JP2006181902A - Manufacturing method of resin product and molding apparatus for resin product - Google Patents

Manufacturing method of resin product and molding apparatus for resin product Download PDF

Info

Publication number
JP2006181902A
JP2006181902A JP2004378811A JP2004378811A JP2006181902A JP 2006181902 A JP2006181902 A JP 2006181902A JP 2004378811 A JP2004378811 A JP 2004378811A JP 2004378811 A JP2004378811 A JP 2004378811A JP 2006181902 A JP2006181902 A JP 2006181902A
Authority
JP
Japan
Prior art keywords
substrate
holding
mold member
molding
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004378811A
Other languages
Japanese (ja)
Inventor
Tomoko Miyaura
智子 宮浦
Miyuki Hosono
深幸 細野
Takaaki Shirai
孝明 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2004378811A priority Critical patent/JP2006181902A/en
Publication of JP2006181902A publication Critical patent/JP2006181902A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Press Drives And Press Lines (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the nozzle forming part of a molding die, which is used for fabricating a nozzle hole even smaller than the conventional one and correspondingly is thin and fragile, from causing the fall in durability and breakages, and to make the manufacturing apparatus less expensive compared with the conventional expensive injection molding machine or excimer laser apparatus. <P>SOLUTION: The resin product is manufactured by the press process and the electrical discharge process. In the press process the molding face of the die member, on which a (conductive) projection having a sharp tip is arranged, is brought into contact with and pressed against a substrate which is held on a conductive holding stand and consists of an insulating resin composition containing a thermoplastic resin, while the substrate is heated. In the electrical discharge process the substrate is bored by causing the electrical discharge to generate between the holding stand and the projection when the holding face holding the substrate on the holding stand and the tip of the projection of the die member reach a predetermined distance. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、樹脂製品の製造方法及び樹脂製品の成形装置に関する。   The present invention relates to a resin product manufacturing method and a resin product molding apparatus.

近年、あらゆる分野で微細加工に対する要請が高まっている。その中で、微小液滴を生成させることなどを目的として、フィルム状又は薄板状の樹脂に微細な孔を設ける技術が求められている。例えば、インクジェット記録ヘッドは、一般に微細なインク吐出口(オリフィス)、インク流路及びこのインク流路の一部に設けられる吐出エネルギー発生素子を備えている。インク吐出口は、インク流路と連通するテーパ部とでノズルを構成し、これを板上に並べたものをノズルプレートと呼んでいる。   In recent years, there has been an increasing demand for fine processing in all fields. Among them, there is a demand for a technique for providing fine holes in a film-like or thin-plate-like resin for the purpose of generating fine droplets. For example, an ink jet recording head generally includes a fine ink discharge port (orifice), an ink flow path, and a discharge energy generating element provided in a part of the ink flow path. The ink discharge port forms a nozzle with a taper portion communicating with the ink flow path, and a nozzle plate arranged on a plate is called a nozzle plate.

このノズルの形成方法として、ノズルのテーパ形状に見合う形状を持つポンチと、ポンチ先端の細径部より僅かに大きい孔に面取り部を設けたダイとを組み合わせて、ノズルプレートにポンチを貫通させることによって形成するものがある(例えば、特許文献1参照)。   As a method of forming this nozzle, a punch having a shape corresponding to the taper shape of the nozzle and a die having a chamfered portion in a hole slightly larger than the narrow diameter portion at the tip of the punch are combined to penetrate the nozzle plate. (See, for example, Patent Document 1).

また、金型に樹脂を注入することにより、ノズルやインク室を有するチャンバプレートが作製されるインクジェット記録ヘッドにおいて、金型のノズル穴形成部分に弾性部材よりなる突き当て用金型を当接させたうえで射出成形する方法がある(例えば、特許文献2参照)。   In addition, in an ink jet recording head in which a chamber plate having nozzles and ink chambers is manufactured by injecting resin into the mold, an abutting mold made of an elastic member is brought into contact with the nozzle hole forming portion of the mold. In addition, there is a method of injection molding (see, for example, Patent Document 2).

一方、従来の成型方法にて、薄い膜が残っている未貫通状態または、バリ等の残っている状態のノズル穴形成までを行い、エキシマレーザー加工装置により薄い膜、バリ等を取り去る等の追加工を行う方法も行われている。
特開平5−229127号公報(第3頁、第5−6図) 特開2000−71459号公報(第3頁、第5図)
On the other hand, the conventional molding method is used to form a nozzle hole in a non-penetrated state where a thin film remains or a state where burrs remain, and the excimer laser processing apparatus removes the thin film, burrs, etc. There is also a method of performing construction.
Japanese Patent Laid-Open No. 5-229127 (page 3, FIG. 5-6) JP 2000-71459 A (3rd page, FIG. 5)

しかしながら、インクジェット記録ヘッドのオリフィスはその径が数100μm以下、通常50μm程度であるが、より高品質な記録のため、さらに微小なオリフィスの要求があり、かつ各オリフィスの径が同一であること、液の吐出方向を一定に保つにはオリフィス出口にバリや切り欠きがあってはいけないこと、といった厳しい要請があるため、前述の如く、従来の機械加工は作業が困難であったり、加工用の機械や技術が高度でコストが高いという難点を伴っていた。   However, the orifice of the ink jet recording head has a diameter of several hundreds μm or less, usually about 50 μm. However, there is a demand for smaller orifices for higher quality recording, and the diameter of each orifice is the same. In order to keep the liquid discharge direction constant, there is a strict requirement that there should be no burrs or notches at the outlet of the orifice. It was accompanied by the difficulty that the machines and technology were sophisticated and expensive.

