WO2024004576A1 - Group iii nitride substrate and manufacturing method thereof - Google Patents

Group iii nitride substrate and manufacturing method thereof Download PDF

Info

Publication number
WO2024004576A1
WO2024004576A1 PCT/JP2023/021470 JP2023021470W WO2024004576A1 WO 2024004576 A1 WO2024004576 A1 WO 2024004576A1 JP 2023021470 W JP2023021470 W JP 2023021470W WO 2024004576 A1 WO2024004576 A1 WO 2024004576A1
Authority
WO
WIPO (PCT)
Prior art keywords
group iii
iii nitride
region
gas
nitride substrate
Prior art date
Application number
PCT/JP2023/021470
Other languages
French (fr)
Japanese (ja)
Inventor
勇介 森
政志 吉村
正幸 今西
茂佳 宇佐美
淳一 滝野
雄大 旭
Original Assignee
パナソニックホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックホールディングス株式会社 filed Critical パナソニックホールディングス株式会社
Publication of WO2024004576A1 publication Critical patent/WO2024004576A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy

Definitions

  • the present disclosure relates to a group III nitride substrate and a method for manufacturing the same.
  • GaN power devices require GaN substrates with low resistance and low dislocation density.
  • crystal growth has been performed while forming pits to improve the carrier concentration and reduce the dislocation density (for example, see Patent Document 1). ).
  • a group III nitride substrate is a group III nitride substrate including a GaN epitaxial layer formed on a GaN substrate, and includes oxygen as an impurity element, and the c-plane of the group III nitride substrate. at least one first region exhibiting a first impurity concentration and a second region exhibiting a second impurity concentration lower than the first impurity concentration in the polished surface; The first dislocation density of is lower than the second dislocation density of the second region, and the root mean square surface roughness RMS value is 10 nm or less in an arbitrary 0.2 mm square range within the surface of the group III nitride substrate. .
  • a method for manufacturing a group III nitride substrate includes the steps of preparing a seed substrate, supplying a group III element oxide gas and a nitrogen element-containing gas, and disposing a group III nitride substrate on the seed substrate. a step of growing a group III nitride crystal, and a step of polishing the group III nitride crystal so that the root mean square surface roughness RMS value is 10 nm or less in an arbitrary 0.2 mm square range within the plane of the group III nitride crystal. and, including.
  • FIG. 2 is a diagram showing a surface AFM image of a GaN substrate after surface CMP, which was fabricated by an OVPE method. They are (a) a surface optical microscope image and (b) a surface SIMS mapping image of the same location of a GaN substrate after surface CMP produced by the OVPE method.
  • 1 is a flowchart showing a time-series manufacturing method of a group III nitride crystal according to an embodiment of the present disclosure.
  • 2 is a flowchart showing each functional unit as a process from upstream to downstream in a manufacturing apparatus used in a method for manufacturing a group III nitride crystal according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a manufacturing apparatus used for manufacturing a group III nitride crystal according to an embodiment of the present disclosure.
  • FIG. 3 is a conceptual diagram of a group III nitride crystal grown on a seed substrate before and after slicing.
  • FIG. 3 is a diagram showing the relationship between the double average surface roughness RMS of an OVPE GaN substrate before growth by the MOVPE method and the pit density of the GaN growth layer grown by the MOVPE method. It is a figure which shows the relationship between the CMP time and double average surface roughness RMS of the GaN substrate surface (Ga surface) made from OVPE. This is a photoluminescence image (PL image) of the surface (Ga surface) of the OVPE GaN substrate when the CMP time is 60 minutes.
  • PL image photoluminescence image
  • the planes that form pits (growth pits) exposed by crystal growth are composed of m-plane components and a-plane components, and impurity concentrations such as oxygen and carrier concentrations differ depending on each plane. Therefore, in the polishing step for smoothing the surface, there was a difference in polishing rate within the surface due to the difference in impurity concentration and the difference in carrier concentration between each growth surface. Differences in polishing speeds create irregularities on the surface. The surface unevenness causes deterioration of surface morphology and appearance of pits when a device layer is formed on the substrate surface using a subsequent MOVPE method or the like.
  • the present disclosure aims to provide a group III nitride substrate with good surface flatness while satisfying high carrier concentration, low resistance, and low dislocation density.
  • the group III nitride substrate according to the first aspect is a group III nitride substrate consisting of a GaN epitaxial layer formed on a GaN substrate, contains oxygen as an impurity element, and has a structure in which the c-plane of the group III nitride substrate is in the polished surface, at least one first region exhibiting a first impurity concentration and a second region exhibiting a second impurity concentration lower than the first impurity concentration;
  • the first dislocation density is lower than the second dislocation density in the second region, and the root mean square surface roughness RMS value is 10 nm or less in an arbitrary 0.2 mm square range within the surface of the group III nitride substrate.
  • At least one first region is composed of a plurality of first regions, and the plurality of first regions are arranged such that the second region is the center of the group III nitride substrate. They may be arranged so as to surround two areas.
  • the second aspect further, six third regions are arranged in the surface so as to surround the second region with the second region as the center.
  • the plurality of first regions consists of six first regions
  • the six third regions are arranged alternately with the six first regions in the circumferential direction
  • the six third regions are composed of six first regions.
  • the first area may be more depressed than the first area.
  • the Group III nitride substrate according to the fourth aspect has one polishing scratch in any 0.2 mm square range within the surface of the Group III nitride substrate in any one of the first to third aspects. It may be less than
  • the impurity contained in at least one first region is at least one selected from the group of oxygen and silicon. It may be.
  • the first impurity concentration may be an oxygen concentration of 1 ⁇ 10 20 /cm 3 or more.
  • At least one first region is composed of an m-plane component, and the third region is composed of an a It may be composed of surface components.
  • the method for manufacturing a group III nitride crystal according to the eighth aspect includes the steps of preparing a seed substrate, supplying a group III element oxide gas and a nitrogen element-containing gas, and forming a group III nitride crystal on the seed substrate. a step of growing a crystal; and a step of polishing the group III nitride crystal to make the root mean square surface roughness RMS value 10 nm or less in an arbitrary 0.2 mm square range within the plane of the group III nitride crystal. ,including.
  • the polishing includes chemical mechanical polishing (CMP), and the chemical mechanical polishing time ranges from 120 minutes to 700 minutes. There may be.
  • CMP chemical mechanical polishing
  • the Group III nitride substrate according to the present disclosure, it has high carrier concentration, low resistance, low dislocation density, and good surface flatness, and the generation of pits is suppressed when forming a device layer on the surface of the substrate. can do. Therefore, it is possible to improve the withstand voltage when driving diodes, transistors, and the like.
  • the group III nitride substrate according to the first embodiment is a group III nitride substrate consisting of a GaN epitaxial layer formed on a GaN substrate.
  • the Group III nitride substrate contains oxygen as an impurity element, and in the polished c-plane of the Group III nitride substrate, a first region exhibiting a first impurity concentration and a first region lower than the first impurity concentration. and a second region exhibiting an impurity concentration of 2.
  • the first dislocation density in the first region is lower than the second dislocation density in the second region, and the root mean square surface roughness RMS value (Rq Value: JIS B0601-2001, ISO25178) is 10 nm or less.
  • the pit density of the growth layer crystal-grown on the Group III nitride substrate can be set to 20 pits/cm 2 or less. Furthermore, by setting the root mean square surface roughness RMS value to 8.4 nm or less, the pit density of the growth layer can be reduced to less than 1 pit/cm 2 , and therefore, the pit density can be substantially reduced to 0 pits/cm 2 .
  • the root mean square surface roughness RMS value to 10.4 nm or less
  • the pit density of the growth layer can be reduced to less than 1 pit/cm 2 , and therefore, the pit density can be substantially reduced to 0 pits/cm 2 .
  • a Group III nitride substrate with a double average surface roughness RMS value of 10 nm or less it is possible to suppress the occurrence of pits in the device layer grown on it, and when driving diodes, transistors, etc. It is possible to improve the withstand voltage and reduce leakage current.
  • FIG. 1 is an AFM image of a group III nitride substrate manufactured using the OVPE method according to the first embodiment, observed from the surface.
  • the wafer surface (substrate surface) is composed of regions ⁇ and ⁇ that can be clearly distinguished in an AFM image.
  • is the first region
  • is the third region.
  • six first regions and six third regions are arranged alternately in the circumferential direction surrounding the second region. Let the second region be ⁇ . Further, the diameters of the first region and the third region are reduced toward the second region. In other words, the first region and the third region extend radially around the second region. Further, a dislocation exists at the center of the second region.
  • the difference in the unevenness between ⁇ and ⁇ is due to the fact that the surfaces exposed during the crystal growth process have different surface indices of ⁇ 30-34 ⁇ and ⁇ 11-22 ⁇ , respectively. Comparing ⁇ and ⁇ , it can be seen that the surface depression is larger on the surface ⁇ . Therefore, a step occurs at the boundary between ⁇ and ⁇ .
  • FIGS. 2A and 2B are SIMS mapping images showing the oxygen concentration distribution and silicon concentration distribution on the surface of the group III nitride substrate according to the first embodiment.
  • FIG. 2(a) when ⁇ and ⁇ are compared, it is found that the oxygen concentration is high on the plane ⁇ .
  • the average oxygen concentration in the high oxygen concentration region is 5.1 ⁇ 10 20 atoms/cm 3 and the average oxygen concentration in the low oxygen concentration region is 3.2 ⁇ 10 20 atoms/cm 3 .
  • Oxygen in the Group III nitride crystal becomes an n-type dopant.
  • a group III nitride crystal to which oxygen is added at a high concentration has a high carrier concentration and exhibits a low electrical resistance. Furthermore, it can be seen that the distribution of oxygen concentration in FIG. 2(a) has a pattern similar to that of the AFM image shown in FIG. 1. Therefore, from the results shown in FIGS. 1 and 2(a), it can be seen that the surface irregularities correspond to the surface oxygen concentration distribution. Furthermore, in the region of high oxygen concentration distribution, the protrusion on the surface is larger than in the region of low oxygen concentration distribution. Moreover, from FIG. 2(b), it can be seen that the silicon concentration is not as high as the oxygen concentration, but has an in-plane distribution.
  • FIG. 3A shows a chronological flowchart of the manufacturing method.
  • FIG. 3B shows each functional unit as a process from upstream to downstream in the group III nitride substrate manufacturing apparatus used in this manufacturing method.
  • the method for manufacturing a group III nitride substrate according to the first embodiment includes a step of preparing a seed substrate, and supplying a group III element oxide gas and a nitrogen element-containing gas to form a group III nitride crystal on the seed substrate.
  • the method includes a step of growing the crystal, and a step of polishing the extracted Group III nitride crystal.
  • the temperature raising step the temperature of the growth chamber 111 is raised to 100° C. or higher and lower than 500° C. in an inert gas atmosphere.
  • Decomposition protection In temperature raising step 1, the temperature of the growth chamber 111 is raised to 500° C.
  • the temperature of the growth chamber 111 is raised to 1100° C. or more and less than 1500° C. in a Ga 2 O gas and NH 3 gas atmosphere.
  • a group III element oxide gas is generated in the raw material chamber 100 and supplied to the growth chamber 111, and a nitrogen element-containing gas is supplied to the growth chamber 111. Then, a group III nitride crystal is generated on the seed substrate 116.
  • the above growth process includes a reactive gas supply process, a group III element oxide gas generation process, a group III element oxide gas supply process, a nitrogen element-containing gas supply process, a group III nitride crystal generation process, and a residual gas exhaust process.
  • a reactive gas supply process a group III element oxide gas generation process, a group III element oxide gas supply process, a nitrogen element-containing gas supply process, a group III nitride crystal generation process, and a residual gas exhaust process.
  • a starting group III element source and a reactive gas are A reaction is caused to produce a Group III element oxide gas.
  • the group III element oxide gas produced in the group III element oxide gas generation step is supplied to the growth chamber.
  • a nitrogen element-containing gas is supplied to the growth chamber.
  • the temperature of the raw material chamber 100 and the growth chamber 111 is lowered to 500° C. while supplying NH 3 gas. do.
  • the temperatures of the raw material chamber 100 and the growth chamber 111 are lowered to below 100° C. in an inert gas atmosphere.
  • the take-out step the seed substrate 116 on which the group III nitride crystal has grown is taken out from the growth chamber 111.
  • the prepared group III nitride crystal and seed substrate are sliced to obtain a plurality of group III nitride substrates. This allows the seed substrate to be reused.
  • the polishing step the front and back surfaces of the prepared Group III nitride substrate are polished and smoothed. Note that a group III nitride substrate made of grown group III nitride crystals may be manufactured by removing the seed substrate in a polishing step without performing the slicing step.
  • a raw material reaction chamber 101 is disposed within a raw material chamber 100, and a raw material boat 104 carrying a starting group III element source 105 is disposed within the raw material reaction chamber 101.
  • a reactive gas supply pipe 103 that supplies a gas that reacts with the starting group III element source 105 is connected to the raw material reaction chamber 101 .
  • the raw material reaction chamber 101 has a group III element oxide gas outlet 107 that discharges the generated group III element oxide gas.
  • the starting Group III source is an oxide
  • a reducing gas is used as the reactive gas.
  • an oxidizing gas is used as the reactive gas.
  • a first carrier gas supply port 102 through which a first carrier gas is supplied is connected to the raw material chamber 100, and the first carrier gas supplied from the first carrier gas supply port 102 and the group III element oxide gas exhaust are connected to the raw material chamber 100.
