JP2006179771A - Electrical device and cooling jacket - Google Patents

Electrical device and cooling jacket Download PDF

Info

Publication number
JP2006179771A
JP2006179771A JP2004373132A JP2004373132A JP2006179771A JP 2006179771 A JP2006179771 A JP 2006179771A JP 2004373132 A JP2004373132 A JP 2004373132A JP 2004373132 A JP2004373132 A JP 2004373132A JP 2006179771 A JP2006179771 A JP 2006179771A
Authority
JP
Japan
Prior art keywords
main flow
flow path
path
cooling medium
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004373132A
Other languages
Japanese (ja)
Other versions
JP2006179771A5 (en
Inventor
Atsushi Takechi
篤 武智
Susumu Kimura
享 木村
Masao Kikuchi
正雄 菊池
Seiji Hashimo
誠司 羽下
Tetsuro Ogushi
哲朗 大串
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004373132A priority Critical patent/JP2006179771A/en
Publication of JP2006179771A publication Critical patent/JP2006179771A/en
Publication of JP2006179771A5 publication Critical patent/JP2006179771A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make a heat radiating performance uniform regardless of position in an electrical device having a heat-generating electric element mounted therein. <P>SOLUTION: An electrical device 10 comprises a cooling jacket 14 and an electric element 12. The cooling jacket 14 includes at least one main flow passage 22 for guiding a cooling medium in a first direction, a cooling medium inlet passage disposed upstream of the main passage 22, a plurality of upstream communication passages 38 for communication between connection regions of the main passage 22 to the inlet passage and the main passage 22 and the inlet passage, a cooling medium exhaust passage disposed downstream of the main passage 22, and a plurality of downstream communication passages 40 for communication between connection regions of the main passage 22 to the exhaust passage and the main passage 22 and the exhaust passage. The electric element 12 is provided on a ceiling wall of the main flow passage 22 of the cooling jacket 14. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気素子(例えば、半導体素子)で発生した熱を冷却媒体に放出させる電気デバイス、及び該電気デバイスに利用される冷却ジャケットに関する。   The present invention relates to an electric device that releases heat generated in an electric element (for example, a semiconductor element) to a cooling medium, and a cooling jacket used for the electric device.

冷却液により放熱を行う電力変換装置が複数の半導体モジュールを搭載する場合、全ての半導体モジュールを均等に冷却するように冷却液が供給されることが望ましい。   When the power conversion device that radiates heat using the cooling liquid includes a plurality of semiconductor modules, it is desirable that the cooling liquid is supplied so as to cool all the semiconductor modules equally.

特許文献1に開示される電力変換装置では、複数の電力変換用半導体素子等が絶縁基板に搭載され、該絶縁基板がケース下蓋である冷却基板に接合され、該冷却基板にケース上蓋がネジ止め等で固定される。冷却基板はヒートシンクの上面の開口部を覆うように設置されて接合部分をシールする。ヒートシンクの内部には冷却液を通す冷却流路が形成されている。従って、ヒートシンクに近接する冷却基板の下面が放熱面となり、冷却液へ放熱する。   In the power conversion device disclosed in Patent Document 1, a plurality of power conversion semiconductor elements and the like are mounted on an insulating substrate, the insulating substrate is bonded to a cooling substrate which is a case lower lid, and the case upper lid is screwed to the cooling substrate. It is fixed with a stopper. The cooling substrate is installed so as to cover the opening on the upper surface of the heat sink to seal the joint portion. A cooling flow path through which the cooling liquid is passed is formed inside the heat sink. Therefore, the lower surface of the cooling substrate adjacent to the heat sink becomes a heat radiating surface and radiates heat to the coolant.

特許文献2に開示される電力変換装置では、複数の半導体モジュールが並列の冷媒液流路により冷却される。具体的に当該電力変換装置は、複数の半導体モジュールを一括して搭載したコールドプレートと、冷媒液を該コールドプレートに穿った冷媒液通路を経由して放熱器、冷媒液循環ポンプ及び冷媒液液溜タンクに循環させる冷媒液循環回路を含む。冷媒液通路は、コールドプレートに搭載した半導体モジュールの配列に合わせて各半導体素子の下方を通るように穿たれている。   In the power conversion device disclosed in Patent Literature 2, a plurality of semiconductor modules are cooled by parallel refrigerant liquid flow paths. Specifically, the power converter includes a cold plate on which a plurality of semiconductor modules are collectively mounted, and a radiator, a refrigerant liquid circulation pump, and a refrigerant liquid liquid via a refrigerant liquid passage formed by penetrating the refrigerant liquid in the cold plate. A refrigerant liquid circulation circuit for circulating to the reservoir tank is included. The coolant liquid passage is formed so as to pass below each semiconductor element in accordance with the arrangement of the semiconductor modules mounted on the cold plate.

しかし、特許文献1に開示された電力変換装置では、冷却液出入口部が冷却液の流路幅に比べて小さいため、半導体モジュールの中心部と端部で放熱性が不均一になるという問題がある。また、特許文献2に開示される電力変換装置では、複数の半導体モジュールを冷却するため、流路を複数の並列流路に分岐している。しかし、流路の分岐における冷却液の分配の適正化(均等化)について何ら配慮されていない。その結果、各半導体モジュールでの冷却効率が不均一になることが予想される。冷却効率のばらつきは、個々のモジュールに流れる電流の不均一を招き、場合によっては半導体モジュールの破損を引き起こすおそれがある。
特開2001−308246公報(図1参照) 特開平5−335454号公報(図3参照)
However, in the power conversion device disclosed in Patent Document 1, since the coolant inlet / outlet portion is smaller than the flow passage width of the coolant, there is a problem that heat dissipation becomes uneven at the center portion and the end portion of the semiconductor module. is there. Moreover, in the power converter device disclosed by patent document 2, in order to cool a some semiconductor module, the flow path is branched into the some parallel flow path. However, no consideration is given to the optimization (equalization) of the distribution of the coolant at the branch of the flow path. As a result, it is expected that the cooling efficiency in each semiconductor module becomes non-uniform. The variation in cooling efficiency causes non-uniformity in the current flowing through the individual modules, possibly causing damage to the semiconductor module.
JP 2001-308246 A (see FIG. 1) JP-A-5-335454 (see FIG. 3)

本発明の目的は、電気素子(例えば、半導体素子)を搭載する電気デバイスにおいて放熱性能を位置に拠らず均等化することを目的とする。   An object of the present invention is to equalize heat dissipation performance regardless of position in an electric device on which an electric element (for example, a semiconductor element) is mounted.

本発明は上記の目的を達成するために為されたものである。本発明に係る電気デバイスは、
(a)冷却媒体を第1の方向に案内する少なくとも1つの主流路と、
上記主流路の上流側に配置された上記冷却媒体の導入路と、
上記主流路と上記導入路との接続領域のそれぞれに上記主流路と上記導入路とを連通する複数の上流側連通路と、
上記主流路の下流側に配置された上記冷却媒体の排出路と、
上記主流路と上記排出路との接続領域のそれぞれに上記主流路と上記排出路とを連通する複数の下流側連通路とを備えた冷却ジャケットと、
(b)上記冷却ジャケットの上記主流路の天井壁に設けられた電気素子と、
を備えたことを特徴とする電気デバイスである。
The present invention has been made to achieve the above object. The electrical device according to the present invention is:
(A) at least one main flow path for guiding the cooling medium in the first direction;
An introduction path for the cooling medium disposed on the upstream side of the main flow path;
A plurality of upstream communication passages that connect the main passage and the introduction passage to each of the connection regions of the main passage and the introduction passage;
A discharge path for the cooling medium disposed on the downstream side of the main flow path;
A cooling jacket provided with a plurality of downstream communication passages that connect the main flow path and the discharge path to each of the connection regions of the main flow path and the discharge path;
(B) an electrical element provided on the ceiling wall of the main flow path of the cooling jacket;
An electrical device comprising:

本発明を利用することにより、冷却ジャケット内部における冷却媒体の流速分布の偏りの発生を抑制し、装置全体で放熱性能を均等化する電気デバイスを得られる。   By utilizing the present invention, it is possible to obtain an electric device that suppresses the occurrence of a deviation in the flow velocity distribution of the cooling medium inside the cooling jacket and equalizes the heat dissipation performance in the entire apparatus.

