囲にあり、且つ下記(a)〜(d)の要件を同時に満足していることを特徴とするポリエステル潜在捲縮性複合繊維によって達成される。
(a)17.6μN/dtexの荷重下、沸水20分処理後の捲縮率が1.5%以上25%未満
(b)1.5μN/dtexの荷重下、沸水30分処理後の捲縮率が30%以上50%未満
(c)強度が1.5cN/dtex以上
(d)伸度が30%以上70%以下
As a result of intensive studies in view of the above-described prior art, the present inventors have completed the present invention. That is, an object of the present invention is a latent crimpable conjugate fiber in which two types of polyester components having different intrinsic viscosities are bonded to a side-by-side type, and the intrinsic viscosity of a high-viscosity polyester component and a low-viscosity polyester component. This is achieved by a polyester latent crimpable composite fiber characterized in that the difference is in the range of 0.1 to 0.4 and the following requirements (a) to (d) are simultaneously satisfied.
(A) Crimp rate after treatment with boiling water for 20 minutes under a load of 17.6 μN / dtex is 1.5% or more and less than 25% (b) Crimp after treatment with boiling water for 30 minutes under a load of 1.5 μN / dtex (C) Strength is 1.5 cN / dtex or more (d) Elongation is 30% or more and 70% or less

本発明によれば、製糸性、高次加工性に優れたポリエステル潜在捲縮性複合繊維を提供することができる。また、上記潜在捲縮性複合繊維からは、十分なストレッチ性能、および、ハリ、コシといった風合いや欠点の少ない外観を有するポリエステル布帛を得ることができる。   According to the present invention, it is possible to provide a polyester latent crimpable conjugate fiber excellent in yarn-making property and high-order processability. Further, from the above-mentioned latent crimpable conjugate fiber, a polyester fabric having a sufficient stretch performance and an appearance with little texture and defects such as elasticity and stiffness can be obtained.

本発明のポリエステル潜在捲縮性複合は、固有粘度の異なる2種類のポリエステル成分がサイドバイサイド型に貼り合されている潜在捲縮性複合繊維である。
上記ポリエステルとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリトリメチレンテレフタレート、ポリトリメチレンナフタレート、ポリテトラメチレンテレフタレート、ポリテトラメチレンナフタレートよりなる群から少なくとも1種選ばれるポリエステルであることが好ましく、これらの中でも特にポリエチレンテレフタレートを主たる構成成分とするポリエステルであることが好ましい。
The polyester latent crimpable composite of the present invention is a latent crimpable composite fiber in which two types of polyester components having different intrinsic viscosities are bonded in a side-by-side manner.
The polyester is preferably a polyester selected from at least one selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polytrimethylene terephthalate, polytrimethylene naphthalate, polytetramethylene terephthalate, and polytetramethylene naphthalate. Among these, a polyester having polyethylene terephthalate as a main constituent is particularly preferable.

本発明においては、高粘度ポリエステル成分(以下、高粘度成分と称することがある)と低粘度ポリエステル成分(以下、低粘度成分と称することがある)との固有粘度の差が0.1〜0.4、より好ましくは0.15〜0.30の範囲にある必要がある。固有粘度差が0.1未満の場合は、2成分間の熱収縮差が不充分になりやすく、複合繊維としての潜在捲縮性能が不充分となる。固有粘度差が0.4を越える場合は、2成分の貼り合わせ不良が発生したり、吐出ポリマーの屈曲、ピクツキ、旋回等が激しくなったりして、得られた複合繊維の品質が劣ったものとなることが多く、また製糸工程での断糸率、歩留りといった生産性も悪くなる。また、低粘度成分の固有粘度は0.4〜0.7および高粘度成分の固有粘度は0.6〜0.9の範囲とするとポリマー吐出状態がより安定するので好ましい。   In the present invention, the difference in intrinsic viscosity between a high viscosity polyester component (hereinafter sometimes referred to as a high viscosity component) and a low viscosity polyester component (hereinafter sometimes referred to as a low viscosity component) is 0.1 to 0. .4, more preferably in the range of 0.15 to 0.30. When the difference in intrinsic viscosity is less than 0.1, the difference in heat shrinkage between the two components tends to be insufficient, and the latent crimp performance as a composite fiber becomes insufficient. When the intrinsic viscosity difference exceeds 0.4, the quality of the resulting composite fiber is inferior due to the occurrence of poor bonding of the two components, or the bending, picking, swirling, etc. of the discharged polymer becoming severe. In addition, the productivity such as the yarn cutting rate and the yield in the yarn making process is also deteriorated. Moreover, it is preferable that the intrinsic viscosity of the low viscosity component is in the range of 0.4 to 0.7 and the intrinsic viscosity of the high viscosity component is in the range of 0.6 to 0.9 because the polymer discharge state becomes more stable.

また、本発明の潜在捲縮性複合繊維においては、下記(a)〜(d)の要件を同時に満足していることが肝要であり、これにより、製糸性が良好であり、延伸において捲縮の顕在化を適度に抑えることができ高次加工性が良く、十分なストレッチ特性と優れた風合いを有する布帛が得られる潜在捲縮性繊維とすることができる。
(a)17.6μN/dtexの荷重下、沸水20分処理後の捲縮率が1.5%以上25%未満
(b)1.5μN/dtexの荷重下、沸水30分処理後の捲縮率が30%以上50%未満
(c)強度が1.5cN/dtex以上
(d)伸度が30%以上70%以下
以下、各要件について説明する。
Moreover, in the latent crimpable conjugate fiber of the present invention, it is important that the following requirements (a) to (d) are satisfied at the same time. It is possible to obtain a latent crimpable fiber that can moderately suppress the manifestation of fragility, obtain high-order processability, and obtain a fabric having sufficient stretch characteristics and excellent texture.
(A) Crimp rate after treatment with boiling water for 20 minutes under a load of 17.6 μN / dtex is 1.5% or more and less than 25% (b) Crimp after treatment with boiling water for 30 minutes under a load of 1.5 μN / dtex Rate is 30% or more and less than 50% (c) Strength is 1.5 cN / dtex or more (d) Elongation is 30% or more and 70% or less Hereinafter, each requirement will be described.

(a)17.6μN/dtexの荷重下、沸水20分処理後の捲縮率は、繊維を製織編して布帛とした後に熱処理して潜在捲縮を顕在化させる際の、織編物の拘束力が掛かった状態での捲縮発現能を表す尺度である。これが1.5%未満の場合、織編物の拘束力下で繊維に捲縮を発現させる能力が弱いため、布帛に良好なストレッチ性能と風合いを付与する事が難しくなる。一方、25%以上の場合、繊維の捲縮が強くなりすぎ、布帛の風合いが硬くなりすぎるため好ましくない。上記捲縮率は、好ましくは1.5%以上10%以下である。   (A) The crimp rate after treatment with boiling water for 20 minutes under a load of 17.6 μN / dtex is the restraint of the woven or knitted fabric when the fibers are woven and knitted into a fabric and then heat treated to reveal latent crimps. It is a scale representing the ability to develop crimp in a state where force is applied. If it is less than 1.5%, the ability to develop crimps to the fibers under the restraining force of the woven or knitted fabric is weak, so that it becomes difficult to impart good stretch performance and texture to the fabric. On the other hand, when it is 25% or more, the crimp of the fiber becomes too strong, and the texture of the fabric becomes too hard. The crimp rate is preferably 1.5% or more and 10% or less.

(b)1.5μN/dtexの荷重下、沸水30分処理後の捲縮率は、糸を延伸糸として巻き上げた状態から、限りなくフリーに近い低荷重で沸水処理した後に、異なる荷重で繊維の捲縮伸び縮みを比較する方法で、一般的な潜在捲縮性能を表すと同時に、得られる測定値の絶対値が大きいことから、生糸(延伸糸の状態)で既に顕在化している捲縮率を知るための尺度としても有効である。この捲縮率値が30%より小さいと、繊維の捲縮発現能が小さく、布帛に良好なストレッチ性能と風合いを付与する事が難しくなる。一方、50%以上の場合、繊維の捲縮が強くなりすぎ、布帛の風合いが硬くなると同時に、熱処理前の生糸の捲縮の顕在化が強く、高次加工工程での取扱いが難しくなるので好ましくない。   (B) The crimp rate after 30 minutes of boiling water treatment under a load of 1.5 μN / dtex is that the fiber is treated with a different load after boiling water treatment with a low load that is almost free from the state where the yarn is wound as a drawn yarn. This is a method for comparing the crimp expansion and contraction of the yarn, and represents the general latent crimp performance, and at the same time, the absolute value of the measured value obtained is large, so the crimp already manifested in the raw yarn (drawn yarn state) It is also effective as a measure to know the rate. If this crimp ratio value is less than 30%, the crimping ability of the fiber is small, and it becomes difficult to impart good stretch performance and texture to the fabric. On the other hand, if it is 50% or more, the crimp of the fiber becomes too strong, and the texture of the fabric becomes hard. At the same time, the manifestation of the crimp of the raw yarn before the heat treatment is strong and it is difficult to handle in the higher processing step. Absent.

本発明においては、上記のように、沸水処理時の荷重が異なる2種類の測定法を用いて捲縮率をそれぞれ測定し、両測定法でともに所定の範囲に入る潜在捲縮糸を得る事が重要である。これにより、布帛にした際の機能、風合いと高次加工性を両立することができる。   In the present invention, as described above, the crimping rate is measured using two types of measurement methods with different loads during boiling water treatment, and a latent crimped yarn falling within a predetermined range is obtained by both measurement methods. is important. Thereby, the function at the time of making a fabric, a texture, and high-order workability can be made compatible.

(c)強度が1.5cN/dtex未満の場合、捲返し、撚糸、製織編の工程において繊維の破断が発生し易くなるほか、布帛の引裂強度も弱くなる。特に繊維に太細を付与した際には強度は低くなり易い。太細を有しない延伸糸の場合には、2.5cN/dtex以上が好ましい。強度が高い場合、風合いが硬くなる等の傾向はあるが、特にこれ以上強度が高くてはいけないという制約は無い。但し、ポリエステルで製糸する場合、高強度化には自ずと限界があり、安定に製造できる範囲に設定すれば良い。   (C) When the strength is less than 1.5 cN / dtex, the fiber is easily broken in the process of turning, twisting and weaving, and the tear strength of the fabric is also weakened. In particular, when the fibers are thick and thin, the strength tends to be low. In the case of a drawn yarn having no thickness, 2.5 cN / dtex or more is preferable. When the strength is high, there is a tendency that the texture becomes hard, but there is no restriction that the strength should not be particularly higher. However, when yarn is made from polyester, there is a limit to the increase in strength, and it should be set within a range where stable production is possible.

(d)伸度が30%未満の場合、捲返し、撚糸、製織編の工程において繊維が受ける歪みの影響により、布帛に染色欠点および形態の欠点が発生しやすくなるほか、繊維の延伸工程においてマルチフィラメントのうち1本〜数本が破断して破断先端が毛羽となりやすく、加工工程での断糸や布帛欠点の原因となる。一方、伸度が70%を超える場合、繊維の強度や収縮率を適度に保つことが難しくなる。上記伸度は好ましくは30%以上55%以下である。   (D) When the elongation is less than 30%, the fabric is liable to have a dyeing defect and a defect in the form due to the influence of the fiber in the process of turning, twisting and weaving, and in the fiber drawing process. One to several of the multifilaments break and the tip of the breakage tends to become fluff, causing thread breakage and fabric defects in the processing step. On the other hand, when the elongation exceeds 70%, it is difficult to keep the strength and shrinkage ratio of the fibers moderate. The elongation is preferably 30% or more and 55% or less.