例えば、特許文献1における課題は、ポンチとダイとの位置の精度を厳密に制御しなければポンチ先端の細径部が折れてしまい生産には難しいことである。また、例えば、特許文献2における課題の一つは、弾性部材の金型と、相対する型のノズル孔形成部分とが接する時、両者の金型間にて隙間が生じないように弾性部材のノズル孔形成部分が当たる所に弾性変形するような圧を持たせることが必要であるから、金型の傷みは早く、傷んだ場合はその都度金型を製造することが必要なことから作業が繁雑となる。もう一つの課題は、50μmより、例えば10μm等に、さらにオリフィスを小さくする場合でも、弾性部材による突き当ては上記と同様にある圧を持って押し当てる必要があり、今まで以上に細く脆くなっているノズル形成部分が破損することが懸念されることである。さらに、一般に射出成形機は、大型で操作が複雑であり、ノズル孔が10μm程度となると細部への樹脂の流入が困難となり、高射出圧力にて流入させようとするとノズル形成部分の高圧力による破損が懸念される。   For example, the problem in Patent Document 1 is that if the accuracy of the position of the punch and the die is not strictly controlled, the narrow diameter portion at the tip of the punch breaks and is difficult for production. Further, for example, one of the problems in Patent Document 2 is that when the mold of the elastic member and the nozzle hole forming portion of the opposite mold are in contact with each other, a gap is not generated between the two molds. Since it is necessary to give pressure that elastically deforms where the nozzle hole formation part hits, the damage to the mold is early, and it is necessary to manufacture the mold each time it is damaged. It becomes complicated. Another problem is that even when the orifice is made smaller than 50 μm, for example, 10 μm, the abutting with the elastic member needs to be pressed with a certain pressure in the same manner as described above, and becomes thinner and more fragile than before. It is feared that the nozzle forming part is damaged. Furthermore, in general, an injection molding machine is large in size and complicated in operation. When the nozzle hole is about 10 μm, it becomes difficult for the resin to flow into the details. There is concern about damage.

また、追加工に用いられるエキシマレーザー加工装置は高価であり、またエネルギー消費量が非常に多いなど生産コストが高くなる。   In addition, the excimer laser processing apparatus used for the additional work is expensive, and the production cost is high because the energy consumption is very large.

本発明は上記の事情に鑑みてなされたものであり、その目的は、長期に亘って成形を繰り返し行っても金型の欠損が生じることがなく、及び射出成形機やエキシマレーザー加工装置等の大型設備を伴うこともなく、例えばインクジェット記録ヘッドノズルのような、微細な孔が形成された樹脂製品を提供できる樹脂製品の製造方法及び樹脂製品の成形装置を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to prevent mold defects even when molding is repeated over a long period of time, and to provide an injection molding machine, an excimer laser processing apparatus, and the like. An object of the present invention is to provide a resin product manufacturing method and a resin product molding apparatus capable of providing a resin product in which fine holes are formed, such as an ink jet recording head nozzle, without involving large-scale equipment.

上記課題を解決するために、本発明においては、請求項1に記載のように、導電性の保持台に保持された、熱可塑性樹脂を含有する樹脂組成物からなる絶縁性の基板に対して、先端が鋭利な導電性の突起が配置された型部材の成形面を、前記基板及び前記型部材を加熱しながら圧接するプレス工程と、
前記型部材の成型面により前記基板が圧接され、前記保持台の前記基板を保持する保持面と前記型部材の突起の先端との距離が予め定められた距離になったとき、前記保持台と前記突起との間で放電を行って前記基板を穿孔する放電工程とを含むことを特徴とする樹脂製品の製造方法を構成する。
In order to solve the above-described problems, in the present invention, as described in claim 1, the insulating substrate made of a resin composition containing a thermoplastic resin, which is held on a conductive holding stand. A pressing step of pressing the molding surface of the mold member on which the conductive protrusion having a sharp tip is disposed while heating the substrate and the mold member;
When the substrate is press-contacted by the molding surface of the mold member, and the distance between the holding surface of the holding table that holds the substrate and the tip of the protrusion of the mold member is a predetermined distance, And a discharging step of perforating the substrate by discharging between the protrusions.

また、本発明においては、請求項2に記載のように、熱可塑性樹脂を含有する樹脂組成物からなる絶縁性の樹脂製品の成形装置であって、
熱可塑性樹脂を含有する樹脂組成物からなる絶縁性の基板を保持する導電性の保持面を有する保持台と、
前記保持面と対向する側に鋭利な先端を有する導電性の突起が配置された成形面を有する型部材と、
前記保持台に保持された前記基板及び前記型部材を加熱する加熱手段と、
前記保持台に保持された前記基板に対して、前記型部材の成形面を圧接するプレス手段と、
前記突起と前記保持面との間で放電を行う放電手段と、
前記保持面と前記突起の先端との距離が予め定められた距離になったとき、前記放電手段に放電させて前記基板を穿孔する制御手段とを有することを特徴とする樹脂製品の成形装置を構成する。
Moreover, in the present invention, as described in claim 2, an apparatus for molding an insulating resin product comprising a resin composition containing a thermoplastic resin,
A holding table having a conductive holding surface for holding an insulating substrate made of a resin composition containing a thermoplastic resin;
A mold member having a molding surface in which a conductive protrusion having a sharp tip is disposed on the side facing the holding surface;
Heating means for heating the substrate and the mold member held by the holding table;
A pressing means for pressing the molding surface of the mold member against the substrate held by the holding table;
Discharging means for discharging between the protrusion and the holding surface;
An apparatus for molding a resin product, comprising: a control unit that discharges the discharge unit to perforate the substrate when a distance between the holding surface and the tip of the projection reaches a predetermined distance. Constitute.