  • Group III element oxide gas discharged from the outlet 107 passes through the connecting pipe 109 from the gas outlet 108 and flows into the growth chamber 111, and flows into the growth chamber 111 from the gas supply port 118 connected to the growth chamber 111. Supplied.
  • the growth chamber 111 has a gas supply port 118 , a third carrier gas supply port 112 , a nitrogen element-containing gas supply port 113 , a second carrier gas supply port 114 , and an exhaust port 119 .
  • the growth chamber 111 includes a substrate susceptor 117 on which a seed substrate 116 is placed.
  • metal Ga is used as the starting Group III element source 105, but the material is not limited to this, and for example, Al or In may be used.
  • a seed substrate 116 is prepared.
  • the seed substrate 116 for example, gallium nitride, gallium arsenide, silicon, sapphire, silicon carbide, zinc oxide, gallium oxide, or ScAlMgO 4 can be used.
  • gallium nitride is used as the seed substrate 116.
  • the temperature raising step the temperature of the growth chamber is raised in an inert gas atmosphere to a temperature at which the seed substrate 116 does not decompose.
  • heating is performed to about 500° C. in an inert gas (for example, N 2 gas) atmosphere.
  • ⁇ Decomposition protection temperature increase step 1> In the decomposition protection temperature raising step 1, the temperature is raised in a nitrogen element-containing gas atmosphere while suppressing decomposition of the seed substrate 116.
  • heating is performed at a temperature of 500° C. or higher and lower than 1100° C. in a state where an inert gas and a nitrogen element-containing gas NH 3 gas are mixed.
  • the reason for mixing NH 3 is to prevent the seed substrate 116 from being decomposed due to desorption of N atoms. Further, heating may be performed in a state in which H 2 gas is further mixed.
  • ⁇ Decomposition protection temperature increase step 2> In the decomposition protection temperature raising step 2, the temperature is raised while suppressing the decomposition of the seed substrate 116 in a group III oxide gas and nitrogen element-containing gas atmosphere.
  • group III nitride crystals In the production of group III nitride crystals by the OVPE method, from 1100°C to less than 1500°C, H 2 gas, inert gas, group III element oxide gas, and nitrogen element-containing gas NH 3 gas are mixed. Heating is performed with The reason why group III element oxide gas is mixed is that decomposition cannot be suppressed with nitrogen element-containing gas alone. By providing a driving force for the growth of Group III nitride crystals, it is possible to suppress decomposition.
  • a group III element oxide gas is generated in the raw material chamber 100 and supplied to the growth chamber 111, and a nitrogen element-containing gas is supplied to the growth chamber 111 to generate a group III nitride crystal on the seed substrate 116.
  • the growth process includes a reactive gas supply process, a group III element oxide gas generation process, a group III element oxide gas supply process, a nitrogen element-containing gas supply process, a group III nitride crystal generation process, and a process for generating a group III nitride crystal. It has a gas exhaust process.
  • Reactive gas supply process reactive gas is supplied from the reactive gas supply pipe 103 to the raw material reaction chamber 101 in the raw material chamber 100 .
  • a reducing gas or an oxidizing gas can be used as the reactive gas as necessary.
  • H 2 O gas is used as the reactive gas.
  • the reactive gas supplied to the raw material reaction chamber 101 in the reactive gas supply step reacts with Ga, which is the starting group III element source 105, to form a group III element oxide gas. Generate Ga 2 O gas.
  • the generated Ga 2 O gas is discharged from the raw material reaction chamber 101 to the raw material chamber 100 via the group III element oxide gas outlet 107 .
  • the discharged Ga 2 O gas is mixed with the first carrier gas supplied from the first carrier gas supply port 102 to the raw material chamber, and is supplied to the gas exhaust port 108 .
  • the raw material chamber 100 is heated by the first heater 106. When heating the raw material chamber 100, the temperature of the raw material chamber 100 is preferably set to 800° C.
  • the temperature of the raw material chamber 100 is lower than that of the growth chamber 111.
  • the temperature of the raw material chamber 100 is, for example, less than 1800°C.
  • the starting group III element source 105 is placed in a raw material boat 104 disposed within the raw material reaction chamber 101 .
  • the raw material boat 104 preferably has a shape that can increase the contact area between the reactive gas and the starting Group III element source.
  • the raw material boat 104 is preferably in the shape of a multi-tiered dish.
  • the methods for producing the group III element oxide gas can be roughly divided into a method of reducing the starting group III element source 105 and a method of oxidizing the starting group III element source 105.
  • an oxide e.g., Ga 2 O 3
  • a reducing gas e.g., H 2 gas, CO gas, CH 4 gas, C 2 H 6 gas
  • H 2 S gas, SO 2 gas H 2 S gas, SO 2 gas
  • the starting Group III element source 105 is a non-oxide (e.g., liquid Ga), and the reactive gas is an oxidizing gas (e.g., H 2 O gas, O 2 gas, CO gas, CO 2 gas, NO gas, N 2 O gas, NO 2 gas) is used.
  • an oxidizing gas e.g., H 2 O gas, O 2 gas, CO gas, CO 2 gas, NO gas, N 2 O gas, NO 2 gas
  • an In source and an Al source can be employed as the starting group III element.
  • an inert gas, H2 gas, etc. can be used as the first carrier gas.
  • the Ga 2 O gas generated in the group III element oxide gas generation step is supplied to the growth chamber 111 via the gas exhaust port 108, the connecting pipe 109, and the gas supply port 118. do.
  • the temperature of the connecting pipe 109 connecting the raw material chamber 100 and the growth chamber 111 falls below the temperature of the raw material chamber 100, a reverse reaction of the reaction that generates the group III element oxide gas occurs, and the starting group III element source 105 It is deposited in the connecting pipe 109. Therefore, it is preferable that the connecting pipe 109 be heated to a higher temperature than the first heater 106 by the third heater 110 so that the temperature does not drop below the temperature of the raw material chamber 100.
  • a nitrogen element-containing gas is supplied to the growth chamber 111 from the nitrogen element-containing gas supply port 113 .
  • the nitrogen element-containing gas include, for example, NH 3 gas, NO gas, NO 2 gas, N 2 O gas, N 2 H 2 gas, and N 2 H 4 gas.
  • the temperature of the growth chamber 111 is preferably raised by the second heater 115 to a temperature at which the group III element oxide gas and the nitrogen element-containing gas react. At this time, the temperature of the growth chamber 111 should be controlled so that it does not fall below the temperature of the raw material chamber 100 in order to prevent the reverse reaction of the reaction that generates the group III element oxide gas from occurring. is preferred.
  • the temperature of the growth chamber 111 heated by the second heater 115 is preferably 1000°C or more and 1800°C or less. Furthermore, in order to suppress temperature fluctuations in the growth chamber 111 due to the Ga 2 O gas generated in the raw material chamber 100 and the first carrier gas, the temperatures of the second heater 115 and the third heater 110 are set to be the same. is desirable.
  • group III nitride crystals can be grown on the seed substrate 116.
  • the discharge steps may be performed simultaneously.
  • an inert gas, H2 gas, or the like can be used as the second carrier gas.
  • unreacted group III element oxide gas and nitrogen element-containing gas, as well as the first carrier gas, second carrier gas, and third carrier gas are discharged from the exhaust port 119.
  • ⁇ Decomposition protection temperature cooling process> the temperature is lowered in a nitrogen element-containing gas atmosphere while suppressing the decomposition of the group III nitride crystal.
  • cooling is performed to 500° C. or lower in a mixed state of an inert gas and a nitrogen element-containing gas NH 3 gas.
  • ⁇ Temperature cooling process> the temperature is lowered in an inert gas atmosphere to a temperature at which the group III nitride crystal can be taken out from the growth chamber.
  • the seed substrate 116 on which the group III nitride crystal has grown is taken out from the growth chamber 111 after a temperature-lowering step.
  • the group III nitride crystal produced on the seed substrate 116 is sliced using a wire or a laser. By performing slicing, the Group III nitride crystal and the seed substrate 116 are separated. Further, the produced group III nitride crystal is separated into a plurality of group III nitride substrates. Note that the number of group III nitride substrates obtained by slicing may be one or more.
  • polishing step the front and back surfaces of the group III nitride substrate obtained by slicing are smoothed. From the viewpoint of forming a device layer by MOVPE on a polished Group III nitride substrate, it is important to improve flatness and remove polishing scratches.
  • the polishing process in the present disclosure includes mechanical polishing (MP) and chemical mechanical polishing (CMP).
  • Mechanical polishing MP mainly reduces the overall wafer thickness and thickness distribution. At this time, polishing scratches may occur due to mechanical polishing MP. Polishing scratches are shown, for example, in the form of streaks or lines in the photoluminescence image of FIG.
  • Chemical mechanical polishing (CMP) mainly removes damaged layers and polishing scratches.
  • CMP is important for Group III nitride substrates manufactured using the OVPE method.
  • polishing scratches introduced by MP are removed, but on the other hand, surface irregularities reflecting the ⁇ and ⁇ regions (growth history) occur.
  • the surface unevenness causes pits to be generated when a device layer is formed on the surface of the substrate by the MOVPE method. Therefore, CMP is performed to remove polishing scratches and minimize unevenness.
  • the pit is, for example, a concave portion in the shape of an inverted polygonal pyramid such as an inverted hexagonal pyramid or an inverted dodecagonal pyramid.
  • Group III nitride crystals were grown using the growth furnace shown in FIG.
  • GaN was grown as a group III nitride crystal.
  • Liquid Ga was used as a starting group III element source
  • Ga was reacted with H 2 O gas as a reactive gas
  • the generated Ga 2 O gas was used as a group III element oxide gas.
  • NH 3 gas was used as the nitrogen element-containing gas
  • a mixture of H 2 gas and N 2 gas was used as the first carrier gas and the second carrier gas.
  • the growth surface of the grown GaN crystal was covered with numerous pits consisting of planes with plane indices of ⁇ 30-34 ⁇ and ⁇ 11-22 ⁇ . By using this growth mode, the convergence of dislocations to the center of the pit is promoted, and dislocations coalesce and pair annihilation occurs. Therefore, as the film becomes thicker, the dislocation density is reduced.
  • a GaN substrate with a thickness of 0.3 to 0.5 mm was prepared from the grown GaN crystal, and the front and back surfaces were flattened in a polishing process.
  • the execution time of chemical mechanical polishing CMP in the polishing process was varied, and the flatness of the surface and the presence or absence of polishing scratches were checked.
  • Chemical mechanical polishing CMP was performed for a period of 200 minutes to 780 minutes.
  • a GaN thin film of about 5 to 10 ⁇ m was grown on a polished GaN substrate by MOVPE, and the correlation between the flatness of the GaN substrate before growth and the pit density generated in the growth layer formed by MOVPE was confirmed. . Note that pits with a size of less than 1 ⁇ m were not counted.
  • Example 1 A GaN substrate made of OVPE was subjected to chemical mechanical polishing CMP to produce a sample having a root mean square surface roughness RMS value of 8.42 nm. Photoluminescence (PL) observation of the GaN substrate before growth revealed no polishing scratches on the surface. When GaN was grown on an OVPE GaN substrate by the MOVPE method, the pit density was 0/cm 2 .
  • Example 2 A GaN substrate made of OVPE was subjected to chemical mechanical polishing CMP to produce a sample having a root mean square surface roughness RMS value of 4.48 nm. Photoluminescence (PL) observation of the GaN substrate before growth revealed no polishing scratches on the surface. When GaN was grown on an OVPE GaN substrate by the MOVPE method, the pit density was 0/cm 2 .
  • Example 3 A sample having a root mean square surface roughness RMS value of 2.44 nm was prepared by subjecting an OVPE GaN substrate to chemical mechanical polishing CMP. Photoluminescence (PL) observation of the GaN substrate before growth revealed no polishing scratches on the surface. When GaN was grown on an OVPE GaN substrate by the MOVPE method, the pit density was 0/cm 2 .
  • Example 4 A GaN substrate made of OVPE was subjected to chemical mechanical polishing CMP to produce a sample having a root mean square surface roughness RMS value of 9.80 nm. Photoluminescence (PL) observation of the GaN substrate before growth revealed no polishing scratches on the surface. As a result of GaN growth performed on an OVPE GaN substrate by the MOVPE method, the pit density was 9.75 pieces/cm 2 .
  • Example 5 A GaN substrate made of OVPE was subjected to chemical mechanical polishing CMP to produce a sample having a root mean square surface roughness RMS value of 8.94 nm. Photoluminescence (PL) observation of the GaN substrate before growth revealed no polishing scratches on the surface. As a result of GaN growth performed on an OVPE GaN substrate by the MOVPE method, the pit density was 0.25 pieces/cm 2 .
  • the above results are summarized in Figure 6.
  • the root mean square surface roughness RMS value 10 nm or less
  • the pit density of the MOVPE growth layer grown on the OVPE GaN substrate can be set to 20 pits/cm 2 or less.
  • the root mean square surface roughness RMS value 8.4 nm or less, it is possible to reduce the pit density of the MOVPE growth layer to less than 1 pit/cm 2 , and therefore to substantially 0 pit density/cm 2 . can.
  • an OVPE GaN substrate with a double average surface roughness RMS value of 10 nm or less it is possible to suppress the occurrence of pits in the device layer grown on it, and it is possible to suppress the occurrence of pits in the device layer grown on it. It is possible to improve withstand voltage and reduce leakage current.
  • FIG. 7 shows an example of the relationship between the execution time of chemical mechanical polishing CMP of a GaN substrate and the double average surface roughness RMS value.
  • the double average surface roughness RMS value increases as the CMP processing time increases.
  • the chemical mechanical polishing CMP execution time should be shorter than the conventional 800 minutes, and approximately 700 minutes or less. I understand that it is necessary.
  • the chemical mechanical polishing CMP execution time needs to be 600 minutes or less.
  • FIG. 8 shows a surface photoluminescence (PL) image when the chemical mechanical polishing CMP was performed for 60 minutes.
  • PL surface photoluminescence
  • the optimum chemical mechanical polishing CMP condition is the value that removes polishing scratches and gives the smallest double average surface roughness RMS value.
  • the chemical mechanical polishing CMP time may be, for example, 120 minutes or more and 700 minutes or less, and further may be 200 minutes or more and 600 minutes or less.
  • the Group III nitride substrate according to the present disclosure, it has high carrier concentration, low resistance, low dislocation density, and good surface flatness, and the generation of pits is suppressed when forming a device layer on the surface of the substrate. can do.

