JP4961820B2 - Method for producing compound semiconductor - Google Patents

Method for producing compound semiconductor Download PDF

Info

Publication number
JP4961820B2
JP4961820B2 JP2006121554A JP2006121554A JP4961820B2 JP 4961820 B2 JP4961820 B2 JP 4961820B2 JP 2006121554 A JP2006121554 A JP 2006121554A JP 2006121554 A JP2006121554 A JP 2006121554A JP 4961820 B2 JP4961820 B2 JP 4961820B2
Authority
JP
Japan
Prior art keywords
group
compound semiconductor
raw material
nitrogen
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006121554A
Other languages
Japanese (ja)
Other versions
JP2007294705A (en
Inventor
康博 猪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006121554A priority Critical patent/JP4961820B2/en
Publication of JP2007294705A publication Critical patent/JP2007294705A/en
Application granted granted Critical
Publication of JP4961820B2 publication Critical patent/JP4961820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、化合物半導体の製造方法に関し、特に高品質な含窒素化合物半導体の製造方法に関する。 The present invention relates to a compound semiconductor manufacturing how relates particularly high quality nitrogenous compound semiconductor manufacturing how.

III−V族化合物半導体は、バンドギャップが大きく、またバンド間遷移が直接遷移型であることから、発光素子や電子素子への展開が大いに期待されている。有機金属気相成長(MOCVD)法によりIII−V族化合物半導体の結晶を成長する際には、III族元素を供給するIII族原料と、V族元素を供給するV族原料とが用いられる。   The III-V group compound semiconductor has a large band gap and a direct transition type between band transitions, so that development to a light emitting element and an electronic element is greatly expected. When growing a group III-V compound semiconductor crystal by a metal organic chemical vapor deposition (MOCVD) method, a group III material for supplying a group III element and a group V material for supplying a group V element are used.

例えば、トリエチルガリウム(TEGa)やトリメチルインジウム(TMI)などの有機III族原料(M1)と、ジメチルヒドラジン(DMHy)、モノメチルヒドラジン(MMHy)等の有機系窒素化合物(M2)と、アルシン(AsH)、ターシャルブチルアルシン(TBA)、トリメチル砒素などの有機系砒素化合物、ホスフィン(PH)、ターシャルブチルホスフィン(TBP)などの有機リン化合物などの有機V族原料(M3)とを、水素などをキャリアガスとして用いて、気相成長させる方法が知られている(例えば、特許文献1、2参照)。
特開平11−340577号公報 特開平11−238685号公報
For example, triethyl gallium (TEGa) and trimethylindium (TMI) organic group III material, such as (M1), dimethyl hydrazine (DMHy), organic nitrogen compounds such as monomethyl hydrazine (MMHy) and (M2), arsine (AsH 3 ), Organic arsenic compounds such as tertiary butylarsine (TBA) and trimethylarsenic, organic V group materials (M3) such as organic phosphorus compounds such as phosphine (PH 3 ) and tertiary butylphosphine (TBP), and hydrogen A method of vapor phase growth using a carrier gas as a carrier gas is known (for example, see Patent Documents 1 and 2).
JP-A-11-340577 Japanese Patent Application Laid-Open No. 11-238685

しかし、DMHyなどの有機窒素化合物を原料として用いる場合、ダングリングボンドと呼ばれる欠陥が生ずる。ダングリングボンドが生ずると、GaInNAsを活性層とする半導体レーザでは、閾値が高いなどの問題を生ずる。   However, when an organic nitrogen compound such as DMHy is used as a raw material, a defect called a dangling bond occurs. When a dangling bond is generated, a semiconductor laser having GaInNAs as an active layer causes problems such as a high threshold.

このようなダングリングボンドの発生は、以下のように生ずると考えられる。例えば、DMHyは、下記化学式で示される構造である。
The occurrence of such dangling bonds is considered to occur as follows. For example, DMHy has a structure represented by the following chemical formula.

DMHyが分解して窒素が結晶に取り込まれる場合は、上記化学式の円で囲まれた部分が取り込まれる。すなわち、N−H結合は安定なので、N−H結合が切れないで結晶に取り込まれてしまう。このため、本来Nと結合すべきGaやInなどのIII族元素がNと結合できず、ダングリングボンドを生じてしまう。このようにN−H結合が結晶に取り込まれる現象は、(1)窒素を含まないGaInAs結晶には、水素がほとんど含まれないこと、(2)GaInNAs結晶においてN濃度が高くなるに従って結晶中の水素濃度が増加すること等から確認される。   When DMHy is decomposed and nitrogen is taken into the crystal, a portion surrounded by a circle of the above chemical formula is taken in. That is, since the N—H bond is stable, the N—H bond is not broken and is taken into the crystal. For this reason, group III elements such as Ga and In which should originally be bonded to N cannot be bonded to N, resulting in dangling bonds. As described above, the phenomenon that the N—H bond is taken into the crystal is that (1) the GaInAs crystal containing no nitrogen contains almost no hydrogen, and (2) the N concentration in the GaInNAs crystal increases as the N concentration increases. This is confirmed by the increase in hydrogen concentration.