本発明においては、高粘度ポリエステル成分が、イソフタル酸を5%以上15%以下、より好ましくは8%以上15%以下共重合されたポリエステル、特にポリエチレンテレフタレート系ポリエステルであることが好ましい。この共重合率範囲であれば、本発明に必要な高粘度成分としての熱収縮特性を発現できる。かかる観点から、低粘度ポリエステル成分は、実質的にイソフタル酸が共重合されていないポリエステルであることが好ましい。   In the present invention, the high viscosity polyester component is preferably a polyester copolymerized with isophthalic acid in an amount of 5% to 15%, more preferably 8% to 15%, particularly a polyethylene terephthalate polyester. If it is in this copolymerization rate range, the heat shrink property as a high viscosity component necessary for the present invention can be expressed. From this viewpoint, the low-viscosity polyester component is preferably a polyester that is substantially not copolymerized with isophthalic acid.

また、本発明においては、低粘度ポリエステル成分が、真比重5.0以上の金属元素の含有量が0〜10重量ppm以下であり、かつ濃度20mg/L、光路長1cmでのクロロホルム溶液において測定された380〜780nm領域の可視光吸収スペクトルでの最大吸収波長が540〜600nmの範囲にある有機化合物系整色剤を0.1〜10重量ppm含有するポリエステルであることが好ましい。上記のようなポリエステルで、整色剤が含有されていることにより、複合繊維の低粘度成分に使用して紡糸、延伸した際に特有の配向、結晶化特性を示し、本発明の目的とする潜在捲縮繊維を容易に得ることができる。   In the present invention, the low-viscosity polyester component is measured in a chloroform solution in which the content of a metal element having a true specific gravity of 5.0 or more is 0 to 10 ppm by weight and the concentration is 20 mg / L and the optical path length is 1 cm. It is preferable that the polyester contains 0.1 to 10 ppm by weight of an organic compound color matching agent having a maximum absorption wavelength in the range of 540 to 600 nm in the visible light absorption spectrum in the 380 to 780 nm region. The polyester as described above, containing a color adjusting agent, exhibits a specific orientation and crystallization characteristics when it is spun and stretched using the low-viscosity component of the composite fiber, and is an object of the present invention. Latent crimped fibers can be easily obtained.

より具体的には、上記ポリエステルを低粘度成分として用いた場合、次の効果があることを本発明者らは見出した。すなわち、低荷重下の熱処理時には低粘度成分が適度に収縮することで高収縮成分との収縮率差が大きくなりすぎず、これにより製糸、特に延伸の段階での捲縮の顕在化を抑制し、加工工程での取扱い性が良くなる。一方、高荷重下の熱処理時には低粘度成分の収縮率がより低くなり、高粘度成分との収縮差がより大きくなり、強い捲縮を発現する。このことは織編物のような拘束力下での高い捲縮が発現することに繋がり、良好な風合いと優れたストレッチ性能を示す布帛が得られる。   More specifically, the present inventors have found that the following effects are obtained when the polyester is used as a low viscosity component. That is, the low-viscosity component shrinks appropriately during heat treatment under a low load, so that the difference in shrinkage rate from the high-shrinkage component does not become too large, thereby suppressing the manifestation of crimping at the stage of yarn production, especially in the drawing stage. The handling property in the processing process is improved. On the other hand, at the time of heat treatment under a high load, the shrinkage rate of the low-viscosity component is lower, the shrinkage difference from the high-viscosity component is larger, and a strong crimp is developed. This leads to the development of high crimps under a binding force such as a woven or knitted fabric, and a fabric having a good texture and excellent stretch performance can be obtained.

したがって、低粘度成分において、真比重5.0以上の金属元素の含有量が0〜10重量ppmより多い場合は、上記効果が得られない。特に、低粘度成分がアンチモン化合物を含む場合、低荷重下での熱処理時にも繊維が結晶化しやすく、収縮率が低くなる傾向があり、これにより高粘度成分との収縮率差が大きくなり、捲縮が強く発現する。その結果、この低荷重下で、延伸糸の状態での捲縮の顕在化を招くことになり、高次加工工程での取扱いが難しいものになる。   Therefore, in the low viscosity component, when the content of the metal element having a true specific gravity of 5.0 or more is more than 0 to 10 ppm by weight, the above effect cannot be obtained. In particular, when the low-viscosity component contains an antimony compound, the fiber tends to crystallize even during heat treatment under a low load, and the shrinkage rate tends to be low, which increases the difference in shrinkage rate from the high-viscosity component. Shrinkage is strongly expressed. As a result, under such a low load, crimping in the drawn yarn state becomes obvious, and handling in a high-order processing step becomes difficult.

なお、本発明における真比重5.0以上の金属元素とは通常ポリエステル中に含有される触媒や金属系の整色剤、艶消剤等に含有されている金属化合物に由来するものである。具体的には、アンチモン、ゲルマニウム、マンガン、コバルト、セリウム、錫、亜鉛、鉛、カドミウム等が該当する。これらに対し、チタン、アルミニウム、カルシウム、マグネシウム、ナトリウム、カリウム等はここでいう真比重5.0以上の金属には該当しない。   In the present invention, the metal element having a true specific gravity of 5.0 or more is derived from a metal compound usually contained in a catalyst, a metal color adjuster, a matting agent, etc. contained in a polyester. Specifically, antimony, germanium, manganese, cobalt, cerium, tin, zinc, lead, cadmium and the like are applicable. On the other hand, titanium, aluminum, calcium, magnesium, sodium, potassium, and the like do not correspond to metals having a true specific gravity of 5.0 or more.

また、本発明においては、低粘度ポリエステル成分が、チタン化合物成分とリン化合物とを含む触媒の存在下に芳香族ジカルボキシレートエステルを重縮合して得られるポリエステルであり、該チタン化合物成分が下記一般式(I)で表されるチタンアルコキシド及び下記一般式(I)で表されるチタンアルコキシドと下記一般式(II)で表される芳香族多価カルボン酸又はその無水物とを反応させた生成物からなる群から選ばれた少なくとも一種を含む成分であり、該リン化合物が後述する一般式(III)で表される化合物であることが好ましい。これにより、上記の特定の触媒を用いて重縮合して得られたポリエステルと整色剤との相乗効果により、繊維形成段階での配向、結晶化特性が特異な挙動を示し、低荷重下熱処理時の低粘度成分の過剰な低収縮化を抑制する働きがあり、前述した効果がより顕著に現れることがわかった。   In the present invention, the low-viscosity polyester component is a polyester obtained by polycondensation of an aromatic dicarboxylate ester in the presence of a catalyst containing a titanium compound component and a phosphorus compound. A titanium alkoxide represented by the general formula (I) and a titanium alkoxide represented by the following general formula (I) were reacted with an aromatic polycarboxylic acid represented by the following general formula (II) or an anhydride thereof. It is a component containing at least one selected from the group consisting of products, and the phosphorus compound is preferably a compound represented by the following general formula (III). As a result, due to the synergistic effect of the polyester obtained by polycondensation using the above specific catalyst and the color adjusting agent, the orientation and crystallization characteristics in the fiber formation stage show unique behavior, and heat treatment under low load. It has been found that there is a function of suppressing excessive low shrinkage of the low-viscosity component at the time, and the above-described effect appears more remarkably.

Figure 2006183163
(上記式中、R、R、R及びRはそれぞれ同一若しくは異なって、アルキル基又はフェニル基を示し、mは1〜4の整数を示し、かつmが2、3又は4の場合、2個、3個又は4個のR及びRは、それぞれ同一であっても異なっていてもどちらでもよい。)
Figure 2006183163
(In the above formula, R 1 , R 2 , R 3 and R 4 are the same or different and each represents an alkyl group or a phenyl group, m represents an integer of 1 to 4, and m is 2, 3 or 4) In this case, 2, 3 or 4 R 2 and R 3 may be the same or different from each other.)

Figure 2006183163
(上記式中、nは2〜4の整数を表わす)
Figure 2006183163
(In the above formula, n represents an integer of 2 to 4)

ここで、一般式(I)で表されるチタンアルコキシドとしては、具体的にはテトライソプロポキシチタン、テトラプロポキシチタン、テトラ−n−ブトキシチタン、テトラエトキシチタン、テトラフェノキシチタン、オクタアルキルトリチタネート、及びヘキサアルキルジチタネートなどが好ましく用いられる。   Here, the titanium alkoxide represented by the general formula (I) specifically includes tetraisopropoxy titanium, tetrapropoxy titanium, tetra-n-butoxy titanium, tetraethoxy titanium, tetraphenoxy titanium, octaalkyl trititanate, And hexaalkyl dititanate are preferably used.

また、本発明の該チタンアルコキシドと反応させる一般式(II)で表される芳香族多価カルボン酸又はその無水物としては、フタル酸、トリメリット酸、ヘミメリット酸、ピロメリット酸及びこれらの無水物が好ましく用いられる。   The aromatic polyvalent carboxylic acid represented by the general formula (II) to be reacted with the titanium alkoxide of the present invention or an anhydride thereof includes phthalic acid, trimellitic acid, hemimellitic acid, pyromellitic acid, and these Anhydrides are preferably used.

上記チタンアルコキシドと芳香族多価カルボン酸又はその無水物とを反応させる場合には、溶媒に芳香族多価カルボン酸又はその無水物の一部または全部を溶解し、この混合液にチタンアルコキシドを滴下し、0〜200℃の温度で少なくとも30分間、好ましくは30〜150℃の温度で40〜90分間加熱することによって行われる。この際の反応圧力については特に制限はなく、常圧で十分である。なお、芳香族多価カルボン酸またはその無水物を溶解させる溶媒としては、エタノール、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ベンゼン及びキシレン等から所望に応じていずれを用いることもできる。   When the titanium alkoxide is reacted with an aromatic polyvalent carboxylic acid or an anhydride thereof, a part or all of the aromatic polyvalent carboxylic acid or an anhydride thereof is dissolved in a solvent, and the titanium alkoxide is added to the mixed solution. It is carried out by dripping and heating at a temperature of 0-200 ° C. for at least 30 minutes, preferably at a temperature of 30-150 ° C. for 40-90 minutes. There is no restriction | limiting in particular about the reaction pressure in this case, A normal pressure is enough. As the solvent for dissolving the aromatic polyvalent carboxylic acid or its anhydride, any of ethanol, ethylene glycol, trimethylene glycol, tetramethylene glycol, benzene, xylene and the like can be used as desired.

ここで、チタンアルコキシドと芳香族多価カルボン酸またはその無水物との反応モル比には特に限定はないが、チタンアルコキシドの割合が高すぎると、得られるポリエステルの色調が悪化したり、軟化点が低下したりすることがあり、逆にチタンアルコキシドの割合が低すぎると重縮合反応が進みにくくなることがある。このため、チタンアルコキシドと芳香族多価カルボン酸又はその無水物との反応モル比は、2/1〜2/5の範囲内とすることが好ましい。   Here, the reaction molar ratio between the titanium alkoxide and the aromatic polyvalent carboxylic acid or its anhydride is not particularly limited, but if the proportion of the titanium alkoxide is too high, the color tone of the resulting polyester deteriorates or the softening point. In contrast, if the proportion of titanium alkoxide is too low, the polycondensation reaction may not proceed easily. For this reason, it is preferable that the reaction molar ratio of the titanium alkoxide and the aromatic polyvalent carboxylic acid or its anhydride is in the range of 2/1 to 2/5.