Abstract

A group III nitride substrate that comprises a GaN epitaxial layer formed on a GaN substrate and contains oxygen as an impurity element, wherein: the polished surface of the c-plane of the group III nitride substrate includes at least one first region exhibiting a first impurity concentration and a second region exhibiting a second impurity concentration that is lower than the first impurity concentration; the first dislocation density in the first region is lower than the second dislocation density in the second region; and the root mean square surface roughness (RMS) in any 0.2 mm square area within the surface of the group III nitride substrate is 10 nm or less.

Description

III族窒化物基板およびその製造方法Group III nitride substrate and method for manufacturing the same
 本開示は、III族窒化物基板及びその製造方法に関する。 The present disclosure relates to a group III nitride substrate and a method for manufacturing the same.
 縦型GaNパワーデバイスには、低抵抗、低転位密度のGaN基板が必要とされている。例えばn型の低抵抗のGaN基板を作製する場合、ピットを形成しながら結晶成長させて、キャリア濃度を向上させること、および転位密度を低減することが行われてきた(例えば、特許文献1参照。)。 Vertical GaN power devices require GaN substrates with low resistance and low dislocation density. For example, when manufacturing an n-type low-resistance GaN substrate, crystal growth has been performed while forming pits to improve the carrier concentration and reduce the dislocation density (for example, see Patent Document 1). ).
特開2021-50107号公報JP 2021-50107 Publication
 本開示の一態様に係るIII族窒化物基板は、GaN基板上に形成されたGaNエピタキシャル層からなるIII族窒化物基板であって、不純物元素として酸素を含み、III族窒化物基板のc面について研磨された表面内において、第1不純物濃度を示す少なくとも1つの第1領域と、第1不純物濃度よりも低い第2不純物濃度を示す第2領域と、を有し、少なくとも1つの第1領域の第1転位密度は、第2領域の第2転位密度よりも低く、III族窒化物基板の表面内の任意の0.2mm角の範囲で、二乗平均面粗さRMS値が10nm以下である。 A group III nitride substrate according to one aspect of the present disclosure is a group III nitride substrate including a GaN epitaxial layer formed on a GaN substrate, and includes oxygen as an impurity element, and the c-plane of the group III nitride substrate. at least one first region exhibiting a first impurity concentration and a second region exhibiting a second impurity concentration lower than the first impurity concentration in the polished surface; The first dislocation density of is lower than the second dislocation density of the second region, and the root mean square surface roughness RMS value is 10 nm or less in an arbitrary 0.2 mm square range within the surface of the group III nitride substrate. .
 本開示の一態様に係るIII族窒化物基板の製造方法は、種基板を準備する工程と、III族元素酸化物ガスと窒素元素含有ガスとを供給して、種基板の上にIII族窒化物結晶を成長させる工程と、III族窒化物結晶を研磨し、III族窒化物結晶の面内の任意の0.2mm角の範囲で、二乗平均面粗さRMS値を10nm以下とする、工程と、を含む。 A method for manufacturing a group III nitride substrate according to one aspect of the present disclosure includes the steps of preparing a seed substrate, supplying a group III element oxide gas and a nitrogen element-containing gas, and disposing a group III nitride substrate on the seed substrate. a step of growing a group III nitride crystal, and a step of polishing the group III nitride crystal so that the root mean square surface roughness RMS value is 10 nm or less in an arbitrary 0.2 mm square range within the plane of the group III nitride crystal. and, including.
OVPE法によって作製した表面CMP後のGaN基板の表面AFM像を示す図である。FIG. 2 is a diagram showing a surface AFM image of a GaN substrate after surface CMP, which was fabricated by an OVPE method. OVPE法によって作製した表面CMP後のGaN基板の同一箇所の(a)表面光学顕微鏡像と、(b)表面SIMSマッピング像である。They are (a) a surface optical microscope image and (b) a surface SIMS mapping image of the same location of a GaN substrate after surface CMP produced by the OVPE method. 本開示の実施の形態に係るIII族窒化物結晶の時系列の製造方法を示すフローチャートである。1 is a flowchart showing a time-series manufacturing method of a group III nitride crystal according to an embodiment of the present disclosure. 本開示の実施の形態に係るIII族窒化物結晶の製造方法で用いる製造装置内の上流から下流に向けての各機能単位を工程として示した際のフローチャートである。2 is a flowchart showing each functional unit as a process from upstream to downstream in a manufacturing apparatus used in a method for manufacturing a group III nitride crystal according to an embodiment of the present disclosure. 本開示の一実施形態に係るIII族窒化物結晶の製造に用いられる製造装置の概略図である。1 is a schematic diagram of a manufacturing apparatus used for manufacturing a group III nitride crystal according to an embodiment of the present disclosure. 種基板上に成長したIII族窒化物結晶のスライス前後の概念図である。FIG. 3 is a conceptual diagram of a group III nitride crystal grown on a seed substrate before and after slicing. MOVPE法による成長前のOVPE製GaN基板の二重平均面粗さRMSとMOVPE法によって成長したGaN成長層のピット密度との関係を示す図である。FIG. 3 is a diagram showing the relationship between the double average surface roughness RMS of an OVPE GaN substrate before growth by the MOVPE method and the pit density of the GaN growth layer grown by the MOVPE method. OVPE製GaN基板表面(Ga面)のCMP時間と二重平均面粗さRMSとの関係を示す図である。It is a figure which shows the relationship between the CMP time and double average surface roughness RMS of the GaN substrate surface (Ga surface) made from OVPE. CMP時間が60分の場合のOVPE製GaN基板表面(Ga面)のフォトルミネッセンス像(PL像)である。This is a photoluminescence image (PL image) of the surface (Ga surface) of the OVPE GaN substrate when the CMP time is 60 minutes.
 結晶成長によって表出するピット(成長ピット)を形成する面は、m面成分とa面成分から構成されており、各々の面によって酸素等の不純物濃度やキャリア濃度が異なっていた。したがって、表面を平滑化する際の研磨工程において、各成長面における不純物濃度差やキャリア濃度差に起因した研磨速度の相違が面内にあった。研磨速度の相違は表面に凹凸を形成する。表面の凹凸は、その後のMOVPE法等で基板表面にデバイス層を形成する際に、表面モフォロジーの悪化やピットが表出する原因となっていた。 The planes that form pits (growth pits) exposed by crystal growth are composed of m-plane components and a-plane components, and impurity concentrations such as oxygen and carrier concentrations differ depending on each plane. Therefore, in the polishing step for smoothing the surface, there was a difference in polishing rate within the surface due to the difference in impurity concentration and the difference in carrier concentration between each growth surface. Differences in polishing speeds create irregularities on the surface. The surface unevenness causes deterioration of surface morphology and appearance of pits when a device layer is formed on the substrate surface using a subsequent MOVPE method or the like.
 本開示は、高キャリア濃度、低抵抗、および低転位密度を満たしながら、表面平坦性の良好なIII族窒化物基板を提供することを目的とする。 The present disclosure aims to provide a group III nitride substrate with good surface flatness while satisfying high carrier concentration, low resistance, and low dislocation density.
 第1の態様に係るIII族窒化物基板は、GaN基板上に形成されたGaNエピタキシャル層からなるIII族窒化物基板であって、不純物元素として酸素を含み、III族窒化物基板のc面について研磨された表面内において、第1不純物濃度を示す少なくとも1つの第1領域と、第1不純物濃度よりも低い第2不純物濃度を示す第2領域と、を有し、少なくとも1つの第1領域の第1転位密度は、第2領域の第2転位密度よりも低く、III族窒化物基板の表面内の任意の0.2mm角の範囲で、二乗平均面粗さRMS値が10nm以下である。 The group III nitride substrate according to the first aspect is a group III nitride substrate consisting of a GaN epitaxial layer formed on a GaN substrate, contains oxygen as an impurity element, and has a structure in which the c-plane of the group III nitride substrate is in the polished surface, at least one first region exhibiting a first impurity concentration and a second region exhibiting a second impurity concentration lower than the first impurity concentration; The first dislocation density is lower than the second dislocation density in the second region, and the root mean square surface roughness RMS value is 10 nm or less in an arbitrary 0.2 mm square range within the surface of the group III nitride substrate.
 第2の態様に係るIII族窒化物基板は、上記第1の態様において、少なくとも1つの第1領域は、複数の第1領域からなり、複数の第1領域は、第2領域を中心として第2領域の周囲を囲うように配置されていてもよい。 In the Group III nitride substrate according to the second aspect, in the first aspect, at least one first region is composed of a plurality of first regions, and the plurality of first regions are arranged such that the second region is the center of the group III nitride substrate. They may be arranged so as to surround two areas.
 第3の態様に係るIII族窒化物基板は、上記第2の態様において、さらに、表面内において、第2領域を中心として第2領域の周囲を囲うように配置されている6つの第3領域を有し、複数の第1領域は、6つの第1領域からなり、6つの第3領域は、6つの第1領域と周方向に交互に配置されており、6つの第3領域は、6つの第1領域よりも窪んでいてもよい。 In the Group III nitride substrate according to the third aspect, in the second aspect, further, six third regions are arranged in the surface so as to surround the second region with the second region as the center. , the plurality of first regions consists of six first regions, the six third regions are arranged alternately with the six first regions in the circumferential direction, and the six third regions are composed of six first regions. The first area may be more depressed than the first area.
 第4の態様に係るIII族窒化物基板は、上記第1から第3のいずれかの態様において、III族窒化物基板の表面内の任意の0.2mm角の範囲で、研磨傷が1個未満であってもよい。 The Group III nitride substrate according to the fourth aspect has one polishing scratch in any 0.2 mm square range within the surface of the Group III nitride substrate in any one of the first to third aspects. It may be less than
 第5の態様に係るIII族窒化物基板は、上記第1から第4のいずれかの態様において、少なくとも1つの第1領域に含まれる不純物は、酸素、シリコンの群から選択される少なくとも1つであってもよい。 In the Group III nitride substrate according to a fifth aspect, in any one of the first to fourth aspects, the impurity contained in at least one first region is at least one selected from the group of oxygen and silicon. It may be.
 第6の態様に係るIII族窒化物基板は、上記第1から第5のいずれかの態様において、第1不純物濃度は、酸素濃度が1×1020/cm以上であってもよい。 In the group III nitride substrate according to the sixth aspect, in any one of the first to fifth aspects, the first impurity concentration may be an oxygen concentration of 1×10 20 /cm 3 or more.
 第7の態様に係るIII族窒化物基板は、上記第1から第6のいずれかの態様において、少なくとも1つの第1領域は、m面成分から構成されており、前記第3領域は、a面成分から構成されていてもよい。 In the group III nitride substrate according to a seventh aspect, in any one of the first to sixth aspects, at least one first region is composed of an m-plane component, and the third region is composed of an a It may be composed of surface components.
 第8の態様に係るIII族窒化物結晶の製造方法は、種基板を準備する工程と、III族元素酸化物ガスと窒素元素含有ガスとを供給して、種基板の上にIII族窒化物結晶を成長させる工程と、III族窒化物結晶を研磨し、III族窒化物結晶の面内の任意の0.2mm角の範囲で、二乗平均面粗さRMS値を10nm以下とする、工程と、を含む。 The method for manufacturing a group III nitride crystal according to the eighth aspect includes the steps of preparing a seed substrate, supplying a group III element oxide gas and a nitrogen element-containing gas, and forming a group III nitride crystal on the seed substrate. a step of growing a crystal; and a step of polishing the group III nitride crystal to make the root mean square surface roughness RMS value 10 nm or less in an arbitrary 0.2 mm square range within the plane of the group III nitride crystal. ,including.
 第9の態様に係るIII族窒化物基板の製造方法は、上記第8の態様において、研磨は、化学機械研磨(CMP)を含み、化学機械研磨の時間は、120分~700分の範囲であってもよい。 In the method for manufacturing a group III nitride substrate according to a ninth aspect, in the eighth aspect, the polishing includes chemical mechanical polishing (CMP), and the chemical mechanical polishing time ranges from 120 minutes to 700 minutes. There may be.
 本開示に係るIII族窒化物基板によれば、高キャリア濃度、低抵抗、低転位密度、かつ表面平坦性が良好であり、該基板の表面へのデバイス層の形成時に、ピットの発生を抑制することができる。したがって、ダイオードやトランジスタ等を駆動させる際の耐電圧の向上を図ることができる。 According to the Group III nitride substrate according to the present disclosure, it has high carrier concentration, low resistance, low dislocation density, and good surface flatness, and the generation of pits is suppressed when forming a device layer on the surface of the substrate. can do. Therefore, it is possible to improve the withstand voltage when driving diodes, transistors, and the like.
 以下、実施の形態に係るIII族窒化物基板について、添付図面を参照しながら説明する。なお、図面において実質的に同一の部材については同一の符号を付している。 Hereinafter, a group III nitride substrate according to an embodiment will be described with reference to the accompanying drawings. In the drawings, substantially the same members are designated by the same reference numerals.
 (実施の形態1)
 <III族窒化物基板>
 実施の形態1に係るIII族窒化物基板は、GaN基板上に形成されたGaNエピタキシャル層からなるIII族窒化物基板である。該III族窒化物基板は、不純物元素として酸素を含み、III族窒化物基板のc面について研磨された面内において、第1不純物濃度を示す第1領域と、第1不純物濃度よりも低い第2不純物濃度を示す第2領域と、を有する。第1領域の第1転位密度は、第2領域の第2転位密度よりも低く、III族窒化物基板の表面内の任意の0.2mm角の範囲で、二乗平均面粗さRMS値(Rq値:JIS B0601-2001、ISO25178)が10nm以下である。
(Embodiment 1)
<Group III nitride substrate>
The group III nitride substrate according to the first embodiment is a group III nitride substrate consisting of a GaN epitaxial layer formed on a GaN substrate. The Group III nitride substrate contains oxygen as an impurity element, and in the polished c-plane of the Group III nitride substrate, a first region exhibiting a first impurity concentration and a first region lower than the first impurity concentration. and a second region exhibiting an impurity concentration of 2. The first dislocation density in the first region is lower than the second dislocation density in the second region, and the root mean square surface roughness RMS value (Rq Value: JIS B0601-2001, ISO25178) is 10 nm or less.
 このように、二乗平均面粗さRMS値を10nm以下とすることで、III族窒化物基板の上に結晶成長させた成長層のピット密度を20個/cm以下とすることができる。さらに、二乗平均面粗さRMS値を8.4nm以下とすることで、成長層のピット密度を1個未満/cm、よって、実質的にピット密度を0個/cmとすることができる。つまり、二重平均面粗さRMS値10nm以下のIII族窒化物基板を用いれば、その上に結晶成長させたデバイス層のピットの発生を抑制することができ、ダイオードやトランジスタ等を駆動させる際の耐電圧の向上や、リーク電流の低減の効果を奏することができる。 In this way, by setting the root mean square surface roughness RMS value to 10 nm or less, the pit density of the growth layer crystal-grown on the Group III nitride substrate can be set to 20 pits/cm 2 or less. Furthermore, by setting the root mean square surface roughness RMS value to 8.4 nm or less, the pit density of the growth layer can be reduced to less than 1 pit/cm 2 , and therefore, the pit density can be substantially reduced to 0 pits/cm 2 . In other words, by using a Group III nitride substrate with a double average surface roughness RMS value of 10 nm or less, it is possible to suppress the occurrence of pits in the device layer grown on it, and when driving diodes, transistors, etc. It is possible to improve the withstand voltage and reduce leakage current.