本発明は、上記問題に鑑みなされたものであり、その目的は、良好な結晶品質の化合物半導体結晶を得ることができる化合物半導体の製造方法およびそれを製造する気相成長装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a method of manufacturing a compound semiconductor capable of obtaining a compound semiconductor crystal of good crystal quality and a vapor phase growth apparatus for manufacturing the compound semiconductor. is there.

上記目的を達成するために、本発明の化合物半導体製造方法は、反応管内において、窒素原料と、少なくとも1種の前記窒素原料以外のV族原料と、III族原料とを用いて、サセプタに載置したIII−V族化合物半導体基板上に窒素を含むIII−V族化合物半導体を気相成長する化合物半導体の製造方法であって、窒素原料は、ヒドラジン、モノメチルヒドラジン、1,1−ジメチルヒドラジン、および1,2−ジメチルヒドラジンから選択された少なくとも1種であり、V族原料はV族塩化物を含み、該V族塩化物は、三塩化砒素、三塩化リン、および三塩化アンチモンから選択された少なくとも1種であり、V族塩化物を含むV族原料と窒素原料とは、III−V族化合物半導体基板上直近で混合されることを特徴とする。 To achieve the above object, a manufacturing method of a compound semiconductor of the present invention, in the reaction tube, and a nitrogen raw material, a group V material other than at least one of the nitrogen source, by using a group III material, the susceptor A method for producing a compound semiconductor by vapor-phase-growing a group III-V compound semiconductor containing nitrogen on a placed group III-V compound semiconductor substrate, wherein the nitrogen source is hydrazine, monomethylhydrazine, 1,1-dimethylhydrazine , And at least one selected from 1,2-dimethylhydrazine, the Group V raw material includes a Group V chloride, and the Group V chloride is selected from arsenic trichloride, phosphorus trichloride, and antimony trichloride. The group V raw material containing at least one group and containing the group V chloride and the nitrogen raw material are mixed immediately on the group III-V compound semiconductor substrate.

本発明の方法では、V族原料は、三塩化砒素や三塩化リンなどの窒素以外のV族元素の塩化物を含む。三塩化砒素や三塩化リンが熱分解すると、塩素イオンが発生する。下記化学式に示すように、この塩素イオンが、有機窒素化合物(X-NH)と反応し、窒素原料の分子内におけるN−H結合を切断する。
In the method of the present invention, the group V raw material, containing chlorides of Group V element other than nitrogen such as arsenic trichloride or phosphorus trichloride. When arsenic trichloride or phosphorus trichloride is thermally decomposed, chlorine ions are generated. As shown in the following chemical formula, this chlorine ion reacts with the organic nitrogen compound (X—NH 2 ) to break the N—H bond in the molecule of the nitrogen raw material.

本発明の化合物半導体製造方法は、ヒドラジン等の窒素原料と、V族塩化物を含む少なくとも1種の前記窒素原料以外のV族原料と、III族原料とを用いて、III−V族化合物半導体基板上に窒素を含むIII−V族化合物半導体を気相成長するものである。 A method for producing a compound semiconductor according to the present invention includes a group III-V using a nitrogen source such as hydrazine , a group V source other than at least one nitrogen source including a group V chloride, and a group III source. the group III-V compound semiconductor containing nitrogen compound semiconductor substrate Ru der which vapor phase growth.

塩化物を含むV族原料は液体であり、バブリングなどで原料を安定して供給できる。   The group V raw material containing chloride is a liquid and can be stably supplied by bubbling or the like.

窒素原料に含まれるHは塩化水素(HCl)として排出され(Xも排出され)、結晶内には窒素のみが取り込まれる。この結果、III族元素と窒素とが結合できるので、ダングリングボンドの発生を防止することができる。このようにV族塩化物を用いるのは、塩素イオンがN−H結合中の水素との反応性に優れること、塩素は水素に比べ原子半径が十分に大きいため、仮に半導体結晶内に取り込まれても、水素ほど悪影響を及ぼさないことによる。 H contained in the nitrogen raw material is discharged as hydrogen chloride (HCl) (X is also discharged), and only nitrogen is taken into the crystal. As a result, since the group III element and nitrogen can be bonded, generation of dangling bonds can be prevented. The use of group V chloride in this way is that chlorine ions are excellent in reactivity with hydrogen in the N—H bond, and chlorine has a sufficiently large atomic radius compared to hydrogen, so it is temporarily incorporated into the semiconductor crystal. But it is not as bad as hydrogen.