以下、添付図面を参照して本発明の実施形態を説明する。なお、以下の説明では、図面を参照した具体的実施形態の構成及び作用が容易に理解できるように、図面に表された構成の具体的部位等を説明するために特定の方向や位置を示す用語(例えば、「上」、「下」、「右」、「左」、「表」、「裏」、「天井」、「底」又はそれらを含む別の用語)を使用するが、発明の技術的範囲はそれらの用語が持っている意味によって限定的に解釈されるべきものでない。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In the following description, specific directions and positions are shown to explain specific parts of the configuration shown in the drawings so that the configuration and operation of the specific embodiments with reference to the drawings can be easily understood. Use terms (eg, “top”, “bottom”, “right”, “left”, “front”, “back”, “ceiling”, “bottom” or another term that includes them) The technical scope should not be construed as limited by the meaning of these terms.

実施の形態1Embodiment 1

図1は、本発明に係る電気デバイスの一実施形態を示す。電気デバイス10は、概略、電気素子12と、電気素子12で発生した熱を冷却媒体48に放出させる冷却ジャケット14を有する。電気素子12は、種々の形態の電気素子(例えば、半導体回路素子)が考えられるが、電気素子12で発生した熱を冷却ジャケット14で回収することを考慮すると該電気素子の動作時に熱を発生するものであればよく、具体的には電力変換用の半導体素子が好適な例として挙げられる。従って、電力変換装置が電気デバイスの好適な例として挙げられる。   FIG. 1 shows an embodiment of an electrical device according to the invention. The electric device 10 generally includes an electric element 12 and a cooling jacket 14 that releases heat generated in the electric element 12 to a cooling medium 48. The electric element 12 may be an electric element of various forms (for example, a semiconductor circuit element). Considering that the heat generated by the electric element 12 is recovered by the cooling jacket 14, heat is generated during operation of the electric element 12. Specifically, a semiconductor element for power conversion can be given as a suitable example. Therefore, a power converter is mentioned as a suitable example of an electric device.

実施の形態に示す電気素子12は、例えば図1(3)に示すように、電気素子12がその機能を発揮するための必要な回路(例えば、半導体回路)を組み込んだ回路部16を有する。回路部16の裏面に放熱部18を有する。放熱部18は、熱伝導性に優れた金属材料(例えば、銅)又は非金属材料で形成することが好ましい。また、放熱部18は、回路部16と一体的に形成し、一体化された回路部16と放熱部18を冷却ジャケット14に組み付けてもよいし、または、回路部16とは別々に用意し、冷却ジャケット14に組み付ける際に適当な接着方法(例えば、接着剤、はんだ)で回路部16と一体化してもよい。   The electric element 12 shown in the embodiment includes a circuit unit 16 in which a circuit (for example, a semiconductor circuit) necessary for the electric element 12 to exhibit its function is incorporated as shown in FIG. A heat radiating portion 18 is provided on the back surface of the circuit portion 16. The heat radiating portion 18 is preferably formed of a metal material (for example, copper) or a non-metal material having excellent thermal conductivity. The heat radiating portion 18 may be formed integrally with the circuit portion 16 and the integrated circuit portion 16 and the heat radiating portion 18 may be assembled to the cooling jacket 14 or may be prepared separately from the circuit portion 16. When assembled to the cooling jacket 14, the circuit portion 16 may be integrated with an appropriate bonding method (for example, an adhesive or solder).

なお、図1(1)に示すように、実施の形態の電気素子12は長方形の平面形状を有するが、この形状は限定的なものではない。   As shown in FIG. 1A, the electric element 12 according to the embodiment has a rectangular planar shape, but this shape is not limited.

冷却ジャケット14は、金属又は非金属材料(樹脂を含む。)で形成される。冷却ジャケット14の内部には、図1(1)において左側から右側に向かう矢印X方向(第1の方向)に伸びる主流路22が形成されている。図1(3)及び図2に示すように、主流路22はX方向に直交するY方向(第2の方向)及びZ方向(第3の方向)に略長方形の横断面を有する。また、主流路22の天井壁24には一つ又は複数の開口部26が形成されている。これらの複数の開口部26が熱交換部を形成している。   The cooling jacket 14 is formed of a metal or a non-metallic material (including resin). Inside the cooling jacket 14 is formed a main flow path 22 extending in the arrow X direction (first direction) from the left side to the right side in FIG. As shown in FIGS. 1 (3) and 2, the main channel 22 has a substantially rectangular cross section in the Y direction (second direction) and the Z direction (third direction) orthogonal to the X direction. One or more openings 26 are formed in the ceiling wall 24 of the main flow path 22. The plurality of openings 26 form a heat exchange part.

開口部26の平面形状は、電気素子12の輪郭よりも僅かに小さくしてあり、電気素子12によって開口部26を塞ぐことができる大きさと形状を有する。実施の形態において、開口部26は、電気素子12の長方形平面形状よりも僅かに小さな長方形平面形状を有する。また、天井壁24の表面には、開口部26を囲む縁部に沿って連続した段部28が形成されており、この段部28に電気素子12の周縁がちょうど嵌め込まれて位置決めされるようにしてある。したがって、電気素子12は、底面の放熱部18を主流路22に臨ませた状態で段部28に嵌め込まれて適当なシール材料によって天井壁24との間が密封シールされ、これにより主流路22を流れる冷却媒体48との熱的接触が図られる   The planar shape of the opening 26 is slightly smaller than the contour of the electric element 12, and has a size and shape that can close the opening 26 by the electric element 12. In the embodiment, the opening 26 has a rectangular planar shape slightly smaller than the rectangular planar shape of the electric element 12. In addition, a stepped portion 28 is formed on the surface of the ceiling wall 24 along the edge surrounding the opening 26 so that the periphery of the electric element 12 is just fitted into the stepped portion 28 and positioned. It is. Therefore, the electric element 12 is fitted into the stepped portion 28 with the heat radiating portion 18 on the bottom surface facing the main flow path 22 and hermetically sealed with the ceiling wall 24 by an appropriate sealing material. Is brought into thermal contact with the cooling medium 48 flowing through

