JP2006178302A - Liquid crystal cell driven by lateral electric field - Google Patents

Liquid crystal cell driven by lateral electric field Download PDF

Info

Publication number
JP2006178302A
JP2006178302A JP2004373369A JP2004373369A JP2006178302A JP 2006178302 A JP2006178302 A JP 2006178302A JP 2004373369 A JP2004373369 A JP 2004373369A JP 2004373369 A JP2004373369 A JP 2004373369A JP 2006178302 A JP2006178302 A JP 2006178302A
Authority
JP
Japan
Prior art keywords
liquid crystal
transparent
electric field
crystal cell
transparent member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004373369A
Other languages
Japanese (ja)
Other versions
JP4984389B2 (en
Inventor
Hiromasa Sato
弘昌 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004373369A priority Critical patent/JP4984389B2/en
Publication of JP2006178302A publication Critical patent/JP2006178302A/en
Application granted granted Critical
Publication of JP4984389B2 publication Critical patent/JP4984389B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal cell driven by lateral electric field in which the aperture ratio is more heightened than that in a conventional liquid crystal cell driven by lateral electric field. <P>SOLUTION: The liquid crystal cell driven by lateral electric field is equipped with a pair of transparent substrates 1, 2 placed opposite to each other, a plurality of transparent members 4 arranged between the transparent substrates 1, 2, transparent electrodes 5a, 5b mounted on at least side faces of the transparent members 4, a liquid crystal 3 sandwiched and held between the transparent substrates 1, 2 and the transparent electrodes 5a, 5b, and a sealing materials 6, and has a construction in which each of the transparent members 4 is arranged on a contact face of at least one transparent substrate 1 and has a nearly constant shape of a cross-section in a direction vertical to the transparent member contact face, and the transparent electrodes 5a, 5b are electrically connected so as to apply a lateral electric field to the liquid crystal between mutually adjacent transparent electrodes 5a, 5b. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、基板と平行な方向の電界(以下、横電界という。)をセル内の液晶に印加して液晶の配向方向を制御する横電界駆動液晶セルに関する。   The present invention relates to a horizontal electric field drive liquid crystal cell in which an electric field in a direction parallel to a substrate (hereinafter referred to as a horizontal electric field) is applied to liquid crystal in the cell to control the alignment direction of the liquid crystal.

従来、基板に垂直な方向の電界(以下、縦電界という。)をセル内の液晶に印加して液晶の配向方向を制御する縦電界駆動液晶セルは、ノート型パーソナルコンピュータ、携帯型ゲーム機、電子手帳等の種々の電子機器に、薄型軽量で消費電力の少ない表示部として利用されている。しかし、係る縦電界駆動液晶セルでは、液晶が基板に対して斜めに配向する状態が存在することによって視認する角度(以下、視認角度という。)によって光学的特性が変わってしまい、階調反転、コントラストの低下等を引き起こすという問題がある。   2. Description of the Related Art Conventionally, a vertical electric field driving liquid crystal cell that controls an alignment direction of liquid crystal by applying an electric field in a direction perpendicular to a substrate (hereinafter referred to as a vertical electric field) to the liquid crystal in the cell is a notebook personal computer, a portable game machine, It is used as a thin and light display unit with low power consumption in various electronic devices such as electronic notebooks. However, in such a vertical electric field drive liquid crystal cell, the optical characteristics change depending on the viewing angle (hereinafter referred to as viewing angle) due to the presence of a state in which the liquid crystal is obliquely oriented with respect to the substrate. There is a problem of causing a decrease in contrast.

係る問題を解決するものとして横電界駆動液晶セルが開発されてきた(例えば、特許文献1、特許文献2参照。)。横電界をセル内の液晶に印加して液晶の配向方向を制御する方法では、横電界を印加することによって配向方向が基板にほぼ平行な面内で変化するため、基板に対して斜めに配向する状態が生じず、視認角度によって光学的特性が変化するという問題は生じない。   In order to solve such a problem, a lateral electric field drive liquid crystal cell has been developed (see, for example, Patent Document 1 and Patent Document 2). In the method of controlling the alignment direction of the liquid crystal by applying a horizontal electric field to the liquid crystal in the cell, the alignment direction changes in a plane substantially parallel to the substrate by applying the horizontal electric field. There is no problem that the optical characteristics change depending on the viewing angle.

所謂IPS(In−Plane Switching)技術では、TN(Twisted Nematic)液晶等を挟持する基板のうちの一方の基板面上に画素毎に分離されて配置された複数の電極が設けられ、各画素内の電極間の所定部分に横電界を印加できる構成を有し、電極を基板に垂直な方向に通過する光が遮光されるようになっている。電極上の基板に垂直な方向では横電界以外に縦電界成分も発生し、係る縦電界成分によって遮光すべき光が漏れてしまうことを防止するためである。
特開2000−27602号公報 特開2004−184967号公報
In the so-called IPS (In-Plane Switching) technology, a plurality of electrodes arranged separately for each pixel are provided on one substrate surface of a substrate sandwiching a TN (Twisted Nematic) liquid crystal or the like. In this configuration, a horizontal electric field can be applied to a predetermined portion between the electrodes, and light passing through the electrodes in a direction perpendicular to the substrate is shielded. This is because a vertical electric field component is generated in addition to the horizontal electric field in the direction perpendicular to the substrate on the electrode, and the light to be shielded by the vertical electric field component is prevented from leaking.
JP 2000-27602 A JP 2004-184967 A

しかし、このような従来の横電界駆動液晶セルでは、液晶表示デバイスの用途で視認角度依存性を改善するという観点から開発されてきたため、横電界が主要な領域以外の領域を通過する光を遮光するため、光を通過させる領域の実効的な割合(開口率)が小さいという問題があった。係る開口率の小ささは、液晶を用いた波長可変フィルタ、回折効率可変素子等の光学部品では、光の利用効率の低下につながり、重大な問題となっている。   However, such a conventional lateral electric field driving liquid crystal cell has been developed from the viewpoint of improving the viewing angle dependency in the application of the liquid crystal display device, and therefore, the light passing through the region other than the main region is shielded from light. Therefore, there is a problem that an effective ratio (aperture ratio) of a region through which light passes is small. Such a small aperture ratio is a serious problem in optical components such as a wavelength tunable filter using liquid crystal and a diffraction efficiency variable element, leading to a decrease in light use efficiency.

本発明はこのような問題を解決するためになされたもので、従来の横電界駆動液晶セルよりも開口率を向上させることが可能な横電界駆動液晶セルを提供するものである。   The present invention has been made to solve such problems, and provides a lateral electric field driving liquid crystal cell capable of improving the aperture ratio as compared with a conventional lateral electric field driving liquid crystal cell.

以上の点を考慮して、請求項1に係る発明は、対向する一対の透明基板と、対向する前記透明基板間に設けられた複数の透明部材と、前記透明部材の所定の表面上に設けられた透明電極と、一対の前記透明基板と複数の前記透明部材または前記透明電極との間に挟持される液晶とを備え、各前記透明部材が、各前記透明基板の相互に対向する基板面である対向基板面のうちの少なくとも一方の前記透明基板の対向基板面に平行な透明部材接触面上に設けられ、前記透明部材接触面に垂直な方向に断面形状が略一定の形状を有し、前記透明電極が、前記透明部材の少なくとも側面上に設けられ、隣り合う前記透明電極間で前記液晶に横電界を印加できるように電気的に接続されている構成を有している。   In view of the above points, the invention according to claim 1 is provided on a predetermined surface of the transparent member, a pair of transparent substrates opposed to each other, a plurality of transparent members provided between the opposed transparent substrates. A transparent electrode, a pair of the transparent substrates, and a plurality of the transparent members or a liquid crystal sandwiched between the transparent electrodes, each transparent member facing each other of the transparent substrates The at least one of the opposing substrate surfaces is provided on a transparent member contact surface parallel to the opposing substrate surface of the transparent substrate, and has a substantially constant cross-sectional shape in a direction perpendicular to the transparent member contact surface. The transparent electrode is provided on at least the side surface of the transparent member, and is electrically connected so that a lateral electric field can be applied to the liquid crystal between the adjacent transparent electrodes.

この構成により、各透明部材が透明部材接触面に垂直な方向に断面形状が略一定の形状を有し、透明電極が透明部材の少なくとも側面上に設けられ、隣り合う透明電極間で液晶に横電界を印加できるように電気的に接続されているため、横電界を有効に印加できると共に、光が透明部材と透明電極とを透過するため、従来の横電界駆動液晶セルよりも開口率を向上させることが可能な横電界駆動液晶セルを実現できる。   With this configuration, each transparent member has a substantially constant cross-sectional shape in a direction perpendicular to the transparent member contact surface, the transparent electrode is provided on at least the side surface of the transparent member, and the liquid crystal is horizontally disposed between the adjacent transparent electrodes. Since it is electrically connected so that an electric field can be applied, a lateral electric field can be applied effectively, and light passes through a transparent member and a transparent electrode, so that the aperture ratio is improved over conventional lateral electric field drive liquid crystal cells. It is possible to realize a horizontal electric field drive liquid crystal cell that can be formed.

また、請求項2に係る発明は、請求項1において、各前記透明部材が柱状の形状を有し、前記柱状の形状の中心軸が前記透明部材接触面に垂直な方向を向いている構成を有している。   The invention according to claim 2 is the structure according to claim 1, wherein each of the transparent members has a columnar shape, and a central axis of the columnar shape faces a direction perpendicular to the transparent member contact surface. Have.

この構成により、請求項1の効果に加え、各透明部材が柱状の形状を有するため、2次元的な周期性を有する格子状に配置でき、その結果、横電界が印加可能な領域をさらに増加させることができるため、波長可変フィルタ等の所定の用途では開口率等をさらに向上させることが可能な横電界駆動液晶セルを実現できる。   With this configuration, in addition to the effect of claim 1, each transparent member has a columnar shape, so that it can be arranged in a lattice shape having a two-dimensional periodicity, and as a result, the area to which a lateral electric field can be applied is further increased. Therefore, in a predetermined application such as a wavelength tunable filter, a lateral electric field drive liquid crystal cell that can further improve the aperture ratio or the like can be realized.

また、請求項3に係る発明は、請求項1において、各前記透明部材が、直方体状の形状を有し、周期的に配置されて隔壁状の格子をなす構成を有している。   According to a third aspect of the present invention, in the first aspect, each of the transparent members has a rectangular parallelepiped shape and is periodically arranged to form a partition-like lattice.

この構成により、請求項1の効果に加え、各透明部材が、直方体状の形状を有し、周期的に配置されて隔壁状の格子を構成するため、光の利用効率の高い回折格子としての横電界駆動液晶セルを実現できる。   With this configuration, in addition to the effect of the first aspect, each transparent member has a rectangular parallelepiped shape, and is periodically arranged to form a partition-like grating. Therefore, as a diffraction grating with high light utilization efficiency, A horizontal electric field drive liquid crystal cell can be realized.