本発明で用いられる重縮合用の触媒系は、上記のチタン化合物成分と、下記一般式(III)により表されるリン化合物とを含むものであり、両者の未反応混合物から実質的になるものである。   The catalyst system for polycondensation used in the present invention comprises the above titanium compound component and a phosphorus compound represented by the following general formula (III), and consists essentially of an unreacted mixture of both. It is.

Figure 2006183163
(上記式中、R、R及びRは、同一又は異なって炭素数原子数1〜4のアルキル基を示し、Xは、−CH−又は―CH(Y)を示す(Yは、ベンゼン環を示す)。)
Figure 2006183163
(In the above formula, R 5 , R 6 and R 7 are the same or different and each represents an alkyl group having 1 to 4 carbon atoms, X represents —CH 2 — or —CH (Y) (Y represents , Represents a benzene ring).)

上記一般式(III)のリン化合物(ホスホネート化合物)としては、カルボメトキシメタンホスホン酸、カルボエトキシメタンホスホン酸、カルボプロポキシメタンホスホン酸、カルボブトキシメタンホスホン酸、カルボメトキシフェニルメタンホスホン酸、カルボエトキシフェニルメタンホスホン酸、カルボプロトキシフェニルメタンホスホン酸、カルボブトキシフェニルメタンホスホン酸等のホスホン酸誘導体のジメチルエステル類、ジエチルエステル類、ジプロピルエステル類、ジブチルエステル類等から選ばれることが好ましい。   As the phosphorus compound (phosphonate compound) of the above general formula (III), carbomethoxymethanephosphonic acid, carboethoxymethanephosphonic acid, carbopropoxymethanephosphonic acid, carbobutoxymethanephosphonic acid, carbomethoxyphenylmethanephosphonic acid, carboethoxyphenyl It is preferably selected from dimethyl esters, diethyl esters, dipropyl esters, dibutyl esters and the like of phosphonic acid derivatives such as methanephosphonic acid, carboprotoxyphenyl methanephosphonic acid, carbobutoxyphenyl methanephosphonic acid and the like.

上記のホスホネート化合物は、通常安定剤として使用されるリン化合物に比較して、チタン化合物との反応が比較的緩やかに進行するので、反応中における、チタン化合物の触媒活性持続時間が長く、結果として該チタン化合物のポリエステルへの添加量を少なくすることができる。また、一般式(III)のリン化合物を含む触媒系に多量に安定剤を添加しても、得られるポリエステルの熱安定性を低下させることがなく、その色調を不良化することが無い。   The above phosphonate compound has a relatively slow reaction time with the titanium compound compared to the phosphorus compound that is usually used as a stabilizer, so the duration of the catalytic activity of the titanium compound during the reaction is long. The amount of the titanium compound added to the polyester can be reduced. Further, even when a large amount of stabilizer is added to the catalyst system containing the phosphorus compound of the general formula (III), the thermal stability of the resulting polyester is not lowered and the color tone is not deteriorated.

本発明では、上記のチタン化合物成分とリン化合物とを含む触媒が、下記数式(5)及び(6)を満足していることが好ましい。
1≦P/Ti≦15 (5)
10≦P+Ti≦100 (6)
ここで、(P/Ti)は、2以上15以下であることが好ましく、さらには10以下であることが好ましい。(P/Ti)が、1未満の場合はポリエステルの色相が黄味を帯び易くなり、一方15を越えると、ポリエステルの重縮合反応性が低下する傾向にある。
In the present invention, the catalyst containing the titanium compound component and the phosphorus compound preferably satisfies the following mathematical formulas (5) and (6).
1 ≦ P / Ti ≦ 15 (5)
10 ≦ P + Ti ≦ 100 (6)
Here, (P / Ti) is preferably 2 or more and 15 or less, and more preferably 10 or less. When (P / Ti) is less than 1, the hue of the polyester tends to be yellowish, while when it exceeds 15, the polycondensation reactivity of the polyester tends to decrease.

また、(Ti+P)は、20以上70以下であることがより好ましい。(Ti+P)が10に満たない場合は、製糸プロセスにおける生産性が低下する傾向にあり、一方、100を越える場合には、触媒に起因する異物が少量ではあるが発生しやすくなり好ましくない。   Further, (Ti + P) is more preferably 20 or more and 70 or less. When (Ti + P) is less than 10, the productivity in the spinning process tends to decrease. On the other hand, when it exceeds 100, a small amount of foreign matter due to the catalyst tends to be generated, which is not preferable.

上記式中、Tiの量としては2〜15ミリモル%程度が適当である。本発明で用いられているポリエステルポリマーは、上記のチタン化合物成分とリン化合物とを含む触媒の存在下に芳香族ジカルボキシレートエステルを重縮合して得られるポリマーであるが、本発明においては、芳香族ジカルボキシレートエステルが、芳香族ジカルボン酸と脂肪族グリコールからなるジエステルであることが好ましい。   In the above formula, a suitable amount of Ti is about 2 to 15 mmol%. The polyester polymer used in the present invention is a polymer obtained by polycondensation of an aromatic dicarboxylate ester in the presence of a catalyst containing the above titanium compound component and a phosphorus compound. The aromatic dicarboxylate ester is preferably a diester composed of an aromatic dicarboxylic acid and an aliphatic glycol.

ここで芳香族ジカルボン酸としては、テレフタル酸を主とすることが好ましい。より具体的には、テレフタル酸が全芳香族ジカルボン酸を基準として70モル%以上を占めていることが好ましく、さらには該テレフタル酸は、全芳香族ジカルボン酸を基準として80モル%以上を占めていることが好ましい。ここでテレフタル酸以外の好ましい芳香族ジカルボン酸としては、例えば、フタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、ジフェノキシエタンジカルボン酸等を挙げることができる。   Here, the aromatic dicarboxylic acid is preferably terephthalic acid. More specifically, it is preferable that terephthalic acid accounts for 70 mol% or more based on the total aromatic dicarboxylic acid, and further, the terephthalic acid accounts for 80 mol% or more based on the total aromatic dicarboxylic acid. It is preferable. Examples of preferable aromatic dicarboxylic acids other than terephthalic acid include phthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid, and the like.

もう一方の脂肪族グリコールとしては、アルキレングリコールであることが好ましく、例えば、エチレングリコール、トリメチレングリコール、プロピレングリコール、テトラメチレングリコール、ネオペンチルグリコール、ヘキサンメチレングリコール、ドデカメチレングリコールを用いることができるが、特にエチレングリコールであることが好ましい。   The other aliphatic glycol is preferably alkylene glycol, and for example, ethylene glycol, trimethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol, hexanemethylene glycol, and dodecamethylene glycol can be used. In particular, ethylene glycol is preferable.

なお、本発明においては、低粘度成分として、前述した真比重が5.0以下、特にポリアンチモン化合物を含まないポリエステルを用いていることにより、紡糸吐出時に口金面に付着するの異物が極端に少なく、吐出乱れがなく断糸や品質不良が少ないことも特長として挙げられる。   In the present invention, as the low-viscosity component, the above-mentioned true specific gravity is 5.0 or less, in particular, the polyester containing no polyantimony compound is used. There are also few features that there is little discharge disturbance and fewer yarn breaks and poor quality.

また、前述したように、上記ポリエステルには、有機化合物系整色剤が全重量に対して0.1〜10重量ppm含有されていることが、両者の相乗効果によって適度な潜在捲縮性能を発現する上で好ましい。上述の整色剤の含有量が、0.1重量ppm未満の場合は、潜在捲縮性繊維の黄色味が強くなるほか、上記の触媒と合せて使用した場合に、サイドバイサイド糸を形成する低粘度成分が低荷重下熱処理により収縮しにくい方向にシフトするため、高粘度成分との収縮差が大きくなりすぎ、捲縮の顕在化が強くなりすぎて好ましくない。一方、有機化合物系整色剤の含有が全重量に対して10重量ppmを超える場合、明度が弱くなり見た目に黒味が強くなるほか、低粘度成分が低荷重下熱処理により収縮しやすい方向にシフトするため、高粘度成分との収縮差が小さくなり、布帛に所望の風合いとストレッチ性能が得られなくなり好ましくない。該整色剤の含有量は、上記の観点から、0.3重量ppm〜9重量ppmの範囲にあることがより好ましい。   In addition, as described above, the polyester contains an organic compound color adjuster in an amount of 0.1 to 10 ppm by weight based on the total weight. Preferred for expression. When the content of the color adjusting agent is less than 0.1 ppm by weight, the yellowishness of the latent crimpable fiber becomes strong, and when used in combination with the above catalyst, the low level of forming side-by-side yarn is low. Since the viscosity component shifts in a direction in which it does not easily shrink due to heat treatment under a low load, the shrinkage difference from the high viscosity component becomes too large, and the manifestation of crimp becomes too strong, which is not preferable. On the other hand, when the content of the organic compound color adjusting agent exceeds 10 ppm by weight with respect to the total weight, the lightness is weakened and the blackness becomes strong in appearance, and the low viscosity component tends to shrink due to heat treatment under a low load. Because of the shift, the shrinkage difference from the high-viscosity component becomes small, and the desired texture and stretch performance cannot be obtained for the fabric. From the above viewpoint, the content of the color adjusting agent is more preferably in the range of 0.3 ppm to 9 ppm by weight.

また、上記有機系整色剤は、濃度20mg/L、光路長1cmでのクロロホルム溶液において測定された380〜780nm領域の可視光吸収スペクトルでの最大吸収波長が540〜600nmの範囲にある有機化合物系整色剤である。最大吸収波長が540nm未満の場合は得られる潜在捲縮性繊維の赤味が強くなり、また600nmを超える場合は得られる潜在捲縮性繊維の青味が強くなるため好ましくない。最大吸収波長の範囲は550〜590nmの範囲がさらに好ましい。   The organic color adjusting agent is an organic compound having a maximum absorption wavelength in a visible light absorption spectrum of 380 to 780 nm measured in a chloroform solution having a concentration of 20 mg / L and an optical path length of 1 cm in a range of 540 to 600 nm. It is a system color adjusting agent. When the maximum absorption wavelength is less than 540 nm, the redness of the latent crimpable fiber to be obtained becomes strong, and when it exceeds 600 nm, the blueness of the latent crimpable fiber to be obtained becomes strong. The range of the maximum absorption wavelength is more preferably in the range of 550 to 590 nm.