図1(1)及び図2に示すように、冷却ジャケット14の内部にはまた、主流路22の上流側(図の左側)と下流側(図の右側)にそれぞれ、冷却媒体48の導入路30と排出路32が形成されている。実施の形態では、導入路30と排出路32は、矢印X方向と直交する矢印Y方向に延在している。ここでいう「直交」とは、ほぼ直交のものを含むものである。図2に示すように、実施の形態では、主流路22と導入路30との接続領域には隔壁(上流側隔壁)34が設けられており、主流路22と排出路32との接続領域にも隔壁(下流側隔壁)36が設けられている。つまり、導入路30と排出路32は共に長方形の横断面を有して主流路22の上流側端部と下流側端部の下に隔壁34、36を介して配置されている。また、上流側隔壁34には主流路22と導入路30とを連結する上級側連通路(開口部)38が設けられており、下流側隔壁36にも主流路22と排出路32とを連結する下流側連通路(開口部)40が設けられている。つまり、導入路30と主流路22は上流側隔壁34に形成した複数の上流側連通路38を介して流体的に接続されており、排出路32と主流路22は下流側隔壁36に形成した複数の下流側連通路40を介して流体的に接続されている。実施の形態では、複数の上流側連通路38と下流側連通路40は、矢印Y方向に一定の間隔をあけて配置されている。隣接する連通路38、40の間隔は一定である必要はない。また、実施の形態では、連通路38、40の平面形状は円形としているが、その形は限定的なものでなく、その他の形状(例えば、四角形、三角形などの多角形〔図5参照〕、楕円形)であってもよい。   As shown in FIGS. 1 (1) and 2, the cooling jacket 14 has an introduction path for the cooling medium 48 on the upstream side (left side in the figure) and downstream side (right side in the figure) of the main flow path 22, respectively. 30 and a discharge path 32 are formed. In the embodiment, the introduction path 30 and the discharge path 32 extend in the arrow Y direction orthogonal to the arrow X direction. The term “orthogonal” as used herein includes substantially orthogonal ones. As shown in FIG. 2, in the embodiment, a partition wall (upstream partition wall) 34 is provided in the connection region between the main channel 22 and the introduction channel 30, and the connection region between the main channel 22 and the discharge channel 32 is provided. Also, a partition wall (downstream partition wall) 36 is provided. That is, both the introduction path 30 and the discharge path 32 have a rectangular cross section, and are disposed via the partition walls 34 and 36 below the upstream end and the downstream end of the main flow path 22. The upstream partition 34 is provided with an upper communication path (opening) 38 that connects the main flow path 22 and the introduction path 30, and the main flow path 22 and the discharge path 32 are also connected to the downstream partition 36. A downstream communication passage (opening) 40 is provided. That is, the introduction path 30 and the main flow path 22 are fluidly connected via a plurality of upstream communication paths 38 formed in the upstream partition 34, and the discharge path 32 and the main flow path 22 are formed in the downstream partition 36. The plurality of downstream communication passages 40 are fluidly connected. In the embodiment, the plurality of upstream communication passages 38 and the downstream communication passages 40 are arranged at regular intervals in the arrow Y direction. The interval between the adjacent communication passages 38 and 40 need not be constant. In the embodiment, the planar shape of the communication passages 38 and 40 is circular, but the shape is not limited, and other shapes (for example, polygons such as a rectangle and a triangle [see FIG. 5], Oval).

実施の形態では、導入路30と排出路32は、図1(1)において下側に示された冷却ジャケット側壁46に設けた入口42と出口44を介して外部に接続されており、これらが図示しない冷却媒体供給部と冷却媒体回収部に接続されるようにしてある。つまり、導入路30が延在する方向の一端に冷却媒体48を導入する入口42が設けられ、この入口42が冷却媒体供給部(図示せず)に接続される。更に、排出路32が延在する方向の一端に冷却媒体48を排出する出口44が設けられ、この出口44が冷却媒体回収部(図示せず)に接続される。冷却媒体48としては、開口部26に配置された電気素子12との接触により該電気素子12から熱を回収する流体であれば気体又は液体の区別は問わないが、一般的には冷却空気などの気体又は水やエチレングリコール水溶液などの液体が用いられる。   In the embodiment, the introduction path 30 and the discharge path 32 are connected to the outside via an inlet 42 and an outlet 44 provided in the cooling jacket side wall 46 shown on the lower side in FIG. A cooling medium supply unit and a cooling medium recovery unit (not shown) are connected. That is, an inlet 42 for introducing the cooling medium 48 is provided at one end in the direction in which the introduction path 30 extends, and the inlet 42 is connected to a cooling medium supply unit (not shown). Further, an outlet 44 for discharging the cooling medium 48 is provided at one end in the direction in which the discharge path 32 extends, and the outlet 44 is connected to a cooling medium recovery unit (not shown). The cooling medium 48 may be a gas or a liquid as long as it is a fluid that recovers heat from the electric element 12 by contact with the electric element 12 disposed in the opening 26. Or a liquid such as water or an aqueous ethylene glycol solution.

このような構成を備えた電気デバイス10の動作時、回路部16には所定の信号が送られ、所定の処理が行われる。一方、冷却媒体供給部から供給された冷却媒体48は入口42を介して導入路30に送り込まれた後、複数の上流側連通路38から主流路22の上流側端部に流れ込む。次に、主流路22を上流側から下流側に流れる冷却媒体48は、開口部26に配置されている電気素子12の回路部16で発生した熱を放熱部18を介して回収する。熱を回収した冷却媒体48は、主流路22の下流側端部に到達すると、複数の下流側連通路40から排出路32に流れ込み、出口44から冷却媒体回収部に回収される。ここで、図1と図2により説明した「第1の方向(X方向)」と「第2の方向(Y方向)」を用いると、冷却媒体48は次のように流れることになる。まず、冷却媒体供給部から供給された冷却媒体48は、入口42から第2の方向(Y方向)に流れる。その後、上流側連通路38を介して導入路30から主流路22に流れ、主流路22内では第1の方向(X方向)に流れる。その後、下流側連通路40を介して主流路22から排出路32に流れ、排出路32内では第2の方向(Y方向)とは逆の方向に流れる。その後、出口44から排出されて冷却媒体回収部に回収される。   During operation of the electrical device 10 having such a configuration, a predetermined signal is sent to the circuit unit 16 and predetermined processing is performed. On the other hand, the cooling medium 48 supplied from the cooling medium supply unit is fed into the introduction path 30 through the inlet 42 and then flows into the upstream end of the main flow path 22 from the plurality of upstream communication paths 38. Next, the cooling medium 48 flowing from the upstream side to the downstream side of the main flow path 22 recovers the heat generated in the circuit portion 16 of the electric element 12 disposed in the opening 26 via the heat radiating portion 18. When the cooling medium 48 having recovered the heat reaches the downstream end of the main flow path 22, it flows into the discharge path 32 from the plurality of downstream communication paths 40 and is recovered from the outlet 44 to the cooling medium recovery section. Here, when the “first direction (X direction)” and “second direction (Y direction)” described with reference to FIGS. 1 and 2 are used, the cooling medium 48 flows as follows. First, the cooling medium 48 supplied from the cooling medium supply unit flows in the second direction (Y direction) from the inlet 42. Thereafter, the fluid flows from the introduction path 30 to the main flow path 22 via the upstream communication path 38 and flows in the first direction (X direction) in the main flow path 22. After that, it flows from the main flow path 22 to the discharge path 32 via the downstream communication path 40, and flows in the direction opposite to the second direction (Y direction) in the discharge path 32. Then, it discharges | emits from the exit 44 and is collect | recovered by the cooling medium collection | recovery part.

熱の回収性能は、連通路38、40の大きさ(横断面積)と数に影響される。具体的に説明すると、例えば図4(2)に示すように、個々の連通路38、40の大きさが大きい場合、導入路30をその入口側から奥側に流れる冷却媒体48は、入口側から奥側に向かう方向の大きな速度ベクトルPを維持し、この速度ベクトルPは導入路30から主流路22に向かう垂直方向の速度ベクトルQに対して相対的に大きなものである。そのため、図4(1)に示すように、主流路22を流れる冷却媒体48の流速に場所的な変化が生じ、入口側から離れた奥側における流速が手前側(入口側)の流速よりも大きくなる。その結果、冷却ジャケット14に形成された開口部26の場所によって放熱性が異なり、一つの冷却ジャケット14に支持されている複数の電気素子12の間で特性のばらつきを生じる。   The heat recovery performance is affected by the size (cross-sectional area) and number of the communication passages 38 and 40. More specifically, for example, as shown in FIG. 4 (2), when the size of the individual communication passages 38 and 40 is large, the cooling medium 48 flowing from the inlet side to the back side of the introduction passage 30 is transferred to the inlet side. A large velocity vector P in the direction from the rear side to the rear side is maintained, and this velocity vector P is relatively large with respect to the velocity vector Q in the vertical direction from the introduction path 30 toward the main flow path 22. Therefore, as shown in FIG. 4 (1), a local change occurs in the flow rate of the cooling medium 48 flowing through the main flow path 22, and the flow rate on the far side away from the inlet side is higher than the flow rate on the near side (inlet side). growing. As a result, the heat dissipation varies depending on the location of the opening 26 formed in the cooling jacket 14, and the characteristics vary among the plurality of electric elements 12 supported by one cooling jacket 14.