また、請求項4に係る発明は、請求項1から3までのいずれか1項において、各前記透明部材が、前記透明部材が設けられた前記透明基板の前記透明部材接触面から離れる方向に断面形状の面積が小さくなるようにテーパーがついている構成を有している。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein each of the transparent members has a cross section in a direction away from the transparent member contact surface of the transparent substrate on which the transparent member is provided. The structure has a taper so that the area of the shape is small.

この構成により、請求項1から3までのいずれか1項の効果に加え、各透明部材が、透明部材が設けられた透明基板の透明部材接触面から離れる方向に断面形状の面積が小さくなるようにテーパーがついているため、導電膜の堆積等の作製工程を容易にすることが可能な横電界駆動液晶セルを実現できる。   According to this configuration, in addition to the effect of any one of claims 1 to 3, each transparent member has a reduced cross-sectional area in a direction away from the transparent member contact surface of the transparent substrate on which the transparent member is provided. Therefore, it is possible to realize a lateral electric field drive liquid crystal cell capable of facilitating a manufacturing process such as deposition of a conductive film.

また、請求項5に係る発明は、請求項1から4までのいずれか1項において、少なくとも前記透明部材の屈折率が、前記液晶の常光屈折率または異常光屈折率にほぼ等しい構成を有している。   The invention according to claim 5 has a configuration according to any one of claims 1 to 4, wherein at least the refractive index of the transparent member is substantially equal to the ordinary light refractive index or the extraordinary light refractive index of the liquid crystal. ing.

この構成により、請求項1から4までのいずれか1項の効果に加え、少なくとも透明部材の屈折率が、液晶の常光屈折率または異常光屈折率にほぼ等しいため、電界制御の回折格子等の用途では、横電界を印加することなく光を透過させる機能または回折させる機能を確保することが可能な横電界駆動液晶セルを実現できる。   With this configuration, in addition to the effect of any one of claims 1 to 4, at least the refractive index of the transparent member is substantially equal to the ordinary light refractive index or the extraordinary light refractive index of the liquid crystal. In applications, it is possible to realize a horizontal electric field driving liquid crystal cell capable of ensuring a function of transmitting light or a function of diffracting without applying a horizontal electric field.

また、請求項6に係る発明は、請求項1から4までのいずれか1項において、少なくとも前記透明部材の屈折率が、前記液晶の常光屈折率と異常光屈折率との間のいずれかの値の屈折率になっている構成を有している。   The invention according to claim 6 is the invention according to any one of claims 1 to 4, wherein at least the refractive index of the transparent member is between the ordinary light refractive index and the extraordinary light refractive index of the liquid crystal. The structure has a refractive index of the value.

この構成により、請求項1から4までのいずれか1項の効果に加え、少なくとも透明部材の屈折率が、液晶の常光屈折率と異常光屈折率との間のいずれかの値の屈折率になっているため、波長可変フィルタ等の所定の用途では、光を透過する際の迷光、散乱光等を抑制でき、光の利用効率をさらに向上させることが可能な横電界駆動液晶セルを実現できる。   With this configuration, in addition to the effect of any one of claims 1 to 4, at least the refractive index of the transparent member has a refractive index of any value between the ordinary light refractive index and the extraordinary light refractive index of the liquid crystal. Therefore, in a predetermined application such as a wavelength tunable filter, it is possible to realize a horizontal electric field drive liquid crystal cell that can suppress stray light, scattered light, and the like when transmitting light and can further improve the light use efficiency. .

また、請求項7に係る発明は、請求項1から6までのいずれか1項において、複数の前記透明部材が、前記透明部材接触面上に周期的に配列され格子をなす構成を有している。   The invention according to claim 7 has a configuration in which the plurality of transparent members are periodically arranged on the transparent member contact surface to form a lattice in any one of claims 1 to 6. Yes.

この構成により、請求項1から6までのいずれか1項の効果に加え、複数の透明部材が、透明部材接触面上に周期的に配列され格子をなすため、TFT基板を用いることなく電極間に電界を印加できる配線処理を行うことが可能な横電界駆動液晶セルを実現できる。   According to this configuration, in addition to the effect of any one of claims 1 to 6, a plurality of transparent members are periodically arranged on the transparent member contact surface to form a lattice. It is possible to realize a lateral electric field drive liquid crystal cell capable of performing a wiring process that can apply an electric field to the substrate.

また、請求項8に係る発明は、請求項1から7までのいずれか1項において、複数の前記透明部材が、2つの前記透明基板の前記透明部材接触面上に分配されて形成されている構成を有している。   The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein the plurality of transparent members are distributed on the transparent member contact surfaces of the two transparent substrates. It has a configuration.

この構成により、請求項1から7までのいずれか1項の効果に加え、複数の透明部材が、2つの透明基板の透明部材接触面上に分配されて形成されているため、透明部材上に形成された透明電極の先端部と底部とが対向することになり、先端部同士が対向する場合とは相対的な電極配置が異なり、透明部材の先端近傍で発生する横電界以外の電場成分を軽減することが可能な横電界駆動液晶セルを実現できる。   According to this configuration, in addition to the effect of any one of claims 1 to 7, a plurality of transparent members are distributed and formed on the transparent member contact surfaces of the two transparent substrates. The tip and bottom of the formed transparent electrode are opposed to each other, and the relative electrode arrangement is different from the case where the tips are opposed to each other, and the electric field components other than the transverse electric field generated near the tip of the transparent member are A lateral electric field drive liquid crystal cell that can be reduced can be realized.

また、請求項9に係る発明は、請求項8において、各前記透明基板に分配されて形成されている複数の前記透明部材の相対的な配置が、2つの前記透明基板間で同一である構成を有している。   The invention according to claim 9 is the structure according to claim 8, wherein the relative arrangement of the plurality of transparent members distributed and formed on each transparent substrate is the same between the two transparent substrates. have.

この構成により、請求項8の効果に加え、各透明基板に分配されて形成されている複数の透明部材の相対的な配置が、2つの透明基板間で同一であるため、透明部材間の間隔を広げることができ、電極および配線等の形成、配向処理等の工程を容易にすることが可能な横電界駆動液晶セルを実現できる。   According to this configuration, in addition to the effect of the eighth aspect, the relative arrangement of the plurality of transparent members distributed and formed on each transparent substrate is the same between the two transparent substrates. It is possible to realize a lateral electric field drive liquid crystal cell capable of facilitating processes such as formation of electrodes and wiring, alignment processing, and the like.

また、請求項10に係る発明は、請求項1から9までのいずれか1項において、前記液晶がコレステリック液晶であり、前記コレステリック液晶の螺旋軸が前記透明部材接触面に対してほぼ垂直な方向に配向している構成を有している。   In a tenth aspect of the present invention, the liquid crystal is a cholesteric liquid crystal according to any one of the first to ninth aspects, and the spiral axis of the cholesteric liquid crystal is substantially perpendicular to the contact surface of the transparent member. It has the structure which is orientated.

この構成により、請求項1から9までのいずれか1項の効果に加え、コレステリック液晶の螺旋軸が透明部材接触面に対してほぼ垂直な方向に配向しているため、螺旋のピッチを選択することによってこのピッチに応じた光を選択的に反射等することが可能な横電界駆動液晶セルを実現できる。   According to this configuration, in addition to the effect of any one of claims 1 to 9, the helical axis of the cholesteric liquid crystal is aligned in a direction substantially perpendicular to the transparent member contact surface, so that the helical pitch is selected. Accordingly, it is possible to realize a horizontal electric field drive liquid crystal cell capable of selectively reflecting light corresponding to the pitch.

また、請求項11に係る発明は、請求項10において、前記コレステリック液晶が、カイラルスメクチックC相を呈する液晶を含む構成を有している。   In an eleventh aspect of the present invention, the cholesteric liquid crystal according to the tenth aspect includes a liquid crystal exhibiting a chiral smectic C phase.

この構成により、請求項10の効果に加え、コレステリック液晶がカイラルスメクチックC相を呈する液晶を含むため、横電界を印加することによって螺旋のピッチを高速かつ低電圧で制御でき、制御性良く透過する光の波長を変えることが可能な横電界駆動液晶セルを実現できる。   With this configuration, in addition to the effect of the tenth aspect, since the cholesteric liquid crystal includes a liquid crystal exhibiting a chiral smectic C phase, the helical pitch can be controlled at a high speed and a low voltage by applying a lateral electric field, and the light is transmitted with good controllability. A transverse electric field drive liquid crystal cell capable of changing the wavelength of light can be realized.

また、請求項12に係る発明は、請求項1から11までのいずれか1項に記載の横電界駆動液晶セルが、複数積層されている構成を有している。   The invention according to claim 12 has a configuration in which a plurality of lateral electric field drive liquid crystal cells according to any one of claims 1 to 11 are stacked.

この構成により、請求項1から11までのいずれか1項の効果に加え、請求項1から10までのいずれか1項に記載の横電界駆動液晶セルが複数積層されているため、コントラスト等の光学的性能をさらに向上させることが可能な横電界駆動液晶セルを実現できる。   According to this configuration, in addition to the effect of any one of claims 1 to 11, a plurality of the transverse electric field drive liquid crystal cells according to any one of claims 1 to 10 are stacked. A lateral electric field drive liquid crystal cell capable of further improving optical performance can be realized.

また、請求項13に係る発明は、請求項12において、積層される各前記横電界駆動液晶セルの各前記透明部材が、積層される各前記横電界駆動液晶セル間で相互に重ならないように、各前記横電界駆動液晶セルが積層されている構成を有している。   According to a thirteenth aspect of the present invention, in the twelfth aspect, the transparent members of the stacked horizontal electric field drive liquid crystal cells are not overlapped with each other of the stacked horizontal electric field drive liquid crystal cells. The lateral electric field driving liquid crystal cells are stacked.

この構成により、請求項12の効果に加え、積層される各横電界駆動液晶セルの各透明部材が、積層される各横電界駆動液晶セル間で相互に重ならないように、各横電界駆動液晶セルが積層されているため、コントラストのむらを低減することが可能な横電界駆動液晶セルを実現できる。   According to this configuration, in addition to the effect of the twelfth aspect, each horizontal electric field driving liquid crystal is arranged so that the transparent members of the stacked horizontal electric field driving liquid crystal cells do not overlap each other between the stacked horizontal electric field driving liquid crystal cells. Since the cells are stacked, it is possible to realize a lateral electric field drive liquid crystal cell that can reduce unevenness in contrast.

本発明は、各透明部材が透明部材接触面に垂直な方向に断面形状が略一定の形状を有し、透明電極が透明部材の少なくとも側面上に設けられ、隣り合う透明電極間で液晶に横電界を印加できるように電気的に接続されているため、横電界を有効に印加できると共に、光が透明部材と透明電極とを透過するため、従来の横電界駆動液晶セルよりも開口率を向上させることができるという効果を有する横電界駆動液晶セルを提供できる。   In the present invention, each transparent member has a substantially constant cross-sectional shape in a direction perpendicular to the contact surface of the transparent member, the transparent electrode is provided on at least the side surface of the transparent member, and the liquid crystal is horizontally disposed between the adjacent transparent electrodes. Since it is electrically connected so that an electric field can be applied, a lateral electric field can be applied effectively, and light passes through a transparent member and a transparent electrode, so that the aperture ratio is improved over conventional lateral electric field drive liquid crystal cells. It is possible to provide a horizontal electric field drive liquid crystal cell having an effect of being able to be made.