なお、本発明においては、有機化合物系整色剤が、最大吸収波長での吸光度に対する下記各波長での吸光度の割合が下記式(1)〜(4)のすべてを満たす有機化合物系整色剤であることが好ましい。
0.00≦A400/Amax≦0.20 (1)
0.10≦A500/Amax≦0.70 (2)
0.55≦A600/Amax≦1.00 (3)
0.00≦A700/Amax≦0.05 (4)
[上記数式中、A400、A500、A600、A700はそれぞれ400nm、500nm、600nm、700nmでの可視光吸収スペクトルにおける吸光度を、Amaxは最大吸収波長での可視光吸収スペクトルにおける吸光度を表す。]
In the present invention, the organic compound color adjusting agent satisfies the following formulas (1) to (4) in which the ratio of the absorbance at each wavelength below to the absorbance at the maximum absorption wavelength satisfies all of the following formulas (1) to (4). It is preferable that
0.00 ≦ A 400 / A max ≦ 0.20 (1)
0.10 ≦ A 500 / A max ≦ 0.70 (2)
0.55 ≦ A 600 / A max ≦ 1.00 (3)
0.00 ≦ A 700 / A max ≦ 0.05 (4)
[In the above formula, A 400 , A 500 , A 600 and A 700 are the absorbance in the visible light absorption spectrum at 400 nm, 500 nm, 600 nm and 700 nm, respectively, and A max is the absorbance in the visible light absorption spectrum at the maximum absorption wavelength. To express. ]

さらに、上記整色剤においては、青色系整色剤と紫色系整色剤を重量比90:10〜40:60の範囲で併用すること、あるいは青色系整色剤と赤色系または橙色系整色剤を重量比98:2〜80:20の範囲で併用することが好ましい。ここで青色系整色剤とは、一般に市販されている整色剤の中で「Blue」と表記されているものであって、具体的には溶液中の可視光スペクトルにおける最大吸収波長が580〜620nm程度にあるものを示す。同様に紫色系整色剤とは市販されている整色剤の中で「Violet」と表記されているものであって、具体的には溶液中の可視光吸収スペクトルにおける最大吸収波長が560〜580nm程度にあるものを示す。赤色系整色剤とは市販されている整色剤の中で「Red」と表記されているものであって、具体的には溶液中の可視光吸収スペクトルにおける最大吸収波長が480〜520nm程度にあるものである。橙色系系整色剤とは市販されている整色剤の中で「Orange」と表記されているものである。   Furthermore, in the above-described color adjusting agent, a blue color adjusting agent and a purple color adjusting agent are used in a weight ratio of 90:10 to 40:60, or a blue color adjusting agent and a red or orange color adjusting agent are used. It is preferable to use the colorant in a weight ratio of 98: 2 to 80:20. Here, the blue color adjusting agent is expressed as “Blue” among commercially available color adjusting agents. Specifically, the maximum absorption wavelength in the visible light spectrum in the solution is 580. It is about ˜620 nm. Similarly, the purple color adjusting agent is described as “Violet” among commercially available color adjusting agents. Specifically, the maximum absorption wavelength in the visible light absorption spectrum in the solution is 560 to 600. The one at about 580 nm is shown. The red color adjusting agent is described as “Red” among commercially available color adjusting agents. Specifically, the maximum absorption wavelength in the visible light absorption spectrum in the solution is about 480 to 520 nm. It is what. The orange-based color adjusting agent is one that is indicated as “Orange” among commercially available color adjusting agents.

これらの整色剤としては油溶染料が特に好ましく、具体的な例としては、青色系整色剤には、C.I.Solvent Blue 11、C.I.Solvent Blue25、C.I.Solvent Blue 35、C.I.Solvent Blue36、C.I.Solvent Blue 45 (Telasol Blue RLS)、C.I.Solvent Blue 55、C.I.Solvent Blue 63、C.I.Solvent Blue 78、C.I.Solvent Blue 83、C.I.Solvent Blue 87、C.I.Solvent Blue 94等が挙げられる。紫色系整色剤には、C.I.Solvent Violet 8、C.I.Solvent Violet 13、C.I.Solvent Violet14、C.I.Solvent Violet 21、C.I.Solvent Violet 27、C.I.Solvent Violet 28、C.I.SolventViolet 36等が挙げられる。赤色系整色剤には、C.I.Solvent Red 24、C.I.Solvent Red 25、C.I.Solvent Red27、C.I.Solvent Red 30、C.I.Solvent Red 49、C.I.Solvent Red 52、C.I.Solvent Red 100、C.I.Solvent Red 109、C.I.Solvent Red 111、C.I.Solvent Red 121、C.I.Solvent Red 135、C.I.Solvent Red 168、C.I.Solvent Red 179等が例示される。橙色系整色剤には、C.I.Solvent Orange 60等が挙げられる。   As these color adjusters, oil-soluble dyes are particularly preferable. Specific examples of the color adjusters include C.I. I. Solvent Blue 11, C.I. I. Solvent Blue 25, C.I. I. Solvent Blue 35, C.I. I. Solvent Blue 36, C.I. I. Solvent Blue 45 (Telasol Blue RLS), C.I. I. Solvent Blue 55, C.I. I. Solvent Blue 63, C.I. I. Solvent Blue 78, C.I. I. Solvent Blue 83, C.I. I. Solvent Blue 87, C.I. I. Solvent Blue 94 and the like. Examples of purple color adjusters include C.I. I. Solvent Violet 8, C.I. I. Solvent Violet 13, C.I. I. Solvent Violet 14, C.I. I. Solvent Violet 21, C.I. I. Solvent Violet 27, C.I. I. Solvent Violet 28, C.I. I. SolventViolet 36 etc. are mentioned. Examples of red color adjusters include C.I. I. Solvent Red 24, C.I. I. Solvent Red 25, C.I. I. Solvent Red 27, C.I. I. Solvent Red 30, C.I. I. Solvent Red 49, C.I. I. Solvent Red 52, C.I. I. Solvent Red 100, C.I. I. Solvent Red 109, C.I. I. Solvent Red 111, C.I. I. Solvent Red 121, C.I. I. Solvent Red 135, C.I. I. Solvent Red 168, C.I. I. Solvent Red 179 etc. are illustrated. Examples of orange color adjusters include C.I. I. Solvent Orange 60 etc. are mentioned.

ここで青色系整色剤と紫色系整色剤を併用する場合、重量比90:10より青色系整色剤の重量比が大きい場合は、得られるポリエステルモノフィラメントのカラーa*値が小さくなって緑色を呈し、40:60より青色整色剤の重量比が小さい場合は、カラーa*値が大きくなって赤色を呈してくる為好ましくない。同様に青色系整色剤と赤色系または橙色系整色剤を併用する場合、重量比98:2より青色系整色剤の重量比が大きい場合は、得られるポリエステルモノフィラメントのカラーa*値が小さくなって緑色を呈し、80:20より青色整色剤の重量比が小さい場合は、カラーa*値が大きくなって赤色を呈してくる為好ましくない。該整色剤は、青色系整色剤と紫色系整色剤を重量比80:20〜50:50の範囲で併用すること、あるいは青色系整色剤と赤色系または橙色系整色剤を重量比95:5〜90:10の範囲で併用することが更に好ましい。 Here, when a blue color modifier and a purple color modifier are used in combination, if the weight ratio of the blue color modifier is larger than the weight ratio of 90:10, the color a * value of the resulting polyester monofilament becomes small. When the color ratio is blue and the weight ratio of the blue color adjuster is smaller than 40:60, the color a * value increases and the color red is exhibited. Similarly, when a blue color modifier and a red or orange color modifier are used in combination, when the weight ratio of the blue color modifier is larger than the weight ratio 98: 2, the color a * value of the resulting polyester monofilament is If the weight ratio of the blue color adjusting agent is smaller than 80:20, the color a * value increases and a red color is exhibited, which is not preferable. The color adjusting agent is a combination of a blue color adjusting agent and a purple color adjusting agent in a weight ratio of 80:20 to 50:50, or a blue color adjusting agent and a red or orange color adjusting agent. More preferably, the weight ratio is in the range of 95: 5 to 90:10.

本発明の潜在捲縮性繊維の横断面形状はサイドバイサイド型であり、これによって潜在捲縮性能が発現する。本発明の潜在捲縮性繊維の横断面形状を得るためには、特開2000−144518号に記載の紡糸口金を使用すれば良い。   The cross-sectional shape of the latent crimpable fiber of the present invention is a side-by-side type, thereby exhibiting latent crimp performance. In order to obtain the cross-sectional shape of the latent crimpable fiber of the present invention, a spinneret described in JP-A No. 2000-144518 may be used.

次に、2種類のポリエステルの貼り合わせ面積比(高粘度成分/低粘度成分)は40/60〜60/40、より好ましくは55/45〜45/55、の範囲にするのが適当である。高粘度成分の面積比率が60を越える場合には、得られる潜在捲縮複合繊維の潜在捲縮性が低下する傾向にあり、一方、低粘度成分の面積比率が60を越える場合は、潜在捲縮複合繊維の強度が低くなったり、毛羽が増えたりする傾向がある。   Next, the bonding area ratio (high viscosity component / low viscosity component) of the two types of polyester is suitably in the range of 40/60 to 60/40, more preferably 55/45 to 45/55. . When the area ratio of the high-viscosity component exceeds 60, the latent crimped composite fiber obtained tends to have a lower potential crimpability. On the other hand, when the area ratio of the low-viscosity component exceeds 60, the latent crimp There exists a tendency for the intensity | strength of a shrinkage | conjugation composite fiber to become low or to increase fluff.

また、本発明の潜在捲縮複合繊維の断面には総横断面積に対し0.5〜15%、より好ましくは1〜10%の面積を占める中空部を設けると、ポリマー吐出状態がより安定し、更に、繊維が軽量化されるため、ハリ、コシといった風合いに好影響を及ぼす。なお、中空率が15%を越える場合は、中空破れなどの貼り合わせ不良が起こることがある。   Moreover, when the hollow part which occupies the area of 0.5 to 15% with respect to the total cross-sectional area, more preferably 1 to 10% is provided in the cross section of the latent crimped conjugate fiber of the present invention, the polymer discharge state becomes more stable. Furthermore, since the fiber is lightened, it has a positive effect on the texture of elasticity and stiffness. When the hollow ratio exceeds 15%, bonding failure such as hollow breakage may occur.

さらに、本発明において、潜在捲縮繊維を糸長方向に太細差を有する繊維とすることで、梳毛調の風合いと自然な外観を有する布帛を得ることができる。
なお、本発明の潜在捲縮複合繊維の総繊度は30〜250dtex、単糸繊度は2〜15dtexの範囲が衣料用途での加工性、実用性の面から好ましい。
Furthermore, in the present invention, by setting the latent crimped fibers to fibers having a fine difference in the yarn length direction, it is possible to obtain a fabric having a texture of the eyelashes and a natural appearance.
In addition, the total fineness of the latent crimped conjugate fiber of the present invention is preferably in the range of 30 to 250 dtex and the single yarn fineness is in the range of 2 to 15 dtex from the viewpoints of workability and practicality in apparel use.

以上に説明した本発明の潜在捲縮複合繊維は、前述の方法で得られた固有粘度の異なる2種のポリエチレンテレフタレート系ポリエステルを各々常法で乾燥し、2基の溶融押出機(スクリューエクストルーダー)を装備した通常の複合紡糸設備で溶融し、公知のサイドバイサイド型複合紡糸口金(中空複合繊維の場合は中空形成性吐出孔を穿設した紡糸口金を使用する)を用いて、2種のポリマー流を複合し、冷却、固化後、油剤を付与して紡糸引き取りし、延伸することで製造することができる。このとき紡糸引き取りし、一旦未延伸糸として巻き取った後、延伸を別途行っても良く、紡糸引き取り後、一旦巻取ることなく、連続して延伸を行っても良い。溶融紡糸温度は、270〜295℃の範囲が、紡糸安定性の観点より、好ましい。紡糸引き取り速度および延伸倍率は、潜在捲縮複合繊維の強度が1.5〜5.0cN/dtexの範囲、伸度が30〜70%の範囲となるように適宜設定する。延伸予熱温度は、80〜100℃が好ましい。
なお、前述したように、糸長方向に太細差を有する潜在捲縮複合繊維とする方法としては、未延伸糸を自然延伸倍率以下で斑延伸する方法が好ましく採用される。
The latent crimped composite fiber of the present invention described above is obtained by drying two types of polyethylene terephthalate-based polyesters having different intrinsic viscosities obtained by the above-described method, respectively, using two conventional extruders (screw extruder) ) And melted in a normal composite spinning equipment equipped with a known side-by-side type composite spinneret (in the case of hollow composite fibers, a spinneret having a hollow-forming discharge hole is used). It can be manufactured by combining the flow, cooling and solidifying, applying an oil agent, taking up the spinning, and drawing. At this time, the yarn is taken up and once taken up as an undrawn yarn, and then drawn separately, or after drawing up the yarn, it may be drawn continuously without being taken up once. The melt spinning temperature is preferably in the range of 270 to 295 ° C. from the viewpoint of spinning stability. The spinning take-up speed and the draw ratio are appropriately set so that the strength of the latent crimped conjugate fiber is in the range of 1.5 to 5.0 cN / dtex and the elongation is in the range of 30 to 70%. The stretching preheating temperature is preferably 80 to 100 ° C.
As described above, as a method for forming a latent crimped composite fiber having a fine difference in the yarn length direction, a method of spot-drawing an undrawn yarn at a natural drawing ratio or less is preferably employed.