 図1は、実施の形態1に係るOVPE法を用いて作製したIII族窒化物基板を表面から観察したAFM像である。 FIG. 1 is an AFM image of a group III nitride substrate manufactured using the OVPE method according to the first embodiment, observed from the surface.
 図1に示すように、ウェハ表面(基板表面)は、AFM像で明確に区別できるαとβとの領域から構成されている。ここで、αを第1領域、βを第3領域とする。また第1領域と第3領域は、第2領域の周囲を囲んで、周方向に交互にそれぞれ6つ配置されている。第2領域をγとする。さらに、第1領域及び第3領域は、第2領域に向かって縮径している。換言すれば、第1領域及び第3領域は、第2領域を中心として放射状に延びている。また、第2領域の中心には転位が存在している。αとβとの凹凸の相違は、結晶成長の過程で表出する面が、それぞれ面指数が{30-34}と{11-22}と異なる面であることに起因する。αとβとを比較すると、表面の窪みが面βで大きいことが分かる。よって、αとβとの境界で段差が生じる。 As shown in FIG. 1, the wafer surface (substrate surface) is composed of regions α and β that can be clearly distinguished in an AFM image. Here, α is the first region, and β is the third region. Further, six first regions and six third regions are arranged alternately in the circumferential direction surrounding the second region. Let the second region be γ. Further, the diameters of the first region and the third region are reduced toward the second region. In other words, the first region and the third region extend radially around the second region. Further, a dislocation exists at the center of the second region. The difference in the unevenness between α and β is due to the fact that the surfaces exposed during the crystal growth process have different surface indices of {30-34} and {11-22}, respectively. Comparing α and β, it can be seen that the surface depression is larger on the surface β. Therefore, a step occurs at the boundary between α and β.
 図2の(a)と(b)とは、実施の形態1に係るIII族窒化物基板表面の酸素濃度分布とシリコン濃度分布とを示すSIMSマッピング像である。図2の(a)から分かるように、αとβとを比較すると、面αで酸素濃度が高いことが分かる。図2の(a)の酸素濃度分布において、高酸素濃度の領域の平均酸素濃度は、5.1×1020atoms/cmであり、低酸素濃度の領域の平均酸素濃度は、3.2×1020atoms/cmである。III族窒化物結晶中の酸素は、n型ドーパントとなる。したがって、高濃度に酸素が添加されたIII族窒化物結晶は、高キャリア濃度となり、その電気抵抗は低い値を示す。また、図2の(a)の酸素濃度の分布は、図1に示すAFM像と同様の模様であることが分かる。よって、図1と図2の(a)との結果より、表面の凹凸と表面の酸素濃度分布とは対応していることが分かる。また、高酸素濃度分布の領域で、表面の突出が低酸素濃度分布の領域と比較して、大きくなっている。また、図2の(b)から、シリコン濃度は、酸素濃度ほど高濃度ではないが、面内で分布を生じていることが分かる。 FIGS. 2A and 2B are SIMS mapping images showing the oxygen concentration distribution and silicon concentration distribution on the surface of the group III nitride substrate according to the first embodiment. As can be seen from FIG. 2(a), when α and β are compared, it is found that the oxygen concentration is high on the plane α. In the oxygen concentration distribution in FIG. 2(a), the average oxygen concentration in the high oxygen concentration region is 5.1×10 20 atoms/cm 3 and the average oxygen concentration in the low oxygen concentration region is 3.2 ×10 20 atoms/cm 3 . Oxygen in the Group III nitride crystal becomes an n-type dopant. Therefore, a group III nitride crystal to which oxygen is added at a high concentration has a high carrier concentration and exhibits a low electrical resistance. Furthermore, it can be seen that the distribution of oxygen concentration in FIG. 2(a) has a pattern similar to that of the AFM image shown in FIG. 1. Therefore, from the results shown in FIGS. 1 and 2(a), it can be seen that the surface irregularities correspond to the surface oxygen concentration distribution. Furthermore, in the region of high oxygen concentration distribution, the protrusion on the surface is larger than in the region of low oxygen concentration distribution. Moreover, from FIG. 2(b), it can be seen that the silicon concentration is not as high as the oxygen concentration, but has an in-plane distribution.
 <III族窒化物結晶の製造方法の概要>
 本実施の形態1に係るIII族窒化物基板の製造方法の概要を、図3のフローチャート及び図4を参照して説明する。図3Aは、製造方法の時系列のフローチャートを示したものである。図3Bは、本製造方法で用いるIII族窒化物基板の製造装置内の上流から下流に向けての各機能単位を工程として示したものである。
<Summary of the method for manufacturing group III nitride crystals>
An overview of the method for manufacturing a group III nitride substrate according to the first embodiment will be described with reference to the flowchart of FIG. 3 and FIG. 4. FIG. 3A shows a chronological flowchart of the manufacturing method. FIG. 3B shows each functional unit as a process from upstream to downstream in the group III nitride substrate manufacturing apparatus used in this manufacturing method.
 実施の形態1に係るIII族窒化物基板の製造方法は、種基板を準備する工程と、III族元素酸化物ガスと窒素元素含有ガスとを供給して、種基板にIII族窒化物結晶を成長させる工程と、取出したIII族窒化物結晶を研磨する工程と、を含む。
(1)種基板116を準備する種基板準備工程では、基板サセプタ117上に種基板116を載置する。
(2)昇温工程では、不活性ガス雰囲気で育成チャンバ111を100℃以上500℃未満まで昇温する。
(3)分解保護昇温工程1では、NHガス雰囲気で育成チャンバ111を500℃以上1100℃未満まで昇温する。
(4)分解保護昇温工程2では、Ga2OガスおよびNHガス雰囲気で育成チャンバ111を1100℃以上1500℃未満まで昇温する。
(5)種基板116にIII族窒化物結晶を成長させる成長工程では、原料チャンバ100でIII族元素酸化物ガスを生成し育成チャンバ111へ供給するとともに、窒素元素含有ガスを育成チャンバ111へ供給し、種基板116上でIII族窒化物結晶の生成を行う。
The method for manufacturing a group III nitride substrate according to the first embodiment includes a step of preparing a seed substrate, and supplying a group III element oxide gas and a nitrogen element-containing gas to form a group III nitride crystal on the seed substrate. The method includes a step of growing the crystal, and a step of polishing the extracted Group III nitride crystal.
(1) In the seed substrate preparation step of preparing the seed substrate 116, the seed substrate 116 is placed on the substrate susceptor 117.
(2) In the temperature raising step, the temperature of the growth chamber 111 is raised to 100° C. or higher and lower than 500° C. in an inert gas atmosphere.
(3) Decomposition protection In temperature raising step 1, the temperature of the growth chamber 111 is raised to 500° C. or higher and lower than 1100° C. in an NH 3 gas atmosphere.
(4) In the decomposition protection temperature raising step 2, the temperature of the growth chamber 111 is raised to 1100° C. or more and less than 1500° C. in a Ga 2 O gas and NH 3 gas atmosphere.
(5) In the growth step of growing a group III nitride crystal on the seed substrate 116, a group III element oxide gas is generated in the raw material chamber 100 and supplied to the growth chamber 111, and a nitrogen element-containing gas is supplied to the growth chamber 111. Then, a group III nitride crystal is generated on the seed substrate 116.
 上記成長工程は、反応性ガス供給工程、III族元素酸化物ガス生成工程、III族元素酸化物ガス供給工程、窒素元素含有ガス供給工程、III族窒化物結晶生成工程、及び残留ガス排出工程を有する。なお、成長工程に含まれる各工程は、III族窒化物結晶の製造装置内において同時に行われていてよい。 The above growth process includes a reactive gas supply process, a group III element oxide gas generation process, a group III element oxide gas supply process, a nitrogen element-containing gas supply process, a group III nitride crystal generation process, and a residual gas exhaust process. have Note that each step included in the growth step may be performed simultaneously within a group III nitride crystal manufacturing apparatus.
 (5-1)反応性ガス供給工程では、反応性ガスを原料反応室へ供給する。 (5-1) In the reactive gas supply step, a reactive gas is supplied to the raw material reaction chamber.
 (5-2)III族元素酸化物ガス生成工程では、出発III族元素源と反応性ガス(出発III族元素源が酸化物の場合は還元性ガス、金属の場合は酸化性ガス)とを反応させ、III族元素酸化物ガスを生成する。 (5-2) In the group III element oxide gas generation step, a starting group III element source and a reactive gas (reducing gas when the starting group III element source is an oxide, oxidizing gas when the starting group III element source is a metal) are A reaction is caused to produce a Group III element oxide gas.
 (5-3)III族元素酸化物ガス供給工程では、III族元素酸化物ガス生成工程で製造されたIII族元素酸化物ガスを育成チャンバへ供給する。 (5-3) In the group III element oxide gas supply step, the group III element oxide gas produced in the group III element oxide gas generation step is supplied to the growth chamber.
 (5-4)窒素元素含有ガス供給工程では、窒素元素含有ガスを育成チャンバへ供給する。 (5-4) In the nitrogen element-containing gas supply step, a nitrogen element-containing gas is supplied to the growth chamber.
 (5-5)III族窒化物結晶生成工程では、III族元素酸化物ガス供給工程で育成チャンバ内へ供給されたIII族元素酸化物ガスと、窒素元素含有ガス供給工程で育成チャンバ内へ供給された窒素元素含有ガスとを反応させ、III族窒化物結晶を種基板上に成長させる。 (5-5) In the group III nitride crystal generation step, the group III element oxide gas supplied into the growth chamber in the group III element oxide gas supply step and the group III element oxide gas supplied into the growth chamber in the nitrogen element-containing gas supply step A group III nitride crystal is grown on the seed substrate.
 (5-6)残留ガス排出工程では、III族窒化物結晶の生成に寄与しない未反応のガスをチャンバ外に排出する。
(6)分解保護降温工程では、種基板116上に成長したIII族窒化物結晶の分解を抑制するために、NHガスを供給しながら原料チャンバ100及び育成チャンバ111の温度を500℃まで降温する。
(7)降温工程では、不活性ガス雰囲気で原料チャンバ100及び育成チャンバ111の温度を100℃未満まで降温する。
(8)取出し工程では、III族窒化物結晶が成長した種基板116を育成チャンバ111から取出す。
(9)スライス工程では、図5に示すように、作製したIII族窒化物結晶および種基板をスライスし、複数枚のIII族窒化物基板を得る。これによって、種基板を再利用することができる。
(10)研磨工程では、作製したIII族窒化物基板の表面および裏面を研磨し平滑化する。尚、スライス工程を実施せず、研磨工程にて、種基板を除去することで、成長させたIII族窒化物結晶から構成されるIII族窒化物基板を製造してもよい。
(5-6) In the residual gas exhaust step, unreacted gases that do not contribute to the formation of group III nitride crystals are exhausted to the outside of the chamber.
(6) In the decomposition protection temperature lowering step, in order to suppress the decomposition of the group III nitride crystal grown on the seed substrate 116, the temperature of the raw material chamber 100 and the growth chamber 111 is lowered to 500° C. while supplying NH 3 gas. do.
(7) In the temperature lowering step, the temperatures of the raw material chamber 100 and the growth chamber 111 are lowered to below 100° C. in an inert gas atmosphere.
(8) In the take-out step, the seed substrate 116 on which the group III nitride crystal has grown is taken out from the growth chamber 111.
(9) In the slicing step, as shown in FIG. 5, the prepared group III nitride crystal and seed substrate are sliced to obtain a plurality of group III nitride substrates. This allows the seed substrate to be reused.
(10) In the polishing step, the front and back surfaces of the prepared Group III nitride substrate are polished and smoothed. Note that a group III nitride substrate made of grown group III nitride crystals may be manufactured by removing the seed substrate in a polishing step without performing the slicing step.
 <III族窒化物結晶の製造装置の概要>
 本実施の形態1に係るIII族窒化物結晶の製造方法に用いられるIII族窒化物結晶の製造装置の概要を、図4を参照して説明する。図4において、各構成部材の大きさ、比率等は実際とは異なる場合がある。
<Overview of Group III nitride crystal manufacturing equipment>
An overview of a group III nitride crystal manufacturing apparatus used in the method for manufacturing a group III nitride crystal according to the first embodiment will be described with reference to FIG. In FIG. 4, the size, ratio, etc. of each component may differ from the actual size.
 III族窒化物結晶の製造装置は、原料チャンバ100内に、原料反応室101が配置されており、原料反応室101内に出発III族元素源105を載置した原料ボート104が配置されている。原料反応室101には、出発III族元素源105と反応するガスを供給する反応性ガス供給管103が接続されている。原料反応室101は、生成されたIII族元素酸化物ガスを排出するIII族元素酸化物ガス排出口107を有する。出発III族源が酸化物の場合は、反応性ガスとして還元性ガスを用いる。出発III族源が金属の場合は、反応性ガスとして酸化性ガスを用いる。また原料チャンバ100には、第1搬送ガスが供給される第1搬送ガス供給口102が接続され、第1搬送ガス供給口102から供給された第1搬送ガスと、III族元素酸化物ガス排出口107から排出されたIII族元素酸化物ガスとが、ガス排出口108から接続管109を通過し育成チャンバ111へと流れ、育成チャンバ111に接続されたガス供給口118から育成チャンバ111内へ供給される。育成チャンバ111は、ガス供給口118と、第3搬送ガス供給口112、と窒素元素含有ガス供給口113と、第2搬送ガス供給口114と、排気口119とを有する。育成チャンバ111は、種基板116を設置する基板サセプタ117を備える。 In the apparatus for producing group III nitride crystals, a raw material reaction chamber 101 is disposed within a raw material chamber 100, and a raw material boat 104 carrying a starting group III element source 105 is disposed within the raw material reaction chamber 101. . A reactive gas supply pipe 103 that supplies a gas that reacts with the starting group III element source 105 is connected to the raw material reaction chamber 101 . The raw material reaction chamber 101 has a group III element oxide gas outlet 107 that discharges the generated group III element oxide gas. When the starting Group III source is an oxide, a reducing gas is used as the reactive gas. When the starting Group III source is a metal, an oxidizing gas is used as the reactive gas. Further, a first carrier gas supply port 102 through which a first carrier gas is supplied is connected to the raw material chamber 100, and the first carrier gas supplied from the first carrier gas supply port 102 and the group III element oxide gas exhaust are connected to the raw material chamber 100. Group III element oxide gas discharged from the outlet 107 passes through the connecting pipe 109 from the gas outlet 108 and flows into the growth chamber 111, and flows into the growth chamber 111 from the gas supply port 118 connected to the growth chamber 111. Supplied. The growth chamber 111 has a gas supply port 118 , a third carrier gas supply port 112 , a nitrogen element-containing gas supply port 113 , a second carrier gas supply port 114 , and an exhaust port 119 . The growth chamber 111 includes a substrate susceptor 117 on which a seed substrate 116 is placed.
 <III族窒化物結晶の製造方法および製造装置の詳細>
 図3及び図4を参照し、本実施の形態に係るIII族窒化物結晶の製造方法を詳細に説明する。
<Details of Group III nitride crystal manufacturing method and manufacturing equipment>
A method for manufacturing a group III nitride crystal according to this embodiment will be described in detail with reference to FIGS. 3 and 4.
 本実施の形態では、出発III族元素源105として金属Gaを用いたがこれに限られず、例えば、AlやInを用いてもよい。 In this embodiment, metal Ga is used as the starting Group III element source 105, but the material is not limited to this, and for example, Al or In may be used.
 <種基板準備工程>
 まず、種基板116を準備する。種基板116として、例えば、窒化ガリウム、ガリウム砒素、シリコン、サファイア、炭化珪素、酸化亜鉛、酸化ガリウム、ScAlMgOを用いることができる。本実施形態では、種基板116として、窒化ガリウムを用いる。
<Seed substrate preparation process>
First, a seed substrate 116 is prepared. As the seed substrate 116, for example, gallium nitride, gallium arsenide, silicon, sapphire, silicon carbide, zinc oxide, gallium oxide, or ScAlMgO 4 can be used. In this embodiment, gallium nitride is used as the seed substrate 116.
 <昇温工程>
 昇温工程では、不活性ガス雰囲気で、種基板116の分解が生じない温度まで育成チャンバの昇温を行う。OVPE法によるIII族窒化物結晶の製造においては、約500℃まで不活性ガス(例えばNガス)雰囲気で加熱を行う。
<Temperature raising process>
In the temperature raising step, the temperature of the growth chamber is raised in an inert gas atmosphere to a temperature at which the seed substrate 116 does not decompose. In manufacturing a group III nitride crystal by the OVPE method, heating is performed to about 500° C. in an inert gas (for example, N 2 gas) atmosphere.