上記窒素原料は、ヒドラジン、モノメチルヒドラジン、1,1−ジメチルヒドラジン、および1,2−ジメチルヒドラジンから選択された少なくとも1種であり、V族塩化物は、三塩化砒素、三塩化リン、および三塩化アンチモンから選択された少なくとも1種である。V族原料中のV族塩化物から生ずる塩素イオンが、窒素原料の分子内におけるN−H結合を切断することで、結晶内でGaやInなどのIII族元素がNと結合し、ダングリングボンドが生じない。 The nitrogen source is at least one selected from hydrazine, monomethyl hydrazine, 1,1-dimethyl hydrazine, and 1,2-dimethyl hydrazine. Group V chlorides include arsenic trichloride, phosphorus trichloride, and Ru least Tanedea selected from antimony chloride. Chlorine ions generated from the Group V chloride in the Group V material break the NH bond in the molecule of the nitrogen material, so that Group III elements such as Ga and In are combined with N in the crystal, and dangling. Bond does not occur.

V族塩化物を含むV族原料と窒素原料とは、III−V族化合物半導体基板上直近で混合される。V族塩化物と窒素原料との反応により発生するHClガスは、エッチング作用を有する。このため、V族塩化物を含むV族原料と窒素原料とを早期に混合すると、HClガスが発生し、すでに成長した半導体結晶までエッチングしてしまう。V族塩化物を含むV族原料と窒素原料とを化合物半導体直近で混合すれば、発生したHClガスは、エッチング作用を奏する前に排気されてしまう。この結果、発生したHClガスが、すでに成長した半導体結晶をエッチングすることを防止できる。
V族塩化物を含むV族原料と窒素原料とを、III−V族化合物半導体基板上直近で混合するために、反応管内において、V族塩化物を含むV族原料または窒素原料の供給路をサセプタの上にまで延在させることが好ましい。
The group V raw material and the nitrogen raw material containing V group chloride, Ru is mixed with III-V compound semiconductor substrate on the most recent. HCl gas generated by the reaction between the group V chloride and the nitrogen source has an etching action. For this reason, if a V group raw material containing a V group chloride and a nitrogen raw material are mixed at an early stage, HCl gas is generated, and an already grown semiconductor crystal is etched. If a group V raw material containing a group V chloride and a nitrogen source are mixed in the immediate vicinity of the compound semiconductor, the generated HCl gas will be exhausted before performing the etching action. As a result, it is possible to prevent the generated HCl gas from etching the already grown semiconductor crystal.
In order to mix the group V raw material containing the group V chloride and the nitrogen raw material immediately on the group III-V compound semiconductor substrate, a supply path for the group V raw material containing the group V chloride or the nitrogen source is provided in the reaction tube. Preferably it extends over the susceptor.

原料を供給するキャリアガスは、水素を含まない不活性ガスであることが好ましい。水素を含むキャリアガスを用いると、キャリアガス中の水素が、塩化物から発生する塩素イオンと窒素原料に含まれる水素との反応を妨げる。したがって、水素を含まない不活性ガスを用いることで、窒素原料からの水素の除去がより効率的にすすむ。   The carrier gas for supplying the raw material is preferably an inert gas not containing hydrogen. When a carrier gas containing hydrogen is used, the hydrogen in the carrier gas hinders the reaction between chlorine ions generated from chloride and hydrogen contained in the nitrogen raw material. Therefore, by using an inert gas that does not contain hydrogen, it is possible to more efficiently remove hydrogen from the nitrogen source.

本発明の参考例として挙げる気相成長装置は、基板上に半導体を成長させるための反応管と、前記反応管内に配置され、前記基板を載置するためのサセプタと、前記反応管に連通し、少なくとも2種類の原料ガスが供給される第1の原料ガス供給部と、前記反応管内において、前記サセプタへと延びて他の原料ガスを供給する第2の原料ガス供給部と、を備えるものであればよい。 A vapor phase growth apparatus cited as a reference example of the present invention includes a reaction tube for growing a semiconductor on a substrate, a susceptor disposed in the reaction tube for mounting the substrate, and communicating with the reaction tube. A first source gas supply unit to which at least two types of source gases are supplied, and a second source gas supply unit that extends to the susceptor and supplies another source gas in the reaction tube. If it is.

本発明によれば、窒素原料に含まれる水素を有効に除去することで、ダングリングボンドが少ない良好な結晶品質の化合物半導体結晶を得ることができる化合物半導体の製造方法およびそれを製造する気相成長装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the compound semiconductor which can obtain the compound semiconductor crystal of favorable crystal quality with few dangling bonds by effectively removing the hydrogen contained in a nitrogen raw material, and the gaseous phase which manufactures it A growth apparatus can be provided.

