JP2006179526A - Movpe growth apparatus and method for growing compound semiconductor crystal - Google Patents

Movpe growth apparatus and method for growing compound semiconductor crystal Download PDF

Info

Publication number
JP2006179526A
JP2006179526A JP2004368194A JP2004368194A JP2006179526A JP 2006179526 A JP2006179526 A JP 2006179526A JP 2004368194 A JP2004368194 A JP 2004368194A JP 2004368194 A JP2004368194 A JP 2004368194A JP 2006179526 A JP2006179526 A JP 2006179526A
Authority
JP
Japan
Prior art keywords
growth
semiconductor crystal
compound semiconductor
reaction furnace
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004368194A
Other languages
Japanese (ja)
Inventor
Takashi Furuya
貴士 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004368194A priority Critical patent/JP2006179526A/en
Publication of JP2006179526A publication Critical patent/JP2006179526A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an MOVPE growth apparatus capable of keeping mirror surface state without contaminating the surface condition of an epitaxial wafer after growing, and to provide a method for manufacturing the same. <P>SOLUTION: To remove a residual gas or particles left within a reaction furnace after growth of a group III-V compound semiconductor crystal, a large quantity of high-temperature inert gas is introduced into the reaction furnace, and then the growth sequence of semiconductor crystal is started. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、MOVPE成長装置(有機金属気相成長装置)及びそれを用いた化合物半導体結晶の成長方法に関するものである。   The present invention relates to a MOVPE growth apparatus (metal organic vapor phase growth apparatus) and a compound semiconductor crystal growth method using the same.

従来、III−V族化合物半導体、例えばAlGaInPの薄膜結晶を有機金属気相成長法(MOVPE法)でGaAs基板上にエピタキシャル成長させるには、反応炉内で加熱状態にあるGaAs基板に、トリメチルガリウム(TMG)やトリメチルインジウム(TMI)、トリメチルアルミニウム(TMA)などの有機金属の蒸気とホスフィン(PH3)のV族原料ガスとを含んだキャリアガスを供給し、これらの原料ガスを結晶基板上で熱分解反応させている。 Conventionally, in order to epitaxially grow a III-V compound semiconductor, for example, a thin film crystal of AlGaInP on a GaAs substrate by metal organic vapor phase epitaxy (MOVPE method), trimethylgallium ( A carrier gas containing an organic metal vapor such as TMG), trimethylindium (TMI), or trimethylaluminum (TMA) and a phosphine (PH 3 ) group V source gas is supplied, and these source gases are supplied to the crystal substrate. Thermal decomposition reaction.

この結晶成長は、図4に示すような減圧→昇温→成長→降温→常圧復帰の工程を1回とする成長シーケンスを、同じ反応炉で繰り返すことで実行されて行く。   This crystal growth is performed by repeating a growth sequence in which the steps of depressurization → temperature increase → growth → temperature decrease → return to normal pressure as shown in FIG. 4 are repeated in the same reactor.

この図4のように成長シーケンスを連続して行うと、反応炉内にV族原料であるホスフィン(PH3)が残留したり、リンとその化合物が反応炉内の治具や炉壁に吸着する。特に冷えた部分には吸着しやすい。また、反応炉内への堆積物が増加すると、剥がれ等が発生し、これが異物(パーティクル)の原因となる。 When the growth sequence is continuously performed as shown in FIG. 4, phosphine (PH 3 ) as a group V raw material remains in the reaction furnace, or phosphorus and its compound are adsorbed on jigs and furnace walls in the reaction furnace. To do. It is easy to adsorb especially in the cold part. Further, when the amount of deposits in the reaction furnace increases, peeling or the like occurs, which causes foreign particles (particles).

パーティクルが基板表面へ付着するとエピタキシャル成長後の基板表面を汚したり、曇らせたりし、外観不良となる。従来技術ではこれらを防止する為、成長前に反応炉内を高真空にして残留ガスを排出したり、炉壁や治具に吸着したリンとその化合物を取り除くことを目的として原料ガスを流さない状態で反応炉内を高温にする焼き出し等を行っている。   When particles adhere to the substrate surface, the substrate surface after epitaxial growth is soiled or clouded, resulting in poor appearance. In order to prevent these problems, the conventional technology does not flow the source gas for the purpose of removing the residual gas by making the inside of the reactor high vacuum before growth or removing phosphorus and its compounds adsorbed on the furnace wall and jig. Bakeout is performed to raise the temperature in the reactor in this state.