そこで、導入路30と排出路32の開口率を変えて主流路22の複数の場所で冷却媒体48の流速を測定した。開口率は、100・〔全ての上流側連通路又は全ての下流側連通路が主流路と上下方向に対向する領域の面積〕/〔導入路又は排出路が主流路と上下方向に対向する領域の面積〕(%)と定義する。観察の結果、開口率が50%を超える場合、主流路22に場所的な流速の違いが表れたが、開口率を50%以下に設定した場合、主流路22における場所的な流速の違いは殆ど見られなかった。また、横断面が円形の連通路を採用した場合、導入側と排出側にそれぞれ5個の連通路を形成したとき、主流路22における流速のばらつきが無かった。   Therefore, the flow rate of the cooling medium 48 was measured at a plurality of locations in the main flow path 22 by changing the opening ratios of the introduction path 30 and the discharge path 32. Opening ratio is 100 · [area of the area where all the upstream communication paths or all the downstream communication paths face the main flow path in the vertical direction] / [area where the introduction path or discharge path faces the main flow path in the vertical direction] Area] (%). As a result of observation, when the aperture ratio exceeds 50%, a difference in local flow velocity appears in the main flow path 22, but when the aperture ratio is set to 50% or less, the difference in local flow speed in the main flow path 22 is It was hardly seen. In addition, when a communication path having a circular cross section was adopted, there was no variation in the flow velocity in the main flow path 22 when five communication paths were formed on the introduction side and the discharge side, respectively.

実施の形態1の電気デバイス、特に冷却ジャケット14の変形例について付言する。以上の実施の形態1の電気デバイスにおいては、電気素子12を天井壁24に設けた開口部26に嵌め込み天井壁24との間を密閉シールして搭載している。ここで、例えば、天井壁24の開口部26が何らかの板材で密閉して塞がれておりその板材が主流路22の一部を構成している状態で、若しくは天井壁24に開口部24そのものがない状態で、板材又は天井壁24の外面に熱伝導性の高い適切なグリースを介して電気素子12を搭載し冷却媒体48が間接的に電子素子12と熱交換をするようにしてもよい。このとき効率的に熱交換するために、開口部26を塞ぐ板材や、電子素子12が搭載される天井壁24部分は、十分な強度を備える限り、薄いものであることが好ましい。なお、以下の実施の形態(実施の形態2〜実施の形態6)に係る電気デバイスにおいても、このような変形例(以下、変形例Aと言う。)により構成してもよい。   The electrical device of the first embodiment, in particular, a modification of the cooling jacket 14 will be additionally described. In the electric device of the first embodiment described above, the electric element 12 is fitted into the opening 26 provided in the ceiling wall 24 and is mounted with a hermetic seal between the electric element 12 and the ceiling wall 24. Here, for example, the opening 26 of the ceiling wall 24 is hermetically sealed with some plate material and the plate material forms a part of the main flow path 22, or the opening 24 itself is formed in the ceiling wall 24. In such a state, the electric element 12 may be mounted on the outer surface of the plate member or the ceiling wall 24 via an appropriate grease having high thermal conductivity so that the cooling medium 48 indirectly exchanges heat with the electronic element 12. . At this time, in order to efficiently perform heat exchange, it is preferable that the plate material that closes the opening 26 and the ceiling wall 24 portion on which the electronic element 12 is mounted are thin as long as they have sufficient strength. Note that the electrical device according to the following embodiments (Embodiments 2 to 6) may also be configured by such a modification (hereinafter referred to as Modification A).

実施の形態2Embodiment 2

図3は実施の形態2の電気デバイス10Bを示し、これは導入路30と排出路32の配置位置が実施の形態1と相違している。具体的に、導入路30は主流路22の左斜め下方に形成され、これら導入路30と主流路22が斜めの第1の中心軸50を有する複数の上流側連通路38を通じて連通されている。また、排出路32は主流路22の右斜め下方に形成されており、これら排出路32と主流路22が斜めの第2の中心軸52を有する複数の下流側連通路40を通じて連通されている。更に図2と図3を対比すると明らかなように、実施の形態2では複数の上流側連通路38の少なくとも一つの中心軸50上に電気素子12が配置されており、同時に複数の下流側連通路40の少なくとも一つの中心軸52上にも電気素子12が配置されている。このような電気デバイス10Bにおいて導入路30の冷却媒体48は、斜めの上流側連通路38を介して主流路22に流れ込む。このとき、主流路22に流入した冷却媒体48は、主流路22における冷却媒体48の流れの方向成分(図の左から右に向かう方向の成分)を有するため、導入路30から主流路22への冷却媒体48の流れが円滑に行われる。また、主流路22の冷却媒体48は斜めの下流側連通路40を介して排出路32に流れ込む。このとき、下流側連通路40に流れ込む冷却媒体48は、主流路22における冷却媒体48の流れの方向成分(図の左から右に向かう方向の成分)を有するため、主流路22から排出路32への冷却媒体48の流れが円滑に行われる。   FIG. 3 shows an electric device 10B according to the second embodiment, which is different from the first embodiment in the arrangement positions of the introduction path 30 and the discharge path 32. Specifically, the introduction path 30 is formed obliquely below and to the left of the main flow path 22, and the introduction path 30 and the main flow path 22 communicate with each other through a plurality of upstream communication paths 38 having a slanted first central axis 50. . The discharge path 32 is formed obliquely below and to the right of the main flow path 22, and the discharge path 32 and the main flow path 22 are communicated with each other through a plurality of downstream communication paths 40 having a slanted second central axis 52. . Further, as apparent from the comparison between FIG. 2 and FIG. 3, in the second embodiment, the electric element 12 is arranged on at least one central axis 50 of the plurality of upstream communication passages 38, and at the same time, a plurality of downstream communication channels are arranged. The electrical element 12 is also disposed on at least one central axis 52 of the passage 40. In such an electric device 10 </ b> B, the cooling medium 48 in the introduction path 30 flows into the main flow path 22 through the oblique upstream communication path 38. At this time, the cooling medium 48 that has flowed into the main flow path 22 has a directional component of the flow of the cooling medium 48 in the main flow path 22 (a component in the direction from the left to the right in the drawing), and therefore, from the introduction path 30 to the main flow path 22. The cooling medium 48 flows smoothly. Further, the cooling medium 48 in the main flow path 22 flows into the discharge path 32 via the oblique downstream communication path 40. At this time, the cooling medium 48 flowing into the downstream communication path 40 has a directional component of the flow of the cooling medium 48 in the main flow path 22 (component in the direction from the left to the right in the drawing), and thus the discharge path 32 from the main flow path 22. The cooling medium 48 flows smoothly to the front.

また実施の形態2では、電気素子12の上流側端部(即ち、上流側の開口部26)は導入路30の近傍に配置されており、導入路30から主流路22に向かって斜めに流れ込む冷却媒体48の流れが、該開口部26に配置されている電気素子12の底面に当たるようにしてある。したがって、導入路30から主流路22に流れ込んだフレッシュな冷却媒体48が電気素子12に熱的に接触して該電気素子12から熱を効率良く奪う。   In the second embodiment, the upstream end (that is, the upstream opening 26) of the electric element 12 is disposed in the vicinity of the introduction path 30 and flows obliquely from the introduction path 30 toward the main flow path 22. The flow of the cooling medium 48 hits the bottom surface of the electric element 12 disposed in the opening 26. Therefore, the fresh cooling medium 48 that has flowed into the main flow path 22 from the introduction path 30 is in thermal contact with the electric element 12 and efficiently removes heat from the electric element 12.