また、本発明においては、請求項3に記載のように、前記制御手段は、前記保持面と前記突起の先端との距離が前記基板の厚みの10分の1以下であり、かつ前記保持面と前記突起の先端とが非接触であるときに前記放電手段に放電させることを特徴とする請求項2に記載の樹脂製品の成形装置を構成する。   Also, in the present invention, as described in claim 3, the control means is such that the distance between the holding surface and the tip of the protrusion is 1/10 or less of the thickness of the substrate, and the holding surface. 3. The resin product molding apparatus according to claim 2, wherein the discharge means discharges when the tip and the tip of the protrusion are not in contact with each other.

請求事項1又は2に記載の発明によれば、基板を保持する保持面と型部材の突起の先端との距離が予め定められた距離になったとき、保持台と突起との間で放電を行って基板を穿孔するので、保持面と型部材の微細な突起の先端が触れることがないため、長期に亘って成形を繰り返し行っても、型部材の微細な突起に欠損が発生することがない。   According to the invention described in claim 1 or 2, when the distance between the holding surface for holding the substrate and the tip of the protrusion of the mold member becomes a predetermined distance, the discharge is generated between the holding base and the protrusion. Since the substrate is perforated and the holding surface does not touch the tip of the fine protrusion of the mold member, even if molding is repeated over a long period of time, the fine protrusion of the mold member may be damaged. Absent.

また、型部材を基板の保持面に押し当てる必要がないため、成形装置として、高圧力を必要としないインプリント(型押)成型機を使用することができる。インプリント成形機の用途は、一般に金型を使っての転写技術という意味から型転写になっており、本発明のが対象とする微細穿孔加工への使用は従来例が無い。インプリント成形機は、射出成形機やエキシマレーザー加工装置と比較して小型で操作性が良く安価であることから、製造コストの低減が望める。   In addition, since it is not necessary to press the mold member against the holding surface of the substrate, an imprint molding machine that does not require high pressure can be used as the molding apparatus. The use of the imprint molding machine is generally a mold transfer in the sense of a transfer technique using a mold, and there is no conventional use for the fine perforation processing to which the present invention is directed. Since the imprint molding machine is small, easy to operate, and inexpensive compared to an injection molding machine and an excimer laser processing apparatus, it is possible to reduce the manufacturing cost.

請求項3に記載の発明によれば、放電による穿孔にて使用する放電装置及びそれに附帯する成形装置の絶縁処置を大がかりにする必要がないため、成形装置が大がかりになることなく、また高価になることなく、返り、バリのない穿孔が可能となる。   According to the invention described in claim 3, since it is not necessary to make the insulation treatment of the discharge device used for perforation by discharge and the molding device attached thereto large, the molding device does not become large and expensive. Therefore, it becomes possible to perforate without return and burr.

本発明を、図1に示すようなインクジェット記録ヘッドにおけるノズルプレート104の製造を例にして具体的に説明する。インク吐出口であるオリフィス部106は、1つのインクジェット記録ヘッドに複数ある。そのうちの1つのオリフィス部周辺の断面の例を図2に示す。図2において、インク流路102を形成しているヘッドベース101の端面に、各インク流路102の位置に対応してテーパ部105とオリフィス部106とからなるノズル103が設けられたノズルプレート104が接着されている。図2に示してない圧電素子などのインク吐出エネルギー発生素子により、インク流路102内部の容積を急激に変化させて、ノズルプレート104に設けてあるノズル103を通じてインクジェット記録ヘッドに対向する紙面上等にインク滴を噴射する。   The present invention will be specifically described with reference to an example of manufacturing the nozzle plate 104 in the ink jet recording head as shown in FIG. A plurality of orifices 106 serving as ink discharge ports are provided in one inkjet recording head. An example of a cross section around one of the orifices is shown in FIG. In FIG. 2, a nozzle plate 104 having nozzles 103 each having a tapered portion 105 and an orifice portion 106 corresponding to the position of each ink flow channel 102 is provided on the end surface of the head base 101 forming the ink flow channel 102. Is glued. An ink discharge energy generating element such as a piezoelectric element not shown in FIG. 2 changes the volume inside the ink flow path 102 abruptly, on the paper surface facing the ink jet recording head through the nozzle 103 provided in the nozzle plate 104, etc. Ink droplets are ejected onto the surface.

ノズルプレート104を製造するための成形装置の概略図を図3に示す。基板5は、ノズルプレートとなる成形前の部材である。基板5は、絶縁性でノズルのテーパ部成形時に軟化させておくことが必要であることから加熱により軟化させることができる熱可塑性樹脂を含有する樹脂組成物としている。例えば、PET(ポリエチレンテレフタレート)、PMMA(ポリメチルメタクリレート)、PC(ポリカーボネート),PE(ポリエチレン)、PVC(ポリ塩化ビニル)などである。また、基板5はフィルム状に予め加工されたものを使用する。この例では、基板の厚みとして概ね0.1mm〜0.5mmの範囲を想定している。基板5は、導電性の保持台6の保持面に、真空吸着にて装着する。保持台6は、ノズルプレート成形時に図2に示すオリフィス部106側の型となり、保持面は平面が好ましい。   A schematic view of a molding apparatus for producing the nozzle plate 104 is shown in FIG. The board | substrate 5 is a member before the shaping | molding used as a nozzle plate. The substrate 5 is made of a resin composition containing a thermoplastic resin that is insulative and needs to be softened when the tapered portion of the nozzle is formed, and can be softened by heating. For example, PET (polyethylene terephthalate), PMMA (polymethyl methacrylate), PC (polycarbonate), PE (polyethylene), PVC (polyvinyl chloride), and the like. In addition, the substrate 5 is processed in advance into a film shape. In this example, the thickness of the substrate is assumed to be in a range of approximately 0.1 mm to 0.5 mm. The substrate 5 is mounted on the holding surface of the conductive holding table 6 by vacuum suction. The holding base 6 becomes a mold on the orifice part 106 side shown in FIG. 2 when the nozzle plate is formed, and the holding surface is preferably flat.