しかしながら、反応炉を高真空にしただけでは吸着したガスを取り除くことは難しい。一方、焼き出しを行うと、残留したガスやパーティクルを排出することは可能になるが、高温にすることで堆積物が余計に剥がれやすくなってしまい、逆にパーティクルを増やしてしまう。更に焼き出しというプロセスを追加して行う為、生産性が低下してしまう。   However, it is difficult to remove the adsorbed gas only by making the reactor high vacuum. On the other hand, when baking is performed, it is possible to discharge the remaining gas and particles, but at a high temperature, the deposits are more easily peeled off, and the number of particles is increased. Further, since a process called “baking out” is added, productivity is lowered.

そこで、本発明の目的は、上記課題を解決し、成長後の化合物半導体結晶の表面状態を汚さず鏡面に保つことを可能にしたMOVPE成長装置及び化合物半導体結晶の成長方法を提供することにある。   Accordingly, an object of the present invention is to provide a MOVPE growth apparatus and a method for growing a compound semiconductor crystal that can solve the above-described problems and can keep the surface state of the grown compound semiconductor crystal in a mirror surface without being contaminated. .

上記目的を達成するため、本発明は、次のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

請求項1の発明に係るMOVPE成長装置(有機金属気相成長装置)は、III−V族化合物半導体結晶を成長するMOVPE成長装置において、成長後の反応炉内の残留ガスやパーティクルを除去するために、成長開始前に高温の不活性ガスを反応炉内に多量に流す手段を備えたことを特徴とする。   The MOVPE growth apparatus (metal organic vapor phase growth apparatus) according to the invention of claim 1 is a MOVPE growth apparatus for growing a III-V compound semiconductor crystal, for removing residual gas and particles in the reactor after the growth. Further, it is characterized in that means for flowing a large amount of high-temperature inert gas into the reaction furnace before the start of growth is provided.

請求項2の発明に係る化合物半導体結晶の成長方法は、MOVPE成長装置(有機金属気相成長装置)を用いてIII−V族化合物半導体結晶を成長する化合物半導体結晶の成長方法において、成長後の反応炉内の残留ガスやパーティクルを除去するために、反応炉内に高温の不活性ガスを多量に流し、その後成長シーケンスを開始することを特徴とする。   According to a second aspect of the present invention, there is provided a compound semiconductor crystal growth method comprising: growing a III-V group compound semiconductor crystal using a MOVPE growth apparatus (metal organic vapor phase growth apparatus); In order to remove residual gas and particles in the reaction furnace, a large amount of high-temperature inert gas is flowed into the reaction furnace, and then a growth sequence is started.

請求項1又は2において、上記の残留ガスは例えばホスフィン(PH3)である。 According to claim 1 or 2, wherein the residual gas is, for example, phosphine (PH 3).

請求項3の発明は、請求項2記載の化合物半導体結晶の成長方法において、上記III−V族化合物半導体結晶が(AlxGa1-xyIn1-yP(0≦x≦1、0<y<1)結晶であり、上記残留ガスがホスフィン(PH3)であることを特徴とする。 The invention of claim 3 is the compound semiconductor crystal growth method according to claim 2, wherein the group III-V compound semiconductor crystal is (Al x Ga 1 -x ) y In 1 -y P (0 ≦ x ≦ 1, 0 <y <1) crystals, and the residual gas is phosphine (PH 3 ).

請求項4の発明は、請求項2又は3記載の化合物半導体結晶の成長方法において、上記不活性ガスがヘリウム、窒素、アルゴンのいずれかであることを特徴とする。   According to a fourth aspect of the present invention, in the compound semiconductor crystal growth method according to the second or third aspect, the inert gas is any one of helium, nitrogen, and argon.