本発明においては、織編物などの布帛にする前に、潜在捲縮複合繊維に、100〜5000T/m、好ましくは300〜3000T/mの撚りを施すことが、捲縮を強調してハリ、コシのある風合いを得やすいという点から好ましい。   In the present invention, before forming a fabric such as a woven or knitted fabric, twisting the latent crimped conjugate fiber at 100 to 5000 T / m, preferably 300 to 3000 T / m, emphasizes the crimp, It is preferable from the viewpoint that a firm texture can be easily obtained.

本発明の潜在捲縮性複合繊維は、これを織編物などの布帛とし、精錬、染色などの熱処理を行なって捲縮を顕在化させ、風合が優れた布帛とすることができる。この際、布帛のスパンデックス法でのストレッチ率が20%以上であることが、風合いの点でより好ましい。   The latent crimpable conjugate fiber of the present invention is made into a fabric such as a woven or knitted fabric, and heat treatment such as refining and dyeing is performed to reveal crimps, and a fabric with excellent texture can be obtained. At this time, it is more preferable in terms of texture that the stretch ratio of the fabric by the spandex method is 20% or more.

以下、実施例により、本発明を更に具体的に説明する。なお、実施例における各項目は次の方法で測定した。
(1)固有粘度
ポリエステルチップを100℃、60分間でオルトクロロフェノールに溶解した希薄溶液を、35℃でウベローデ粘度計を用いて測定した値から求めた。
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, each item in an Example was measured with the following method.
(1) Intrinsic viscosity A dilute solution obtained by dissolving a polyester chip in orthochlorophenol at 100 ° C for 60 minutes was determined from a value measured at 35 ° C using an Ubbelohde viscometer.

(2)17.6μN/dtexの荷重下、沸水20分処理後の捲縮率(TC−2)
検尺機を用いて潜在捲縮性繊維をカセ枠に巻き取り、約3300dtexのカセを作る。カセ作成後、カセの一端に0.00176cN/dtex+0.176cN/dtex(2mg/デニール+200mg/デニール)の荷重をかけてスタンドに吊り、1分間経過後の長さL0(cm)を測定する。次いで、0.176cN/dtex(200mg/デニール)の荷重を除去した状態で、100℃の沸水中にて20分間処理する。沸水処理後0.00176cN/dtex(2mg/デニール)の荷重を除去し、24時間自由な状態で自然乾燥する。自然乾燥した試料に、再び0.00176cN/dtex+0.176cN/dtex(2mg/デニール+200mg/デニール)の荷重を負荷し、1分間経過後の長さL1(cm)を測定する。次いで、0.176cN/dtex(200mg/デニール)の荷重を除去し、1分間経過後の長さL2を測定し、次の算式で捲縮率を算出した。この測定を10回実施し、その平均値で表した。
TC−2(%)=[(L1−L2)/L0]×100
なお、測定は10回行い、その平均値を求めた。
(2) Crimp rate after treatment with boiling water for 20 minutes under a load of 17.6 μN / dtex (TC-2)
Using a measuring instrument, the latent crimpable fiber is wound around a cassette frame to make a cassette of about 3300 dtex. After making the case, a load of 0.00176 cN / dtex + 0.176 cN / dtex (2 mg / denier + 200 mg / denier) is applied to one end of the case, and the length L0 (cm) after 1 minute is measured. Subsequently, it is treated in boiling water at 100 ° C. for 20 minutes with the load of 0.176 cN / dtex (200 mg / denier) removed. After the boiling water treatment, the load of 0.00176 cN / dtex (2 mg / denier) is removed, and it is naturally dried in a free state for 24 hours. A load of 0.00176 cN / dtex + 0.176 cN / dtex (2 mg / denier + 200 mg / denier) is again applied to the naturally dried sample, and the length L1 (cm) after 1 minute is measured. Next, the load of 0.176 cN / dtex (200 mg / denier) was removed, the length L2 after 1 minute was measured, and the crimp rate was calculated by the following formula. This measurement was performed 10 times and expressed as an average value.
TC-2 (%) = [(L1-L2) / L0] × 100
The measurement was performed 10 times and the average value was obtained.

(3)1.5μN/dtexの荷重下、沸水30分処理後の捲縮率(TC−0.2)
検尺機を用いて潜在捲縮性繊維をカセ枠に巻き取り、約2200dtexのカセを作る。カセ作成後、カセの一端に1.5μN/dtex(1/6000g/デニール)の荷重をかけスタンドに吊り30分間放置し、次いでこの状態を維持したまま沸水中に入れ30分間処理する。その後、30分間風乾し、1/500(g/デニール)の荷重をかけ、長さ(a)を測定する。次に、1/500(g/デニール)の荷重をはずした後、1/20(g/デニール)の荷重をかけて、その長さ(b)を測定する。そして、次の式によって捲縮率を算出した。この測定を10回実施し、その平均値で表した。
TC−0.2(%)=[(b−a)/b]×100
(3) Crimp rate after treatment with boiling water for 30 minutes under a load of 1.5 μN / dtex (TC-0.2)
Using a measuring machine, the latent crimpable fiber is wound around a cassette frame to make a cassette of about 2200 dtex. After making the casserole, a load of 1.5 μN / dtex (1/6000 g / denier) is applied to one end of the casserole and the suspension is hung on a stand for 30 minutes, and then kept in this state and treated in boiling water for 30 minutes. Then, it is air-dried for 30 minutes, a 1/500 (g / denier) load is applied, and the length (a) is measured. Next, after removing the load of 1/500 (g / denier), the load of 1/20 (g / denier) is applied and the length (b) is measured. Then, the crimp rate was calculated by the following equation. This measurement was performed 10 times and expressed as an average value.
TC−0.2 (%) = [(ba) / b] × 100

(4)貼り合わせ面積比
潜在捲縮複合繊維を任意の繊維横断面方向に切り取り、市販の顕微鏡にて倍率750倍で繊維横断面を写真撮影し、構成単糸横断面全てについて、2種のポリエステル横断面が各々占める面積を測定し、その比率(高粘度成分占有面積/低粘度成分占有面積)を「貼り合わせ面積比」(測定した全単糸横断面についての平均値)とした。
(4) Bonding area ratio Latent crimped composite fiber is cut in the direction of the desired fiber cross section, and the cross section of the fiber is photographed with a commercially available microscope at a magnification of 750 times. The area occupied by each of the polyester cross sections was measured, and the ratio (high viscosity component occupied area / low viscosity component occupied area) was defined as “bonded area ratio” (average value of all measured single yarn cross sections).

(5)中空率(%)および中空率のばらつき
前項のポリエステル複合繊維断面顕微鏡写真で、各単糸断面の中空部面積(A)および断面を囲む面積(B)を測定し、下記式で計算し、測定した全単糸横断面についての平均値を中空率(%)とした。
中空率(%)=A/B×100
また、測定値の変動率(標準偏差/平均値×100)を中空率のばらつきとした。
(5) Hollow ratio (%) and variation in hollow ratio In the polyester composite fiber cross-sectional micrograph in the previous section, the hollow area (A) of each single yarn cross section and the area (B) surrounding the cross section are measured and calculated by the following formula: And the average value about the measured whole single yarn cross section was made into the hollow ratio (%).
Hollow ratio (%) = A / B × 100
Further, the variation rate of the measured value (standard deviation / average value × 100) was defined as the variation of the hollow rate.

(6)ポリマー中の真比重5.0以上の金属成分定性分析:
ポリマーサンプルを硫酸アンモニウム、硫酸、硝酸、過塩素酸とともに混合して約300℃で9時間湿式分解後、蒸留水で希釈し、理学製ICP発光分析装置(JY170 ULTRACE)を用いて定性分析し、真比重5.0以上の金属元素の存在の有無を確認した。1重量ppm以上の存在が確認された金属元素について、その元素含有量を示した。
(6) Qualitative analysis of metal component having a true specific gravity of 5.0 or more in the polymer:
A polymer sample is mixed with ammonium sulfate, sulfuric acid, nitric acid and perchloric acid, wet-decomposed at about 300 ° C for 9 hours, diluted with distilled water, qualitatively analyzed using a scientific ICP emission spectrometer (JY170 ULTRACE), The presence or absence of a metal element having a specific gravity of 5.0 or more was confirmed. About the metal element with which existence of 1 weight ppm or more was confirmed, the element content was shown.

(7)ポリマー中のポリエステルに可溶性のチタン、リン含有量:
ポリマー中のポリエステルに可溶性のチタン元素量、リン元素量は粒状のポリマーサンプルをアルミ板上で加熱溶融した後、圧縮プレス機で平坦面を有する試験成形体を作成し、蛍光X線装置(理学電機工業株式会社製3270E型)を用いて求めた。ただし、艶消剤として酸化チタンを添加したポリエステル組成物中のチタン元素量については、サンプルをオルトクロロフェノールに溶解した後、0.5規定塩酸で抽出操作を行った。この抽出液について日立製作所製Z-8100形原子吸光光度計を用いて定量を行った。ここで0.5規定塩酸抽出後の抽出液中に酸化チタンの分散が確認された場合は遠心分離機で酸化チタン粒子を沈降させ、傾斜法により上澄み液のみを回収して、同様の操作を行った。これらの操作によりポリエステル組成物中に酸化チタンを含有していてもポリエステルに可溶性のチタン元素の定量が可能となる。
(7) Titanium and phosphorus content soluble in polyester in the polymer:
The amount of titanium element soluble in polyester in the polymer and the amount of phosphorus element are obtained by heating and melting a granular polymer sample on an aluminum plate, and then creating a test molded body having a flat surface with a compression press machine. It was determined using Denki Kogyo Co., Ltd. Model 3270E). However, regarding the amount of titanium element in the polyester composition to which titanium oxide was added as a matting agent, the sample was dissolved in orthochlorophenol and then extracted with 0.5 N hydrochloric acid. The extract was quantified using a Hitachi Z-8100 atomic absorption spectrophotometer. Here, when dispersion of titanium oxide was confirmed in the extract after extraction with 0.5N hydrochloric acid, the titanium oxide particles were settled with a centrifuge, and only the supernatant was recovered by the gradient method. went. By these operations, even if the polyester composition contains titanium oxide, the titanium element soluble in the polyester can be quantified.

(8)色相(L値、a値、b値)
ポリエステルチップを285℃、真空下で10分間溶融し、これをアルミニウム板上で厚さ3.0±1.0mmのプレートに成形後ただちに氷水中で急冷し、該プレートを140℃、1時間乾燥結晶化処理を行った。その後、色差計調整用の白色標準プレート上に置き、プレート表面のハンターL及びbを、ミノルタ株式会社製ハンター型色差計(CR−200型)を用いて測定した。Lは明度を示し、その数値が大きいほど明度が高いことを示し、bはその値が大きいほど黄着色の度合いが大きいことを示す。また他の詳細な操作はJIS Z−8729に準じて行った。
(8) Hue (L * value, a * value, b * value)
The polyester chip was melted at 285 ° C. under vacuum for 10 minutes, molded into an aluminum plate with a thickness of 3.0 ± 1.0 mm, immediately quenched in ice water, and the plate was dried at 140 ° C. for 1 hour. Crystallization was performed. Then, it placed on the white standard plate for color difference adjustment, and measured Hunter L * and b * of the plate surface using Minolta Co., Ltd. Hunter type color difference meter (CR-200 type). L * indicates lightness, and the larger the value, the higher the lightness, and b * the greater the value, the greater the degree of yellowing. Other detailed operations were performed according to JIS Z-8729.