以下、本発明の実施の形態について、図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施の形態)
以下、本発明の横電界駆動液晶セルを回折効率が可変な回折効率可変素子に適用する場合について説明する。図1は、本発明の第1の実施の形態に係る横電界駆動液晶セルの概念的な構成を示す側断面図である。図1において、横電界駆動液晶セル100は、対向する一対の透明基板1、2と、対向する透明基板1、2間に設けられた複数の透明部材4と、透明部材4の所定の表面上に設けられた透明電極5a、5bと、一対の透明基板1、2と複数の透明部材4または透明電極5a、5bとの間に挟持される液晶3と、シール材6とを備える。
(First embodiment)
Hereinafter, the case where the lateral electric field drive liquid crystal cell of the present invention is applied to a diffraction efficiency variable element having variable diffraction efficiency will be described. FIG. 1 is a side sectional view showing a conceptual configuration of a lateral electric field drive liquid crystal cell according to a first embodiment of the present invention. In FIG. 1, a horizontal electric field drive liquid crystal cell 100 includes a pair of opposed transparent substrates 1 and 2, a plurality of transparent members 4 provided between the opposed transparent substrates 1 and 2, and a predetermined surface of the transparent member 4. Transparent electrodes 5a and 5b, a pair of transparent substrates 1 and 2 and a plurality of transparent members 4 or transparent electrodes 5a and 5b, and a liquid crystal 3 sandwiched between the transparent electrodes 5a and 5b.

図1において、透明基板1、2としては、耐久性、信頼性等の点からガラス基板が好適である。ただし、軽量で安価なことから、アクリル系樹脂、エポキシ系樹脂、塩化ビニル系樹脂、ポリカーボネート等の有機物質からなるものを用いてもよい。   In FIG. 1, glass substrates are preferable as the transparent substrates 1 and 2 in terms of durability, reliability, and the like. However, since it is lightweight and inexpensive, an organic resin such as an acrylic resin, an epoxy resin, a vinyl chloride resin, or polycarbonate may be used.

透明部材4は、各透明基板1、2の相互に対向する基板面(以下、対向基板面という。)のうちの、少なくとも一方の透明基板(以下、透明基板1とする。)の対向基板面に平行な面(以下、透明部材接触面という。)内に設けられ、透明部材接触面に垂直な方向に断面形状が略一定の形状を有する光学部材である。ここで、透明部材4を形成するときに透明基板1、2がエッチング等によって部分的に削除される場合は、透明部材接触面が対向基板面よりも透明基板1、2内側に位置し、透明部材4を形成した後に対向基板面と透明部材との間に透明部材4用の薄膜等が残る場合は、透明部材接触面が対向基板面よりも透明基板1、2内側に位置する。   The transparent member 4 is a counter substrate surface of at least one transparent substrate (hereinafter referred to as the transparent substrate 1) of the substrate surfaces (hereinafter referred to as counter substrate surfaces) of the transparent substrates 1 and 2 facing each other. Is an optical member having a substantially constant cross-sectional shape in a direction perpendicular to the transparent member contact surface. Here, when the transparent substrates 1 and 2 are partially removed by etching or the like when the transparent member 4 is formed, the transparent member contact surface is located on the inner side of the transparent substrates 1 and 2 than the counter substrate surface and is transparent. When a thin film or the like for the transparent member 4 remains between the counter substrate surface and the transparent member after the member 4 is formed, the transparent member contact surface is positioned inside the transparent substrates 1 and 2 with respect to the counter substrate surface.

以下、透明部材4は、回折素子としての機能を確保するため、図1に示すように透明部材接触面に対して略垂直な方向に向けて設けられた矩形状の断面形状を有し、断面に対して垂直な方向(以下、長手方向という。)に伸びた直方体状の構造を有するものとする。透明部材4は、透明基板1の透明部材接触面上に透明部材4の長手方向に垂直な方向に周期的に配置され、ストライプ状の格子をなす。以下、透明基板1の透明部材接触面に平行な方向の透明部材4の長さを透明部材4の幅といい、透明部材接触面に垂直な方向の透明部材4の長さを透明部材4の高さといい、透明部材接触面に平行で透明部材4の長手方向に垂直な方向を格子直交方向という。   Hereinafter, in order to ensure the function as a diffraction element, the transparent member 4 has a rectangular cross-sectional shape provided in a direction substantially perpendicular to the transparent member contact surface as shown in FIG. And a rectangular parallelepiped structure extending in a direction perpendicular to the longitudinal direction (hereinafter referred to as a longitudinal direction). The transparent member 4 is periodically arranged on the transparent member contact surface of the transparent substrate 1 in a direction perpendicular to the longitudinal direction of the transparent member 4 to form a stripe-like lattice. Hereinafter, the length of the transparent member 4 in the direction parallel to the transparent member contact surface of the transparent substrate 1 is referred to as the width of the transparent member 4, and the length of the transparent member 4 in the direction perpendicular to the transparent member contact surface is the length of the transparent member 4. The height is referred to as a direction perpendicular to the longitudinal direction of the transparent member 4 and parallel to the transparent member contact surface.

透明部材4には、例えば、SiO、SiO、Al、Ta等の無機材料、または、ポリイミド等の有機材料が用いられる。透明部材4は、透明基板1上に形成されたSiO、SiO等の薄膜をエッチングすることによって形成されるのでも、透明基板1上に形成されたレジストパターン等の上にAl等の薄膜を堆積しリフトオフすることによって形成されるのでもよい。 For the transparent member 4, for example, inorganic materials such as SiO 2 , SiO x N y , Al 2 O 3 , Ta 2 O 5 , or organic materials such as polyimide are used. The transparent member 4 is formed by etching a thin film such as SiO 2 or SiO x N y formed on the transparent substrate 1, but Al 2 is formed on the resist pattern or the like formed on the transparent substrate 1. It may be formed by depositing and lifting off a thin film such as O 3 .

ここで、透明部材4の材料として上記の無機材料を用いることは、耐熱性、信頼性等の観点から好適である。特に、ガラスとのエッチングレートの差異を利用してエッチングを適切に行うことができると共に、均一な膜厚の薄膜の堆積が容易であるため、透明部材4の高さを均一にできる。特に、SiO、SiOを用いることは、エッチングが容易であるため所望の形状にすることが容易である。また、透明部材4の材料として上記の有機材料を用いることは、低コストで容易に成膜できるため好ましい。 Here, it is preferable to use the inorganic material as the material of the transparent member 4 from the viewpoints of heat resistance, reliability, and the like. In particular, the etching can be appropriately performed using the difference in etching rate with glass, and the deposition of a thin film with a uniform thickness is easy, so that the height of the transparent member 4 can be made uniform. In particular, using SiO 2 or SiO x N y makes it easy to form a desired shape because etching is easy. In addition, it is preferable to use the above organic material as the material of the transparent member 4 because the film can be easily formed at low cost.

ここで、透明部材4の幅が上記の格子の1周期に占める割合(以下、透明部材幅割合という。)は、0.5以下であることが好ましく、特に0.25〜0.5の範囲内であることが好ましい。透明部材4が設けられた透明基板1の透明部材接触面に対向する透明部材4の面(以下、透明部材4の端面という。)の近傍では、透明部材4および透明電極5a、5bの影響を受けて液晶の配向方向を所望の方向に制御しにくいため、回折効率を適切に変化させるには透明部材幅割合を0.5以下にすることが好ましい。その一方で、透明部材幅割合を小さくし過ぎると、液晶の配向方向の変化に対する回折効率の変化の割合が低下することになる。その結果、透明部材幅割合は0.25〜0.5の範囲内であることが好ましい。   Here, the ratio of the width of the transparent member 4 to one period of the lattice (hereinafter referred to as the transparent member width ratio) is preferably 0.5 or less, particularly in the range of 0.25 to 0.5. It is preferable to be within. In the vicinity of the surface of the transparent member 4 facing the transparent member contact surface of the transparent substrate 1 provided with the transparent member 4 (hereinafter referred to as an end surface of the transparent member 4), the effects of the transparent member 4 and the transparent electrodes 5a and 5b are affected. Accordingly, it is difficult to control the alignment direction of the liquid crystal in a desired direction. Therefore, in order to appropriately change the diffraction efficiency, the transparent member width ratio is preferably set to 0.5 or less. On the other hand, if the transparent member width ratio is too small, the ratio of the change in diffraction efficiency with respect to the change in the alignment direction of the liquid crystal is lowered. As a result, the transparent member width ratio is preferably in the range of 0.25 to 0.5.

透明部材4の高さを横電界駆動液晶セル100のセルギャップと同程度とすることは、透明部材4の端面と透明基板2の対向基板面との隙間(以下、基板透明部材間隙という。)に入る液晶3を低減できるため、光学的有効領域内で縦電界成分を有する電界が発生する部分の液晶の割合を低減して、液晶に横電界を効率的に印加できるため好ましい。   Making the height of the transparent member 4 approximately the same as the cell gap of the lateral electric field driving liquid crystal cell 100 means a gap between the end surface of the transparent member 4 and the opposite substrate surface of the transparent substrate 2 (hereinafter referred to as a substrate transparent member gap). Since the liquid crystal 3 entering can be reduced, the ratio of the liquid crystal in the portion where the electric field having the vertical electric field component is generated in the optically effective region can be reduced, and the lateral electric field can be efficiently applied to the liquid crystal.

透明電極5a、5bは、少なくとも透明部材4の透明基板1の透明部材接触面に略垂直な面(以下、透明部材の側面という。)上に形成される。また、同一の透明部材4の対向する2つの側面上に形成された透明電極5a、5bは、透明部材4の端面または透明基板1の透明部材接触面上に設けられた導電材料によって電気的に接続されている。また、図1に示すように、透明電極5aと透明電極5bとは、互いに他の透明電極を挟んで1つおきに配置される構成をなし、透明電極5aと透明電極5bとの間に透明部材接触面に平行な横電界が印加されるようになっている。このように構成することによって、対向する透明基板間の位置合わせが不要になるため、生産性が向上する。   The transparent electrodes 5a and 5b are formed on at least a surface (hereinafter referred to as a side surface of the transparent member) substantially perpendicular to the transparent member contact surface of the transparent substrate 1 of the transparent member 4. Further, the transparent electrodes 5a and 5b formed on the two opposing side surfaces of the same transparent member 4 are electrically connected by the conductive material provided on the end surface of the transparent member 4 or the transparent member contact surface of the transparent substrate 1. It is connected. Moreover, as shown in FIG. 1, the transparent electrode 5a and the transparent electrode 5b have a configuration in which every other transparent electrode is placed between each other, and the transparent electrode 5a and the transparent electrode 5b are transparent between the transparent electrode 5a and the transparent electrode 5b. A lateral electric field parallel to the member contact surface is applied. Such a configuration eliminates the need for alignment between the opposing transparent substrates, thereby improving productivity.