請求項5の発明は、請求項2〜4のいずれかに記載の化合物半導体結晶の成長方法において、上記不活性ガスの温度が100℃以上であることを特徴とする。   A fifth aspect of the present invention is the compound semiconductor crystal growth method according to any one of the second to fourth aspects, wherein the temperature of the inert gas is 100 ° C. or higher.

<発明の要点>
本発明の要点は、成長を開始する前、反応炉内に残留したガス又は吸着したガス原料とその化合物を取り除くことにある。更にはパーティクルの発生を抑止することにある。そのために、本発明では、高温に熱せられた不活性ガスである窒素やアルゴンガスを反応炉内に多量に流すことで反応炉内に残留したガスを不活性ガスとともに排気させる。また、100℃以上に温めた不活性ガスを反応炉内壁に接触させることで、吸着したガス原料とその化合物を剥離させ、剥がれた堆積物も同時に排出させる。
<Key points of the invention>
The main point of the present invention is to remove the gas remaining in the reactor or the adsorbed gas raw material and its compound before starting the growth. Furthermore, it is to suppress the generation of particles. Therefore, in the present invention, a large amount of nitrogen or argon gas, which is an inert gas heated to a high temperature, is allowed to flow in the reaction furnace to exhaust the gas remaining in the reaction furnace together with the inert gas. Further, by bringing the inert gas heated to 100 ° C. or more into contact with the inner wall of the reaction furnace, the adsorbed gas raw material and its compound are peeled off, and the peeled deposits are discharged simultaneously.

本発明によれば、次のような優れた効果が得られる。   According to the present invention, the following excellent effects can be obtained.

(1)成長後の反応炉内の残留ガスやパーティクルが効果的に除去されることから、成長回数を重ねてもIII−V族化合物半導体結晶成長後の化合物半導体結晶の表面状態を汚さず鏡面に保つことができる。   (1) Since the residual gas and particles in the reactor after the growth are effectively removed, the surface of the compound semiconductor crystal after the growth of the III-V compound semiconductor crystal is not contaminated even if the growth is repeated. Can be kept in.

(2)残留ガス及び吸着した残留ガス原料とその化合物を容易に取り除けることから、鏡面な化合物半導体結晶の表面を安定して得ることが出来る。   (2) Since the residual gas and the adsorbed residual gas raw material and its compound can be easily removed, a mirror-finished compound semiconductor crystal surface can be obtained stably.

以下、本発明を図示の実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on the illustrated embodiments.

本実施形態に係るIII−V族化合物半導体結晶の成長方法を、図1に示す。ここでは、MOVPE(有機金属気相成長)法を用いて、III−V族化合物半導体結晶としてAlGaInPの薄膜結晶をGaAs基板上にエピタキシャル成長させる場合について説明する。   FIG. 1 shows a method for growing a III-V compound semiconductor crystal according to this embodiment. Here, a case where an AlGaInP thin film crystal is epitaxially grown on a GaAs substrate as a group III-V compound semiconductor crystal using a MOVPE (metal organic vapor phase epitaxy) method will be described.

実施の形態の反応炉には原料ガスを供給する供給系と、反応炉内を排気する排気系が設けられる。この供給系には高温の不活性ガスを多量に導入可能な不活性ガス供給手段が設けられる。また、この排気系には反応炉内に導入された多量の不活性ガスを排気する排気手段が設けられる。    The reaction furnace of the embodiment is provided with a supply system for supplying a raw material gas and an exhaust system for exhausting the inside of the reaction furnace. This supply system is provided with an inert gas supply means capable of introducing a large amount of a high-temperature inert gas. The exhaust system is provided with an exhaust means for exhausting a large amount of inert gas introduced into the reaction furnace.