上型となる型部材1の成形面は、平面に図2のテーパ部105を形成するための導電性の突起を設ける。型部材1の突起以外の平面部分は、図2のヘッドベース101の端面に接着するノズルプレート104のテーパ部105側の面を形成する型となることから鏡面状が好ましい。また型部材1の突起は、ノズルプレート104のテーパ部の形状を成形することから、錐形状が好ましいが、離型しやすい形状であれば、錐形状に限らない。さらに、型部材1の突起の先端は、後で述べる穿孔のための放電の位置が一点となるように電界集中する形状が好ましく、例えば鋭利に尖った形状がよい。また、突起は、放電電極となることから、その母材は導電性とする。   The molding surface of the mold member 1 serving as the upper mold is provided with conductive protrusions for forming the tapered portion 105 of FIG. 2 on the plane. The planar portion other than the protrusions of the mold member 1 is preferably a mirror surface because it is a mold that forms a surface on the tapered portion 105 side of the nozzle plate 104 to be bonded to the end surface of the head base 101 in FIG. Further, the projection of the mold member 1 is preferably conical because it forms the shape of the tapered portion of the nozzle plate 104, but is not limited to the conical shape as long as it is easy to release. Further, the tip of the protrusion of the mold member 1 preferably has a shape in which an electric field is concentrated so that a discharge position for perforation described later becomes one point, for example, a sharp pointed shape. Further, since the protrusion becomes a discharge electrode, the base material is conductive.

突起の一例として、φ0.3mm、長さ5mmの棒状のブランク材(ハイス鋼、JIS G 4403)を軸加工専用の微細ワイヤー放電加工機を用いて長さ約100μm、先端の角度が約20度の円錐形状を作成した。型部材1の金型平面となる面に垂直なφ0.3mm、深さ5.5mmの穴を設け、これを突起部材取り付け穴とする。突起部材の円錐加工部が金型平面より出る状態まで差し込み、型の側面に突起部材差し込み穴まで貫通させたネジ穴に突起部材固定用ネジをねじ込み、このネジの先端で型に差し込まれた突起部材を締め付けることにより垂直に固定して型部材1とする。尚、型部材1及び保持台6は、この例では、炭素工具鋼SK13を使用しているが、これに限らない。   As an example of the protrusion, a rod-shaped blank (φ high-speed steel, JIS G 4403) with a diameter of 0.3 mm and a length of 5 mm is about 100 μm long using a fine wire electric discharge machine dedicated to shaft processing, and the tip angle is about 20 degrees. Created a conical shape. A hole having a diameter of φ0.3 mm and a depth of 5.5 mm perpendicular to the surface of the mold member 1 serving as a mold plane is provided, and this is used as a protrusion member mounting hole. Insert the projecting member until the conical part of the projecting part protrudes from the mold plane, screw the projecting member fixing screw into the screw hole that penetrates the projecting member insertion hole on the side of the mold, and insert the projection into the mold at the tip of this screw The mold member 1 is fixed vertically by tightening the member. In addition, although the mold member 1 and the holding stand 6 use carbon tool steel SK13 in this example, it is not limited to this.

第1プレート7は、プレス架台14に固定され、第2プレート2は上下に動くプレス機構3に固定されている。プレス機構3は、手動とともに外部信号により降下、停止、上昇を行うことができる。第1熱源10により第1プレート7を加熱し、保持台6を介して基板5を高温にする。また、第1熱源10による加熱と同時に、第2熱源8により第2プレート2を加熱し、型部材1を高温にする。基板5及び型部材1を効率良く加熱できるように成形装置の適当な箇所にセラミック等の断熱材を設けるのが好ましい。   The 1st plate 7 is being fixed to the press stand 14, and the 2nd plate 2 is being fixed to the press mechanism 3 which moves up and down. The press mechanism 3 can be lowered, stopped, and raised by an external signal as well as manually. The first plate 7 is heated by the first heat source 10, and the substrate 5 is heated to a high temperature via the holding table 6. Simultaneously with the heating by the first heat source 10, the second plate 2 is heated by the second heat source 8 and the mold member 1 is heated to a high temperature. In order to efficiently heat the substrate 5 and the mold member 1, it is preferable to provide a heat insulating material such as ceramic at an appropriate portion of the molding apparatus.

また、保持台6および型部材1のそれぞれに温度センサーである熱電対を設け、先の第1熱源10、第2熱源8と別途設ける温度調整器とを組み合わせることにより型部材1と基板5とを独立して温度設定できる温度調整機能を本装置に持たせている。この温度調整機能は、必須のものではないが、型部材1及び基板5の温度設定を精度よく行うことにより、成形条件設定を容易にして、より安定に成形を行うことができることから、ある方が好ましい。   Moreover, the thermocouple which is a temperature sensor is provided in each of the holding stand 6 and the mold member 1, and the mold member 1 and the substrate 5 are combined by combining the first heat source 10 and the second heat source 8 and a temperature controller separately provided. This device has a temperature adjustment function that can set the temperature independently. This temperature adjustment function is not essential, but by setting the temperature of the mold member 1 and the substrate 5 with high accuracy, the molding condition can be easily set and molding can be performed more stably. Is preferred.