図3に示される実施の形態2の電気デバイス10Bでは、導入路30は電子素子12の上流側端部の左斜め下方に形成されているが、導入路30が電子素子12の上流側端部の下方に設けられてもよい。このようにしても、導入路30から主流路22に流れ込んだフレッシュな冷却媒体48が電気素子12に熱的に接触して該電気素子12から熱を効率良く奪うことができる。同様に、排出路32が電子素子12の下流側端部の下方に設けられてもよい。これらの場合でも、複数の上流側連通路38の少なくとも一つの中心軸50上に電気素子12が配置されており、複数の下流側連通路40の少なくとも一つの中心軸52上に電気素子12が配置されている。   In the electric device 10B of Embodiment 2 shown in FIG. 3, the introduction path 30 is formed obliquely below and to the left of the upstream end of the electronic element 12, but the introduction path 30 is upstream of the electronic element 12. May be provided below. Even in this case, the fresh cooling medium 48 that has flowed into the main flow path 22 from the introduction path 30 can be in thermal contact with the electric element 12 to efficiently remove heat from the electric element 12. Similarly, the discharge path 32 may be provided below the downstream end of the electronic element 12. Even in these cases, the electric element 12 is disposed on at least one central axis 50 of the plurality of upstream communication paths 38, and the electric element 12 is disposed on at least one central axis 52 of the plurality of downstream communication paths 40. Is arranged.

実施の形態3Embodiment 3

図6(1)、(2)は実施の形態3の電気デバイス10Cを示し、これは上流側連通路38と下流側連通路40の配置位置が実施の形態1と相違している。具体的に、図1(1)、図2と図6(1)、(2)を対比すると明らかなように、実施の形態3では、矢印X方向に関して主流路上流側の端面54と、同方向に関する導入路30の端面56と、半楕円状(弾頭形状)に形成された上流側連通路38の直線状内面58が同一平面(垂直面)60上に配置されている。また、矢印X方向に関して主流路下流側の端面62と、同方向に関する排出路32の端面64と、半楕円状(弾頭形状)に形成された下流側連通路40の直線状内面66が同一平面(垂直面)68上に配置されている。このように形成された電気デバイス10によれば、主流路22の上流側端部と下流側端部に冷却媒体48が淀むことがなく円滑に流れ、電気素子12と冷却媒体48との間で効率の良い熱交換が実現できる。   6 (1) and 6 (2) show the electric device 10C according to the third embodiment, which is different from the first embodiment in the arrangement positions of the upstream communication path 38 and the downstream communication path 40. FIG. Specifically, as apparent from the comparison between FIGS. 1 (1) and 2 and FIGS. 6 (1) and (2), in the third embodiment, the same as the end face 54 on the upstream side of the main channel in the direction of the arrow X. The end face 56 of the introduction path 30 with respect to the direction and the linear inner surface 58 of the upstream communication path 38 formed in a semi-elliptical shape (warhead shape) are arranged on the same plane (vertical surface) 60. Further, the end face 62 on the downstream side of the main flow path in the direction of the arrow X, the end face 64 of the discharge passage 32 in the same direction, and the linear inner face 66 of the downstream communication path 40 formed in a semi-elliptical shape (warhead shape) are coplanar. It is arranged on (vertical surface) 68. According to the electrical device 10 formed in this way, the cooling medium 48 flows smoothly without stagnation between the upstream end and the downstream end of the main flow path 22, and between the electrical element 12 and the cooling medium 48. Efficient heat exchange can be realized.

実施の形態4Embodiment 4

図7は実施の形態4の電気デバイス10Dを示す。この実施の形態は、電気素子12に特徴を有し、主流路22に臨む放熱部18の下面に複数の放熱用の突起70が設けてある。なお、突起70の形状・数・配置は、主流路22を流れる冷却媒体48が突起間で滞留しないように設計される。このような構成を採用した実施の形態4の電気デバイス10Dによれば、電気素子12が主流路22を流れる冷却媒体48と接触する面積が大きく取れることから、電気素子12の熱が冷却媒体48に効率良く回収される。   FIG. 7 shows an electric device 10D of the fourth embodiment. This embodiment is characterized by the electric element 12, and a plurality of heat dissipation projections 70 are provided on the lower surface of the heat dissipation portion 18 facing the main flow path 22. The shape, number, and arrangement of the protrusions 70 are designed so that the cooling medium 48 flowing through the main flow path 22 does not stay between the protrusions. According to the electric device 10D of the fourth embodiment that employs such a configuration, since the area where the electric element 12 contacts the cooling medium 48 flowing through the main flow path 22 can be increased, the heat of the electric element 12 is reduced by the cooling medium 48. Are efficiently recovered.

なお、冷却ジャケット14が上記変形例Aであるような場合、即ちまず、天井壁24の開口部26が何らかの板材で密閉して塞がれておりその板材が主流路22の一部を構成している状態である場合には、電気素子12に対向する領域の板材の内面に上記の突起70が設けられるのが好ましい。また、天井壁24に開口部24そのものがない状態である場合には、電気素子12に対向する主流路22の天井壁24の内面領域に上記の突起70が設けられるのが好ましい。   In the case where the cooling jacket 14 is the above-mentioned modification A, that is, first, the opening 26 of the ceiling wall 24 is hermetically sealed with some plate material, and the plate material forms a part of the main flow path 22. In this case, it is preferable that the projection 70 is provided on the inner surface of the plate material in the region facing the electric element 12. Further, when the ceiling wall 24 has no opening 24 itself, it is preferable that the protrusion 70 is provided on the inner surface area of the ceiling wall 24 of the main flow path 22 facing the electric element 12.

実施の形態5Embodiment 5

図8は実施の形態5の電気デバイス10Eを示す。実施の形態4は、天井壁24側に突起70を設けたものであるが、実施の形態5は、主流路22の底部の内面に突起74を設けたものである。実施の形態5においては、図8のように、開口部26に対向する主流路22の底面の内面72に複数の突起74が形成される。この複数の突起74は、冷却媒体48の流れに乱れを生じさせ、それを促進する部材(乱流促進部材、攪乱部材)である。なお、突起74の形状・数・配置は、主流路22を流れる冷却媒体48が突起間で滞留しないように設計される。このような構成を採用した実施の形態5の電気デバイス10Eによれば、主流路22を流れる冷却媒体48は開口部26の対向領域で乱され、その結果、冷却媒体48と電気素子12との接触効率が高まり、電気素子12と冷却媒体48との間で効率の良い熱交換が実現できる。   FIG. 8 shows an electrical device 10E of the fifth embodiment. In the fourth embodiment, the projection 70 is provided on the ceiling wall 24 side. In the fifth embodiment, the projection 74 is provided on the inner surface of the bottom of the main flow path 22. In the fifth embodiment, as shown in FIG. 8, a plurality of protrusions 74 are formed on the inner surface 72 of the bottom surface of the main channel 22 that faces the opening 26. The plurality of protrusions 74 are members (turbulence promoting members, disturbing members) that cause and promote the disturbance of the flow of the cooling medium 48. The shape, number, and arrangement of the protrusions 74 are designed so that the cooling medium 48 flowing through the main flow path 22 does not stay between the protrusions. According to the electric device 10E of the fifth embodiment that adopts such a configuration, the cooling medium 48 flowing through the main flow path 22 is disturbed in the region opposite to the opening 26, and as a result, the cooling medium 48 and the electric element 12 Contact efficiency increases, and efficient heat exchange between the electric element 12 and the cooling medium 48 can be realized.

なお、冷却ジャケット14が上記変形例Aであるような場合、即ちまず、天井壁24の開口部26が何らかの板材で密閉して塞がれておりその板材が主流路22の一部を構成している状態の場合には、電気素子12に対向する領域の板材の内面に対向する領域に上記の突起74が設けられるのが好ましい。また、天井壁24に開口部24そのものがない状態である場合には、電気素子12に対向する主流路22の天井壁24の内面領域に対向する領域に上記の突起74が設けられるのが好ましい。   In the case where the cooling jacket 14 is the above-mentioned modification A, that is, first, the opening 26 of the ceiling wall 24 is hermetically sealed with some plate material, and the plate material forms a part of the main flow path 22. In the case of the above state, it is preferable that the projection 74 is provided in a region facing the inner surface of the plate member in a region facing the electric element 12. When the ceiling wall 24 has no opening 24 itself, the protrusion 74 is preferably provided in a region facing the inner surface region of the ceiling wall 24 of the main channel 22 facing the electric element 12. .