図1において、まず、成長後の反応炉内の残留ガスやパーティクルを除去するために、反応炉内に高温の不活性ガスを多量に流す前処理を行う。具体的には、100℃以上の高温のヘリウム、窒素、アルゴンなどの不活性ガスを所定時間、大量に流し、反応炉内を高温に熱する(ステップS0)。高温に熱せられた不活性ガスを反応炉内に多量に流すことで反応炉内に残留したガス(ホスフィン)を不活性ガスとともに強制的に排気させる。また、高温に熱した不活性ガスを反応炉内壁に接触させることで、吸着したガス原料(リン)とその化合物を剥離させ、剥がれた堆積物も同時に大量の不活性ガスとともに吹き飛ばすように排出させる。   In FIG. 1, first, in order to remove residual gas and particles in the grown reaction furnace, a pretreatment is performed to flow a large amount of high-temperature inert gas into the reaction furnace. Specifically, a large amount of inert gas such as helium, nitrogen, and argon having a high temperature of 100 ° C. or higher is flowed for a predetermined time to heat the inside of the reaction furnace to a high temperature (step S0). By flowing a large amount of inert gas heated to a high temperature into the reaction furnace, the gas (phosphine) remaining in the reaction furnace is forcibly exhausted together with the inert gas. Moreover, the inert gas heated to a high temperature is brought into contact with the inner wall of the reactor to separate the adsorbed gas raw material (phosphorus) and its compound, and the peeled deposits are simultaneously discharged with a large amount of inert gas. .

上述した前処理後、基板(ウェハ)をトレーにセットし、窒素雰囲気中で基板を反応炉へ移す。そして、真空ポンプにより反応炉内を減圧(ステップS1)し反応炉を水素で置換した後、反応炉を、AlGaInPの成長温度の700℃まで昇温する(ステップS2)。   After the pretreatment described above, the substrate (wafer) is set on a tray, and the substrate is transferred to a reaction furnace in a nitrogen atmosphere. Then, after reducing the pressure in the reaction furnace with a vacuum pump (step S1) and replacing the reaction furnace with hydrogen, the temperature of the reaction furnace is raised to 700 ° C., the growth temperature of AlGaInP (step S2).

次に、所定の成長温度(成長中の基板温度)700℃で、半導体結晶原料ガスとして、Ga、Al、In原料としてそれぞれトリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、トリメチルインジウム(TMI)を、またPの原料としてホスフィン(PH3)を流し、基板上に半導体結晶AlGaInPの成長を行う(ステップS3)。 Next, trimethylgallium (TMG), trimethylaluminum (TMA), and trimethylindium (TMI) are used as semiconductor crystal source gases, Ga, Al, and In, respectively, at a predetermined growth temperature (substrate temperature during growth) 700 ° C. Further, phosphine (PH 3 ) is flowed as a raw material of P, and semiconductor crystal AlGaInP is grown on the substrate (step S3).

所定の半導体結晶AlGaInPの成長を終えたならば、反応炉を例えば50℃まで降温し(ステップS4)、常圧に復帰させた後(ステップS5)、反応炉を窒素で置換し、窒素雰囲気中でトレーを反応炉からグローブボックスへ移し、トレーから基板を取り出す。   When the growth of the predetermined semiconductor crystal AlGaInP is completed, the temperature of the reaction furnace is lowered to, for example, 50 ° C. (step S4), and the pressure is returned to normal pressure (step S5). Then move the tray from the reactor to the glove box and take out the substrate from the tray.

本発明の効果を確認するため、従来例と実施例の試作を行った。   In order to confirm the effect of the present invention, a prototype of the conventional example and the example were made.

<従来例>
従来例として、MOVPE装置を用いてAlGaInPの多層構造のエピタキシャルウェハを作製した。成長はMOVPE成長装置を用いて700℃に加熱されたGaAs基板上に、Ga、Al、In原料としてそれぞれトリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、トリメチルインジウム(TMI)を用い、またPの原料としてホスフィン(PH3)を用いて行った。成長時のキャリアガスは水素(H2)を用いた。
<Conventional example>
As a conventional example, an AlGaInP multilayered epitaxial wafer was fabricated using a MOVPE apparatus. Growth is performed on a GaAs substrate heated to 700 ° C. using a MOVPE growth apparatus, using trimethylgallium (TMG), trimethylaluminum (TMA), and trimethylindium (TMI) as Ga, Al, and In materials, respectively. The phosphine (PH 3 ) was used as a raw material. Hydrogen (H 2 ) was used as a carrier gas during growth.