基板5の温度は、成形時に基板5の形状を維持しかつ突起が容易に入り込む状態が好ましいことから、基板5の樹脂組成物のガラス転移温度よりやや低く設定するのがよい。例えば、ガラス転移温度より5℃〜20℃程度低い温度に設定するのが好ましい。また型部材1の温度は、型部材1が降下して基板5に触れたとき、特に熱容量の少ない突起の先端部が冷却されてガラス転移温度以下にならない温度、かつ型部材1に基板5が融着しない温度の範囲に設定するのがよい。融着しない温度は、基板5が樹脂組成物の特性として明確な溶融温度を持つ場合は、溶融温度より50℃〜100℃程度低くすることが好ましい。また、基板5が明確な溶融温度を持たない場合、型部材1の温度は、実験により決定してもよい。   The temperature of the substrate 5 is preferably set to be slightly lower than the glass transition temperature of the resin composition of the substrate 5 because it is preferable that the shape of the substrate 5 is maintained at the time of molding and the protrusion easily enters. For example, it is preferable to set the temperature to be about 5 ° C. to 20 ° C. lower than the glass transition temperature. The temperature of the mold member 1 is such that when the mold member 1 is lowered and touches the substrate 5, the tip of the projection having a small heat capacity is cooled to a temperature not lower than the glass transition temperature. It is preferable to set the temperature range so as not to be fused. When the substrate 5 has a clear melting temperature as a characteristic of the resin composition, the temperature at which the fusion is not performed is preferably about 50 ° C. to 100 ° C. lower than the melting temperature. When the substrate 5 does not have a clear melting temperature, the temperature of the mold member 1 may be determined by experiment.

次に基板5及び型部材1が上述のような所望の温度になっている状態で、プレス機構3により、成形を開始する。プレス機構3には、保持台6の保持面から型部材1の突起の先端までの高さを測定する高さ検知センサー4を設けてあり、この値を高さLoとする。ここで放電制御部13には、この高さLoが入力され、予め入力された放電開始となる高さLpと比較され、一致した時点で、プレス機構3に対し型部材1を停止させる停止信号を出力し、その後放電装置12に対し放電開始信号を出力する。高さLpは、基板5に放電により穿孔する時の保持面6から型部材1の突起の先端までの距離であり、基板5の厚みの1/10以下、かつ保持面と突起の先端とが非接触状態である0以上(0を含まない)の範囲内で予め決めた値である。   Next, molding is started by the press mechanism 3 while the substrate 5 and the mold member 1 are at the desired temperatures as described above. The press mechanism 3 is provided with a height detection sensor 4 that measures the height from the holding surface of the holding table 6 to the tip of the protrusion of the mold member 1, and this value is defined as a height Lo. Here, the height Lo is input to the discharge control unit 13, compared with a height Lp that is input in advance, and at which the discharge starts, a stop signal that causes the press mechanism 3 to stop the mold member 1 at the time of matching. And then a discharge start signal is output to the discharge device 12. The height Lp is the distance from the holding surface 6 to the tip of the projection of the mold member 1 when the substrate 5 is perforated by electric discharge. The height Lp is 1/10 or less of the thickness of the substrate 5 and the holding surface and the tip of the projection are It is a predetermined value within a range of 0 or more (not including 0) in a non-contact state.

放電制御部13から停止信号を受けたプレス機構3は、型部材1の降下を停止し、放電開始信号を受けた放電装置12は、予め設定した電圧でもって、型部材1の突起の先端と、保持台6との間で基板5を介在して放電を行う。この放電装置12の放電電極端子である陽極端子は、本来は突起に接続することになるが、取り付けが容易で電気的に接続状態にある導電性の型部材1に、また接地端子は保持台6に接続している。型部材1及び保持台6は、放電装置12の陽極端子、接地端子それぞれの電極以外とは電気的に接続されていないようにテフロン(登録商標)等を用いて絶縁を施している。設定する放電電圧は、基板5の絶縁破壊強度と高さLpとの積よりその理論値を容易に求めることができる。実際の設定にあたっては、放電による穿孔加工エネルギーに余裕を持たせるため求めた値より20%程度高い値を設定することが好ましい。   The press mechanism 3 that has received the stop signal from the discharge control unit 13 stops the lowering of the mold member 1, and the discharge device 12 that has received the discharge start signal has the preset voltage and the tip of the protrusion of the mold member 1. Then, the substrate 5 is interposed between the holder 6 and the discharge. The anode terminal which is the discharge electrode terminal of the discharge device 12 is originally connected to the protrusion, but is attached to the electrically conductive mold member 1 which is easily connected and electrically connected, and the ground terminal is the holding base. 6 is connected. The mold member 1 and the holding base 6 are insulated by using Teflon (registered trademark) or the like so that they are not electrically connected except for the electrodes of the anode terminal and the ground terminal of the discharge device 12. The theoretical value of the discharge voltage to be set can be easily obtained from the product of the dielectric breakdown strength of the substrate 5 and the height Lp. In actual setting, it is preferable to set a value about 20% higher than the obtained value in order to provide a margin for the drilling energy by electric discharge.

ところで、実際に設定する放電電圧は、使用する放電装置12の能力により自ずと上限があり、また電圧を高くすればするほど、放電装置自体が大きく、高価になることはもちろんのこと、放電装置に附帯する、例えば成形装置における絶縁耐圧の強化等が必要となり、放電装置を含めた成型装置全体が大がかりで、高価になってしまう。従って、放電電圧をむやみに高電圧とならないように、放電時の高さLpを決定するのが好ましい。   By the way, the discharge voltage actually set has an upper limit naturally depending on the ability of the discharge device 12 to be used, and as the voltage is increased, the discharge device itself is larger and more expensive. For example, it is necessary to strengthen the withstand voltage in the molding apparatus, and the entire molding apparatus including the discharge apparatus is large and expensive. Therefore, it is preferable to determine the height Lp at the time of discharge so that the discharge voltage does not become excessively high.