また更に、実施の形態4で示した突起70と、上記実施の形態5における突起74とが同時に設けられてもよい。   Furthermore, the projection 70 shown in the fourth embodiment and the projection 74 in the fifth embodiment may be provided at the same time.

実施の形態6Embodiment 6

図9は実施の形態6の電気デバイス10Fを示す。この実施の形態は、一つの冷却ジャケット14内に2つの主流路22A、22Bが並列に形成されている点で特徴を有する。主流路22Aと導入路30との接続領域35Aには複数の上流側連通路38Aが設けられ、主流路22Bと導入路30との接続領域35Bには複数の上流側連通路38Bが設けられる。また、主流路22Aと排出路32との接続領域37Aには複数の下流側連通路40Aが設けられ、主流路22Bと排出路32との接続領域37Bには複数の下流側連通路40Bが設けられる。したがって、この実施の形態の電気デバイス10Fによれば、導入路30に供給された冷却媒体48は、導入路30から上流側連通路38A、38Bを介して2つの主流路22A、22Bに分岐する。また、2つの主流路22A、22Bの下流側に到達した冷却媒体48は、下流側連通路40A、40Bを介して排出路32に集められる。   FIG. 9 shows an electric device 10F of the sixth embodiment. This embodiment is characterized in that two main flow paths 22A and 22B are formed in parallel in one cooling jacket 14. A plurality of upstream communication paths 38A are provided in the connection area 35A between the main flow path 22A and the introduction path 30, and a plurality of upstream communication paths 38B are provided in the connection area 35B between the main flow path 22B and the introduction path 30. A plurality of downstream communication paths 40A are provided in the connection region 37A between the main flow path 22A and the discharge path 32, and a plurality of downstream communication paths 40B are provided in the connection area 37B between the main flow path 22B and the discharge path 32. It is done. Therefore, according to the electric device 10F of this embodiment, the cooling medium 48 supplied to the introduction path 30 is branched from the introduction path 30 into the two main flow paths 22A and 22B via the upstream communication paths 38A and 38B. . The cooling medium 48 that has reached the downstream side of the two main flow paths 22A and 22B is collected in the discharge path 32 via the downstream communication paths 40A and 40B.

冷却媒体48が2つの主流路22A、22Bに分岐する際に、それぞれの主流路22A、22Bの隔壁34に設けられた複数の上流側連通路38A、38Bの作用により冷却媒体48の圧損が生じ各主流路間の相対的な圧損の差が小さくなり、結果として各主流路22A、22Bへ流入する冷却媒体48の量が平均化される。このように、複数の主流路(22A、22B)を有し、主流路(22A、22B)と導入路30との接続領域(35A、35B)のそれぞれに複数の上流側連通路(38A、38B)を設けるとともに、主流路(22A、22B)と排出路32との接続領域(37A、37B)のそれぞれに複数の下流側連通路(40A、40B)を設けたものであってもよい。   When the cooling medium 48 branches into the two main flow paths 22A and 22B, pressure loss of the cooling medium 48 occurs due to the action of the plurality of upstream communication paths 38A and 38B provided in the partition walls 34 of the main flow paths 22A and 22B. The difference in relative pressure loss between the main flow paths is reduced, and as a result, the amount of the cooling medium 48 flowing into the main flow paths 22A and 22B is averaged. Thus, it has a plurality of main flow paths (22A, 22B), and a plurality of upstream communication paths (38A, 38B) in each of the connection areas (35A, 35B) between the main flow paths (22A, 22B) and the introduction path 30. ) And a plurality of downstream communication paths (40A, 40B) may be provided in each of the connection regions (37A, 37B) between the main flow paths (22A, 22B) and the discharge path 32.

ここで、開口率を変化させつつ各主流路22A、22Bにおける流量分布を測定したところ、開口率を50%以下とした場合、流量の顕著な均等化が実現できた。更に、開口率を約40%以下にすると各冷却媒体48の流れをより均等化できた。   Here, when the flow rate distribution in each of the main flow paths 22A and 22B was measured while changing the aperture ratio, when the aperture ratio was 50% or less, a remarkable equalization of the flow rate was realized. Furthermore, when the aperture ratio is about 40% or less, the flow of each cooling medium 48 can be made more uniform.

本発明の実施の形態1に係る電気デバイスの平面図[図1(1)]、及び横断面図[図1(2)]、[図1(3)]である。横断面図[図1(2)]は平面図[図1(1)]の鎖線B−B’に沿った横断面図である。横断面図[図1(3)]は平面図[図1(1)]の鎖線C−C’に沿った横断面図である。It is a top view [Drawing 1 (1)] of an electric device concerning Embodiment 1 of the present invention, and a transverse section [Drawing 1 (2)] and [Drawing 1 (3)]. The cross-sectional view [FIG. 1 (2)] is a cross-sectional view taken along the chain line B-B ′ of the plan view [FIG. 1 (1)]. The cross-sectional view [FIG. 1 (3)] is a cross-sectional view along the chain line C-C ′ of the plan view [FIG. 1 (1)]. 本発明の実施の形態1に係る電気デバイスの縦断面図であり、平面図[図1(1)]の鎖線A−A’に沿った縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a longitudinal cross-sectional view of the electrical device which concerns on Embodiment 1 of this invention, and is a longitudinal cross-sectional view along the dashed-dotted line A-A 'of a top view [FIG. 1 (1)]. 本発明の実施の形態2に係る電気デバイスの縦断面図である。It is a longitudinal cross-sectional view of the electric device which concerns on Embodiment 2 of this invention. 本発明の実施の形態1に係る電気デバイスの平面図[図4(1)]、及び横断面図[図4(2)]である。横断面図[図4(2)]は平面図[図4(1)]の鎖線B−B’に沿った横断面図である。It is a top view [Drawing 4 (1)] of an electric device concerning Embodiment 1 of the present invention, and a transverse cross section [Drawing 4 (2)]. The cross-sectional view [FIG. 4 (2)] is a cross-sectional view along the chain line B-B ′ of the plan view [FIG. 4 (1)]. 本発明の実施の形態1に係る電気デバイスにおける連通路の形状の例であり、円[図5(1)]、四角形[図5(2)]、及び三角形[図5(3)]であるものを示す。It is an example of the shape of the communicating path in the electric device which concerns on Embodiment 1 of this invention, and is a circle [FIG. 5 (1)], a square [FIG. 5 (2)], and a triangle [FIG. 5 (3)]. Show things. 本発明の実施の形態3に係る電気デバイスの平面図[図6(1)]、及び縦断面図[図6(2)]である。縦断面図[図6(2)]は平面図[図6(1)]の鎖線A−A’に沿った縦断面図である。It is a top view [Drawing 6 (1)] of an electric device concerning Embodiment 3 of the present invention, and a longitudinal section [Drawing 6 (2)]. The longitudinal sectional view [FIG. 6 (2)] is a longitudinal sectional view along the chain line A-A 'in the plan view [FIG. 6 (1)]. 本発明の実施の形態4に係る電気デバイスの縦断面図である。It is a longitudinal cross-sectional view of the electric device which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る電気デバイスの縦断面図である。It is a longitudinal cross-sectional view of the electric device which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る電気デバイスの平面図である。It is a top view of the electric device which concerns on Embodiment 6 of this invention.