成長厚さは1回の成長で4μm成長した。成長は50回連続して行い、その成長したウェハ表面を、毎回、表面異物測定装置にかけて異物数を測定した。異物のカウントは散乱断面積が0.9μm2以上の個数が何個あるかで測定した。 The growth thickness was 4 μm in one growth. Growth was carried out 50 times continuously, and the surface of the grown wafer was subjected to a surface foreign matter measuring device each time to measure the number of foreign matters. The count of foreign matters was measured by the number of particles having a scattering cross section of 0.9 μm 2 or more.

図2に異物数の推移を示す。丸印のドットが従来例の場合である。成長回数の増加に伴い異物数が増加していることがわかる。成長回数が40回を超えた辺りでは、蛍光灯下の目視でも分かるほどの大きな異物が表面に発生しているウェハもある。   FIG. 2 shows the transition of the number of foreign objects. A dot with a circle is the case of the conventional example. It can be seen that the number of foreign substances increases as the number of growth times increases. In some cases where the number of times of growth exceeds 40 times, a large amount of foreign matter is generated on the surface so as to be visually recognized under a fluorescent lamp.

<実施例>
実施例として、前述した従来例と成長条件を全く同じにして、AlGaInPの多層構造エピタキシャルウェハを成長した。すなわち、成長はMOVPE成長装置を用いて700℃に加熱されたGaAs基板上に、Ga、Al、In原料としてそれぞれトリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、トリメチルインジウム(TMI)を用い、またPの原料としてホスフィン(PH3)を用いて行った。成長時のキャリアガスは水素(H2)を用いた。成長厚さも従来例と同じく1回の成長で4μmとし、成長は50回連続して行った。
<Example>
As an example, an AlGaInP multilayer epitaxial wafer was grown under the same growth conditions as those of the conventional example described above. That is, the growth is carried out using trimethylgallium (TMG), trimethylaluminum (TMA), and trimethylindium (TMI) as Ga, Al, and In materials on a GaAs substrate heated to 700 ° C. using a MOVPE growth apparatus, and The phosphine (PH 3 ) was used as a P raw material. Hydrogen (H 2 ) was used as a carrier gas during growth. The growth thickness was set to 4 μm by one growth as in the conventional example, and the growth was performed 50 times continuously.

但し、本実施例では、図1のステップS0で説明したように、成長開始前に、150℃に加熱した窒素を50L/minで10分間反応炉内へ供給し、残留/吸着ガス及びパーティクルを排気させた。   However, in this example, as described in step S0 of FIG. 1, before starting growth, nitrogen heated to 150 ° C. was supplied into the reactor at 50 L / min for 10 minutes, and residual / adsorbed gas and particles were removed. Exhausted.

成長したウェハ表面は、毎回表面異物測定装置を用いて異物数を測定した。測定の条件は従来例で記した条件と同じにし、異物のカウントを散乱断面積が0.9μm2以上の個数が何個あるかで測定した。 The grown wafer surface was measured for the number of foreign matters using a surface foreign matter measuring device every time. The measurement conditions were the same as those described in the conventional example, and the number of foreign matters was measured by the number of scattering cross-sections of 0.9 μm 2 or more.

図2に異物数の推移を示す。三角印のドットが本実施例(本発明)の場合である。本実施例の場合も成長回数の増加に伴い異物数が増加するが、その傾斜は従来例の場合よりも小さく、成長回数を重ねても異物数に従来例で見られたほどの大きな増加は無い。集光器下で目視によりウェハ表面状態を確認すると、本実施例の方法で成長したエピタキシャルウエハの場合は、表面が非常に綺麗であった。   FIG. 2 shows the transition of the number of foreign objects. The triangular dots are the case of the present embodiment (the present invention). In the case of this example, the number of foreign substances increases with the increase in the number of growths, but the slope thereof is smaller than in the case of the conventional example. No. When the surface condition of the wafer was confirmed by visual observation under a condenser, the surface of the epitaxial wafer grown by the method of this example was very clean.