上述の条件下での放電による基板5の穿孔は、以下のようにして施されるものと推測される。まず、プレス機構3により、型部材1の突起が基板5に押し込まれ、押し込まれた基板5の部分は突起から周囲に向かって押し出されるようにして基板5に型部材1の突起を含めた成形面が転写される。さらにこの放電エネルギーを加えることにより、型部材1の突起の先端と保持面との間に存在する基板5の部分が放電中心あたりから昇華や燃焼により穿孔が始まり、その範囲が外側に向かって広がることにより穿孔が完了する。穿孔するにあたり燃焼も含まれると推測されることから周辺の雰囲気は大気、又は大気と同等の酸素濃度20%、若しくはそれ以上が好ましい。   It is presumed that the substrate 5 is perforated by discharge under the above-described conditions as follows. First, the projection of the mold member 1 is pushed into the substrate 5 by the press mechanism 3, and the portion of the pushed substrate 5 is pushed out from the projection toward the periphery, so that the substrate 5 includes the projection of the mold member 1. The surface is transferred. Further, by applying this discharge energy, the portion of the substrate 5 existing between the tip of the projection of the mold member 1 and the holding surface starts to be perforated by sublimation or combustion from the vicinity of the discharge center, and the range expands outward. This completes the drilling. Since it is presumed that combustion is included in the perforation, the surrounding atmosphere is preferably air or an oxygen concentration equivalent to 20% or higher.

基板5において、その材料、放電電圧、高さLpであるところの放電距離を変えることにより穿孔穴径が変化する。基板5において、その材料、厚みが同一であれば、放電電圧を高くする、または放電開始距離Lpを短くすると穿孔できる穴径は大きくなる。基板5の材料とその厚さとに応じて、放電電圧および放電距離を調整することにより、所望の穴径を穿孔することができる。   In the substrate 5, the diameter of the hole is changed by changing the material, the discharge voltage, and the discharge distance at the height Lp. If the material and thickness of the substrate 5 are the same, the hole diameter that can be drilled increases when the discharge voltage is increased or the discharge start distance Lp is shortened. A desired hole diameter can be drilled by adjusting the discharge voltage and the discharge distance according to the material of the substrate 5 and its thickness.

放電終了後、基板5の温度をガラス転移温度より低く、取り出すときに変形しない温度にし、また型部材1の温度も基板5のガラス転移温度より低くした状態で、プレス機構3により型部材1を上昇させて離型する。このときの温度を離型温度と呼ぶことにする。離型温度は、ガラス転移温度より低ければ良いが、取り扱いを考慮して、概ね30℃〜40℃が好ましい。離型完了後、真空吸着を停止させて、成形した基板5を取り出す。離型時、第1熱源10、第2熱源8を停止して装置周辺温度による自然冷却しても良いが、第1プレート7と第2プレート2とにそれぞれに第1冷却源11,第2冷却源9を設けて型部材1と保持台6とを強制冷却するのが好ましい。こうすることにより、より速く型部材1及び基板5を離型温度に到達させることができ、より速く成形が終了した基板5を取り出すことができる。この例では、第1プレート7、第2プレート2を水冷により強制冷却をしている。   After the discharge is completed, the temperature of the substrate 5 is lower than the glass transition temperature and is not deformed when taken out, and the temperature of the mold member 1 is also lower than the glass transition temperature of the substrate 5. Raise and release. This temperature will be referred to as the mold release temperature. The mold release temperature may be lower than the glass transition temperature, but is preferably approximately 30 ° C. to 40 ° C. in consideration of handling. After completion of the mold release, the vacuum suction is stopped and the molded substrate 5 is taken out. At the time of mold release, the first heat source 10 and the second heat source 8 may be stopped and natural cooling may be performed according to the ambient temperature of the apparatus. However, the first cooling source 11 and the second cooling plate 2 are respectively provided on the first plate 7 and the second plate 2. It is preferable to provide a cooling source 9 to forcibly cool the mold member 1 and the holding table 6. By doing so, the mold member 1 and the substrate 5 can reach the mold release temperature more quickly, and the substrate 5 that has been molded can be taken out more quickly. In this example, the first plate 7 and the second plate 2 are forcibly cooled by water cooling.

以上により所望の穿孔が施された樹脂製品が製造される。以下に具体例を示す。   Thus, a resin product with desired perforations is manufactured. Specific examples are shown below.

(例1)
基板5にガラス転移温度が79℃、厚みが0.1mmであるPETを使用した場合、基板5の温度を70℃とし、型部材1の温度を実験により100℃とした。放電高さLpは基板の厚みの1/10であるところの10μmと設定し、PETの絶縁破壊強度が40〜60kV/mmであることから絶縁破壊電圧は400〜600Vと計算され、この上限値600Vを絶縁破壊電圧とみなして、設定放電電圧として確実に放電による穿孔ができるように800Vとした。離型温度は、ガラス転移温度が79℃より低く取り扱いを考慮して40℃とした。
(Example 1)
When PET having a glass transition temperature of 79 ° C. and a thickness of 0.1 mm was used for the substrate 5, the temperature of the substrate 5 was set to 70 ° C., and the temperature of the mold member 1 was set to 100 ° C. by experiment. The discharge height Lp is set to 10 μm, which is 1/10 of the thickness of the substrate, and the dielectric breakdown strength of PET is 40 to 60 kV / mm. Assuming 600V as a dielectric breakdown voltage, the set discharge voltage was set to 800V so that the perforation by discharge can be performed reliably. The mold release temperature was set to 40 ° C. in consideration of handling because the glass transition temperature was lower than 79 ° C.