以下、本発明の好ましい実施形態について、図面を参照しながら説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

本実施形態においては、III−V族化合物半導体としてGaInNAsを結晶成長する場合を例にとり説明する。   In the present embodiment, a case where GaInNAs is grown as a group III-V compound semiconductor will be described as an example.

[製造装置]
以下、本実施の形態に係るGaInNAsの結晶成長方法に適用されるMOCVD(Metal Organic Chemical Vapor Deposition)装置について説明する。図1は、MOCVD装置を模式的に示す図である。
[Manufacturing equipment]
The MOCVD (Metal Organic Chemical Vapor Deposition) apparatus applied to the GaInNAs crystal growth method according to the present embodiment will be described below. FIG. 1 is a diagram schematically showing an MOCVD apparatus.

図1に示すように、本発明の参考例として挙げる気相成長装置1は、基板上に半導体を成長させるための反応管2と、前記反応管2内に配置され、前記基板を載置するためのサセプタ3と、少なくとも2種類の原料ガスが供給される原料ガス供給口(第1の原料ガス供給部)4と、前記反応管2内において、サセプタ2の上にまで延在し、第2の原料ガスを供給する供給口6を有する供給路(第2の原料ガス供給部)5と、前記原料ガスを排気する排気管7と、を有する。この構造により、V族塩化物を含むV族原料と窒素原料とはIII−V族化合物半導体基板直近で混合することができる。なお、「基板直近で混合する」とは、混合によって生じたHClガスが基板上を流れる排気ガスによって排気されやすいように混合することをいう。例えば、V族塩化物を含むV族原料の供給口および/または窒素原料の供給口が基板端よりも数mmから数cm排気上流側であって、基板裏面に上記原料を連続的に円滑に供給できる位置(図1参照)をいう。また、反応管2の周囲には、反応管内に設けられた基板の温度を制御するための加熱装置が設けられていてもよい。なお、図1において、「塩化V族原料ガス」は、「V族塩化物を含むV族原料ガス」の簡略形である。 As shown in FIG. 1, a vapor phase growth apparatus 1 cited as a reference example of the present invention is arranged in a reaction tube 2 for growing a semiconductor on a substrate, and in the reaction tube 2, and mounts the substrate. A susceptor 3, a source gas supply port (first source gas supply unit) 4 to which at least two kinds of source gases are supplied, and the reaction tube 2, which extends above the susceptor 2, 2 has a supply path (second source gas supply unit) 5 having a supply port 6 for supplying source gas, and an exhaust pipe 7 for exhausting the source gas. With this structure, the group V raw material containing the group V chloride and the nitrogen source can be mixed in the immediate vicinity of the group III-V compound semiconductor substrate. “Mixing in the immediate vicinity of the substrate” means mixing so that the HCl gas generated by the mixing is easily exhausted by the exhaust gas flowing on the substrate. For example, the supply port for the group V raw material containing group V chloride and / or the supply port for the nitrogen material is located several mm to several centimeters upstream from the substrate end, and the above material is continuously and smoothly supplied to the back surface of the substrate. It refers to the position where it can be supplied (see FIG. 1). A heating device for controlling the temperature of the substrate provided in the reaction tube may be provided around the reaction tube 2. In FIG. 1, “Group V source gas” is a simplified form of “Group V source gas including group V chloride”.

ガリウム原料としては、例えば、トリメチルガリウム(TMGa)、トリエチルガリウム(TEGa)を挙げることができる。   Examples of the gallium raw material include trimethyl gallium (TMGa) and triethyl gallium (TEGa).

インジウム原料としては、トリメチルインジウム(TMIn)、トリエチルインジウム(TEIn)を挙げることができる。   Examples of indium raw materials include trimethylindium (TMIn) and triethylindium (TEIn).

窒素原料としては、ヒドラジン、モノメチルヒドラジン、1,1−ジメチルヒドラジン、1,2−ジメチルヒドラジンを挙げることができる。   Examples of the nitrogen raw material include hydrazine, monomethyl hydrazine, 1,1-dimethyl hydrazine, and 1,2-dimethyl hydrazine.

ヒ素原料としては、アルシン、ターシャリーブチルアルシン(TBA)を挙げることができる。   Examples of the arsenic raw material include arsine and tertiary butylarsine (TBA).

上記原料は、それぞれ、図示しない原料ボンベに貯蔵され、キャリアガスと共に混合ガスとして、原料ガス供給口4から反応菅2に供給される。   Each of the raw materials is stored in a raw material cylinder (not shown) and supplied to the reaction vessel 2 from the raw material gas supply port 4 as a mixed gas together with a carrier gas.