このように構成することによって、横電界を印加する透明電極5a、5bが対向しているため、透明電極5a、5b間に位置する全ての液晶3に横電界を効果的に印加できる。ここで、透明部材4の材料として、ITO、SnO等の導電性酸化物を用いるのが好ましく、特にITOを用いるのは、エッチングによるパターン形成が容易であると共に、透過率および電気伝導率が高いため好適である。 With this configuration, since the transparent electrodes 5a and 5b to which the horizontal electric field is applied are opposed to each other, the horizontal electric field can be effectively applied to all the liquid crystals 3 positioned between the transparent electrodes 5a and 5b. Here, it is preferable to use a conductive oxide such as ITO or SnO 2 as the material of the transparent member 4, and the use of ITO is particularly easy because pattern formation by etching is easy, and transmittance and electrical conductivity are high. It is suitable because it is high.

透明電極5a、5bの形成は、透明導電膜を透明部材4上に形成し不要な部分を除去する方法によって行われる。ここで、透明導電膜の形成は、スパッタ法、真空蒸着法等によって行うことができるが、特に、透明部材4の側面への被堆積物の回り込みを生じさせやすいという点から、スパッタ法が好適である。スパッタリングは蒸着よりも高い圧力の雰囲気中で行うことができるからである。   The transparent electrodes 5a and 5b are formed by a method in which a transparent conductive film is formed on the transparent member 4 and unnecessary portions are removed. Here, the transparent conductive film can be formed by a sputtering method, a vacuum vapor deposition method, or the like. In particular, the sputtering method is preferable because it tends to cause the deposition object to wrap around the side surface of the transparent member 4. It is. This is because sputtering can be performed in an atmosphere at a higher pressure than vapor deposition.

透明電極5a、5bのパターニングはリソグラフィー技術とエッチング技術を用いて行う。ここで、パターニング前は透明導電膜が透明基板1の透明部材接触面上にも形成されているため、同電位にすべき透明電極を透明基板1の透明部材接触面上の透明導電膜を用いて接続するように透明電極5a、5bのパターニングを行う。すなわち、同一の透明部材4上の透明電極を電気的に接続すると共に、1つおきの透明部材4上の透明電極を電気的に接続するようにパターニングする。このようにパターニングすることによって、各透明電極5a、5bを上記のように接続するための別途の工程を省略できるため好ましい。   The patterning of the transparent electrodes 5a and 5b is performed using a lithography technique and an etching technique. Here, since the transparent conductive film is also formed on the transparent member contact surface of the transparent substrate 1 before patterning, the transparent conductive film on the transparent member contact surface of the transparent substrate 1 is used as the transparent electrode to be at the same potential. The transparent electrodes 5a and 5b are patterned so as to be connected. That is, patterning is performed so that the transparent electrodes on the same transparent member 4 are electrically connected and the transparent electrodes on every other transparent member 4 are electrically connected. By patterning in this way, a separate step for connecting the transparent electrodes 5a and 5b as described above can be omitted, which is preferable.

電界を印加したときに電界方向に配向する、誘電異方性Δε(=ε//−ε)が正の液晶は、各透明電極に平行、すなわち、印加される電界の電界方向に平行となるように配向させて用いることができる。一方、電界を印加したときに電界方向と直交する方向に配向する、誘電異方性Δεが負の液晶は、各透明電極に垂直となるように配向させて用いることができる。 A liquid crystal having a positive dielectric anisotropy Δε (= ε // −ε ) that is aligned in the electric field direction when an electric field is applied is parallel to each transparent electrode, that is, parallel to the electric field direction of the applied electric field. It can be used in such an orientation. On the other hand, a liquid crystal having a negative dielectric anisotropy Δε that is aligned in a direction perpendicular to the electric field direction when an electric field is applied can be used by being aligned so as to be perpendicular to each transparent electrode.

上記の液晶のうち、誘電異方性△εが正で、電界を印加しないときに透明電極5a、5bの表面に平行な方向に配向する液晶が、以下の点から好適である。液晶は、通常、電界を印加しないときは透明電極5a、5bの表面に平行に配向しやすいため、誘電異方性△εが正の液晶を用いることによって、電界を印加したときに配向方向を変化させやすいからである。   Among the liquid crystals, a liquid crystal having a positive dielectric anisotropy Δε and oriented in a direction parallel to the surfaces of the transparent electrodes 5a and 5b when no electric field is applied is preferable from the following points. Since the liquid crystal is usually easily oriented in parallel to the surfaces of the transparent electrodes 5a and 5b when no electric field is applied, a liquid crystal having a positive dielectric anisotropy Δε is used to change the orientation direction when an electric field is applied. It is easy to change.

以下、液晶3は、透明基板1の透明部材接触面と、透明基板1の透明部材接触面に対向する透明基板2の対向基板面とに設けられた配向膜等によって、電界が印加されないときに透明電極5a、5bの表面に平行な方向に配向しているものとする。液晶3の配向方向は、配向膜のラビングを調節することによって設定できるほか、SiO等を斜め蒸着すること、イオンビームを照射すること等によっても設定することができる。以下、透明電極5a、5bおよび透明部材4と液晶3との界面には、ラビング処理された配向膜が形成されているものとする。   Hereinafter, when the electric field is not applied to the liquid crystal 3 by an alignment film or the like provided on the transparent member contact surface of the transparent substrate 1 and the opposite substrate surface of the transparent substrate 2 facing the transparent member contact surface of the transparent substrate 1. It is assumed that it is oriented in a direction parallel to the surfaces of the transparent electrodes 5a and 5b. The alignment direction of the liquid crystal 3 can be set by adjusting the rubbing of the alignment film, and can also be set by obliquely depositing SiO or the like, or irradiating an ion beam. Hereinafter, it is assumed that a rubbing-treated alignment film is formed at the interfaces between the transparent electrodes 5 a and 5 b and the transparent member 4 and the liquid crystal 3.

また、電界が印加されたときに同一の向きに配向しやすいように、ラビング処理の際に所定の傾斜角(以下、プレチルト角という。)だけ電界印加時の配向方向に傾いた方向に配向させるようにする。プレチルト角をもたせるラビング処理については周知であるため、その説明を省略する。上記のようにプレチルト角をもたせることによって、所謂マルチドメインの発生を抑制でき、同一の向きに配向した均一な液晶を得ることができるため、散乱光の発生を抑えて均一な光学的特性を得ることができ好適である。   Further, in order to facilitate orientation in the same direction when an electric field is applied, the rubbing process is performed in a direction inclined by a predetermined tilt angle (hereinafter referred to as a pretilt angle) in the orientation direction at the time of electric field application. Like that. Since the rubbing process for providing the pretilt angle is well known, the description thereof is omitted. By giving a pretilt angle as described above, the occurrence of so-called multi-domains can be suppressed, and uniform liquid crystals aligned in the same direction can be obtained, so that the generation of scattered light is suppressed and uniform optical characteristics are obtained. This is preferable.

ここで、液晶3としてコレステリック液晶を用いる場合には、用いるコレステリック液晶の常光屈折率と異常光屈折率とのほぼ中間の値の屈折率を有する材料を透明部材4の材料として用いることが好ましい。上記のような材料を透明部材4の材料として用いることは、透明部材4の屈折率が、入射する光が感じるコレステリック液晶の実効的な屈折率に近いため、回折および散乱による透過損失を少なくすることができ好適である。   Here, when a cholesteric liquid crystal is used as the liquid crystal 3, it is preferable to use a material having a refractive index that is an intermediate value between the ordinary light refractive index and the extraordinary light refractive index of the cholesteric liquid crystal to be used as the material of the transparent member 4. Use of the material as described above as the material of the transparent member 4 reduces the transmission loss due to diffraction and scattering because the refractive index of the transparent member 4 is close to the effective refractive index of the cholesteric liquid crystal that the incident light senses. This is preferable.

シール材6は、透明基板2の対向基板面の光学的有効領域の外に印刷して形成され、透明基板1と透明基板2とを張り合わせることによって透明基板1、2間の間隔を一定に保持すると共に、液晶3を透明基板1、2間に封止する液晶セルを構成するように設けられる。シール材6として、エポキシ樹脂等の熱硬化型高分子、紫外線硬化型樹脂等を用いることができ、所望のセル間隔を得るためにシール材6にガラスファイバ等のスペーサを数%混入させるのでもよい。   The sealing material 6 is formed by printing outside the optically effective area of the opposing substrate surface of the transparent substrate 2, and the interval between the transparent substrates 1 and 2 is made constant by bonding the transparent substrate 1 and the transparent substrate 2 together. A liquid crystal cell that holds and seals the liquid crystal 3 between the transparent substrates 1 and 2 is provided. As the sealing material 6, a thermosetting polymer such as an epoxy resin, an ultraviolet curable resin, or the like can be used, and in order to obtain a desired cell interval, a spacer such as a glass fiber is mixed into the sealing material 6 by several percent. Good.

また、図1に示すように、透明基板2の光学的有効領域の外のシール材6を設けようとする部分(以下、シール接触部分という。)に段差を持たせ、透明基板2のシール接触部分と透明基板1の透明部材接触面との間隔を、基板透明部材間隙の間隔より大きくすることが好ましい。上記のように構成することによって、液晶セルのギャップの制御を透明部材4の高さと独立に制御できるため、加工の自由度およびギャップの制御性が向上する。また、シール接触部分の段差を、使用するスペーサの直径と応じて調整することによって、熱圧着時に透明電極5a、5bを破損することなく基板透明部材間隙の狭い液晶セルを作製できる。   Further, as shown in FIG. 1, a step (hereinafter referred to as a seal contact portion) where the sealing material 6 outside the optically effective area of the transparent substrate 2 is provided is provided with a step so that the seal contact of the transparent substrate 2 is achieved. It is preferable that the interval between the portion and the transparent member contact surface of the transparent substrate 1 is larger than the interval between the substrate transparent member gaps. By configuring as described above, the control of the gap of the liquid crystal cell can be controlled independently of the height of the transparent member 4, so that the degree of freedom in processing and the controllability of the gap are improved. Further, by adjusting the level difference of the seal contact portion according to the diameter of the spacer to be used, a liquid crystal cell having a narrow substrate transparent member gap can be produced without damaging the transparent electrodes 5a and 5b during thermocompression bonding.