符号の説明Explanation of symbols

10 電気デバイス、 12 電気素子、 14 冷却ジャケット、 16 回路部、 18 放熱部、 22、22A、22B 主流路、 24 天井壁、 26 開口部、 28 段部、 30 導入路、 32 排出路、 34、34A、34B 上流側隔壁、 36、36A、36B 下流側隔壁、 38、38A、38B 上流側連通路、 40、40A、40B 下流側連通路、 42 入口、 44 出口、 46 冷却ジャケット側壁、 48 冷却媒体、 50 第1の中心軸、 52 第2の中心軸、 54 主流路上流側の端面、 56 導入路の端面、 58 上流側連通路の直線状内面、 62 主流路下流側の端面、 64 排出路の端面、 66 下流側連通路の直線状内面、 70 突起、 74 突起。

DESCRIPTION OF SYMBOLS 10 Electrical device, 12 Electrical element, 14 Cooling jacket, 16 Circuit part, 18 Heat radiation part, 22, 22A, 22B Main flow path, 24 Ceiling wall, 26 Opening part, 28 Step part, 30 Introduction path, 32 Discharge path, 34, 34A, 34B Upstream partition, 36, 36A, 36B Downstream partition, 38, 38A, 38B Upstream communication path, 40, 40A, 40B Downstream communication path, 42 Inlet, 44 Outlet, 46 Cooling jacket side wall, 48 Cooling medium 50 First central axis, 52 Second central axis, 54 End face on the upstream side of the main flow path, 56 End face of the introduction path, 58 Linear inner face of the upstream communication path, 62 End face on the downstream side of the main flow path, 64 Discharge path The end surface of 66, The linear inner surface of a downstream communication path, 70 protrusion, 74 protrusion.

Claims (13)

(a)冷却媒体を第1の方向に案内する少なくとも1つの主流路と、
上記主流路の上流側に配置された上記冷却媒体の導入路と、
上記主流路と上記導入路との接続領域のそれぞれに上記主流路と上記導入路とを連通する複数の上流側連通路と、
上記主流路の下流側に配置された上記冷却媒体の排出路と、
上記主流路と上記排出路との接続領域のそれぞれに上記主流路と上記排出路とを連通する複数の下流側連通路とを備えた冷却ジャケットと、
(b)上記冷却ジャケットの上記主流路の天井壁に設けられた電気素子と、
を備えたことを特徴とする電気デバイス。
(A) at least one main flow path for guiding the cooling medium in the first direction;
An introduction path for the cooling medium disposed on the upstream side of the main flow path;
A plurality of upstream communication passages that connect the main passage and the introduction passage to each of the connection regions of the main passage and the introduction passage;
A discharge path for the cooling medium disposed on the downstream side of the main flow path;
A cooling jacket provided with a plurality of downstream communication passages communicating with the main flow path and the discharge path in each of the connection regions of the main flow path and the discharge path;
(B) an electrical element provided on the ceiling wall of the main flow path of the cooling jacket;
An electrical device comprising:
上記主流路の天井壁には開口部が設けられ、この開口部を塞ぐように上記電気素子が配置されたことを特徴とする請求項1に記載の電気デバイス。   The electrical device according to claim 1, wherein an opening is provided in a ceiling wall of the main flow path, and the electric element is disposed so as to close the opening. 上記導入路は、上記第1の方向に直交する第2の方向に延在し、この第2の方向の一端に冷却媒体を導入する入口を備えることを特徴とする請求項1又は2に記載の電気デバイス。   The said introduction path is extended in the 2nd direction orthogonal to the said 1st direction, and is equipped with the inlet which introduce | transduces a cooling medium into the end of this 2nd direction. Electrical devices. 上記排出路は、上記第1の方向に直交する第2の方向に延在し、この第2の方向の一端に冷却媒体を排出する出口を備えることを特徴とする請求項1又は2に記載の電気デバイス。   The said discharge path is extended in the 2nd direction orthogonal to the said 1st direction, and is equipped with the exit which discharges | emits a cooling medium in the end of this 2nd direction. Electrical devices. 上記複数の上流側連通路は、上記第1の方向に直交する第2の方向に間隔をあけて配置されていることを特徴とする請求項1又は2に記載の電気デバイス。   The electrical device according to claim 1, wherein the plurality of upstream communication paths are arranged with a gap in a second direction orthogonal to the first direction. 上記複数の下流側連通路は、上記第1の方向に直交する第2の方向に間隔をあけて配置されていることを特徴とする請求項1又は2に記載の電気デバイス。   The electrical device according to claim 1, wherein the plurality of downstream communication paths are arranged with a gap in a second direction orthogonal to the first direction. 上記主流路の上流側端面、上記導入路の端面及び上記上流側連通路の端面が一つの面上に配置されていることを特徴とする請求項1又は2に記載の電気デバイス。   The electrical device according to claim 1 or 2, wherein an upstream end face of the main flow path, an end face of the introduction path, and an end face of the upstream communication path are arranged on one surface. 上記主流路の下流側端面、上記排出路の端面及び上記下流側連通路の端面が一つの面上に配置されていることを特徴とする請求項1又は2に記載の電気デバイス。   The electric device according to claim 1, wherein the downstream end face of the main flow path, the end face of the discharge path, and the end face of the downstream communication path are arranged on one surface. 上記電気素子の上記冷却媒体と接触する面に複数の突起が形成されていることを特徴とする請求項2に記載の電気デバイス。   The electric device according to claim 2, wherein a plurality of protrusions are formed on a surface of the electric element that contacts the cooling medium. 上記主流路の上記電気素子に対向する領域に、複数の突起が形成されていることを特徴とする請求項1に記載の電気デバイス。   The electric device according to claim 1, wherein a plurality of protrusions are formed in a region of the main channel facing the electric element. 上記複数の上流側連通路の少なくとも一つの中心軸上に上記電気素子が配置されたことを特徴とする請求項1又は2に記載の電気デバイス。   The electric device according to claim 1, wherein the electric element is disposed on at least one central axis of the plurality of upstream communication paths. 上記導入路又は上記排出路が主流路と上下方向に対向する面積に対する、全ての上記上流側連通路又は全ての上記下流側連通路が主流路と上下方向に対向する領域の面積の比率が、約40%以下であることを特徴とする請求項1又は2に記載の電気デバイス。   The ratio of the area of all the upstream communication paths or the area where all the downstream communication paths face the main flow path in the vertical direction with respect to the area where the introduction path or the discharge path faces the main flow path in the vertical direction, The electrical device according to claim 1, wherein the electrical device is about 40% or less. 冷却媒体を第1の方向に案内する少なくとも1つの主流路と、
上記主流路の上流側に配置された上記冷却媒体の導入路と、
上記主流路と上記導入路との接続領域のそれぞれに上記主流路と上記導入路とを連通する複数の上流側連通路と、
上記主流路の下流側に配置された上記冷却媒体の排出路と、
上記主流路と上記排出路との接続領域のそれぞれに上記主流路と上記排出路とを連通する複数の下流側連通路と、
を備えたことを特徴とする冷却ジャケット。

At least one main flow path for guiding the cooling medium in the first direction;
An introduction path for the cooling medium disposed on the upstream side of the main flow path;
A plurality of upstream communication passages that connect the main passage and the introduction passage to each of the connection regions of the main passage and the introduction passage;
A discharge path for the cooling medium disposed on the downstream side of the main flow path;
A plurality of downstream communication passages that connect the main flow path and the discharge path to each of the connection regions of the main flow path and the discharge path;
A cooling jacket characterized by comprising:

JP2004373132A 2004-12-24 2004-12-24 Electrical device and cooling jacket Pending JP2006179771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004373132A JP2006179771A (en) 2004-12-24 2004-12-24 Electrical device and cooling jacket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004373132A JP2006179771A (en) 2004-12-24 2004-12-24 Electrical device and cooling jacket

Publications (2)

Publication Number Publication Date
JP2006179771A true JP2006179771A (en) 2006-07-06
JP2006179771A5 JP2006179771A5 (en) 2006-11-16

Family

ID=36733564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004373132A Pending JP2006179771A (en) 2004-12-24 2004-12-24 Electrical device and cooling jacket

Country Status (1)