塩素を含む原料としては、三塩化砒素、三塩化リン、三塩化アンチモンなどのV族塩化物原料や、参考例としての三塩化インジウム、三塩化ガリウムなどのIII族塩化物原料を挙げることができる。 Examples of raw materials containing chlorine include Group V chloride materials such as arsenic trichloride, phosphorus trichloride, and antimony trichloride, and Group III chloride materials such as indium trichloride and gallium trichloride as reference examples. .

上記V族塩化物原料は、図示しない原料ボンベに貯蔵され、キャリアガスと共に混合ガスとして、供給路5から反応菅2に供給される。供給路5から反応菅2に供給する原料は、V族塩化物原料単独であってもよく、V族塩化物原料と反応しない他のV族原料との混合物であってもよい。   The group V chloride raw material is stored in a raw material cylinder (not shown), and is supplied to the reaction vessel 2 from the supply path 5 as a mixed gas together with the carrier gas. The raw material supplied to the reaction tank 2 from the supply path 5 may be a group V chloride raw material alone or a mixture with another group V raw material that does not react with the group V chloride raw material.

[GaInNAs層の形成方法]
原料ガスは、キャリアガスと共に、原料ガス供給口4から反応菅2に導入される。なお、GaInNAsの結晶成長の際に、V族塩化物を含むV族原料ガスは、キャリアガスとともに、供給路5を介して、供給口6から反応菅2に導入される。そして、それぞれの原料は、反応菅2において熱分解され、基板(例えば、GaAs基板)上に堆積し、GaInNAs層が形成される。この熱分解反応の際に、V族原料中のV族塩化物が熱分解して生じたClイオンが、窒素原料のN−H結合を切断して、HClガスが発生する。なお、GaInNAsの組成比は、一般に、Ga1−xInAs1−yで表される。
[Method of forming GaInNAs layer]
The source gas is introduced into the reaction vessel 2 from the source gas supply port 4 together with the carrier gas. In addition, during the crystal growth of GaInNAs, the group V source gas containing group V chloride is introduced into the reaction vessel 2 from the supply port 6 through the supply path 5 together with the carrier gas. Each raw material is thermally decomposed in the reaction vessel 2 and deposited on a substrate (for example, a GaAs substrate) to form a GaInNAs layer. During the pyrolysis reaction, Group V chlorides Group V in the feed Cl ions which occurs by thermal decomposition, by cutting the N-H bond of the nitrogen source, HCl gas is generated. The composition ratio of the GaInNAs is generally expressed by Ga 1-x In x N y As 1-y.

V族塩化物を含むV族原料は、V族塩化物と、窒素以外のV族原料であるTBA等の同一のV族原子を供給する他のV族原料と併用する。GaInNAs組成中のNの組成は数%から10%程度であり、As組成の10分の一以下である。GaInNAs中に取り込まれる水素濃度は、N組成の10分の1程度であるので、三塩化砒素は、TBAの濃度の数分の1程度あれば、水素は十分に除去できる。その一方、三塩化砒素の濃度が多ければ、発生する塩素イオンが悪影響を及ぼす。このため、三塩化砒素は、TBA等の他のV族原料と併用するのが好ましい。 The group V source material containing V group chloride, in combination with V group chloride, and other group V raw material to supply the same V group element T BA like a V ZokuHara fees other than nitrogen. The composition of N in the GaInNAs composition is about several to 10%, which is 1/10 or less of the As composition. Since the concentration of hydrogen taken into GaInNAs is about one-tenth of the N composition, arsenic trichloride can be sufficiently removed if it is about a fraction of the TBA concentration. On the other hand, if the concentration of arsenic trichloride is high, the generated chlorine ions have an adverse effect. For this reason, arsenic trichloride is preferably used in combination with other Group V materials such as TBA.

GaInNAsの結晶成長の際、供給される原料において、III族(Ga、In)原料の流量に対するV族(N、As)原料の流量は、例えば、数倍から数百倍とすることができる。また、砒素原料(AsHまたはTBA)の流量に対する窒化物原料(DMHyまたはMMHy)の流量は、数十倍から数百倍とすることができる。GaInNAsの結晶成長時の基板温度は、例えば、400〜700℃とすることができる。また、反応菅2内の圧力は、例えば、5.33〜101.33kPa程度とすることができる。また、反応菅2内への各原料の流量を制御する制御手段を設けてもよい。 During the crystal growth of GaInNAs, the flow rate of the Group V (N, As) material relative to the flow rate of the Group III (Ga, In) material in the supplied material can be several times to several hundred times, for example. The flow rate of the nitride material (DMHy or MMHy) relative to the flow rate of the arsenic material (AsH 3 or TBA ) can be several tens to several hundreds times. The substrate temperature during the crystal growth of GaInNAs can be set to 400 to 700 ° C., for example. Moreover, the pressure in the reaction tank 2 can be made into about 5.33 to 101.33 kPa, for example. Moreover, you may provide the control means which controls the flow volume of each raw material into the reaction tank 2.