<最適条件についての根拠>
本実施例において成長前に流す加熱した窒素ガスの温度を変えて、異物数がどう変わるかを調査した。図3に導入するガス温度と異物数の関係を示す。なお反応炉内は、効果を明確にするために、成長を50回行った後の状態とした。導入ガス温度を室温から徐々に上げいていくと異物数は減少していき、100℃近傍を境に急激に異物数が減少する。この結果よりガスの導入温度は100℃以上とするのが良い。
<Reason for optimum conditions>
In this example, the temperature of the heated nitrogen gas flowing before growth was changed to investigate how the number of foreign matters changed. FIG. 3 shows the relationship between the gas temperature to be introduced and the number of foreign substances. In order to clarify the effect, the inside of the reactor was in a state after 50 growths. As the introduced gas temperature is gradually raised from room temperature, the number of foreign substances decreases, and the number of foreign substances decreases rapidly around 100 ° C. From this result, the gas introduction temperature is preferably 100 ° C. or higher.

<使用方法、応用システムなど>
(1)上記実施形態では、MOVPE(有機金属気相成長)法により半導体結晶として(AlxGa1-xyIn1-yP(0≦x≦1、0<y<1)結晶を成長する方法について説明したが、本発明は燐(P)を原料として使用する、有機金属気相成長法(MOVPE法)のほかガスソース分子線エピタキシー法に用いることもできる。
<Usage method, application system, etc.>
(1) In the above embodiment, an (Al x Ga 1-x ) y In 1-y P (0 ≦ x ≦ 1, 0 <y <1) crystal is used as a semiconductor crystal by MOVPE (metal organic chemical vapor deposition). Although the growth method has been described, the present invention can be used for a gas source molecular beam epitaxy method in addition to a metal organic vapor phase epitaxy method (MOVPE method) using phosphorus (P) as a raw material.

(2)上記実施形態では、V族原料であるホスフィン(PH3)を残留ガスとしたが、本発明は、成長に使われる亜鉛やマグネシウム、セレンといったドーパントガスのメモリー除去にも有効である。 (2) In the above embodiment, phosphine (PH 3 ), which is a group V raw material, is used as a residual gas. However, the present invention is also effective for removing a dopant gas such as zinc, magnesium, and selenium used for growth.

本発明のIII−V族化合物半導体結晶の成長方法を示した工程図である。It is process drawing which showed the growth method of the III-V group compound semiconductor crystal of this invention. 本発明の実施例にかかる成長回数と異物数の関係を、従来例と対比して表した図である。It is the figure which represented the relationship between the frequency | count of growth concerning the Example of this invention, and the number of foreign materials in contrast with the prior art example. 最適条件の根拠を表す、導入ガス温度と異物数の関係を表す図である。It is a figure showing the relationship between introduction gas temperature and the number of foreign materials showing the basis of optimal conditions. 半導体結晶の成長シーケンスを表す概略図である。It is the schematic showing the growth sequence of a semiconductor crystal.

Claims (5)