以下、本発明の第1の実施の形態に係る横電界駆動液晶セル100の作用の一例について説明する。図2は、本発明の第1の実施の形態に係る横電界駆動液晶セル100の作用について説明するための説明図である。図2(a)は、液晶3に横電界を印加しないときの液晶分子31の配向状態を示す図である。図2(a)において、液晶分子31は透明電極5a、5bの表面、透明基板1の透明部材接触面および透明基板2の対向基板面に平行な方向に配向している。   Hereinafter, an example of the operation of the horizontal electric field drive liquid crystal cell 100 according to the first embodiment of the present invention will be described. FIG. 2 is an explanatory diagram for explaining the operation of the horizontal electric field drive liquid crystal cell 100 according to the first embodiment of the present invention. FIG. 2A is a diagram showing the alignment state of the liquid crystal molecules 31 when no lateral electric field is applied to the liquid crystal 3. In FIG. 2A, the liquid crystal molecules 31 are aligned in a direction parallel to the surfaces of the transparent electrodes 5 a and 5 b, the transparent member contact surface of the transparent substrate 1, and the counter substrate surface of the transparent substrate 2.

以下、透明部材4の屈折率と液晶3の常光屈折率とは、ほぼ同一であるものとする。液晶3に横電界を印加しない場合、格子直交方向に偏光した直線偏光の光(以下、格子直交偏光光という。)が横電界駆動液晶セル100に入射すると、透明部材4の屈折率と液晶3の常光屈折率とがほぼ同一であるため、格子直交偏光光は、横電界駆動液晶セル100を透過する。   Hereinafter, it is assumed that the refractive index of the transparent member 4 and the ordinary light refractive index of the liquid crystal 3 are substantially the same. When a lateral electric field is not applied to the liquid crystal 3, when linearly polarized light polarized in the lattice orthogonal direction (hereinafter referred to as lattice orthogonally polarized light) enters the lateral electric field driving liquid crystal cell 100, the refractive index of the transparent member 4 and the liquid crystal 3. Therefore, the lattice-polarized light passes through the transverse electric field drive liquid crystal cell 100.

次に、液晶3に横電界を印加していくと、液晶3は印加した横電界に応じて配向方向が格子直交方向に向けて変化し始め、液晶3に入射した格子直交偏光光は、常光屈折率から異常光屈折率に向けて変化する屈折率を感じて回折し始める。液晶3に印加する横電界を強くしていくと、液晶3に印加する横電界に応じて屈折率が異常光屈折率に近づいていくため、格子直交偏光光の回折は液晶3に印加する横電界に応じて強くなる。   Next, when a lateral electric field is applied to the liquid crystal 3, the alignment direction of the liquid crystal 3 starts to change toward the lattice orthogonal direction in accordance with the applied lateral electric field, and the lattice orthogonal polarized light incident on the liquid crystal 3 is ordinary light. It begins to diffract, feeling the refractive index changing from the refractive index to the extraordinary light refractive index. When the lateral electric field applied to the liquid crystal 3 is increased, the refractive index approaches the extraordinary light refractive index in accordance with the lateral electric field applied to the liquid crystal 3, so that the diffraction of the lattice-polarized light is applied to the liquid crystal 3. It becomes stronger according to the electric field.

液晶3に印加する横電界をさらに強くし、図2(b)に示すように液晶3を格子直交方向に配向させると、格子直交偏光光は回折し、実質的に透過しなくなる。上記では、横電界駆動液晶セル100を格子直交偏光光に対する回折格子として機能させる作用について説明した。上記の横電界駆動液晶セル100は、長手方向に偏光した光(以下、長手方向偏光光という。)に対しても回折格子として機能する。ただし、横電界駆動液晶セル100は、長手方向偏光光に対して、格子直交偏光光に対する横電界依存性と反対に、液晶3に印加する横電界を増加させると、透過するように機能する。このように、上記の構成では、横電界駆動液晶セル100を、格子直交偏光光および長手方向偏光光に対して回折素子または阻止フィルタ等として機能させることができる。   When the lateral electric field applied to the liquid crystal 3 is further strengthened and the liquid crystal 3 is oriented in the lattice orthogonal direction as shown in FIG. 2B, the lattice orthogonal polarized light is diffracted and substantially not transmitted. In the above, the operation of causing the transverse electric field drive liquid crystal cell 100 to function as a diffraction grating for grating orthogonal polarization light has been described. The lateral electric field driving liquid crystal cell 100 also functions as a diffraction grating for light polarized in the longitudinal direction (hereinafter referred to as longitudinally polarized light). However, the lateral electric field driving liquid crystal cell 100 functions to transmit the longitudinally polarized light when the lateral electric field applied to the liquid crystal 3 is increased, contrary to the lateral electric field dependency on the lattice orthogonally polarized light. As described above, in the above configuration, the transverse electric field drive liquid crystal cell 100 can function as a diffraction element, a blocking filter, or the like with respect to grating orthogonal polarization light and longitudinal polarization light.

なお、上記では、本発明を、横電界を印加しない状態で液晶分子31が透明電極5a、5bの表面、透明基板1の透明部材接触面および透明基板2の対向基板面に平行な方向に配向する構成の横電界駆動液晶セルに適用する場合について説明したが、必ずしも、本発明は係る構成に限定されるものではなく、横電界を印加しない状態で液晶分子31が透明電極5a、5bの表面に平行かつ透明基板1の透明部材接触面および透明基板2の対向基板面に垂直な方向に配向する構成でもよい。   In the above description, the liquid crystal molecules 31 are aligned in a direction parallel to the surfaces of the transparent electrodes 5a and 5b, the transparent member contact surface of the transparent substrate 1, and the opposite substrate surface of the transparent substrate 2 without applying a lateral electric field. However, the present invention is not necessarily limited to such a configuration, and the liquid crystal molecules 31 are not applied to the surface of the transparent electrodes 5a and 5b without applying a lateral electric field. The transparent substrate 1 may be oriented parallel to the transparent member contact surface of the transparent substrate 1 and the opposite substrate surface of the transparent substrate 2.

この場合、上記の格子直交偏光光に対しては、横電界を印加しない状態で液晶分子31が透明電極5a、5bの表面、透明基板1の透明部材接触面および透明基板2の対向基板面に平行な方向に配向する構成と同様に作用するが、長手方向偏光光が横電界駆動液晶セル100に入射すると、液晶3に横電界を印加するか否かにかかわらず長手方向偏光光を透過させるため、格子直交偏光光を阻止する素子フィルタ等としても機能させることができる。   In this case, the liquid crystal molecules 31 are applied to the surfaces of the transparent electrodes 5 a and 5 b, the transparent member contact surface of the transparent substrate 1, and the counter substrate surface of the transparent substrate 2 with no lateral electric field applied to the lattice orthogonal polarization light. This works in the same manner as the configuration oriented in the parallel direction, but when the longitudinally polarized light is incident on the transverse electric field driving liquid crystal cell 100, the longitudinally polarized light is transmitted regardless of whether or not the transverse electric field is applied to the liquid crystal 3. Therefore, it can function as an element filter or the like that blocks grating orthogonal polarization light.

以上説明したように、本発明の第1の実施の形態に係る横電界駆動液晶セルは、各透明部材が透明部材接触面に垂直な方向に断面形状が略一定の形状を有し、透明電極が透明部材の少なくとも側面上に設けられ、隣り合う透明電極間で液晶に横電界を印加できるように電気的に接続されているため、横電界を有効に印加できると共に、光が透明部材と透明電極とを透過するため、従来の横電界駆動液晶セルよりも開口率を向上させることができる。   As described above, in the horizontal electric field drive liquid crystal cell according to the first embodiment of the present invention, each transparent member has a substantially constant cross-sectional shape in a direction perpendicular to the transparent member contact surface. Is provided on at least the side surface of the transparent member, and is electrically connected so that a lateral electric field can be applied to the liquid crystal between the adjacent transparent electrodes, so that the lateral electric field can be effectively applied and light is transparent to the transparent member. Since the light is transmitted through the electrodes, the aperture ratio can be improved as compared with the conventional lateral electric field drive liquid crystal cell.

また、各透明部材が、直方体状の形状を有し、周期的に配置されて隔壁状の格子を構成するため、光の利用効率の高い回折格子としての横電界駆動液晶セルを実現できる。   Moreover, since each transparent member has a rectangular parallelepiped shape and is periodically arranged to form a partition-like grating, a lateral electric field driving liquid crystal cell as a diffraction grating with high light use efficiency can be realized.

また、少なくとも透明部材の屈折率が、液晶の常光屈折率または異常光屈折率にほぼ等しいため、電界制御の回折格子等の用途では、横電界を印加することなく光を透過させる機能または回折させる機能を確保することができる。   In addition, since at least the refractive index of the transparent member is approximately equal to the ordinary or extraordinary refractive index of the liquid crystal, in applications such as electric field control diffraction gratings, the function of transmitting light without applying a lateral electric field or diffracting is performed. Function can be secured.

また、複数の透明部材が、透明部材接触面上に周期的に配列され格子をなすため、TFT基板を用いることなく電極間に電界を印加できる配線処理を行うことができる。   Further, since the plurality of transparent members are periodically arranged on the transparent member contact surface to form a lattice, wiring processing that can apply an electric field between the electrodes can be performed without using a TFT substrate.

なお、上記では、本発明を透過型の回折素子に適用した例について説明したが、本発明を反射型の回折素子に適用するのでもよい。係る反射型の回折素子は、横電界駆動液晶セル内に反射面を設け、入射光に加えて、反射面で反射した光も液晶3を往復で透過するように構成することによって実現できる。   In the above description, an example in which the present invention is applied to a transmissive diffraction element has been described. However, the present invention may be applied to a reflective diffraction element. Such a reflection type diffractive element can be realized by providing a reflection surface in a lateral electric field drive liquid crystal cell so that, in addition to incident light, light reflected by the reflection surface is transmitted through the liquid crystal 3 in a reciprocating manner.

また、本発明の横電界駆動液晶セルを波長板、偏光板等と積層した構成にするのでもよい。このように構成することによって、入射光の偏光方向を偏光板、1/2波長板、1/4波長板等によって調整することができ、高いコントラストが得られる。   Further, the lateral electric field drive liquid crystal cell of the present invention may be laminated with a wave plate, a polarizing plate or the like. With this configuration, the polarization direction of incident light can be adjusted by a polarizing plate, a half-wave plate, a quarter-wave plate, and the like, and high contrast can be obtained.

また、本発明の横電界駆動液晶セルを、複数の液晶セルを重ねた構成とするのでもよい。このように構成することによって、本発明の横電界駆動液晶セルを回折効率可変素子に適用する場合、高いコントラストを有する回折効率可変素子が得られる。   In addition, the lateral electric field drive liquid crystal cell of the present invention may be configured by stacking a plurality of liquid crystal cells. With this configuration, when the lateral electric field drive liquid crystal cell of the present invention is applied to a diffraction efficiency variable element, a diffraction efficiency variable element having high contrast can be obtained.

さらに、上記では、透明電極5aまたは透明電極5bのいずれかの種類の透明電極に横電界が向くように配線された構成について説明したが、透明電極5a、5bを透明部材4の対向する2つの側面上の部分に分離して電気的に絶縁し、透明電極の種類に関係なく一定方向の横電界を印加できるように配線するのでもよい。   Furthermore, in the above description, the configuration in which the horizontal electric field is directed to the transparent electrode 5a or the transparent electrode 5b has been described. However, the transparent electrodes 5a and 5b are connected to the two transparent members 4 facing each other. It may be separated into portions on the side surfaces and electrically insulated, and wired so that a horizontal electric field in a certain direction can be applied regardless of the type of transparent electrode.