Country Link
JP (1) JP2006179771A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018882A1 (en) * 2009-08-10 2011-02-17 Fuji Electric Systems Co., Ltd. Semiconductor module and cooling unit
JP2011177004A (en) * 2010-01-29 2011-09-08 Hitachi Ltd Semiconductor power module, power conversion device including the same, and method of manufacturing waterway body for semiconductor power module
JP2013513240A (en) * 2009-12-02 2013-04-18 ジョンソン コントロールズ テクノロジー カンパニー Cooling member
JP2013131666A (en) * 2011-12-22 2013-07-04 Ntn Corp Cooling structure of power semiconductor
JP2014013848A (en) * 2012-07-05 2014-01-23 Uacj Corp Heat exchanger
WO2014027406A1 (en) * 2012-08-15 2014-02-20 富士通株式会社 Heat-receiving device, cooling device, and electronic device
JP2014082283A (en) * 2012-10-15 2014-05-08 T Rad Co Ltd Heat sink
JP2014512678A (en) * 2011-03-29 2014-05-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electronic module and manufacturing method thereof
KR101465406B1 (en) * 2008-12-09 2014-11-25 니폰게이긴조쿠가부시키가이샤 Liquid-cooled jacket
JP2021520646A (en) * 2018-05-18 2021-08-19 ロジャーズ ジャーマニー ゲーエムベーハーRogers Germany GmbH Systems for cooling metal-ceramic substrates, metal-ceramic substrates, and methods of manufacturing systems
WO2024034291A1 (en) * 2022-08-08 2024-02-15 富士電機株式会社 Cooler and semiconductor device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152475A (en) * 1991-09-30 1993-06-18 Toshiba Corp Semiconductor device
JPH06268109A (en) * 1993-03-12 1994-09-22 Hitachi Ltd Semiconductor chip and electronic device incorporating same
JP2000299585A (en) * 1999-02-12 2000-10-24 Toyota Motor Corp Cooling device
JP2001024126A (en) * 1999-07-09 2001-01-26 Fuji Electric Co Ltd Direct swelling cold plate
JP2001160649A (en) * 1999-10-21 2001-06-12 Jenoptik Ag Device for cooling diode laser
JP2002110878A (en) * 2000-09-28 2002-04-12 Matsushita Refrig Co Ltd Cooling module and cooling system comprising it
JP2004006717A (en) * 2002-04-10 2004-01-08 Mitsubishi Electric Corp Power semiconductor device
JP2004063654A (en) * 2002-07-26 2004-02-26 Hitachi Cable Ltd Electronic apparatus cooling device
JP2004128099A (en) * 2002-10-01 2004-04-22 Hitachi Ltd Water-cooled inverter
JP2004523127A (en) * 2001-04-24 2004-07-29 ヨーク・インターナショナル・コーポレーション Semiconductor device heat sink for liquid cooling power

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152475A (en) * 1991-09-30 1993-06-18 Toshiba Corp Semiconductor device
JPH06268109A (en) * 1993-03-12 1994-09-22 Hitachi Ltd Semiconductor chip and electronic device incorporating same
JP2000299585A (en) * 1999-02-12 2000-10-24 Toyota Motor Corp Cooling device
JP2001024126A (en) * 1999-07-09 2001-01-26 Fuji Electric Co Ltd Direct swelling cold plate
JP2001160649A (en) * 1999-10-21 2001-06-12 Jenoptik Ag Device for cooling diode laser
JP2002110878A (en) * 2000-09-28 2002-04-12 Matsushita Refrig Co Ltd Cooling module and cooling system comprising it
JP2004523127A (en) * 2001-04-24 2004-07-29 ヨーク・インターナショナル・コーポレーション Semiconductor device heat sink for liquid cooling power
JP2004006717A (en) * 2002-04-10 2004-01-08 Mitsubishi Electric Corp Power semiconductor device
JP2004063654A (en) * 2002-07-26 2004-02-26 Hitachi Cable Ltd Electronic apparatus cooling device
JP2004128099A (en) * 2002-10-01 2004-04-22 Hitachi Ltd Water-cooled inverter

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101465406B1 (en) * 2008-12-09 2014-11-25 니폰게이긴조쿠가부시키가이샤 Liquid-cooled jacket
KR101471796B1 (en) * 2008-12-09 2014-12-10 니폰게이긴조쿠가부시키가이샤 Liquid-cooled jacket
CN102549743B (en) * 2009-08-10 2014-12-24 富士电机株式会社 Semiconductor module and cooling unit
CN102549743A (en) * 2009-08-10 2012-07-04 富士电机株式会社 Semiconductor module and cooling unit
JP2012533868A (en) * 2009-08-10 2012-12-27 富士電機株式会社 Semiconductor module and cooler
WO2011018882A1 (en) * 2009-08-10 2011-02-17 Fuji Electric Systems Co., Ltd. Semiconductor module and cooling unit
US8933557B2 (en) 2009-08-10 2015-01-13 Fuji Electric Co., Ltd. Semiconductor module and cooling unit
JP2013513240A (en) * 2009-12-02 2013-04-18 ジョンソン コントロールズ テクノロジー カンパニー Cooling member
JP2019071459A (en) * 2009-12-02 2019-05-09 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Cooling member
JP2016136637A (en) * 2009-12-02 2016-07-28 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Cooling member
JP2011177004A (en) * 2010-01-29 2011-09-08 Hitachi Ltd Semiconductor power module, power conversion device including the same, and method of manufacturing waterway body for semiconductor power module
JP2014512678A (en) * 2011-03-29 2014-05-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electronic module and manufacturing method thereof
JP2013131666A (en) * 2011-12-22 2013-07-04 Ntn Corp Cooling structure of power semiconductor
JP2014013848A (en) * 2012-07-05 2014-01-23 Uacj Corp Heat exchanger
WO2014027406A1 (en) * 2012-08-15 2014-02-20 富士通株式会社 Heat-receiving device, cooling device, and electronic device
US9681591B2 (en) 2012-08-15 2017-06-13 Fujitsu Limited Heat-receiving device, cooling device, and electronic device
JP2014082283A (en) * 2012-10-15 2014-05-08 T Rad Co Ltd Heat sink
JP2021520646A (en) * 2018-05-18 2021-08-19 ロジャーズ ジャーマニー ゲーエムベーハーRogers Germany GmbH Systems for cooling metal-ceramic substrates, metal-ceramic substrates, and methods of manufacturing systems
JP7130775B2 (en) 2018-05-18 2022-09-05 ロジャーズ ジャーマニー ゲーエムベーハー System for cooling a metal-ceramic substrate, metal-ceramic substrate, and method of manufacturing the system
WO2024034291A1 (en) * 2022-08-08 2024-02-15 富士電機株式会社 Cooler and semiconductor device

Similar Documents

Publication Publication Date Title
US8210243B2 (en) Structure and apparatus for cooling integrated circuits using cooper microchannels
JP6512266B2 (en) Semiconductor device
US8659896B2 (en) Cooling apparatuses and power electronics modules
JP5900610B2 (en) Semiconductor device and cooler for semiconductor device
US9657997B2 (en) Cooling device with cooling passage for liquid refrigerant and juxtaposed fin assembly
CN209357799U (en) A kind of battery pack
EP2061079B1 (en) Semiconductor package and semiconductor package assembly
KR102157378B1 (en) Battery pack
JP2006179771A (en) Electrical device and cooling jacket
EP3933911B1 (en) Liquid cooling heat radiator and communication device
JP4619387B2 (en) Semiconductor device cooling device
JP2016219572A (en) Liquid cooling cooler
CN102751250B (en) Cooling device
CN108566769A (en) Radiator and frequency converter
CN113840516B (en) Liquid cooling cold plate and plate-level liquid cooling system
KR102030143B1 (en) Double side water cooler
US20220316817A1 (en) Liquid-cooling heat dissipation structure
EP3770958A1 (en) Liquid-cooled cooler
JP2019054224A (en) Liquid-cooled type cooling device
CN214152874U (en) Housing of semiconductor device and semiconductor device
JP2020004766A (en) Cooler
CN111918520B (en) Heat sink and heat radiator
CN116686082A (en) Chip heat dissipation cover, chip packaging structure and equipment interconnection system
CN211879372U (en) Radiator and power module with same
KR20010027876A (en) Water cooling structure for high efficiency heat sink

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A621 Written request for application examination

Effective date: 20061002

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20061002

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Effective date: 20091007

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803