 <分解保護昇温工程1>
 分解保護昇温工程1では、窒素元素含有ガス雰囲気で、種基板116の分解を抑制しながら昇温を行う。OVPE法によるIII族窒化物結晶の製造において、500℃以上1100℃未満までは、不活性ガスと窒素元素含有ガスNHガスとを混合した状態で加熱を行う。NHを混合する理由は、N原子の脱離により種基板116が分解することを防ぐためである。またHガスさらに混合した状態で加熱を行ってもよい。
<Decomposition protection temperature increase step 1>
In the decomposition protection temperature raising step 1, the temperature is raised in a nitrogen element-containing gas atmosphere while suppressing decomposition of the seed substrate 116. In the production of group III nitride crystals by the OVPE method, heating is performed at a temperature of 500° C. or higher and lower than 1100° C. in a state where an inert gas and a nitrogen element-containing gas NH 3 gas are mixed. The reason for mixing NH 3 is to prevent the seed substrate 116 from being decomposed due to desorption of N atoms. Further, heating may be performed in a state in which H 2 gas is further mixed.
 <分解保護昇温工程2>
 分解保護昇温工程2では、III族酸化物ガスと窒素元素含有ガス雰囲気で、種基板116の分解を抑制しながら昇温を行う。OVPE法によるIII族窒化物結晶の製造において、1100℃以上1500℃未満までは、Hガス、不活性ガス、III族元素酸化物ガス、および窒素元素含有ガスNHガスと、を混合した状態で加熱を行う。III族元素酸化物ガスを混合する理由は、窒素元素含有ガスのみでは分解を抑制することができないためである。III族窒化物結晶の成長の駆動力を付することで、分解を抑制することが可能となる。
<Decomposition protection temperature increase step 2>
In the decomposition protection temperature raising step 2, the temperature is raised while suppressing the decomposition of the seed substrate 116 in a group III oxide gas and nitrogen element-containing gas atmosphere. In the production of group III nitride crystals by the OVPE method, from 1100°C to less than 1500°C, H 2 gas, inert gas, group III element oxide gas, and nitrogen element-containing gas NH 3 gas are mixed. Heating is performed with The reason why group III element oxide gas is mixed is that decomposition cannot be suppressed with nitrogen element-containing gas alone. By providing a driving force for the growth of Group III nitride crystals, it is possible to suppress decomposition.
 <成長工程>
 成長工程では、原料チャンバ100でIII族元素酸化物ガスを生成し育成チャンバ111へ供給するとともに、窒素元素含有ガスを育成チャンバ111へ供給し、種基板116上でIII族窒化物結晶の生成を行う。具体的には、成長工程は、反応性ガス供給工程、III族元素酸化物ガス生成工程、III族元素酸化物ガス供給工程、窒素元素含有ガス供給工程、III族窒化物結晶生成工程、及び残留ガス排出工程を有する。
<Growth process>
In the growth process, a group III element oxide gas is generated in the raw material chamber 100 and supplied to the growth chamber 111, and a nitrogen element-containing gas is supplied to the growth chamber 111 to generate a group III nitride crystal on the seed substrate 116. conduct. Specifically, the growth process includes a reactive gas supply process, a group III element oxide gas generation process, a group III element oxide gas supply process, a nitrogen element-containing gas supply process, a group III nitride crystal generation process, and a process for generating a group III nitride crystal. It has a gas exhaust process.
 <反応性ガス供給工程>
 反応性ガス供給工程では、反応性ガス供給管103から反応性ガスを原料チャンバ100内の原料反応室101へ供給する。上述の通り、反応性ガスは、必要に応じて還元性ガス又は酸化性ガスを用いることができる。本実施の形態1では、出発III族元素源105として金属Gaを用いているため、反応性ガスとしてHOガスを用いる。
<Reactive gas supply process>
In the reactive gas supply step, reactive gas is supplied from the reactive gas supply pipe 103 to the raw material reaction chamber 101 in the raw material chamber 100 . As mentioned above, a reducing gas or an oxidizing gas can be used as the reactive gas as necessary. In the first embodiment, since metal Ga is used as the starting group III element source 105, H 2 O gas is used as the reactive gas.
 <III族元素酸化物ガス生成工程>
 III族元素酸化物ガス生成工程では、反応性ガス供給工程で原料反応室101へ供給された反応性ガスが、出発III族元素源105であるGaと反応し、III族元素酸化物ガスであるGaOガスを生成する。生成されたGaOガスは、III族元素酸化物ガス排出口107を経由し、原料反応室101から原料チャンバ100に排出される。排出されたGaOガスは、第1搬送ガス供給口102から原料チャンバへと供給される第1搬送ガスと混合され、ガス排出口108へと供給される。本実施の形態1では、第1ヒータ106によって原料チャンバ100を加熱する。原料チャンバ100を加熱する場合、原料チャンバ100の温度を、GaOガスの沸点の観点から800℃以上とすることが好ましい。また、原料チャンバ100の温度を、育成チャンバ111よりも低温とすることが好ましい。後述のように第2ヒータ115によって育成チャンバを加熱する場合には、原料チャンバ100の温度を、例えば、1800℃未満とすることが好ましい。出発III族元素源105は、原料反応室101内に配置された原料ボート104内に載置されている。原料ボート104は、反応性ガスと出発III族元素源との接触面積を大きくできる形状であることが好ましい。例えば、出発III族元素源105と反応性ガスとが非接触の状態で原料反応室101を通過することを防ぐために、原料ボート104は多段の皿形状であることが好ましい。
<Group III element oxide gas generation process>
In the group III element oxide gas generation step, the reactive gas supplied to the raw material reaction chamber 101 in the reactive gas supply step reacts with Ga, which is the starting group III element source 105, to form a group III element oxide gas. Generate Ga 2 O gas. The generated Ga 2 O gas is discharged from the raw material reaction chamber 101 to the raw material chamber 100 via the group III element oxide gas outlet 107 . The discharged Ga 2 O gas is mixed with the first carrier gas supplied from the first carrier gas supply port 102 to the raw material chamber, and is supplied to the gas exhaust port 108 . In the first embodiment, the raw material chamber 100 is heated by the first heater 106. When heating the raw material chamber 100, the temperature of the raw material chamber 100 is preferably set to 800° C. or higher from the viewpoint of the boiling point of Ga 2 O gas. Further, it is preferable that the temperature of the raw material chamber 100 is lower than that of the growth chamber 111. When the growth chamber is heated by the second heater 115 as described later, it is preferable that the temperature of the raw material chamber 100 is, for example, less than 1800°C. The starting group III element source 105 is placed in a raw material boat 104 disposed within the raw material reaction chamber 101 . The raw material boat 104 preferably has a shape that can increase the contact area between the reactive gas and the starting Group III element source. For example, in order to prevent the starting Group III element source 105 and the reactive gas from passing through the raw material reaction chamber 101 in a non-contact state, the raw material boat 104 is preferably in the shape of a multi-tiered dish.
 なお、III族元素酸化物ガスを生成する方法には、大別して、出発III族元素源105を還元する方法と、出発III族元素源105を酸化する方法とがある。例えば、還元する方法においては、出発III族元素源105として酸化物(例えばGa)、反応性ガスとして還元性ガス(例えばHガス、COガス、CHガス、Cガス、HSガス、SOガス)を用いる。一方、酸化する方法においては、出発III族元素源105として非酸化物(例えば液体Ga)、反応性ガスとしては酸化性ガス(例えばHOガス、Oガス、COガス、CO2ガス、NOガス、NOガス、NOガス)を用いる。 The methods for producing the group III element oxide gas can be roughly divided into a method of reducing the starting group III element source 105 and a method of oxidizing the starting group III element source 105. For example, in the reducing method, an oxide (e.g., Ga 2 O 3 ) is used as the starting group III element source 105, and a reducing gas (e.g., H 2 gas, CO gas, CH 4 gas, C 2 H 6 gas) is used as the reactive gas. , H 2 S gas, SO 2 gas). On the other hand, in the oxidation method, the starting Group III element source 105 is a non-oxide (e.g., liquid Ga), and the reactive gas is an oxidizing gas (e.g., H 2 O gas, O 2 gas, CO gas, CO 2 gas, NO gas, N 2 O gas, NO 2 gas) is used.
 また、出発III族元素源105の他に、In源、Al源を出発III族元素として採用できる。第一搬送ガスとしては、不活性ガス、Hガス等を用いることができる。 Further, in addition to the starting group III element source 105, an In source and an Al source can be employed as the starting group III element. As the first carrier gas, an inert gas, H2 gas, etc. can be used.
 <III族元素酸化物ガス供給工程>
 III族元素酸化物ガス供給工程では、III族元素酸化物ガス生成工程で生成されたGaOガスを、ガス排出口108、接続管109、ガス供給口118を経由し育成チャンバ111へと供給する。原料チャンバ100と育成チャンバ111とを接続する接続管109の温度が、原料チャンバ100の温度より低下すると、III族元素酸化物ガスを生成する反応の逆反応が生じ、出発III族元素源105が接続管109内で析出する。したがって、接続管109は、第3ヒータ110によって、原料チャンバ100の温度より低下しないよう第1ヒータ106より高温に加熱されることが好ましい。
<Group III element oxide gas supply process>
In the group III element oxide gas supply step, the Ga 2 O gas generated in the group III element oxide gas generation step is supplied to the growth chamber 111 via the gas exhaust port 108, the connecting pipe 109, and the gas supply port 118. do. When the temperature of the connecting pipe 109 connecting the raw material chamber 100 and the growth chamber 111 falls below the temperature of the raw material chamber 100, a reverse reaction of the reaction that generates the group III element oxide gas occurs, and the starting group III element source 105 It is deposited in the connecting pipe 109. Therefore, it is preferable that the connecting pipe 109 be heated to a higher temperature than the first heater 106 by the third heater 110 so that the temperature does not drop below the temperature of the raw material chamber 100.
 <窒素元素含有ガス供給工程>
 窒素元素含有ガス供給工程では、窒素元素含有ガスを窒素元素含有ガス供給口113から育成チャンバ111に供給する。窒素元素含有ガスの例は、例えば、NHガス、NOガス、NOガス、NOガス、Nガス、Nガスを含む。
<Nitrogen element-containing gas supply process>
In the nitrogen element-containing gas supply step, a nitrogen element-containing gas is supplied to the growth chamber 111 from the nitrogen element-containing gas supply port 113 . Examples of the nitrogen element-containing gas include, for example, NH 3 gas, NO gas, NO 2 gas, N 2 O gas, N 2 H 2 gas, and N 2 H 4 gas.
 <III族窒化物結晶生成工程>
 III族窒化物結晶生成工程では、各供給工程を経て、育成チャンバ内へと供給された原料ガスを反応させ、III族窒化物結晶を種基板116上に成長させる。育成チャンバ111は、第2ヒータ115により、III族元素酸化物ガスと窒素元素含有ガスとが反応する温度まで高温化されることが好ましい。この際、育成チャンバ111の温度は、III族元素酸化物ガスを生成する反応の逆反応が生じないようにするため、原料チャンバ100の温度より低下しないよう、育成チャンバ111の温度を制御することが好ましい。第2ヒータ115によって加熱される育成チャンバ111の温度は、1000℃以上1800℃以下であることが好ましい。また、原料チャンバ100で生成されたGaOガス、及び第1搬送ガスによる育成チャンバ111の温度変動を抑制する理由から、第2ヒータ115と第3ヒータ110との温度は、同じとすることが望ましい。
<Group III nitride crystal generation process>
In the group III nitride crystal generation step, the source gases supplied into the growth chamber through each supply step are reacted to grow a group III nitride crystal on the seed substrate 116. The temperature of the growth chamber 111 is preferably raised by the second heater 115 to a temperature at which the group III element oxide gas and the nitrogen element-containing gas react. At this time, the temperature of the growth chamber 111 should be controlled so that it does not fall below the temperature of the raw material chamber 100 in order to prevent the reverse reaction of the reaction that generates the group III element oxide gas from occurring. is preferred. The temperature of the growth chamber 111 heated by the second heater 115 is preferably 1000°C or more and 1800°C or less. Furthermore, in order to suppress temperature fluctuations in the growth chamber 111 due to the Ga 2 O gas generated in the raw material chamber 100 and the first carrier gas, the temperatures of the second heater 115 and the third heater 110 are set to be the same. is desirable.
 III族元素酸化物供給工程を経て、育成チャンバ111へと供給されたIII族元素酸化物ガスと、窒素元素含有ガス供給工程を経て、育成チャンバ111へと供給される窒素元素含有ガスと、を種基板116より上流で混合することによって、種基板116上でIII族窒化物結晶の成長を行うことができる。 The group III element oxide gas supplied to the growth chamber 111 through the group III element oxide supply step, and the nitrogen element-containing gas supplied to the growth chamber 111 through the nitrogen element-containing gas supply step. By mixing upstream of the seed substrate 116, group III nitride crystals can be grown on the seed substrate 116.
 なお、成長工程に含まれる、反応性ガス供給工程、III族元素酸化物ガス生成工程、III族元素酸化物ガス供給工程、窒素元素含有ガス供給工程、III族窒化物結晶生成工程、及び残留ガス排出工程は、同時に行われていてよい。 Incidentally, the reactive gas supply step, the group III element oxide gas generation step, the group III element oxide gas supply step, the nitrogen element-containing gas supply step, the group III nitride crystal generation step, and the residual gas included in the growth step. The discharge steps may be performed simultaneously.
 第2搬送ガスとしては、不活性ガス、又はHガス等を用いることができる。残留ガス排出工程では、未反応のIII族元素酸化物ガス及び窒素元素含有ガス、並びに第1搬送ガス、第2搬送ガス、及び第3搬送ガスが排気口119から排出される。 As the second carrier gas, an inert gas, H2 gas, or the like can be used. In the residual gas exhausting step, unreacted group III element oxide gas and nitrogen element-containing gas, as well as the first carrier gas, second carrier gas, and third carrier gas are discharged from the exhaust port 119.
 <分解保護降温工程>
 分解保護降温工程では、窒素元素含有ガス雰囲気で、III族窒化物結晶の分解を抑制しながら降温を行う。OVPE法によるIII族窒化物結晶の製造において、500℃以下まで、不活性ガスと窒素元素含有ガスNHガスとを混合した状態で冷却を行う。
<Decomposition protection temperature cooling process>
In the decomposition protection temperature lowering step, the temperature is lowered in a nitrogen element-containing gas atmosphere while suppressing the decomposition of the group III nitride crystal. In the production of group III nitride crystals by the OVPE method, cooling is performed to 500° C. or lower in a mixed state of an inert gas and a nitrogen element-containing gas NH 3 gas.
 <降温工程>
 降温工程では、不活性ガス雰囲気で、III族窒化物結晶の育成チャンバからの取出しが可能な温度まで降温を行う。
<Temperature cooling process>
In the temperature lowering step, the temperature is lowered in an inert gas atmosphere to a temperature at which the group III nitride crystal can be taken out from the growth chamber.
 本実施形態では、降温工程を経て、III族窒化物結晶が成長した種基板116を育成チャンバ111から取出す。 In this embodiment, the seed substrate 116 on which the group III nitride crystal has grown is taken out from the growth chamber 111 after a temperature-lowering step.
 <スライス工程>
 スライス工程では、種基板116上に作製したIII族窒化物結晶をワイヤ又はレーザによってスライスを行う。スライスを実施することによって、III族窒化物結晶と種基板116とを分離する。また、作製したIII族窒化物結晶を複数枚のIII族窒化物基板に分離する。なお、スライスによって得られるIII族窒化物基板は、1枚でも複数枚でもよい。
<Slicing process>
In the slicing step, the group III nitride crystal produced on the seed substrate 116 is sliced using a wire or a laser. By performing slicing, the Group III nitride crystal and the seed substrate 116 are separated. Further, the produced group III nitride crystal is separated into a plurality of group III nitride substrates. Note that the number of group III nitride substrates obtained by slicing may be one or more.
 <研磨工程>