このPETに対して、型部材1によるプレス及び放電を行い、オリフィス部とテーパ部とを有するノズルを形成した。そして、この動作を繰り返して100回の成形を行ったが、いずれの回でも約10μmの穿孔が良好にでき、また成形型である型部材1及び保持台6において何ら損傷が無かった。   This PET was pressed and discharged by the mold member 1 to form a nozzle having an orifice portion and a taper portion. Then, this operation was repeated and molding was performed 100 times. At any time, about 10 μm perforation could be satisfactorily performed, and there was no damage in the mold member 1 and the holding table 6 as the mold.

(例2)
基板5にガラス転移温度が120℃、厚みが0.5mであるPMMAを使用した場合、基板5の温度を100℃とし、型部材1の温度を実験により150℃とした。放電高さLpは基板の厚みの1/10以下であるところの20μmと設定し、PETの絶縁破壊強度が20kV/mmであることから絶縁破壊電圧は400Vと計算される。設定放電電圧として確実に放電による穿孔ができるように500Vとした。離型温度は、ガラス転移温度が120℃より低く取り扱いを考慮して40℃とした。
(Example 2)
When PMMA having a glass transition temperature of 120 ° C. and a thickness of 0.5 m was used for the substrate 5, the temperature of the substrate 5 was set to 100 ° C., and the temperature of the mold member 1 was set to 150 ° C. by experiment. The discharge height Lp is set to 20 μm, which is 1/10 or less of the thickness of the substrate, and the dielectric breakdown strength of PET is 20 kV / mm, so the dielectric breakdown voltage is calculated to be 400V. The set discharge voltage was set to 500 V so that perforation by discharge can be surely performed. The mold release temperature was set to 40 ° C. in consideration of handling because the glass transition temperature was lower than 120 ° C.

このPMMAに対して、型部材1によるプレス及び放電を行い、オリフィス部とテーパ部とを有するノズルを形成した。そして、この動作を繰り返して100回の成形を行ったが、いずれの回でも約20μmの穿孔が良好にでき、また成形型である型部材1及び保持台6において何ら損傷が無かった。   The PMMA was pressed and discharged by the mold member 1 to form a nozzle having an orifice portion and a taper portion. Then, this operation was repeated and molding was performed 100 times. At any time, about 20 μm perforation could be satisfactorily performed, and there was no damage in the mold member 1 and the holding table 6 that were the molds.

以上で挙げた温度は、型部材1、基板5そのものの温度である。実際の装置において、温度センサーである熱電対は、取り付けの都合上、本来測定したい部位に取り付けることが困難である場合が多く、この例でも同様である。従って、熱電対による温度測定と平行して、本来の位置での温度を別の手段、例えば放射温度計等で測定し、熱電対による測定温度と本来所望の温度との関係を求め、本来所望する温度となるように温度調整器への設定温度値を補正した。   The temperature mentioned above is the temperature of the mold member 1 and the substrate 5 itself. In an actual apparatus, a thermocouple that is a temperature sensor is often difficult to attach to a site to be originally measured for convenience of installation, and the same applies to this example. Therefore, in parallel with the temperature measurement by the thermocouple, the temperature at the original position is measured by another means, for example, a radiation thermometer, and the relationship between the temperature measured by the thermocouple and the originally desired temperature is obtained. The set temperature value for the temperature regulator was corrected so that the temperature would be the temperature to be adjusted.

以上の例は、基板5に対して、穿孔が1つである。穿孔を複数する場合、突起を必要数だけ並べればよい。この場合、放電を必要とすることから、各突起間に絶縁材を配して型部材1とし、各突起から取り出した電気的接続端子と、放電装置12の陽極端子との接続を順次切り替えて放電させればよい。また、突起を1つとする場合、保持台6を移動テーブルとして必要な穴間ピッチでもって移動させて、逐次、成形および放電を必要穴数だけ繰り返せばよい。   In the above example, the substrate 5 has one perforation. When a plurality of perforations are provided, the necessary number of protrusions may be arranged. In this case, since discharge is required, an insulating material is arranged between the protrusions to form the mold member 1, and the connection between the electrical connection terminal taken out from each protrusion and the anode terminal of the discharge device 12 is sequentially switched. What is necessary is just to discharge. In addition, when the number of protrusions is one, the holding table 6 may be moved as a moving table with a necessary pitch between holes, and the molding and the discharge may be sequentially repeated as many times as necessary.

尚、本発明は上記の実施例に限定されるものではなく、その主旨を逸脱しない範囲での変形は可能である。   In addition, this invention is not limited to said Example, A deformation | transformation in the range which does not deviate from the main point is possible.

インクジェット記録ヘッドの外観の一例を示す斜視図である。1 is a perspective view illustrating an example of an appearance of an ink jet recording head. インクジェット記録ヘッドのオリフィス部周辺の断面の一例を示す図である。It is a figure which shows an example of the cross section of the orifice part periphery of an inkjet recording head. 本発明の樹脂製品の製造装置の一例を説明する概念図である。It is a conceptual diagram explaining an example of the manufacturing apparatus of the resin product of this invention.

符号の説明Explanation of symbols

101 ヘッドベース
102 インク流路
103 ノズル
104 ノズルプレート
105 テーパ部
106 オリフィス部
107 接着層
1 型部材
2 第2プレート
3 プレス機構
4 高さ検知センサー
5 基板
6 保持台
7 第1プレート
8 第2熱源
9 第2冷却源
10 第1熱源
11 第1冷却源
12 放電装置
13 放電制御部
14 プレス架台
DESCRIPTION OF SYMBOLS 101 Head base 102 Ink flow path 103 Nozzle 104 Nozzle plate 105 Tapered part 106 Orifice part 107 Adhesive layer 1 Mold member 2 2nd plate 3 Press mechanism 4 Height detection sensor 5 Board | substrate 6 Holding stand 7 1st plate 8 2nd heat source 9 2nd cooling source 10 1st heat source 11 1st cooling source 12 Discharge device 13 Discharge control part 14 Press stand