(第2の実施の形態)
図3は、本発明の第2の実施の形態に係る横電界駆動液晶セルの概念的な構成を示す側断面図である。図3において、横電界駆動液晶セル300を構成する透明部材は、本発明の第1の実施の形態に係る横電界駆動液晶セルを構成する透明部材4が、両方の透明基板1、2の透明部材接触面に分けて設けられたものと同等の構成を有する。以下、本発明の第2の実施の形態に係る横電界駆動液晶セル300の構成部のうち、本発明の第1の実施の形態に係る横電界駆動液晶セル100の構成部と同様のものについては、同一の符号を付しその説明を省略する。
(Second Embodiment)
FIG. 3 is a side sectional view showing a conceptual configuration of a horizontal electric field drive liquid crystal cell according to the second embodiment of the present invention. In FIG. 3, the transparent member constituting the horizontal electric field driving liquid crystal cell 300 is the transparent member 4 constituting the horizontal electric field driving liquid crystal cell according to the first embodiment of the present invention. It has the same configuration as that provided separately on the member contact surface. Hereinafter, among the components of the horizontal electric field drive liquid crystal cell 300 according to the second embodiment of the present invention, the same components as those of the horizontal electric field drive liquid crystal cell 100 according to the first embodiment of the present invention are described. Are given the same reference numerals and their explanation is omitted.

本発明の第2の実施の形態に係る透明部材4aは図3に示すように透明基板1の透明部材接触面上に設けられ、透明部材4bは透明基板2の透明部材接触面上に設けられる。本発明の第2の実施の形態に係る透明部材4a、4bは、図3に示すように、本発明の第1の実施の形態に係る透明部材4と同様の形状および配置を有し、同様の材料からなる。すなわち、本発明の第2の実施の形態に係る透明部材4a、4bは、透明部材接触面に対して略垂直な方向に向けて設けられた矩形状の断面形状を有し、長手方向に伸びた直方体状の構造を有する透明な部材である。そして、透明部材4aおよび透明部材4bは、それぞれストライプ状の格子をなす。   As shown in FIG. 3, the transparent member 4 a according to the second embodiment of the present invention is provided on the transparent member contact surface of the transparent substrate 1, and the transparent member 4 b is provided on the transparent member contact surface of the transparent substrate 2. . The transparent members 4a and 4b according to the second embodiment of the present invention have the same shape and arrangement as the transparent member 4 according to the first embodiment of the present invention as shown in FIG. Made of materials. That is, the transparent members 4a and 4b according to the second embodiment of the present invention have a rectangular cross-sectional shape provided in a direction substantially perpendicular to the transparent member contact surface, and extend in the longitudinal direction. It is a transparent member having a rectangular parallelepiped structure. The transparent member 4a and the transparent member 4b form a striped lattice.

しかし、本発明の第2の実施の形態に係る透明部材4a、4bは、本発明の第1の実施の形態に係る透明部材4と、幅および高さが異なるのでもよい。また、本発明の第2の実施の形態に係る透明部材4a、4bがなす格子は、本発明の第1の実施の形態に係る透明部材4がなす格子と、ピッチ、長手方向の向き、および長手方向の長さが異なるのでもよい。   However, the transparent members 4a and 4b according to the second embodiment of the present invention may be different in width and height from the transparent member 4 according to the first embodiment of the present invention. In addition, the lattice formed by the transparent members 4a and 4b according to the second embodiment of the present invention includes the lattice formed by the transparent member 4 according to the first embodiment of the present invention, the pitch, the longitudinal direction, and The lengths in the longitudinal direction may be different.

ここで、本発明の第2の実施の形態に係る横電界駆動液晶セル300と、本発明の第1の実施の形態に係る横電界駆動液晶セル100とを同様のものにするには、透明部材4a、4bがなす各格子のピッチを透明部材4がなす格子のピッチの2倍にする必要が有る。   Here, in order to make the horizontal electric field drive liquid crystal cell 300 according to the second embodiment of the present invention similar to the horizontal electric field drive liquid crystal cell 100 according to the first embodiment of the present invention, a transparent The pitch of each grid formed by the members 4a and 4b needs to be twice the pitch of the grid formed by the transparent member 4.

透明電極35aは少なくとも透明基板1上に設けられた透明部材4aの側面上に形成され、透明電極35bは少なくとも透明基板2上に設けられた透明部材4bの側面上に形成される。また、同一の基板上に設けられた透明部材上に形成された透明電極は、透明部材の端面または透明基板の透明部材接触面に設けられた導電材料によって電気的に接続されている。   The transparent electrode 35a is formed at least on the side surface of the transparent member 4a provided on the transparent substrate 1, and the transparent electrode 35b is formed at least on the side surface of the transparent member 4b provided on the transparent substrate 2. Moreover, the transparent electrode formed on the transparent member provided on the same substrate is electrically connected by the conductive material provided on the end surface of the transparent member or the transparent member contact surface of the transparent substrate.

このように透明電極を形成し、各透明基板の透明部材接触面上で導電材料を用いて電気的に接続することによって透明基板1と透明基板2とを組み合わせて横電界駆動液晶セル300としたときに透明電極35aと、透明電極35bとの間に横電界を印加できるようになっている。また、このように構成することによって、配線の形成が容易になると共に、格子の周期が2倍になるため、ラビング等の配向処理を施すことが容易になる。   In this way, a transparent electrode is formed and electrically connected using a conductive material on the transparent member contact surface of each transparent substrate, whereby the transparent substrate 1 and the transparent substrate 2 are combined to form a lateral electric field drive liquid crystal cell 300. Sometimes a lateral electric field can be applied between the transparent electrode 35a and the transparent electrode 35b. Further, with this configuration, the wiring can be easily formed and the period of the lattice can be doubled, so that it is easy to perform an alignment process such as rubbing.

図4は、本発明の第2の実施の形態に係る横電界駆動液晶セル300の作用を説明するための説明図である。図4に示す構成が、透明電極35aと透明電極35bとが別個の透明基板1、2に設けられている点を除けば、図2に示す本発明の第1の実施の形態に係る横電界駆動液晶セル100の構成と同様であるため、本発明の第2の実施の形態に係る横電界駆動液晶セル300の作用は、本発明の第1の実施の形態に係る横電界駆動液晶セル100の作用と同様である。   FIG. 4 is an explanatory diagram for explaining the operation of the horizontal electric field drive liquid crystal cell 300 according to the second embodiment of the present invention. The lateral electric field according to the first embodiment of the present invention shown in FIG. 2 is the same as that shown in FIG. 4 except that the transparent electrode 35a and the transparent electrode 35b are provided on separate transparent substrates 1 and 2, respectively. Since the configuration is the same as that of the driving liquid crystal cell 100, the operation of the horizontal electric field driving liquid crystal cell 300 according to the second embodiment of the present invention is the same as that of the horizontal electric field driving liquid crystal cell 100 according to the first embodiment of the present invention. This is the same as the operation.

ただし、透明電極35a、35bを透明基板1、2の透明部材接触面上の透明部材4a、4b近傍に広げることができるため、図5に示すように透明部材の端面近傍で生ずる端部効果を緩和することができる。図5は、本発明の第1の実施の形態に係る横電界駆動液晶セル100の透明部材4の端面近傍で生ずる端部効果が、本発明の第2の実施の形態に係る横電界駆動液晶セル300の透明部材4a、4bの端面近傍で抑制される様子を概念的に示す図である。   However, since the transparent electrodes 35a and 35b can be expanded in the vicinity of the transparent members 4a and 4b on the transparent member contact surfaces of the transparent substrates 1 and 2, the end effect that occurs in the vicinity of the end surface of the transparent member as shown in FIG. Can be relaxed. FIG. 5 shows that the edge effect generated in the vicinity of the end face of the transparent member 4 of the horizontal electric field drive liquid crystal cell 100 according to the first embodiment of the present invention is the horizontal electric field drive liquid crystal according to the second embodiment of the present invention. It is a figure which shows notionally a mode that it suppresses in the end surface vicinity of the transparent members 4a and 4b of the cell 300. FIG.

以上説明したように、本発明の第2の実施の形態に係る横電界駆動液晶セルは、本発明の第1の実施の形態の効果に加え、各透明基板に分配されて形成されている複数の透明部材の相対的な配置が2つの透明基板間で同一であるため、透明部材間の間隔を広げることができ、電極および配線等の形成、配向処理等の工程を容易にすることができる。   As described above, the horizontal electric field drive liquid crystal cell according to the second embodiment of the present invention has a plurality of distributed and formed on each transparent substrate in addition to the effects of the first embodiment of the present invention. Since the relative arrangement of the transparent members is the same between the two transparent substrates, the interval between the transparent members can be widened, and the steps such as the formation of electrodes and wiring and the orientation treatment can be facilitated. .

なお、複数の透明部材が2つの透明基板の透明部材接触面上に分配されて形成されているため、透明部材上に形成された透明電極の先端部と底部とが対向することになり、先端部同士が対向する場合とは相対的な電極配置が異なり、透明部材の先端近傍で発生する横電界以外の電場成分を軽減することができる。   In addition, since the plurality of transparent members are distributed and formed on the transparent member contact surfaces of the two transparent substrates, the tip and the bottom of the transparent electrode formed on the transparent member are opposed to each other. The relative electrode arrangement is different from the case where the portions face each other, and electric field components other than the transverse electric field generated near the tip of the transparent member can be reduced.

(第3の実施の形態)
以下、本発明の横電界駆動液晶セルを、透過させる光の波長が可変な波長可変フィルタ素子に適用する場合について説明する。図6は、本発明の第3の実施の形態に係る横電界駆動液晶セルの概念的な構成を示す側断面図である。以下、本発明の第3の実施の形態に係る横電界駆動液晶セル600の構成部のうち、本発明の第1の実施の形態に係る横電界駆動液晶セル100の構成部と同様のものについては、同一の符号を付しその説明を省略する。
(Third embodiment)
Hereinafter, the case where the lateral electric field drive liquid crystal cell of the present invention is applied to a wavelength tunable filter element in which the wavelength of transmitted light is variable will be described. FIG. 6 is a side sectional view showing a conceptual configuration of a horizontal electric field drive liquid crystal cell according to a third embodiment of the present invention. Hereinafter, among the components of the horizontal electric field drive liquid crystal cell 600 according to the third embodiment of the present invention, the same components as those of the horizontal electric field drive liquid crystal cell 100 according to the first embodiment of the present invention are described. Are given the same reference numerals and their explanation is omitted.