 研磨工程では、スライスによって得られたIII族窒化物基板の表裏面を平滑化する。研磨後のIII族窒化物基板上に、MOVPE法によってデバイス層を形成する観点から、平坦性を向上させることや研磨傷を除去することが重要である。尚、本開示における研磨工程とは、機械研磨(MP)と化学機械研磨(CMP)とを含む。機械研磨MPでは主として、ウェハ全体厚みと、厚み分布の低減を行う。このとき機械研磨MPによって研磨傷が生じることがある。研磨傷は、例えば、図8のフォトルミネッセンス像中に筋状又は線状に示される。化学機械研磨CMPでは主として、ダメージ層や研磨傷の除去を行う。中でも、OVPE法を用いて作製したIII族窒化物基板は、CMPが重要となる。CMPによる研磨時間を長期化することによって、MPによって混入した研磨傷は除去されるが、一方で、αやβの領域(成長の履歴)を反映した表面の凹凸が発生してしまう。表面の凹凸は、MOVPE法によって基板の表面にデバイス層を形成する際のピットの発生原因となる。したがって、研磨傷を除去し、かつ凹凸を最小化するCMPを実施する。なお、ピットは、例えば、逆六角錘、逆十二角錘等の逆多角錘状の凹部である。
<Polishing process>
In the polishing step, the front and back surfaces of the group III nitride substrate obtained by slicing are smoothed. From the viewpoint of forming a device layer by MOVPE on a polished Group III nitride substrate, it is important to improve flatness and remove polishing scratches. Note that the polishing process in the present disclosure includes mechanical polishing (MP) and chemical mechanical polishing (CMP). Mechanical polishing MP mainly reduces the overall wafer thickness and thickness distribution. At this time, polishing scratches may occur due to mechanical polishing MP. Polishing scratches are shown, for example, in the form of streaks or lines in the photoluminescence image of FIG. Chemical mechanical polishing (CMP) mainly removes damaged layers and polishing scratches. Among these, CMP is important for Group III nitride substrates manufactured using the OVPE method. By prolonging the CMP polishing time, polishing scratches introduced by MP are removed, but on the other hand, surface irregularities reflecting the α and β regions (growth history) occur. The surface unevenness causes pits to be generated when a device layer is formed on the surface of the substrate by the MOVPE method. Therefore, CMP is performed to remove polishing scratches and minimize unevenness. Note that the pit is, for example, a concave portion in the shape of an inverted polygonal pyramid such as an inverted hexagonal pyramid or an inverted dodecagonal pyramid.
 以上により、ウェハ表面の研磨傷の除去と凹凸の低減とを両立したIII族窒化物基板を得ることができる。 Through the above steps, it is possible to obtain a group III nitride substrate that achieves both removal of polishing scratches and reduction of unevenness on the wafer surface.
 (実施例と比較例の概要)
 図4に示す成長炉を用いてIII族窒化物結晶の成長を行った。ここでは、III族窒化物結晶としてGaNを成長させた。出発III族元素源として、液体Gaを用い、Gaを反応性ガスであるHOガスと反応させ、生成したGaOガスをIII族元素酸化物ガスとして用いた。窒素元素含有ガスとしては、NHガスを用い、第1搬送ガスおよび第2搬送ガスとして、Hガス及びNガスの混合物を用いた。成長したGaN結晶は、面指数が{30-34}や{11-22}の面から成る多数のピットによって成長表面が覆われていた。本成長モードを用いることによって、ピット中心部への転位の収束が促進され、転位同士の合体や対消滅が発生する。したがって、厚膜化を実施するとともに転位密度の低減が生じる。
(Summary of Examples and Comparative Examples)
Group III nitride crystals were grown using the growth furnace shown in FIG. Here, GaN was grown as a group III nitride crystal. Liquid Ga was used as a starting group III element source, Ga was reacted with H 2 O gas as a reactive gas, and the generated Ga 2 O gas was used as a group III element oxide gas. NH 3 gas was used as the nitrogen element-containing gas, and a mixture of H 2 gas and N 2 gas was used as the first carrier gas and the second carrier gas. The growth surface of the grown GaN crystal was covered with numerous pits consisting of planes with plane indices of {30-34} and {11-22}. By using this growth mode, the convergence of dislocations to the center of the pit is promoted, and dislocations coalesce and pair annihilation occurs. Therefore, as the film becomes thicker, the dislocation density is reduced.
 成長させたGaN結晶から0.3~0.5mm厚のGaN基板を作製し、研磨工程において表裏面の平坦化を行った。ここでは、研磨工程における化学機械研磨CMPの実施時間を変化させ、表面の平坦性と研磨傷の有無を確認した。化学機械研磨CMPは、200分から780分の範囲で実施した。さらに、研磨したGaN基板上にMOVPE法によって約5~10μmのGaN薄膜成長を行い、成長前のGaN基板の平坦性とMOVPE法によって形成された成長層に発生するピット密度との相関を確認した。なお、ピットは、1μm未満のサイズのものはカウントしないこととした。MOVPE法による成長は、ウェハ表面の温度が1070~1080℃の範囲で実施した。尚、MOVPE法による成長前のGaN基板の表面平坦性評価には、白色干渉顕微鏡による画像中の200μm角から300μm角の範囲の二乗平均面粗さRMS値(Rq値:JIS B0601-2001、ISO25178)を用いた。なお、2001年以降の規格では、RMS値はRq値となっている。また、成長前のGaN基板表面の研磨傷の有無は、表面フォトルミネッセンス像(PL像)を用いて評価した。 A GaN substrate with a thickness of 0.3 to 0.5 mm was prepared from the grown GaN crystal, and the front and back surfaces were flattened in a polishing process. Here, the execution time of chemical mechanical polishing CMP in the polishing process was varied, and the flatness of the surface and the presence or absence of polishing scratches were checked. Chemical mechanical polishing CMP was performed for a period of 200 minutes to 780 minutes. Furthermore, a GaN thin film of about 5 to 10 μm was grown on a polished GaN substrate by MOVPE, and the correlation between the flatness of the GaN substrate before growth and the pit density generated in the growth layer formed by MOVPE was confirmed. . Note that pits with a size of less than 1 μm were not counted. Growth by the MOVPE method was carried out at a wafer surface temperature in the range of 1070 to 1080°C. In addition, to evaluate the surface flatness of the GaN substrate before growth by the MOVPE method, the root mean square surface roughness RMS value (Rq value: JIS B0601-2001, ISO25178) in the range of 200 μm square to 300 μm square in the image taken with a white interference microscope is used. ) was used. Note that in the standards since 2001, the RMS value is the Rq value. Furthermore, the presence or absence of polishing scratches on the surface of the GaN substrate before growth was evaluated using a surface photoluminescence image (PL image).
 (実施例1)
 OVPE製GaN基板に化学機械研磨CMPを施し、二乗平均面粗さRMS値が8.42nmのサンプルを作製した。成長前のGaN基板をフォトルミネッセンス(PL)観察した結果、表面の研磨傷は確認されなかった。OVPE製GaN基板の上にMOVPE法によりGaN成長を行った結果、ピット密度が0個/cmであった。
(Example 1)
A GaN substrate made of OVPE was subjected to chemical mechanical polishing CMP to produce a sample having a root mean square surface roughness RMS value of 8.42 nm. Photoluminescence (PL) observation of the GaN substrate before growth revealed no polishing scratches on the surface. When GaN was grown on an OVPE GaN substrate by the MOVPE method, the pit density was 0/cm 2 .
 (実施例2)
 OVPE製GaN基板に化学機械研磨CMPを施し、二乗平均面粗さRMS値が4.48nmのサンプルを作製した。成長前のGaN基板をフォトルミネッセンス(PL)観察した結果、表面の研磨傷は確認されなかった。OVPE製GaN基板の上にMOVPE法によりGaN成長を行った結果、ピット密度が0個/cmであった。
(Example 2)
A GaN substrate made of OVPE was subjected to chemical mechanical polishing CMP to produce a sample having a root mean square surface roughness RMS value of 4.48 nm. Photoluminescence (PL) observation of the GaN substrate before growth revealed no polishing scratches on the surface. When GaN was grown on an OVPE GaN substrate by the MOVPE method, the pit density was 0/cm 2 .
 (実施例3)
 OVPE製GaN基板に化学機械研磨CMPを施し、二乗平均面粗さRMS値が2.44nmのサンプルを作製した。成長前のGaN基板をフォトルミネッセンス(PL)観察した結果、表面の研磨傷は確認されなかった。OVPE製GaN基板の上にMOVPE法によりGaN成長を行った結果、ピット密度が0個/cmであった。
(Example 3)
A sample having a root mean square surface roughness RMS value of 2.44 nm was prepared by subjecting an OVPE GaN substrate to chemical mechanical polishing CMP. Photoluminescence (PL) observation of the GaN substrate before growth revealed no polishing scratches on the surface. When GaN was grown on an OVPE GaN substrate by the MOVPE method, the pit density was 0/cm 2 .
 (実施例4)
 OVPE製GaN基板に化学機械研磨CMPを施し、二乗平均面粗さRMS値が9.80nmのサンプルを作製した。成長前のGaN基板をフォトルミネッセンス(PL)観察した結果、表面の研磨傷は確認されなかった。OVPE製GaN基板の上にMOVPE法によりGaN成長を行った結果、ピット密度が9.75個/cmであった。
(Example 4)
A GaN substrate made of OVPE was subjected to chemical mechanical polishing CMP to produce a sample having a root mean square surface roughness RMS value of 9.80 nm. Photoluminescence (PL) observation of the GaN substrate before growth revealed no polishing scratches on the surface. As a result of GaN growth performed on an OVPE GaN substrate by the MOVPE method, the pit density was 9.75 pieces/cm 2 .
 (実施例5)
 OVPE製GaN基板に化学機械研磨CMPを施し、二乗平均面粗さRMS値が8.94nmのサンプルを作製した。成長前のGaN基板をフォトルミネッセンス(PL)観察した結果、表面の研磨傷は確認されなかった。OVPE製GaN基板の上にMOVPE法によりGaN成長を行った結果、ピット密度が0.25個/cmであった。
(Example 5)
A GaN substrate made of OVPE was subjected to chemical mechanical polishing CMP to produce a sample having a root mean square surface roughness RMS value of 8.94 nm. Photoluminescence (PL) observation of the GaN substrate before growth revealed no polishing scratches on the surface. As a result of GaN growth performed on an OVPE GaN substrate by the MOVPE method, the pit density was 0.25 pieces/cm 2 .
 (比較例1)
 OVPE製GaN基板に化学機械研磨CMPをおよそ780分未満施し、二乗平均面粗さRMS値が10.7nmのサンプルを作製した。成長前のGaN基板をフォトルミネッセンス(PL)観察した結果、表面の研磨傷は確認されなかった。OVPE製GaN基板の上にMOVPE法によりGaN成長を行った結果、ピット密度が73.5個/cmであった。
(Comparative example 1)
A chemical mechanical polishing CMP was applied to an OVPE GaN substrate for less than approximately 780 minutes to produce a sample having a root mean square surface roughness RMS value of 10.7 nm. Photoluminescence (PL) observation of the GaN substrate before growth revealed no polishing scratches on the surface. As a result of GaN growth performed on an OVPE GaN substrate by the MOVPE method, the pit density was 73.5/cm 2 .
 以上の結果を図6にまとめた。ここから分かるように、二乗平均面粗さRMS値を10nm以下とすることで、OVPE製GaN基板の上に成長させたMOVPE成長層のピット密度を20個/cm以下とすることができる。さらに、二乗平均面粗さRMS値を8.4nm以下とすることで、MOVPE成長層のピット密度を1個未満/cm、よって、実質的にピット密度を0個/cmとすることができる。つまり、二重平均面粗さRMS値10nm以下のOVPE製GaN基板を用いれば、その上に結晶成長させたデバイス層のピットの発生を抑制することができ、ダイオードやトランジスタ等を駆動させる際の耐電圧の向上や、リーク電流の低減を図ることができる。 The above results are summarized in Figure 6. As can be seen from this, by setting the root mean square surface roughness RMS value to 10 nm or less, the pit density of the MOVPE growth layer grown on the OVPE GaN substrate can be set to 20 pits/cm 2 or less. Furthermore, by setting the root mean square surface roughness RMS value to 8.4 nm or less, it is possible to reduce the pit density of the MOVPE growth layer to less than 1 pit/cm 2 , and therefore to substantially 0 pit density/cm 2 . can. In other words, if an OVPE GaN substrate with a double average surface roughness RMS value of 10 nm or less is used, it is possible to suppress the occurrence of pits in the device layer grown on it, and it is possible to suppress the occurrence of pits in the device layer grown on it. It is possible to improve withstand voltage and reduce leakage current.
 また、GaN基板の化学機械研磨CMPの実施時間と二重平均面粗さRMS値との関係の一例を図7に示す。図7に示すように、CMP処理時間の長期化によって、二重平均面粗さRMS値が大きくなることが分かる。つまり、図6及び図7との関係から、二重平均面粗さRMS値を10nm以下とするには、化学機械研磨CMPの実施時間を従来の800分よりも短く、およそ700分以下にする必要があることがわかる。さらに、二乗平均面粗さRMS値を8.4nm以下とするには、化学機械研磨CMPの実施時間を600分以下とする必要があることがわかる。 Further, FIG. 7 shows an example of the relationship between the execution time of chemical mechanical polishing CMP of a GaN substrate and the double average surface roughness RMS value. As shown in FIG. 7, it can be seen that the double average surface roughness RMS value increases as the CMP processing time increases. In other words, from the relationship with Figures 6 and 7, in order to make the double average surface roughness RMS value 10 nm or less, the chemical mechanical polishing CMP execution time should be shorter than the conventional 800 minutes, and approximately 700 minutes or less. I understand that it is necessary. Furthermore, it can be seen that in order to make the root mean square surface roughness RMS value 8.4 nm or less, the chemical mechanical polishing CMP execution time needs to be 600 minutes or less.
 図7のプロットのサンプルでは、表面の研磨傷は確認されなかった。一方で、化学機械研磨CMPの実施時間が60分の場合の表面フォトルミネッセンス(PL)像を図8に示す。図8の矢印で示すように、化学機械研磨CMPの実施時間が短すぎると、筋状の研磨傷120が残っている。研磨傷は、デバイス層形成時のピットや転位の発生原因となるため問題である。つまり、研磨傷を除去するためには、具体的には、III族窒化物基板の表面内の任意の0.2mm角の範囲で、研磨傷が1個未満となるようにする必要がある。このため、化学機械研磨CMPの実施時間を、60分を越える時間、例えば、120分以上、さらに、200分以上とする必要があることがわかる。 In the sample plotted in Figure 7, no polishing scratches were observed on the surface. On the other hand, FIG. 8 shows a surface photoluminescence (PL) image when the chemical mechanical polishing CMP was performed for 60 minutes. As shown by the arrows in FIG. 8, if the chemical mechanical polishing CMP is performed for too short a time, streak-like polishing scratches 120 remain. Polishing scratches are a problem because they cause pits and dislocations to occur during device layer formation. That is, in order to remove polishing scratches, specifically, it is necessary to reduce the number of polishing scratches to less than one in any 0.2 mm square area within the surface of the group III nitride substrate. Therefore, it can be seen that it is necessary to carry out chemical mechanical polishing CMP for a time exceeding 60 minutes, for example, 120 minutes or more, and further, 200 minutes or more.
 したがって、研磨傷を除去し、かつ二重平均面粗さRMS値が最も小さくなる値が最適な化学機械研磨CMPの条件となる。具体的には、化学機械研磨CMPの時間は、例えば、120分以上700分以下であり、さらに、200分以上600分以下であってもよい。 Therefore, the optimum chemical mechanical polishing CMP condition is the value that removes polishing scratches and gives the smallest double average surface roughness RMS value. Specifically, the chemical mechanical polishing CMP time may be, for example, 120 minutes or more and 700 minutes or less, and further may be 200 minutes or more and 600 minutes or less.
 本開示に係るIII族窒化物基板によれば、高キャリア濃度、低抵抗、低転位密度、かつ表面平坦性が良好であり、該基板の表面へのデバイス層の形成時に、ピットの発生を抑制することができる。 According to the Group III nitride substrate according to the present disclosure, it has high carrier concentration, low resistance, low dislocation density, and good surface flatness, and the generation of pits is suppressed when forming a device layer on the surface of the substrate. can do.
100  原料チャンバ
101  原料反応室
102  第1搬送ガス供給口
103  反応性ガス供給管
104  原料ボート
105  出発III族元素源
106  第1ヒータ
107  III族元素酸化物ガス排出口
108  ガス排出口
109  接続管
110  第3ヒータ
111  育成チャンバ
112  第3搬送ガス供給口
113  窒素元素含有ガス供給口
114  第2搬送ガス供給口
115  第2ヒータ
116  種基板
117  基板サセプタ
118  ガス供給口
119  排気口
120  研磨傷
100 Raw material chamber 101 Raw material reaction chamber 102 First carrier gas supply port 103 Reactive gas supply pipe 104 Raw material boat 105 Starting group III element source 106 First heater 107 Group III element oxide gas outlet 108 Gas outlet 109 Connecting pipe 110 Third heater 111 Growth chamber 112 Third carrier gas supply port 113 Nitrogen element-containing gas supply port 114 Second carrier gas supply port 115 Second heater 116 Seed substrate 117 Substrate susceptor 118 Gas supply port 119 Exhaust port 120 Polishing scratch