(9)強度・伸度
JIS−L1013に準拠して測定した。
(9) Strength / Elongation Measured according to JIS-L1013.

(10)ストレッチ率
潜在捲縮性繊維を経糸および緯糸に用い、常法により2/2綾組織、トータルカバーファクター2000に製織、染色した5cm×10cmの試験片を、自動記録装置付き引張試験機を用いて初荷重20gをかけてつかみ、引張速度30cm/分で1.5kg定荷重まで伸ばした後、直ちに同速度でもとの位置に戻し、荷重―伸長曲線を描く。ストレッチ率は、上記の1.5kg定荷重まで伸ばした後、直ちに同速度でもとの位置に戻す寸前の、伸長距離をLcm(0.01cmまで)とするとき、次式で表わされる。
ST=[L/10]×100(%)
このストレッチ率が20%以上を合格とした。
(10) Stretch rate Tensile tester with automatic recorder using latent crimpable fibers for warp and weft, woven and dyed in 2/2 twill structure and total cover factor 2000 by a conventional method Grab an initial load of 20 g using the and stretch it to a constant load of 1.5 kg at a tensile speed of 30 cm / min, then immediately return to the original position at the same speed and draw a load-extension curve. The stretch rate is expressed by the following equation when the extension distance is set to Lcm (up to 0.01 cm) immediately before returning to the original position at the same speed after extending to the above 1.5 kg constant load.
ST = [L / 10] × 100 (%)
This stretch rate was 20% or more.

(11)布帛風合い及び外観
潜在捲縮性繊維を常法により2/2綾組織、トータルカバーファクター2000に製織、染色した織物について、ハリ、コシ、反発感、外観(欠点有無)といった観点から、熟練者5名により、「優」、「良」、「不良」の三段階にランク付けを行い、その平均値から算出した。
(11) Fabric Texture and Appearance For a woven fabric obtained by weaving and dyeing a latent crimpable fiber into a 2/2 twill structure and a total cover factor 2000 by a conventional method, from the viewpoint of elasticity, stiffness, resilience, appearance (existence of defects), The ranking was made by three experts, “excellent”, “good”, and “bad”, and calculated from the average value.

(12)加工工程での取扱い性
延伸糸を解舒して巻き返す工程、撚糸する工程において、糸の捲縮が原因で糸導ガイド等に引っ掛かって張力変動を起こす頻度を調査し、張力変動の少ない場合を「良好」、多い場合を「不良」とした。
(12) Handling in the processing process In the process of unwinding and rewinding the drawn yarn, and in the process of twisting, investigate the frequency of tension fluctuation caused by the yarn guide and the like due to the crimp of the yarn. The case where the number was small was defined as “good”, and the case where the number was large was defined as “bad”.

[参考例1]整色剤(整色用色素)の可視光吸収スペクトル測定、整色剤調製
整色剤としてC.I.Solvent Blue 45(Clariant Japan社製)とC.I.Solvent Violet 36(有本化学社製)の2種類の整色剤を重量比2:1で濃度20mg/Lのクロロホルム溶液とし、光路長1cmの石英セルに充填し、対照セルにはクロロホルムのみを充填して、日立分光光度計U−3010型を用いて、380〜780nmの可視光領域での可視光吸収スペクトルを測定した。また、最大吸収波長とその波長における吸光度に対する、400、500、600及び700nmの各波長での吸光度の割合を測定した。
結果、可視光領域での最大吸収波長は580nmであり、各波長での吸光度の割合は、400nmでは0.10、500nmでは0.41、600nmでは0.76、700nmでは0.00であった。
[Reference Example 1] Measurement of visible light absorption spectrum of color adjusting agent (color adjusting dye), preparation of color adjusting agent C.I. I. Solvent Blue 45 (manufactured by Clariant Japan) and C.I. I. Solvent Violet 36 (manufactured by Arimoto Chemical Co., Ltd.) was used as a chloroform solution with a weight ratio of 2: 1 and a concentration of 20 mg / L, and filled in a quartz cell with an optical path length of 1 cm. After filling, a visible light absorption spectrum in a visible light region of 380 to 780 nm was measured using a Hitachi spectrophotometer U-3010 type. Moreover, the ratio of the light absorbency in each wavelength of 400, 500, 600, and 700 nm with respect to the maximum absorption wavelength and the light absorbency in the wavelength was measured.
As a result, the maximum absorption wavelength in the visible light region was 580 nm, and the absorbance ratio at each wavelength was 0.10 at 400 nm, 0.41 at 500 nm, 0.76 at 600 nm, and 0.00 at 700 nm. .

[参考例2]チタン触媒Aの合成
無水トリメリット酸のエチレングリコール溶液(0.2重量%)にテトラブトキシチタンを無水トリメリット酸に対して1/2モル添加し、空気中常圧下で80℃に保持して60分間反応せしめた。その後常温に冷却し、10倍量のアセトンによって生成触媒を再結晶化させた。析出物をろ紙によって濾過し、100℃で2時間乾燥せしめ、目的の化合物を得た。これをチタン触媒Aとする。
[Reference Example 2] Synthesis of Titanium Catalyst A 1/2 mole of tetrabutoxytitanium with respect to trimellitic anhydride was added to an ethylene glycol solution (0.2% by weight) of trimellitic anhydride at 80 ° C under normal pressure in air. The reaction was continued for 60 minutes. Thereafter, it was cooled to room temperature, and the produced catalyst was recrystallized with 10 times the amount of acetone. The precipitate was filtered through filter paper and dried at 100 ° C. for 2 hours to obtain the target compound. This is designated as titanium catalyst A.

[実施例1]
・低粘度成分のポリエステルチップの製造
テレフタル酸ジメチル100部とエチレングリコール70部の混合物に、参考例2で調製したチタン触媒A 0.016部を加圧反応が可能なSUS製容器に仕込んだ。0.07MPaの加圧を行い140℃から240℃に昇温しながらエステル交換反応させた後、トリエチルホスホノアセテート0.023部を添加し、エステル交換反応を終了させた。その後反応生成物に酸化チタンの20%エチレングリコールスラリー1.5部、参考例1で調製した整色剤の0.1重量%エチレングリコール溶液0.2部を添加して重合容器に移し、280℃まで昇温し、30Pa以下の高真空にて重縮合反応を行って、ポリエステル組成物を得た。さらに常法に従いチップ化した。得られたポリエステルは固有粘度0.43、ジエチレングリコール含有量が0.7重量%、カラーLは72、bは2であった。
[Example 1]
-Manufacture of polyester chip of low viscosity component In a mixture of 100 parts of dimethyl terephthalate and 70 parts of ethylene glycol, 0.016 part of titanium catalyst A prepared in Reference Example 2 was charged into a SUS container capable of pressure reaction. The ester exchange reaction was performed while increasing the pressure from 140 ° C. to 240 ° C. under a pressure of 0.07 MPa, and then 0.023 part of triethylphosphonoacetate was added to complete the ester exchange reaction. Thereafter, 1.5 parts of a 20% ethylene glycol slurry of titanium oxide and 0.2 part of a 0.1 wt% ethylene glycol solution of a color adjusting agent prepared in Reference Example 1 were added to the reaction product, and the mixture was transferred to a polymerization vessel. The temperature was raised to 0 ° C., and a polycondensation reaction was performed in a high vacuum of 30 Pa or less to obtain a polyester composition. Furthermore, it was made into a chip according to a conventional method. The obtained polyester had an intrinsic viscosity of 0.43, a diethylene glycol content of 0.7% by weight, a color L * of 72, and a b * of 2.

・高粘度成分のポリエステルチップの製造
テレフタル酸ジメチル90部とエチレングリコール55部の混合物に酢酸マンガン四水和物0.038部を加えて140℃から240℃に昇温しながらエステル交換反応を行った。エステル交換反応終了後、イソフタル酸8.6部を加えて20分間保持した後、リン酸トリメチル0.025部、三酸化アンチモン0.045部、酸化チタンの20%エチレングリコールスラリー1.5部を加えて重合容器に移し、290℃まで昇温しながら30Pa以下の高真空にて重縮合反応を行ってポリエステルを得た。さらに常法に従いチップ化した。得られたポリエステルは固有粘度0.64、ジエチレングリコール含有量が0.7重量%、カラーLは71、bは5であった。
・ Manufacture of polyester chip with high viscosity component 0.038 part of manganese acetate tetrahydrate was added to a mixture of 90 parts of dimethyl terephthalate and 55 parts of ethylene glycol, and transesterification was carried out while raising the temperature from 140 ° C to 240 ° C It was. After completion of the transesterification reaction, 8.6 parts of isophthalic acid was added and held for 20 minutes, and then 0.025 part of trimethyl phosphate, 0.045 part of antimony trioxide, and 1.5 part of 20% ethylene glycol slurry of titanium oxide were added. In addition, it was transferred to a polymerization vessel, and a polyester was obtained by performing a polycondensation reaction in a high vacuum of 30 Pa or less while raising the temperature to 290 ° C. Furthermore, it was made into a chip according to a conventional method. The obtained polyester had an intrinsic viscosity of 0.64, a diethylene glycol content of 0.7% by weight, a color L * of 71, and a b * of 5.

・潜在捲縮性複合繊維の製造
上記の固有粘度0.43のポリエステルチップと、固有粘度0.63のイソフタル酸を10mol%共重合したポリエステルとを、常法で乾燥した後、2基の溶融押出機(スクリュウーエクストルーダー)を装備した複合紡糸機に導入し、溶融し、280℃に保たれたスピンブロックに装備された複合紡糸パックに導入し、複合紡糸口金にて2つのポリマー流を貼り合わせ重量比が50/50のサイドバイサイド型(中空率1%の繊維横断面)となるように複合しつつ吐出し、冷却・固化し、油剤を付与して、1450m/minの速度で紡糸引き取りし、291dtex/24filamentsの未延伸糸を得た。該未延伸糸を、予熱温度90℃、延伸倍率2.64倍で延伸しつつ、非接触型ヒーターにて230℃で熱セットして600m/minで巻取り、110dtex/24filamentsのポリエステル潜在捲縮性複合繊維を得た。
この潜在捲縮性繊維を経糸および緯糸に用い、常法に従い撚数S1200T/mに撚糸した後、2/2綾組織、トータルカバーファクター2000に製織、染色し、織物を得た。
-Manufacture of latent crimpable composite fiber After drying the above-mentioned polyester chip having an intrinsic viscosity of 0.43 and polyester obtained by copolymerizing 10 mol% of isophthalic acid having an intrinsic viscosity of 0.63 by a conventional method, two melts It is introduced into a compound spinning machine equipped with an extruder (screw extruder), melted, introduced into a compound spinning pack equipped in a spin block maintained at 280 ° C., and two polymer streams are pasted at a compound spinneret. The combined weight ratio is 50/50, which is a side-by-side type (fiber cross-section with a hollowness of 1%), discharged while being combined, cooled and solidified, applied with oil, and taken up at a speed of 1450 m / min. 291 dtex / 24 filaments of undrawn yarn was obtained. While drawing the undrawn yarn at a preheating temperature of 90 ° C. and a draw ratio of 2.64 times, it was heat-set at 230 ° C. with a non-contact heater and wound up at 600 m / min, and a polyester latent crimp of 110 dtex / 24 filaments A functional composite fiber was obtained.
This latent crimpable fiber was used as a warp and a weft, twisted to a twist number of S1200 T / m according to a conventional method, and then woven and dyed into a 2/2 twill structure and a total cover factor 2000 to obtain a woven fabric.