本発明の第3の実施の形態に係る横電界駆動液晶セル600は、第1の液晶セル60と第2の液晶セル70とが接着剤7によって張り合わされた構成を有する。第1の液晶セル60は、透明基板1、2、液晶63、透明部材64、透明電極65a、65b、および、シール材6を有する。同様に、第2の液晶セル70は、透明基板1、2、液晶73、透明部材74、透明電極75a、75b、および、シール材6を有する。   A lateral electric field drive liquid crystal cell 600 according to the third embodiment of the present invention has a configuration in which a first liquid crystal cell 60 and a second liquid crystal cell 70 are bonded together by an adhesive 7. The first liquid crystal cell 60 includes transparent substrates 1 and 2, a liquid crystal 63, a transparent member 64, transparent electrodes 65 a and 65 b, and a sealing material 6. Similarly, the second liquid crystal cell 70 includes transparent substrates 1 and 2, a liquid crystal 73, a transparent member 74, transparent electrodes 75 a and 75 b, and a sealing material 6.

第1の液晶セル60を構成する透明部材64は、本発明の第1の実施の形態に係る透明部材4と同様にストライプ状の格子、透明部材接触面に垂直な方向に中心軸を有し断面形状が円、多角形、その他の断面形状の柱状の形状等の、液晶63に横電界を効果的に印加できる形状になっている。また、透明部材64の材料としては、本発明の第1の実施の形態に係る透明部材4と同様の材料を用いることができる。以下、透明部材64は、柱状の形状を有し、2次元の面心構造の対称性を有する格子をなすように配置されるものとする。   The transparent member 64 constituting the first liquid crystal cell 60 has a central axis in the direction perpendicular to the striped lattice and the transparent member contact surface, like the transparent member 4 according to the first embodiment of the present invention. The cross-sectional shape is a shape that can effectively apply a lateral electric field to the liquid crystal 63, such as a circle, polygon, or other cross-sectional columnar shape. Moreover, as a material of the transparent member 64, the material similar to the transparent member 4 which concerns on the 1st Embodiment of this invention can be used. Hereinafter, it is assumed that the transparent member 64 has a columnar shape and is arranged to form a lattice having symmetry of a two-dimensional face-centered structure.

ここで、透明部材64が例えば円柱状の形状を有するとき、透明部材64の断面の直径が格子の最短周期に占める割合は、0.3以下が好ましく、特に0.1以下が好ましい。透明部材64が形成された部分は電界を印加しても透過率を変化させることができないため、透明部材64をかかる形状および配置にすることによって、光学的有効領域に占める透明部材64の面積の割合をストライプ状の格子に比して低減できる。透明部材64部分は全波長領域の光を透過させるため、透明部材64部分の割合が少ないほどコントラストに関して優れたものとなる。特に上記の割合が0.1以下では、透明部材64と液晶63との屈折率の不一致があった場合でも、回折および散乱による透過損失を小さくできる。   Here, when the transparent member 64 has, for example, a cylindrical shape, the ratio of the cross-sectional diameter of the transparent member 64 to the shortest period of the lattice is preferably 0.3 or less, and particularly preferably 0.1 or less. Since the transmittance of the portion where the transparent member 64 is formed cannot be changed even when an electric field is applied, the transparent member 64 having such a shape and arrangement can increase the area of the transparent member 64 in the optically effective area. The ratio can be reduced as compared to a striped lattice. Since the transparent member 64 part transmits light in the entire wavelength region, the smaller the proportion of the transparent member 64 part, the better the contrast. In particular, when the above ratio is 0.1 or less, transmission loss due to diffraction and scattering can be reduced even when there is a mismatch in refractive index between the transparent member 64 and the liquid crystal 63.

第1の液晶セル60を構成する透明電極65a、65bは、透明部材64の側面上に形成され、例えば2次元の面心の正方格子の対称性をなすように配置される。すなわち、透明電極65a、65bは、一方の透明電極(以下、透明電極65aとする。)が正方格子の面心に位置するとしたとき、他方の透明電極65bが正方格子の各角の点に位置し、透明電極65aが各角の点の透明電極65bによって囲まれるように配置される。   The transparent electrodes 65a and 65b constituting the first liquid crystal cell 60 are formed on the side surface of the transparent member 64, and are arranged so as to have, for example, a two-dimensional face-centered square lattice symmetry. That is, when one transparent electrode (hereinafter referred to as transparent electrode 65a) is positioned at the center of the square lattice, the other transparent electrode 65b is positioned at each corner point of the square lattice. The transparent electrode 65a is disposed so as to be surrounded by the transparent electrode 65b at each corner point.

このように構成することによって、透明電極65a、65b間に電界を印加することによって横電界を液晶63に効果的に印加できる。また、透明電極65a、65bが格子をなし周期的に配置されるため、特定方向に同一の種類の透明電極65aまたは透明電極65bが並び、同一種類の透明電極の配線を容易に行うことができ、複雑なTFT基板を用いることを要しない。   With this configuration, a lateral electric field can be effectively applied to the liquid crystal 63 by applying an electric field between the transparent electrodes 65a and 65b. Moreover, since the transparent electrodes 65a and 65b are periodically arranged in a lattice, the same kind of transparent electrodes 65a or 65b are arranged in a specific direction, and wiring of the same kind of transparent electrodes can be easily performed. It is not necessary to use a complicated TFT substrate.

透明部材64、および、透明電極65a、65bは、本発明の第2の実施の形態で説明したように対抗する2つの透明基板1、2の透明部材接触面に振り分けて設けるのでもよい。この場合、例えば、上記の面心位置の透明部材64および透明電極65aを透明基板1側に設け、上記の角の位置の透明部材64および透明電極65bを透明基板2側に設け、各透明基板毎に透明電極を同一電位になるように配線するのでもよい。   As described in the second embodiment of the present invention, the transparent member 64 and the transparent electrodes 65a and 65b may be distributed and provided on the transparent member contact surfaces of the two transparent substrates 1 and 2 to be opposed. In this case, for example, the transparent member 64 and the transparent electrode 65a at the face center position are provided on the transparent substrate 1 side, and the transparent member 64 and the transparent electrode 65b at the corner position are provided on the transparent substrate 2 side. The transparent electrode may be wired so as to have the same potential every time.

第2の液晶セル70は、第1の液晶セル60と同様の構成を有するが、第1の液晶セル60と第2の液晶セル70とを張り合わせたときに、基板面から垂直な方向に関して、透明部材64および透明電極65a、65bの位置が透明部材74および透明電極75a、75bの位置と重ならないように配置されている。このように張り合わせることによって、第1の液晶セル60の透明電極65a、65b部分を透過した光を第1の液晶セル60の液晶73によって反射させることができ、透過強度のむらを低減することができる。   The second liquid crystal cell 70 has a configuration similar to that of the first liquid crystal cell 60, but when the first liquid crystal cell 60 and the second liquid crystal cell 70 are bonded together, The positions of the transparent member 64 and the transparent electrodes 65a and 65b are arranged so as not to overlap the positions of the transparent member 74 and the transparent electrodes 75a and 75b. By sticking together in this way, the light transmitted through the transparent electrodes 65a and 65b of the first liquid crystal cell 60 can be reflected by the liquid crystal 73 of the first liquid crystal cell 60, and unevenness in the transmission intensity can be reduced. it can.

なお、透明部材64、74は、端面が細くなるように、透明部材64、74が設けられた透明基板1、2の透明部材接触面から離れる方向に断面形状が小さくなるようにテーパーがつけられている形状が好適である。このように構成することによって、透明部材64、74に透明電極65a、65b、75a、75bの薄膜を堆積しやすくなる。   The transparent members 64 and 74 are tapered so that the cross-sectional shape becomes smaller in the direction away from the transparent member contact surface of the transparent substrates 1 and 2 on which the transparent members 64 and 74 are provided so that the end surfaces are narrowed. The shape is suitable. By configuring in this way, it becomes easy to deposit thin films of the transparent electrodes 65a, 65b, 75a, 75b on the transparent members 64, 74.

また、波長可変フィルタ素子では、透明部材64、74および透明電極65a、65b、75a、75bは、回折格子の場合とは異なり、光が透過する電極としての役割を果たすだけで、形状にテーパーをつけることによる光学的特性の劣化は少ないからである。ここで、テーパー角度を5度程度にすることが、光学的特性に与える影響を抑え透明電極65a、65b、75a、75bの薄膜の堆積を容易にすることができるため好ましい。   In the wavelength tunable filter element, unlike the diffraction grating, the transparent members 64 and 74 and the transparent electrodes 65a, 65b, 75a, and 75b only serve as electrodes through which light passes, and have a tapered shape. This is because there is little deterioration of the optical characteristics due to the attachment. Here, it is preferable to set the taper angle to about 5 degrees because the influence on the optical characteristics can be suppressed and deposition of the thin films of the transparent electrodes 65a, 65b, 75a, 75b can be facilitated.

液晶63、73は、コレステリック液晶を用いるのでもよいが、カイラルスメクチックC相を呈する液晶を含むコレステリック液晶(以下、カイラルスメクチックC液晶という。)が、印加する横電界に応じて螺旋のピッチを変化させ透過光の波長の制御が容易であるため好適である。また、カイラルスメクチックC液晶は、混合するカイラル材の分量を調節することによって螺旋のピッチすなわち透過させる光の波長を制御できるため、好適である。また、印加する横電界に応じて螺旋のピッチが変化するのはカイラルスメクチックC相を呈する液晶であるため、透過させる光の波長の選択範囲が広い用途では、カイラルスメクチックC相を呈する液晶の含有量を大きくすることが好ましい。   A cholesteric liquid crystal may be used for the liquid crystals 63 and 73, but a cholesteric liquid crystal including a liquid crystal exhibiting a chiral smectic C phase (hereinafter referred to as a chiral smectic C liquid crystal) changes the helical pitch in accordance with the applied lateral electric field. It is preferable because the wavelength of transmitted light can be easily controlled. Further, the chiral smectic C liquid crystal is preferable because the helical pitch, that is, the wavelength of transmitted light can be controlled by adjusting the amount of the chiral material to be mixed. In addition, since it is a liquid crystal exhibiting a chiral smectic C phase that changes the helical pitch according to the applied lateral electric field, the liquid crystal exhibiting the chiral smectic C phase is contained in applications where the wavelength range of light to be transmitted is wide. It is preferable to increase the amount.

なお、コレステリック液晶を用いる場合、透明部材64、74および透明電極65a、65b、75a、75bとして、屈折率が液晶63、73の常光屈折率と異常光屈折率との間のいずれかの値、特に、液晶63、73の常光屈折率と異常光屈折率のほぼ中間の値の材料を用いることが好適である。このような材料を用いることによって、屈折率が液晶63、73の平均の屈折率に近いため、回折および散乱による透過損失を小さくできる。以下、カイラルスメクチックC液晶の螺旋軸は、透明基板1、2の透明部材接触面に垂直な方向を向いているものとする。   When cholesteric liquid crystal is used, as the transparent members 64 and 74 and the transparent electrodes 65a, 65b, 75a, and 75b, the refractive index is any value between the ordinary light refractive index and the extraordinary light refractive index of the liquid crystals 63 and 73. In particular, it is preferable to use a material having a value approximately halfway between the ordinary light refractive index and the extraordinary light refractive index of the liquid crystals 63 and 73. By using such a material, since the refractive index is close to the average refractive index of the liquid crystals 63 and 73, transmission loss due to diffraction and scattering can be reduced. Hereinafter, it is assumed that the spiral axis of the chiral smectic C liquid crystal is oriented in the direction perpendicular to the transparent member contact surface of the transparent substrates 1 and 2.