III−V族化合物半導体結晶を成長するMOVPE成長装置において、
成長後の反応炉内の残留ガスやパーティクルを除去するために、成長開始前に高温の不活性ガスを反応炉内に多量に流す手段を備えたことを特徴とするMOVPE成長装置。
In a MOVPE growth apparatus for growing a III-V compound semiconductor crystal,
An MOVPE growth apparatus comprising means for flowing a large amount of a high temperature inert gas into a reaction furnace before the start of growth in order to remove residual gas and particles in the reaction furnace after growth.
MOVPE成長装置を用いてIII−V族化合物半導体結晶を成長する化合物半導体結晶の成長方法において、
成長後の反応炉内の残留ガスやパーティクルを除去するために、反応炉内に高温の不活性ガスを多量に流し、その後成長シーケンスを開始することを特徴とする化合物半導体結晶の成長方法。
In a compound semiconductor crystal growth method for growing a group III-V compound semiconductor crystal using a MOVPE growth apparatus,
A method for growing a compound semiconductor crystal, comprising: flowing a large amount of high-temperature inert gas into a reaction furnace in order to remove residual gas and particles in the reaction furnace after growth, and then starting a growth sequence.
請求項2記載の化合物半導体結晶の成長方法において、
上記III−V族化合物半導体結晶が(AlxGa1-xyIn1-yP(0≦x≦1、0<y<1)結晶であり、上記残留ガスがホスフィン(PH3)であることを特徴とする化合物半導体結晶の成長方法。
In the growth method of the compound semiconductor crystal of Claim 2,
The III-V group compound semiconductor crystal is an (Al x Ga 1 -x ) y In 1 -y P (0 ≦ x ≦ 1, 0 <y <1) crystal, and the residual gas is phosphine (PH 3 ). A method for growing a compound semiconductor crystal, comprising:
請求項2又は3記載の化合物半導体結晶の成長方法において、
上記不活性ガスがヘリウム、窒素、アルゴンのいずれかであることを特徴とする化合物半導体結晶の成長方法。
In the growth method of the compound semiconductor crystal of Claim 2 or 3,
A method for growing a compound semiconductor crystal, wherein the inert gas is helium, nitrogen, or argon.
請求項2〜4のいずれかに記載の化合物半導体結晶の成長方法において、
上記不活性ガスの温度が100℃以上であることを特徴とする化合物半導体結晶の成長方法。
In the growth method of the compound semiconductor crystal in any one of Claims 2-4,
A method for growing a compound semiconductor crystal, wherein the temperature of the inert gas is 100 ° C. or higher.
JP2004368194A 2004-12-20 2004-12-20 Movpe growth apparatus and method for growing compound semiconductor crystal Pending JP2006179526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004368194A JP2006179526A (en) 2004-12-20 2004-12-20 Movpe growth apparatus and method for growing compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004368194A JP2006179526A (en) 2004-12-20 2004-12-20 Movpe growth apparatus and method for growing compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JP2006179526A true JP2006179526A (en) 2006-07-06

Family

ID=36733372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004368194A Pending JP2006179526A (en) 2004-12-20 2004-12-20 Movpe growth apparatus and method for growing compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JP2006179526A (en)

Similar Documents

Publication Publication Date Title
JP3409958B2 (en) Semiconductor light emitting device
US6569238B2 (en) Apparatus and method for depositing semi conductor film
US20120156863A1 (en) Substrate pretreatment for subsequent high temperature group iii depositions
JP3603598B2 (en) Method for manufacturing group 3-5 compound semiconductor
KR20030015134A (en) Nitride semiconductor growing process
KR100604617B1 (en) Manufacturing Method of Group III-V Compound Semiconductor
JP5640896B2 (en) Vapor growth method and method for manufacturing substrate for light emitting device
WO2010129289A2 (en) Decontamination of mocvd chamber using nh3 purge after in-situ cleaning
JP2006108263A (en) MANUFACTURING METHODS OF P TYPE Ga2O3 FILM AND PN JUNCTION Ga2O3 FILM
JP2006179526A (en) Movpe growth apparatus and method for growing compound semiconductor crystal
JP2006318959A (en) Movpe growth method
TWI436422B (en) Method for treating the dislocation in a gan-containing semiconductor layer
JP2008211197A (en) Method of cleaning oxide substrate and method of manufacturing oxide semiconductor thin film
JP2013187366A (en) Nitride semiconductor manufacturing method
WO2024004576A1 (en) Group iii nitride substrate and manufacturing method thereof
EP4303940A1 (en) Method for manufacturing epitaxial wafer for ultraviolet light-emitting element, method for manufacturing substrate for ultraviolet light-emitting element, epitaxial wafer for ultraviolet light-emitting element, and substrate for ultraviolet light-emitting element
JP2004103745A (en) Epitaxial growth method for nitride semiconductor film by hot wire cvd method
JP3915584B2 (en) Method for producing group 3-5 compound semiconductor
JP4466642B2 (en) Method for producing group 3-5 compound semiconductor
JPH089518B2 (en) Method for producing compound semiconductor single crystal
JP2005217375A (en) Method for manufacturing compound semiconductor element
JP4961820B2 (en) Method for producing compound semiconductor
JPH01268115A (en) Device for gas-phase growth
JP2006041300A (en) Soaking plate and vapor-phase epitaxial growth device
JPS6399524A (en) Crystal growth apparatus