上記は、GaInNAsの結晶成長を例として説明したが、Nを含むIII-V族化合物としては、GaInNAsに限定されず、GaNAs、GaNP、GaInNAsSbやGaInNAsPであってもよい。例えば、GaNPを結晶成長させる場合には、リン原料として、ホスフィン(PH)、ターシャルブチルホスフィン(TBP)を用い、リン塩化物原料として、三塩化リンを用いればよい。 In the above description, the crystal growth of GaInNAs has been described as an example, but the III-V group compound containing N is not limited to GaInNAs, and may be GaNAs, GaNP, GaInNAsSb, or GaInNAsP. For example, in the case of crystal growth of GNP, phosphine (PH 3 ) or tertiary butyl phosphine (TBP) may be used as a phosphorus raw material, and phosphorus trichloride may be used as a phosphorus chloride raw material.

(実施例1)
図2に示すように、厚さ350μmのシリコンがドープされたGaAs基板11の(100)面に、GaAs層12(膜厚0.2μm)、GaInNAs層13(膜厚8nm)、GaAs層14(膜厚0.1μm)を順次形成した。
Example 1
As shown in FIG. 2, a GaAs layer 12 (film thickness 0.2 μm), a GaInNAs layer 13 (film thickness 8 nm), and a GaAs layer 14 (film thickness 14 nm) are formed on the (100) plane of a GaAs substrate 11 doped with 350 μm thick silicon. A film thickness of 0.1 μm) was sequentially formed.

GaInNAs層13の成長方法は、上記した図1の装置を用いて、MOCVD法で行なった。原料には、TMIn、TMG、DMHy、TBA、及び三塩化砒素を用いた。キャリアガスにはN2を用いた。 The growth method of the GaInNAs layer 13 was performed by the MOCVD method using the apparatus shown in FIG. TMIn, TMG, DMHy, TBA, and arsenic trichloride were used as raw materials. N 2 was used as a carrier gas.

これらの原料および窒素ガスが、反応菅2中の加熱したサセプタ3上に置かれたGaAs基板11上に供給され、成長が行なわれる。三塩化砒素は、供給路5を介して、基板上に供給した。三塩化砒素の供給量は、TBAの10分の1から5分の1程度とした。実施例1では、GaInNAs層13は510℃、成長圧力10.133kPa、成長速度1μm/時で成長させた。GaInNAsの結晶組成は、Ga:66%、In:34%、N:1%、As:99%である。   These raw materials and nitrogen gas are supplied onto the GaAs substrate 11 placed on the heated susceptor 3 in the reaction vessel 2 for growth. Arsenic trichloride was supplied onto the substrate via the supply path 5. The supply amount of arsenic trichloride was about 1/10 to 1/5 of TBA. In Example 1, the GaInNAs layer 13 was grown at 510 ° C., a growth pressure of 10.133 kPa, and a growth rate of 1 μm / hour. The crystal composition of GaInNAs is Ga: 66%, In: 34%, N: 1%, As: 99%.

(比較例1)
砒素原料として三塩化砒素を用いずにTBAのみを用いた。また、キャリアガスとして水素を用いた。それ以外の原料及びGaInNAsの成長温度等の条件は、実施例と同様にして、図2の半導体積層構造を作成した。
(Comparative Example 1)
Only TBA was used as an arsenic raw material without using arsenic trichloride. Further, hydrogen was used as a carrier gas. The other raw materials and conditions such as the growth temperature of GaInNAs were the same as in the example, and the semiconductor multilayer structure of FIG. 2 was created.

(フォトルミネッセンス強度の測定結果)
上記実施例1と比較例1において、GaInNAs層成長後に、フォトルミネッセンス強度を強くするために、TBA雰囲気下670℃で10分間アニール処理を行った。アニール処理前後で、比較例1の積層構造では、発光強度は、1桁以上向上した。一方、実施例1の積層構造では、発光強度は、比較例1の積層構造より、5倍程度強くなった。アニール処理後の発光強度は、実施例1の積層構造のほうが、比較例1の積層構造よりも5〜10倍強くなった。
(Measurement result of photoluminescence intensity)
In Example 1 and Comparative Example 1, after the GaInNAs layer was grown, annealing treatment was performed at 670 ° C. for 10 minutes in a TBA atmosphere in order to increase the photoluminescence intensity. Before and after the annealing treatment, the light emission intensity increased by an order of magnitude or more in the laminated structure of Comparative Example 1. On the other hand, in the laminated structure of Example 1, the emission intensity was about five times stronger than that of Comparative Example 1. The light emission intensity after the annealing treatment was 5 to 10 times stronger in the laminated structure of Example 1 than in the laminated structure of Comparative Example 1.