本例においては、紡糸、延伸の工程で特に断糸などのトラブルは少なく安定に製造することができ、表2に示す通り、潜在捲縮性繊維の捲縮特性は低荷重下、高荷重下それぞれで良好なものとなった。織物のスパンデックス法でのストレッチ率は表1に示す如く、29%と充分な値を示し、風合いもハリ、コシに富んだ特徴あるものとなり、また、延伸糸の状態での捲縮の顕在化は弱く、解舒して取り扱う際に特段の問題は発生せず、布帛の欠点も見当たらなかった。   In this example, the spinning and drawing processes can be produced stably with few troubles such as yarn breakage. As shown in Table 2, the crimp characteristics of the latent crimpable fiber are low and high. Each was good. As shown in Table 1, the stretch ratio in the spandex method of the woven fabric is 29%, which is a sufficient value, and the texture is rich and firm, and the manifestation of crimp in the drawn yarn state Was weak, no particular problem occurred when unraveled and handled, and no defects of the fabric were found.

[実施例2〜4、比較例1]
紡糸速度、延伸倍率、熱セット温度を表2のように変更し、物性を変化させた以外は実施例1と同様にした。結果、実施例2〜4では紡糸、延伸の工程で特に断糸などのトラブルは少なく安定に製造することができ、表2から明らかなように、織物のストレッチ率、風合い、外観、加工工程での取扱い性を全て満足する結果となった。
一方、比較例1では、伸度が低く、加工工程の中で繊維の破断や部分破断による毛羽などの不具合が頻発し、取扱い性が悪かった。また、これが原因で繊維に欠点が多く、外観が良くなかった。
[Examples 2 to 4, Comparative Example 1]
The same procedure as in Example 1 was conducted except that the spinning speed, the draw ratio, and the heat setting temperature were changed as shown in Table 2 and the physical properties were changed. As a result, in Examples 2 to 4, the process of spinning and stretching can be produced stably with few troubles such as yarn breakage, and as is clear from Table 2, the stretch rate, texture, appearance, and processing steps of the fabric. As a result, all of the handling properties of were satisfied.
On the other hand, in Comparative Example 1, the elongation was low, troubles such as fuzz due to fiber breakage or partial breakage occurred frequently in the processing step, and the handleability was poor. In addition, because of this, the fiber had many defects and the appearance was not good.

[実施例5]
実施例1と同様に未延伸糸を得た後、該未延伸糸を、2本の糸導ガイドにて糸導を屈曲させて張力変動を加えながら、予熱温度78℃、延伸倍率2.4倍で延伸しつつ、接触型ヒーターにて170℃で熱セットして600m/minで巻取り、120dtex/24filamentsのポリエステル潜在捲縮性太細斑複合繊維を得た。これを実施例1と同様に撚糸、製織、染色し、織物を得た。本例では、紡糸、延伸の工程で特に断糸などのトラブルは少なく安定に製造することができ、表2から明らかなように、織物のストレッチ率、風合い、外観、加工工程での取扱い性を全て満足する結果となった。
[Example 5]
After obtaining an undrawn yarn in the same manner as in Example 1, a preheating temperature of 78 ° C. and a draw ratio of 2.4 are applied to the undrawn yarn while bending the yarn guide with two yarn guides to change the tension. While being stretched by a factor of 2, it was heat-set at 170 ° C. with a contact heater and wound up at 600 m / min to obtain 120 dtex / 24 filaments of polyester latent crimpable thick patch composite fiber. This was twisted, woven and dyed in the same manner as in Example 1 to obtain a woven fabric. In this example, troubles such as yarn breakage can be stably produced especially in the spinning and drawing processes, and as can be seen from Table 2, the stretch rate, texture, appearance, and handleability in the processing process of the fabric are improved. All the results were satisfactory.

[実施例6、7]
潜在捲縮性複合繊維の繊度及びフィラメント数を56dtex/12filaments、220dtex/48filamentsとしたこと以外は実施例1と同様にした。いずれの例でも、紡糸、延伸の工程で特に断糸などのトラブルは少なく安定に製造することができ、表2から明らかなように、織物のストレッチ率、風合い、外観、加工工程での取扱い性を全て満足する結果となった。
[Examples 6 and 7]
The same procedure as in Example 1 was performed except that the fineness and the number of filaments of the latent crimpable conjugate fiber were 56 dtex / 12 filaments and 220 dtex / 48 filaments. In any of these examples, troubles such as yarn breakage can be stably produced in the spinning and drawing processes, and as can be seen from Table 2, the stretch rate, texture, appearance, and handleability in the processing process of the fabric. It became the result which satisfied all.

[比較例2]
低粘度側ポリエステルとして、3酸化アンチモン(Sb)を重合触媒として、テレフタル酸ジメチルとエチレングリコールとを常法にて重縮合し、固有粘度0.43のポリエステルを得たこと以外は実施例1と同様にした。本例では、低粘度成分が低荷重下熱処理により低収縮化しすぎて高粘度成分との収縮差が大きくなり、高い捲縮を示すと共に延伸糸の段階で捲縮の顕在化が強くなりすぎ、解舒、撚糸時の張力変動が大きく、取扱い性が悪かった。また、これが原因で繊維に欠点が多く、外観が良くなかった。
[Comparative Example 2]
As the low-viscosity polyester, except that antimony trioxide (Sb 2 O 3 ) was used as a polymerization catalyst, dimethyl terephthalate and ethylene glycol were polycondensed by a conventional method to obtain a polyester having an intrinsic viscosity of 0.43. Same as Example 1. In this example, the low-viscosity component is reduced too much by heat treatment under a low load and the difference in shrinkage from the high-viscosity component is increased, showing high crimping and the manifestation of crimping is too strong at the drawn yarn stage, Tension fluctuation during unwinding and twisting was large, and handling was poor. In addition, because of this, the fiber had many defects and the appearance was not good.

[比較例3]
低粘度側ポリエステルの固有粘度を0.55とし、高粘度側ポリエステルとの固有粘度差を0.08としたこと以外は実施例1と同様にした。本例では、サイドバイサイド繊維を構成する2種類のポリエステルの固有粘度差が小さいことから、低荷重下および高荷重下のいずれの熱処理においても捲縮の発現が弱く、布帛のストレッチ率が低く、ハリ、コシ、反発感に欠ける風合いとなった。
[Comparative Example 3]
The same procedure as in Example 1 was performed except that the intrinsic viscosity of the low-viscosity polyester was 0.55 and the difference in intrinsic viscosity from the high-viscosity polyester was 0.08. In this example, since the difference in intrinsic viscosity between the two types of polyester constituting the side-by-side fiber is small, the occurrence of crimp is weak in both heat treatment under low load and high load, and the stretch rate of the fabric is low. , It became a texture lacking resilience.

[比較例4]
低粘度側ポリエステルに、参考例1で調製した整色剤を添加しないこと以外は実施例1と同様にした。本例では、チタン化合物とリン化合物とを含む触媒との相互作用が無いことから、低粘度成分が低荷重下熱処理により低収縮化しすぎて高粘度成分との収縮差が大きくなり、高い捲縮を示すと共に延伸糸の段階で捲縮の顕在化が強くなりすぎ、解舒、撚糸時の張力変動が大きく、取扱い性が悪かった。また、これが原因で繊維に欠点が多く、外観が良くなかった。
[Comparative Example 4]
The same procedure as in Example 1 was performed except that the color adjusting agent prepared in Reference Example 1 was not added to the low viscosity polyester. In this example, since there is no interaction between the catalyst containing the titanium compound and the phosphorus compound, the low viscosity component becomes too low in shrinkage by heat treatment under a low load, and the shrinkage difference from the high viscosity component becomes large, resulting in high crimping. In addition, the manifestation of crimping was too strong at the stage of the drawn yarn, the fluctuation in tension during unwinding and twisting was large, and the handleability was poor. In addition, because of this, the fiber had many defects and the appearance was not good.

Figure 2006183163
Figure 2006183163

Figure 2006183163
Figure 2006183163

本発明によれば、製糸性、高次加工性に優れたポリエステル潜在捲縮性複合繊維を提供することができる。また、上記潜在捲縮性複合繊維からは、十分なストレッチ性能、および、ハリ、コシといった風合いや欠点の少ない外観を有するポリエステル布帛を得ることができる。このため、本発明のポリエステル潜在捲縮性複合繊維は、該繊維やそれからなる布帛の生産性に優れるだけでなく、該繊維からは付加価値の高い製品を製造することができ、その産業的価値が極めて高いものである。   According to the present invention, it is possible to provide a polyester latent crimpable conjugate fiber excellent in yarn-making property and high-order processability. Further, from the above-mentioned latent crimpable conjugate fiber, a polyester fabric having a sufficient stretch performance and an appearance with little texture and defects such as elasticity and stiffness can be obtained. For this reason, the polyester latent crimpable conjugate fiber of the present invention is not only excellent in the productivity of the fiber and the fabric comprising the same, but also can produce a product with high added value from the fiber, and its industrial value. Is extremely high.

Claims (11)