Claims (9)

  1.  GaN基板上に形成されたGaNエピタキシャル層からなるIII族窒化物基板であって、
     不純物元素として酸素を含み、
     前記III族窒化物基板のc面について研磨された表面内において、第1不純物濃度を示す少なくとも1つの第1領域と、前記第1不純物濃度よりも低い第2不純物濃度を示す第2領域と、を有し、
     前記少なくとも1つの前記第1領域の第1転位密度は、前記第2領域の第2転位密度よりも低く、
     前記III族窒化物基板の前記表面内の任意の0.2mm角の範囲で、二乗平均面粗さRMS値が10nm以下である、III族窒化物基板。
    A group III nitride substrate consisting of a GaN epitaxial layer formed on a GaN substrate,
    Contains oxygen as an impurity element,
    At least one first region exhibiting a first impurity concentration within the polished surface of the c-plane of the Group III nitride substrate, and a second region exhibiting a second impurity concentration lower than the first impurity concentration; has
    a first dislocation density in the at least one first region is lower than a second dislocation density in the second region;
    A group III nitride substrate, wherein the root mean square surface roughness RMS value is 10 nm or less in any 0.2 mm square range within the surface of the group III nitride substrate.
  2.  前記少なくとも1つの前記第1領域は、複数の前記第1領域からなり、
     前記複数の前記第1領域は、前記第2領域を中心として前記第2領域の周囲を囲うように配置されている、請求項1に記載のIII族窒化物基板。
    the at least one first region is comprised of a plurality of first regions;
    The III-nitride substrate according to claim 1, wherein the plurality of first regions are arranged to surround the second region with the second region as the center.
  3.  さらに、前記表面内において、前記第2領域を中心として前記第2領域の周囲を囲うように配置されている6つの第3領域を有し、
     前記複数の前記第1領域は、6つの前記第1領域からなり、
     前記6つの前記第3領域は、前記6つの前記第1領域と周方向に交互に配置されており、
     前記6つの前記第3領域は、前記6つの前記第1領域よりも窪んでいる、請求項2に記載のIII族窒化物基板。
    Furthermore, in the surface, six third regions are arranged surrounding the second region with the second region as the center,
    The plurality of first regions include six first regions,
    The six third regions are arranged alternately with the six first regions in the circumferential direction,
    The III-nitride substrate according to claim 2, wherein the six third regions are more depressed than the six first regions.
  4.  前記III族窒化物基板の表面内の任意の0.2mm角の範囲で、研磨傷が1個未満である、請求項1から3のいずれか一項に記載のIII族窒化物基板。 The Group III nitride substrate according to any one of claims 1 to 3, wherein there is less than one polishing scratch in any 0.2 mm square area within the surface of the Group III nitride substrate.
  5.  前記少なくとも1つの前記第1領域に含まれる不純物は、酸素、シリコンの群から選択される少なくとも1つである、請求項1から3のいずれか一項に記載のIII族窒化物基板。 The Group III nitride substrate according to any one of claims 1 to 3, wherein the impurity contained in the at least one first region is at least one selected from the group of oxygen and silicon.
  6.  前記第1不純物濃度は、酸素濃度が1×1020/cm以上である、請求項1から3のいずれか一項に記載のIII族窒化物基板。 The Group III nitride substrate according to claim 1 , wherein the first impurity concentration is an oxygen concentration of 1×10 20 /cm 3 or more.
  7.  前記少なくとも1つの前記第1領域は、m面成分から構成されており、前記第3領域は、a面成分から構成されている、請求項1から3のいずれか一項に記載のIII族窒化物基板。 Group III nitriding according to any one of claims 1 to 3, wherein the at least one first region is composed of an m-plane component, and the third region is composed of an a-plane component. object board.
  8.  種基板を準備する工程と、
     III族元素酸化物ガスと窒素元素含有ガスとを供給して、前記種基板の上にIII族窒化物結晶を成長させる工程と、
     前記III族窒化物結晶を研磨し、前記III族窒化物結晶の面内の任意の0.2mm角の範囲で、二乗平均面粗さRMS値を10nm以下とする、工程と、
    を含む、III族窒化物基板の製造方法。
    preparing a seed substrate;
    supplying a group III element oxide gas and a nitrogen element-containing gas to grow a group III nitride crystal on the seed substrate;
    a step of polishing the Group III nitride crystal to have a root mean square surface roughness RMS value of 10 nm or less in an arbitrary 0.2 mm square range within the plane of the Group III nitride crystal;
    A method for manufacturing a group III nitride substrate, comprising:
  9.  前記研磨は、化学機械研磨(CMP)を含み、前記化学機械研磨の時間は、120分~700分の範囲である、請求項8に記載のIII族窒化物基板の製造方法。 The method for manufacturing a Group III nitride substrate according to claim 8, wherein the polishing includes chemical mechanical polishing (CMP), and the chemical mechanical polishing time ranges from 120 minutes to 700 minutes.
PCT/JP2023/021470 2022-06-28 2023-06-09 Group iii nitride substrate and manufacturing method thereof WO2024004576A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-103918 2022-06-28
JP2022103918 2022-06-28