(水素濃度の測定結果)
得られた半導体積層構造におけるGaInNAs層中の水素濃度を、二次イオン質量分析計(SIMS)を用いて計測したところ、実施例1では、1×1018cm−3であり、比較例1では、1×1019cm−3であった。
(Measurement result of hydrogen concentration)
When the hydrogen concentration in the GaInNAs layer in the obtained semiconductor multilayer structure was measured using a secondary ion mass spectrometer (SIMS), it was 1 × 10 18 cm −3 in Example 1, and in Comparative Example 1, 1 × 10 19 cm −3 .

なお、InP基板上にInGaNSbAs(結晶組成は、Ga:50%、In:50%、N:2%、Sb:5%、As:93%)を、成長した場合も、上記実施例1と同様な効果が得られた。このことから、GaAs基板やInP基板上のIn1−xGaSbAs(1−y−z−w)(1≧x≧0、0.2≧y>0、0.2≧z≧0、0.1≧w≧0)においても、有効であることがわかる。 Note that when InGaNSbAs (crystal composition is Ga: 50%, In: 50%, N: 2%, Sb: 5%, As: 93%) is grown on the InP substrate, the same as in Example 1 above. The effect was obtained. Therefore, In 1-x Ga of GaAs substrate or InP substrates x N y Sb z As (1 -y-z-w) (1 ≧ x ≧ 0,0.2 ≧ y> 0,0.2 ≧ It can be seen that this is also effective when z ≧ 0, 0.1 ≧ w ≧ 0).

この結果から、V族原料としてV族塩化物を含むほうが、水素の除去が有効に行えることがわかった。 From this result, it was found that the removal of hydrogen can be effectively performed by containing a group V chloride as a group V raw material.

上記において、本発明の実施の形態および実施例について説明を行なったが、上記に開示された本発明の実施の形態および実施例は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内でのすべての変更を含むものである。   Although the embodiments and examples of the present invention have been described above, the embodiments and examples of the present invention disclosed above are merely examples, and the scope of the present invention is the implementation of these inventions. It is not limited to the form. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

図1は、MOCVD装置を模式的に示す図である。FIG. 1 is a diagram schematically showing an MOCVD apparatus. 図2は、半導体積層構造を示す図である。FIG. 2 is a diagram showing a semiconductor stacked structure.

1 気相成長装置、2 反応管、3 サセプタ、4 原料ガス供給口(第1の原料ガス供給部)、5 供給路(第2の原料ガス供給部)、6 供給口(第2の原料ガス供給部)、7 排気管、11 SiドープGaAs基板、12 GaAs層、13 GaInNAs層、14 GaAs層。
DESCRIPTION OF SYMBOLS 1 Vapor growth apparatus, 2 Reaction tube, 3 Susceptor, 4 Source gas supply port (1st source gas supply part), 5 Supply path (2nd source gas supply part), 6 Supply port (2nd source gas) Supply section), 7 exhaust pipe, 11 Si-doped GaAs substrate, 12 GaAs layer, 13 GaInNAs layer, 14 GaAs layer.

Claims (3)

反応管内において、窒素原料と、少なくとも1種の前記窒素原料以外のV族原料と、III族原料とを用いて、サセプタに載置したIII−V族化合物半導体基板上に窒素を含むIII−V族化合物半導体を気相成長する化合物半導体の製造方法であって、
前記窒素原料は、ヒドラジン、モノメチルヒドラジン、1,1−ジメチルヒドラジン、および1,2−ジメチルヒドラジンから選択された少なくとも1種であり、前記V族原料はV族塩化物を含み、該V族塩化物は、三塩化砒素、三塩化リン、および三塩化アンチモンから選択された少なくとも1種であり、
前記V族塩化物を含むV族原料と窒素原料とは、前記III−V族化合物半導体基板上直近で混合されることを特徴とする、化合物半導体の製造方法。
III-V containing nitrogen on a III-V group compound semiconductor substrate placed on a susceptor using a nitrogen source, a group V source other than at least one nitrogen source, and a group III source in a reaction tube A compound semiconductor manufacturing method for vapor-phase-growing a group compound semiconductor,
The nitrogen raw material is at least one selected from hydrazine, monomethylhydrazine, 1,1-dimethylhydrazine, and 1,2-dimethylhydrazine, and the group V raw material includes a group V chloride, and the group V chloride The product is at least one selected from arsenic trichloride, phosphorus trichloride, and antimony trichloride,
The method for producing a compound semiconductor, wherein the group V raw material containing the group V chloride and the nitrogen source are mixed immediately on the group III-V compound semiconductor substrate.
前記反応管内において、前記V族塩化物を含むV族原料または窒素原料の供給路を前記サセプタの上にまで延在させることを特徴とする、請求項1に記載の化合物半導体の製造方法。 2. The method for producing a compound semiconductor according to claim 1, wherein in the reaction tube, a supply path for a group V source material or nitrogen source containing the group V chloride is extended to above the susceptor . 前記V族原料およびIII族原料を供給するキャリアガスは、水素を含まない不活性ガスであることを特徴とする、請求項1または2に記載の化合物半導体の製造方法。 3. The method for producing a compound semiconductor according to claim 1, wherein a carrier gas for supplying the group V source and the group III source is an inert gas not containing hydrogen. 4.
JP2006121554A 2006-04-26 2006-04-26 Method for producing compound semiconductor Active JP4961820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006121554A JP4961820B2 (en) 2006-04-26 2006-04-26 Method for producing compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006121554A JP4961820B2 (en) 2006-04-26 2006-04-26 Method for producing compound semiconductor