固有粘度の異なる2種類のポリエステル成分がサイドバイサイド型に貼り合されている潜在捲縮性複合繊維であって、高粘度ポリエステル成分と低粘度ポリエステル成分との固有粘度の差が0.1〜0.4の範囲にあり、且つ下記(a)〜(d)の要件を同時に満足していることを特徴とするポリエステル潜在捲縮性複合繊維。
(a)17.6μN/dtexの荷重下、沸水20分処理後の捲縮率が1.5%以上25%未満
(b)1.5μN/dtexの荷重下、沸水30分処理後の捲縮率が30%以上50%未満
(c)強度が1.5cN/dtex以上
(d)伸度が30%以上70%以下
A latent crimpable composite fiber in which two types of polyester components having different intrinsic viscosities are bonded to each other in a side-by-side type, wherein the difference in intrinsic viscosity between the high-viscosity polyester component and the low-viscosity polyester component is 0.1 to 0. A polyester latent crimpable conjugate fiber having a range of 4 and simultaneously satisfying the following requirements (a) to (d):
(A) Crimp rate after treatment with boiling water for 20 minutes under a load of 17.6 μN / dtex is 1.5% or more and less than 25% (b) Crimp after treatment with boiling water for 30 minutes under a load of 1.5 μN / dtex (C) Strength is 1.5 cN / dtex or more (d) Elongation is 30% or more and 70% or less
高粘度ポリエステル成分が、イソフタル酸を5%以上15%以下共重合したポリエステルである請求項1記載のポリエステル潜在捲縮性複合繊維。   The polyester latent crimpable composite fiber according to claim 1, wherein the high-viscosity polyester component is a polyester obtained by copolymerizing isophthalic acid in an amount of 5% to 15%. 低粘度ポリエステル成分が、真比重5.0以上の金属元素の含有量が0〜10重量ppm以下であり、濃度20mg/L、光路長1cmでのクロロホルム溶液において測定された380〜780nm領域の可視光吸収スペクトルでの最大吸収波長が540〜600nmの範囲にある有機化合物系整色剤を0.1〜10重量ppm含有するポリエステルである請求項1または2記載のポリエステル潜在捲縮性複合繊維。   The low-viscosity polyester component has a metal element content of true specific gravity of 5.0 or more of 0 to 10 ppm by weight and is visible in a 380 to 780 nm region measured in a chloroform solution having a concentration of 20 mg / L and an optical path length of 1 cm. The polyester latent crimpable conjugate fiber according to claim 1 or 2, which is a polyester containing 0.1 to 10 ppm by weight of an organic compound color-matching agent having a maximum absorption wavelength in the range of 540 to 600 nm in the light absorption spectrum. 有機化合物系整色剤が、最大吸収波長での吸光度に対する下記各波長での吸光度の割合が下記式(1)〜(4)のすべてを満たす有機化合物系整色剤である請求項3記載のポリエステル潜在捲縮性複合繊維。
0.00≦A400/Amax≦0.20 (1)
0.10≦A500/Amax≦0.70 (2)
0.55≦A600/Amax≦1.00 (3)
0.00≦A700/Amax≦0.05 (4)
[上記数式中、A400、A500、A600、A700はそれぞれ400nm、500nm、600nm、700nmでの可視光吸収スペクトルにおける吸光度を、Amaxは最大吸収波長での可視光吸収スペクトルにおける吸光度を表す。]
The organic compound type color adjusting agent is an organic compound type color adjusting agent satisfying all of the following formulas (1) to (4), wherein the ratio of the absorbance at each wavelength below to the absorbance at the maximum absorption wavelength is satisfied. Polyester latent crimpable composite fiber.
0.00 ≦ A 400 / A max ≦ 0.20 (1)
0.10 ≦ A 500 / A max ≦ 0.70 (2)
0.55 ≦ A 600 / A max ≦ 1.00 (3)
0.00 ≦ A 700 / A max ≦ 0.05 (4)
[In the above formula, A 400 , A 500 , A 600 and A 700 are the absorbance in the visible light absorption spectrum at 400 nm, 500 nm, 600 nm and 700 nm, respectively, and A max is the absorbance in the visible light absorption spectrum at the maximum absorption wavelength. To express. ]
低粘度ポリエステル成分が、チタン化合物成分とリン化合物とを含む触媒の存在下に芳香族ジカルボキシレートエステルを重縮合して得られたポリエステルである請求項1〜4のいずれかに記載のポリエステル潜在捲縮性複合繊維。   The polyester latent material according to any one of claims 1 to 4, wherein the low-viscosity polyester component is a polyester obtained by polycondensation of an aromatic dicarboxylate ester in the presence of a catalyst containing a titanium compound component and a phosphorus compound. Crimpable composite fiber. チタン化合物成分が下記一般式(I)で表されるチタンアルコキシド及び下記一般式(I)で表されるチタンアルコキシドと下記一般式(II)で表される芳香族多価カルボン酸又はその無水物とを反応させた生成物からなる群から選ばれた少なくとも一種を含む成分であり、リン化合物が一般式(III)で表される化合物である請求項5記載のポリエステル潜在捲縮性複合繊維。
Figure 2006183163
(上記式中、R、R、R及びRはそれぞれ同一若しくは異なって、アルキル基又はフェニル基を示し、mは1〜4の整数を示し、かつmが2、3又は4の場合、2個、3個又は4個のR及びRは、それぞれ同一であっても異なっていてもどちらでもよい。)
Figure 2006183163
(上記式中、nは2〜4の整数を表わす)
Figure 2006183163
(上記式中、R、R及びRは、同一又は異なって炭素数原子数1〜4のアルキル基を示し、Xは、−CH−又は―CH(Y)を示す(Yは、ベンゼン環を示す)。)
The titanium alkoxide represented by the following general formula (I), the titanium alkoxide represented by the following general formula (I), and the aromatic polyvalent carboxylic acid represented by the following general formula (II) or an anhydride thereof 6. The polyester latent crimpable composite fiber according to claim 5, wherein the polyester latent crimpable conjugate fiber is a component containing at least one selected from the group consisting of products obtained by reacting with the above, and the phosphorus compound is a compound represented by the general formula (III).
Figure 2006183163
(In the above formula, R 1 , R 2 , R 3 and R 4 are the same or different and each represents an alkyl group or a phenyl group, m represents an integer of 1 to 4, and m is 2, 3 or 4) In this case, 2, 3 or 4 R 2 and R 3 may be the same or different from each other.)
Figure 2006183163
(In the above formula, n represents an integer of 2 to 4)
Figure 2006183163
(In the above formula, R 5 , R 6 and R 7 are the same or different and each represents an alkyl group having 1 to 4 carbon atoms, X represents —CH 2 — or —CH (Y) (Y represents , Represents a benzene ring).)
ポリエステル中に含有されるチタン金属元素とリン元素のモル比率が下記数式(5)及び(6)を満たす請求項3〜6のいずれかに記載のポリエステル潜在捲縮性複合繊維。
1≦P/Ti≦15 (5)
10≦P+Ti≦100 (6)
[上記数式中、Pはポリエステル組成物中に含有されるリン元素の濃度(ミリモル%)を、Tiはポリエステル組成物中に含有されるポリエステルに可溶なチタン金属元素の濃度(ミリモル%)を表す。]
The polyester latent crimpable conjugate fiber according to any one of claims 3 to 6, wherein a molar ratio of a titanium metal element and a phosphorus element contained in the polyester satisfies the following mathematical formulas (5) and (6).
1 ≦ P / Ti ≦ 15 (5)
10 ≦ P + Ti ≦ 100 (6)
[In the above formula, P represents the concentration of the phosphorus element contained in the polyester composition (mmol%), Ti represents the concentration of the titanium metal element soluble in the polyester contained in the polyester composition (mmol%)). To express. ]
2種類のポリエステルの貼り合わせ重量比(高粘度ポリエステル成分/低粘度ポリエステル成分)が40/60〜60/40である請求項1〜7のいずれかに記載のポリエステル潜在捲縮性複合繊維。   The polyester latent crimpable conjugate fiber according to any one of claims 1 to 7, wherein a bonding weight ratio of two kinds of polyesters (high viscosity polyester component / low viscosity polyester component) is 40/60 to 60/40. 複合繊維の糸長方向に太細差を有する請求項1〜8のいずれかに記載のポリエステル潜在捲縮性複合繊維。   The polyester latent crimpable conjugate fiber according to any one of claims 1 to 8, which has a fine difference in the yarn length direction of the conjugate fiber. 複合繊維の任意の横断面において、全横断面面積に対し0.5〜15%の面積を占める中空部が存在する、請求項1〜9のいずれかに記載のポリエステル潜在捲縮性複合繊維。   The polyester latent crimpable conjugate fiber according to any one of claims 1 to 9, wherein a hollow portion occupying an area of 0.5 to 15% with respect to the entire cross-sectional area is present in an arbitrary cross section of the conjugate fiber. 請求項1〜10のいずれかに記載のポリエステル潜在捲縮性複合繊維を製織編し、これを熱処理した織編物であり、且つストレッチ率が20%以上である織編物。   A woven or knitted fabric which is a woven or knitted fabric obtained by weaving and knitting the polyester latent crimpable conjugate fiber according to any one of claims 1 to 10, and having a stretch rate of 20% or more.
JP2004376089A 2004-12-27 2004-12-27 Polyester latently crimpable conjugated fiber Pending JP2006183163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004376089A JP2006183163A (en) 2004-12-27 2004-12-27 Polyester latently crimpable conjugated fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004376089A JP2006183163A (en) 2004-12-27 2004-12-27 Polyester latently crimpable conjugated fiber

Publications (1)

Publication Number Publication Date
JP2006183163A true JP2006183163A (en) 2006-07-13

Family

ID=36736482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004376089A Pending JP2006183163A (en) 2004-12-27 2004-12-27 Polyester latently crimpable conjugated fiber

Country Status (1)

Country Link
JP (1) JP2006183163A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174880A (en) * 2007-01-22 2008-07-31 Toray Ind Inc Side-by-side type cellulose fatty acid mixed ester-based conjugated fiber
JP2009074188A (en) * 2007-09-19 2009-04-09 Teijin Fibers Ltd Circular knitted fabric and textile product
KR20190019586A (en) * 2017-08-18 2019-02-27 주식회사 휴비스 Complex Hollow Fiber Having Improved Bulky Property and fibrous assemblies using thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144518A (en) * 1998-11-12 2000-05-26 Teijin Ltd Production of conjugate fiber
JP2000239927A (en) * 1999-02-19 2000-09-05 Unitika Ltd Polyester conjugate fiber for stretchable woven or knitted fabric
JP2003147635A (en) * 2001-08-29 2003-05-21 Teijin Ltd Polyester fiber and method for producing the same
JP2004131860A (en) * 2002-10-09 2004-04-30 Teijin Ltd Polyester conjugated fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144518A (en) * 1998-11-12 2000-05-26 Teijin Ltd Production of conjugate fiber
JP2000239927A (en) * 1999-02-19 2000-09-05 Unitika Ltd Polyester conjugate fiber for stretchable woven or knitted fabric
JP2003147635A (en) * 2001-08-29 2003-05-21 Teijin Ltd Polyester fiber and method for producing the same
JP2004131860A (en) * 2002-10-09 2004-04-30 Teijin Ltd Polyester conjugated fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174880A (en) * 2007-01-22 2008-07-31 Toray Ind Inc Side-by-side type cellulose fatty acid mixed ester-based conjugated fiber
JP2009074188A (en) * 2007-09-19 2009-04-09 Teijin Fibers Ltd Circular knitted fabric and textile product
KR20190019586A (en) * 2017-08-18 2019-02-27 주식회사 휴비스 Complex Hollow Fiber Having Improved Bulky Property and fibrous assemblies using thereof
KR101972809B1 (en) 2017-08-18 2019-04-30 주식회사 휴비스 Complex Hollow Fiber Having Improved Bulky Property and fibrous assemblies using thereof

Similar Documents

Publication Publication Date Title
KR20100112605A (en) Normal pressure cation dyeable polyester and fiber
CA2372428C (en) Poly(trimethylene terephthalate) yarn
US20060210797A1 (en) Modified cross-section polyester fibers
WO2004063441A1 (en) Differential-shrinkage polyester combined filament yarn
KR20140068939A (en) Core-sheath composite fiber and method for producing same
JP5336310B2 (en) Method for producing polyester composition for producing high-definition polyester fiber with alkali weight loss
JP4027806B2 (en) Polyester blended yarn
JP2006183163A (en) Polyester latently crimpable conjugated fiber
JP4884286B2 (en) Thermal adhesive polyester filament
JP5218887B2 (en) Normal pressure cationic dyeable polyester composition and polyester fiber comprising the same
KR20050092747A (en) Polyester fibers having deformed section
JP2004218139A (en) Method for producing conjugated false twist textured yarn
JP2004218156A (en) Latently crimpable polyester conjugate fiber
JP2013018802A (en) Polyester resin composition, method for producing the same, polyester fiber composed of the same, and fiber product of the polyester fiber
JP2006169697A (en) Polyester false twist-processed conjugate yarn and method for producing the same
JP3935794B2 (en) Polyester composite fiber
JP2013170251A (en) Copolyester and polyester fiber
EP1524295A1 (en) Polyester composition and process for producing the same
JP4890479B2 (en) Polyester composite fiber and woven / knitted fabric
JP2004256965A (en) Method for producing composite false-twist yarn
JP2010059232A (en) Production method of polyester composition excellent in color developing property
JP2004225184A (en) Modified cross-section polyester fiber
JP2004131860A (en) Polyester conjugated fiber
JP2004218159A (en) Hetero-shrinking combined polyester filament yarn
JP4950935B2 (en) Screen filament monofilament

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928