Publications (1)

Publication Number Publication Date
WO2024004576A1 true WO2024004576A1 (en) 2024-01-04

Family

ID=89382844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021470 WO2024004576A1 (en) 2022-06-28 2023-06-09 Group iii nitride substrate and manufacturing method thereof

Country Status (1)

Country Link
WO (1) WO2024004576A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015164195A (en) * 2001-06-08 2015-09-10 クリー インコーポレイテッドCree Inc. HIGH SURFACE QUALITY GaN WAFER, AND METHOD OF MANUFACTURING THE SAME
JP2021050107A (en) * 2019-09-24 2021-04-01 パナソニック株式会社 Group III Nitride Substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015164195A (en) * 2001-06-08 2015-09-10 クリー インコーポレイテッドCree Inc. HIGH SURFACE QUALITY GaN WAFER, AND METHOD OF MANUFACTURING THE SAME
JP2021050107A (en) * 2019-09-24 2021-04-01 パナソニック株式会社 Group III Nitride Substrate

Similar Documents

Publication Publication Date Title
JP4537484B2 (en) Growth method using nanostructure adaptive layer and HVPE for producing high quality compound semiconductor material
JP4741506B2 (en) Large area and uniform low dislocation density GaN substrate and its manufacturing process
CN1219314C (en) Semiconductor substrate made from III family nitride
US20070138505A1 (en) Low defect group III nitride films useful for electronic and optoelectronic devices and methods for making the same
US9153742B2 (en) GaN-crystal free-standing substrate and method for producing the same
EP1801269B1 (en) Process for producing a free-standing III-N layer, and free-standing III-N substrate
US8409350B2 (en) Gallium nitride crystal growth method, gallium nitride crystal substrate, epi-wafer manufacturing method, and epi-wafer
JP2003327497A (en) GaN SINGLE CRYSTAL SUBSTRATE, NITRIDE-BASED SEMICONDUCTOR EPITAXIAL SUBSTRATE, NITRIDE-BASED SEMICONDUCTOR DEVICE AND METHOD OF PRODUCING THE SAME
JPH0856015A (en) Formation of semiconductor thin film
JP2007246330A (en) Group iii-v nitride based semiconductor substrate, group iii-v nitride based device and method for manufacturing the same
JP2007246331A (en) Group iii-v nitride based semiconductor substrate and method for manufacturing the same
JP2011037666A (en) Nitride semiconductor free-standing substrate, method for producing nitride semiconductor free-standing substrate, and nitride semiconductor device
JP4618836B2 (en) Nitride-based compound semiconductor substrate and method for manufacturing the same
JP2005244202A (en) Group iii nitride semiconductor laminate
KR20140106590A (en) Semiconductor substrate and method of forming
WO2024004576A1 (en) Group iii nitride substrate and manufacturing method thereof
JPH08203834A (en) Semiconductor thin film and manufacture thereof
JP3975700B2 (en) Method for producing compound semiconductor
EP3435407A1 (en) Method for producing group iii nitride laminate
JP2009149483A (en) Nitride semiconductor free-standing substrate and manufacturing process of nitride semiconductor free-standing substrate
JP2006008500A (en) Method for manufacturing nitride semiconductor substrate and nitride semiconductor substrate
KR101072433B1 (en) Process for the preparation of single crystalline nitride-based semiconductor plate
US20230399770A1 (en) Group iii nitride crystal, group iii nitride semiconductor, group iii nitride substrate, and method for producing group iii nitride crystal
JP2006173148A (en) Self-supported group iii nitride semiconductor substrate and its manufacturing method
JP2022162386A (en) Method for producing group iii nitride crystal and group iii nitride crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831026

Country of ref document: EP

Kind code of ref document: A1