Claims (3)

導電性の保持台に保持された、熱可塑性樹脂を含有する樹脂組成物からなる絶縁性の基板に対して、先端が鋭利な導電性の突起が配置された型部材の成形面を、前記基板及び前記型部材を加熱しながら圧接するプレス工程と、
前記型部材の成型面により前記基板が圧接され、前記保持台の前記基板を保持する保持面と前記型部材の突起の先端との距離が予め定められた距離になったとき、前記保持台と前記突起との間で放電を行って前記基板を穿孔する放電工程とを含むことを特徴とする樹脂製品の製造方法。
With respect to an insulating substrate made of a resin composition containing a thermoplastic resin, which is held on a conductive holding base, a molding surface of a mold member in which a conductive protrusion having a sharp tip is disposed is used as the substrate. And a pressing step for pressing the mold member while heating,
When the substrate is press-contacted by the molding surface of the mold member, and the distance between the holding surface of the holding table that holds the substrate and the tip of the protrusion of the mold member is a predetermined distance, And a discharging step of perforating the substrate by discharging between the protrusions.
熱可塑性樹脂を含有する樹脂組成物からなる絶縁性の樹脂製品の成形装置であって、
熱可塑性樹脂を含有する樹脂組成物からなる絶縁性の基板を保持する導電性の保持面を有する保持台と、
前記保持面と対向する側に鋭利な先端を有する導電性の突起が配置された成形面を有する型部材と、
前記保持台に保持された前記基板及び前記型部材を加熱する加熱手段と、
前記保持台に保持された前記基板に対して、前記型部材の成形面を圧接するプレス手段と、
前記突起と前記保持面との間で放電を行う放電手段と、
前記保持面と前記突起の先端との距離が予め定められた距離になったとき、前記放電手段に放電させて前記基板を穿孔する制御手段とを有することを特徴とする樹脂製品の成形装置。
An apparatus for molding an insulating resin product comprising a resin composition containing a thermoplastic resin,
A holding table having a conductive holding surface for holding an insulating substrate made of a resin composition containing a thermoplastic resin;
A mold member having a molding surface in which a conductive protrusion having a sharp tip is disposed on the side facing the holding surface;
Heating means for heating the substrate and the mold member held by the holding table;
A pressing means for pressing the molding surface of the mold member against the substrate held by the holding table;
Discharging means for discharging between the protrusion and the holding surface;
An apparatus for molding a resin product, comprising: a control unit that discharges the discharge unit to perforate the substrate when a distance between the holding surface and the tip of the projection reaches a predetermined distance.
前記制御手段は、前記保持面と前記突起の先端との距離が前記基板の厚みの10分の1以下であり、かつ前記保持面と前記突起の先端とが非接触であるときに前記放電手段に放電させることを特徴とする請求項2に記載の樹脂製品の成形装置。 The control means includes the discharge means when a distance between the holding surface and the tip of the protrusion is 1/10 or less of a thickness of the substrate, and the holding surface and the tip of the protrusion are not in contact with each other. The resin product molding apparatus according to claim 2, wherein the resin product is discharged.
JP2004378811A 2004-12-28 2004-12-28 Manufacturing method of resin product and molding apparatus for resin product Pending JP2006181902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004378811A JP2006181902A (en) 2004-12-28 2004-12-28 Manufacturing method of resin product and molding apparatus for resin product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004378811A JP2006181902A (en) 2004-12-28 2004-12-28 Manufacturing method of resin product and molding apparatus for resin product

Publications (1)

Publication Number Publication Date
JP2006181902A true JP2006181902A (en) 2006-07-13

Family

ID=36735351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004378811A Pending JP2006181902A (en) 2004-12-28 2004-12-28 Manufacturing method of resin product and molding apparatus for resin product

Country Status (1)

Country Link
JP (1) JP2006181902A (en)

Similar Documents

Publication Publication Date Title
US20130213467A1 (en) Production of microholes
JP2010018042A (en) Method of forming fluid-jetting micro device and method of forming inkjet print head
US20060201355A1 (en) Printing head for nano patterning
JP5189310B2 (en) Thermal transfer press molding apparatus and thermal transfer press molding die
JP6106922B2 (en) Manufacturing method of fine nozzle
JP2006198779A (en) Device and method for forming through pore and equipment and method for manufacturing nozzle plate for inkjet recording head
JP2006181902A (en) Manufacturing method of resin product and molding apparatus for resin product
JP2009023900A (en) Method for joining silicon base material, liquid droplet delivery head, liquid droplet delivery apparatus, and electronic device
JP5272427B2 (en) Droplet ejection method
JP2006208073A (en) Inspection method and forming method of micropore
KR100524414B1 (en) Metal jet unit
JP2005169479A (en) Piercing method, pierced member, and liquid discharging head
JP2014218026A (en) Mold for manufacturing cone-shaped projection forming mold, and manufacturing method of cone-shaped resin projection forming mold
JP3966329B2 (en) Inkjet head manufacturing method
JPH09300629A (en) Production of ink jet head
JP3531356B2 (en) Method of manufacturing inkjet head
JP2009105318A (en) Manufacturing device for ceramic multilayer substrate
JP2008152214A (en) Liquid crystal panel
JP2010167394A (en) Method of manufacturing filter, and liquid spraying head and liquid spraying apparatus
JPH0286459A (en) Manufacture of nozzle for ink jet recording head
JP2005271219A (en) Three-dimensional hard copier
JP5151013B2 (en) Droplet discharge device, droplet discharge method, method for manufacturing liquid crystal display device, and liquid crystal display device
JPH08323986A (en) Manufacture of ink-jet recording head
JP2007136408A (en) Liquid drop delivery apparatus
WO2018180669A1 (en) Method for manufacturing ink jet head