Publications (2)

Publication Number Publication Date
JP2007294705A JP2007294705A (en) 2007-11-08
JP4961820B2 true JP4961820B2 (en) 2012-06-27

Family

ID=38765020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006121554A Active JP4961820B2 (en) 2006-04-26 2006-04-26 Method for producing compound semiconductor

Country Status (1)

Country Link
JP (1) JP4961820B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3752810B2 (en) * 1997-11-26 2006-03-08 昭和電工株式会社 Epitaxial wafer, manufacturing method thereof, and semiconductor device
JP3900653B2 (en) * 1998-02-19 2007-04-04 住友電気工業株式会社 Compound semiconductor crystal growth method
JP3654331B2 (en) * 1998-05-21 2005-06-02 株式会社リコー Semiconductor manufacturing method and semiconductor light emitting device
JP2003347232A (en) * 2002-05-31 2003-12-05 Hitachi Cable Ltd Method of manufacturing semiconductor and semiconductor element formed by the same
JP4331936B2 (en) * 2002-12-19 2009-09-16 農工大ティー・エル・オー株式会社 Compound semiconductor manufacturing method and compound semiconductor manufacturing apparatus
EP1790759A4 (en) * 2004-08-06 2009-10-28 Mitsubishi Chem Corp NITRIDE SEMICONDUCTOR SINGLE CRYSTAL INCLUDING Ga, METHOD FOR MANUFACTURING THE SAME, AND SUBSTRATE AND DEVICE USING THE CRYSTAL
JP2006080374A (en) * 2004-09-10 2006-03-23 Sharp Corp Apparatus for manufacturing nitride semiconductor and nitride semiconductor laser element

Also Published As

Publication number Publication date
JP2007294705A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
US8110889B2 (en) MOCVD single chamber split process for LED manufacturing
CN101340058B (en) Nitride semiconductor stacked structure and semiconductor optical device, and methods for manufacturing the same
US6569238B2 (en) Apparatus and method for depositing semi conductor film
TWI473374B (en) Method for manufacturing nitride semiconductor device
US8318590B2 (en) Methods and systems for forming thin films
CN103548116B (en) Method for pretreatment group III-nitride deposition
TW201106502A (en) Cluster tool for LEDs
JP3879173B2 (en) Compound semiconductor vapor deposition method
KR20130046333A (en) Forming a compound-nitride structure that includes a nucleation layer
TW201133559A (en) Multichamber split processes for LED manufacturing
CN101540365B (en) Nitride semiconductor laminated structure and optical semiconductor device, and methods for producing the same
KR20100075597A (en) Parasitic particle suppression in the growth of iii-v nitride films using mocvd and hvpe
JP5369304B2 (en) System and method for forming semiconductor material by atomic layer deposition
JP3875298B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4961820B2 (en) Method for producing compound semiconductor
JP2003303995A (en) Nitride semiconductor element and method for manufacturing the same
JP2004087565A (en) Method for manufacturing gallium nitride-based semiconductor light emitting device
JP4670206B2 (en) Manufacturing method of nitride semiconductor
JP4612403B2 (en) Method for manufacturing group III nitride semiconductor free-standing substrate
JP3984365B2 (en) Compound semiconductor manufacturing method and semiconductor light emitting device
JP2009177027A (en) Method of manufacturing compound semiconductor substrate, compound semiconductor substrate, and light-emitting element
Muñoz‐Sanjosé et al. ZnO and Related Materials
JPH1126382A (en) Manufacture of gallium nitride compound semiconductor thin film
JP4193379B2 (en) Method for producing group 3-5 compound semiconductor
JP2008294223A (en) Method of growing iii-v compound semiconductor film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090422

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090813

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Ref document number: 4961820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250