また、液晶63、73の螺旋の方向は同一方向になっているのでもよい。これは、第1の液晶セル60と第2の液晶セル70とを図6に示すように張り合わせたとき、光源側の液晶セル(第1の液晶セルとする。)の透明部材64および透明電極65a、65bを透過した光が、第2の液晶セル70の液晶73によって阻止され透過することができないため、透過強度のむらを低減することができるからである。   Further, the spiral directions of the liquid crystals 63 and 73 may be the same. This is because when the first liquid crystal cell 60 and the second liquid crystal cell 70 are bonded together as shown in FIG. 6, the transparent member 64 and the transparent electrode of the light source side liquid crystal cell (referred to as the first liquid crystal cell). This is because the light transmitted through 65a and 65b is blocked by the liquid crystal 73 of the second liquid crystal cell 70 and cannot be transmitted, so that unevenness in the transmission intensity can be reduced.

さらに、液晶63、73の螺旋の回転方向は、相互に反対となっているのでもよい。第1の液晶セル60と第2の液晶セル70とを図6に示すように張り合わせたとき、一方の液晶セルが右回りの偏光の光を反射させて、他方の液晶セルが左回りの偏光の光を反射させるようにすることができる。その結果、入射する偏光状態によらない波長可変フィルタを実現でき、光の利用効率を向上させることができる。   Further, the rotational directions of the spirals of the liquid crystals 63 and 73 may be opposite to each other. When the first liquid crystal cell 60 and the second liquid crystal cell 70 are bonded together as shown in FIG. 6, one liquid crystal cell reflects clockwise polarized light and the other liquid crystal cell reflects counterclockwise polarized light. The light can be reflected. As a result, a wavelength tunable filter that does not depend on the incident polarization state can be realized, and the light utilization efficiency can be improved.

以下、本発明の第3の実施の形態に係る横電界駆動液晶セル600の作用について説明する。図7は、本発明の第3の実施の形態に係る横電界駆動液晶セル600の作用について説明するための説明図である。図7には、横電界駆動液晶セル600を構成する1つの液晶セル(以下、第1の液晶セル60とする。)に、液晶63としてカイラルスメクチックC液晶が用いられ、印加電界の有無に応じて変化する液晶分子32の螺旋の様子を概念的に示す図である。ここで、図7(a)および図7(b)は、それぞれ、電界を印加してないとき、電界を印加したときの液晶分子32の螺旋の様子を概念的に示す図である。   The operation of the lateral electric field drive liquid crystal cell 600 according to the third embodiment of the present invention will be described below. FIG. 7 is an explanatory diagram for explaining the operation of the horizontal electric field drive liquid crystal cell 600 according to the third embodiment of the present invention. In FIG. 7, a chiral smectic C liquid crystal is used as the liquid crystal 63 in one liquid crystal cell (hereinafter referred to as the first liquid crystal cell 60) constituting the horizontal electric field drive liquid crystal cell 600, depending on the presence or absence of an applied electric field. It is a figure which shows notionally the mode of the spiral of the liquid crystal molecule 32 which changes in a row. Here, FIG. 7A and FIG. 7B are diagrams conceptually showing the spiral state of the liquid crystal molecules 32 when no electric field is applied and when an electric field is applied.

液晶分子32は、螺旋のピッチに応じて入射光をブラッグ反射するように作用する。そして、液晶分子32の螺旋のピッチは、印加される横電界が高まるにつれて長くなる。そのため、横電界駆動液晶セル600は、透明電極65a、65bを介して印加された横電界に応じて決定される波長の入射光を反射する波長可変フィルタ素子として機能する。   The liquid crystal molecules 32 act to Bragg-reflect incident light according to the helical pitch. And the helical pitch of the liquid crystal molecules 32 becomes longer as the applied lateral electric field increases. Therefore, the lateral electric field driving liquid crystal cell 600 functions as a wavelength variable filter element that reflects incident light having a wavelength determined according to the lateral electric field applied through the transparent electrodes 65a and 65b.

以上説明したように、本発明の第3の実施の形態に係る横電界駆動液晶セルは、各透明部材が透明部材接触面に垂直な方向に断面形状が略一定の形状を有し、透明電極が透明部材の少なくとも側面上に設けられ、隣り合う透明電極間で液晶に横電界を印加できるように電気的に接続されているため、横電界を有効に印加できると共に、光が透明部材と透明電極とを透過するため、従来の横電界駆動液晶セルよりも開口率を向上させることができる。   As described above, in the horizontal electric field drive liquid crystal cell according to the third embodiment of the present invention, each transparent member has a substantially constant cross-sectional shape in a direction perpendicular to the transparent member contact surface. Is provided on at least the side surface of the transparent member, and is electrically connected so that a lateral electric field can be applied to the liquid crystal between the adjacent transparent electrodes, so that the lateral electric field can be effectively applied and light is transparent to the transparent member. Since the light is transmitted through the electrodes, the aperture ratio can be improved as compared with the conventional lateral electric field drive liquid crystal cell.

また、各透明部材が柱状の形状を有するため、2次元的な周期性を有する格子状に配置でき、その結果、横電界が印加可能な領域をさらに増加させることができるため、波長可変フィルタ等の所定の用途では開口率等をさらに向上させることができる。   In addition, since each transparent member has a columnar shape, it can be arranged in a lattice shape having a two-dimensional periodicity, and as a result, it is possible to further increase the region to which a lateral electric field can be applied. In certain applications, the aperture ratio and the like can be further improved.

また、各透明部材が、透明部材が設けられた透明基板の透明部材接触面から離れる方向に断面形状が小さくなるようにテーパーがついているため、導電膜の堆積等の作製工程を容易にすることができる。   In addition, since each transparent member is tapered so that the cross-sectional shape becomes smaller in the direction away from the transparent member contact surface of the transparent substrate provided with the transparent member, the manufacturing process such as deposition of the conductive film is facilitated. Can do.

また、少なくとも透明部材の屈折率が、液晶の常光屈折率と異常光屈折率との間のいずれかの値の屈折率になっているため、波長可変フィルタ等の所定の用途では、光を透過する際の迷光、散乱光等を抑制でき、光の利用効率をさらに向上させることができる。   In addition, since at least the refractive index of the transparent member is a refractive index of any value between the ordinary light refractive index and the extraordinary light refractive index of the liquid crystal, it transmits light in a predetermined application such as a wavelength tunable filter. Stray light, scattered light, and the like can be suppressed, and the light utilization efficiency can be further improved.

また、複数の透明部材が、透明部材接触面上に周期的に配列され格子をなすため、TFT基板を用いることなく電極間に電界を印加できる配線処理を行うことができる。   Further, since the plurality of transparent members are periodically arranged on the transparent member contact surface to form a lattice, wiring processing that can apply an electric field between the electrodes can be performed without using a TFT substrate.

また、各透明基板に分配されて形成されている複数の透明部材の相対的な配置が、2つの透明基板間で同一であるため、透明部材間の間隔を広げることができ、電極および配線等の形成、配向処理等の工程を容易にすることができる。   Moreover, since the relative arrangement of the plurality of transparent members distributed and formed on each transparent substrate is the same between the two transparent substrates, the interval between the transparent members can be widened, and electrodes, wiring, etc. Steps such as forming and alignment treatment can be facilitated.

また、コレステリック液晶の螺旋軸が透明部材接触面に対してほぼ垂直な方向に配向しているため、螺旋のピッチを選択することによってこのピッチに応じた光を選択的に反射等することができる。   Further, since the spiral axis of the cholesteric liquid crystal is oriented in a direction substantially perpendicular to the contact surface of the transparent member, the light corresponding to this pitch can be selectively reflected by selecting the pitch of the spiral. .

また、コレステリック液晶がカイラルスメクチックC相を呈する液晶を含むため、横電界を印加することによって螺旋のピッチを高速かつ低電圧で制御でき、制御性良く透過する光の波長を変えることができる。   In addition, since the cholesteric liquid crystal includes a liquid crystal exhibiting a chiral smectic C phase, the helical pitch can be controlled at a high speed and a low voltage by applying a lateral electric field, and the wavelength of light transmitted with good controllability can be changed.

また、液晶セルが複数積層されているため、コントラスト等の光学的性能をさらに向上させることができる。   In addition, since a plurality of liquid crystal cells are stacked, optical performance such as contrast can be further improved.

また、積層される各横電界駆動液晶セルの各透明部材が、積層される各横電界駆動液晶セル間で相互に重ならないように、各横電界駆動液晶セルが積層されているため、コントラストのむらを低減することができる。   In addition, since each horizontal electric field drive liquid crystal cell is laminated so that each transparent member of each horizontal electric field drive liquid crystal cell to be laminated does not overlap each other between each of the horizontal electric field drive liquid crystal cells to be laminated, unevenness in contrast is caused. Can be reduced.

なお、上記では、複数の横電界駆動液晶セルを積層した構成について説明したが、例えば、第1の液晶セル60からなる構成でもよい。この場合、本発明の横電界駆動液晶セルを反射型の素子とするのでもよい。かかる反射型の横電界駆動液晶セルは、横電界駆動液晶セル内に反射面を設け、入射光に加えて、反射面で反射した光も液晶63を往復で透過するように構成することによって実現できる。   In the above description, a configuration in which a plurality of lateral electric field drive liquid crystal cells are stacked has been described. However, for example, a configuration including the first liquid crystal cell 60 may be used. In this case, the lateral electric field drive liquid crystal cell of the present invention may be a reflective element. Such a reflection type lateral electric field drive liquid crystal cell is realized by providing a reflection surface in the horizontal electric field drive liquid crystal cell so that light reflected by the reflection surface in addition to incident light is transmitted through the liquid crystal 63 in a reciprocating manner. it can.

また、本発明の横電界駆動液晶セルを波長板、偏光板等と積層した構成にするのでもよい。このように構成することによって、入射光の偏光方向を偏光板、1/2波長板、1/4波長板等によって調整することができ、高い利用効率が得られる。   Further, the lateral electric field drive liquid crystal cell of the present invention may be laminated with a wave plate, a polarizing plate or the like. By comprising in this way, the polarization direction of incident light can be adjusted with a polarizing plate, a half-wave plate, a quarter-wave plate, etc., and high utilization efficiency is obtained.

(第1の実施例)
以下、本発明の横電界駆動液晶セルを回折効率可変素子に適用した第1の実施例について説明する。図1は、本発明の第1の実施例に係る横電界駆動液晶セルの概念的な構成を示す断面図である。透明基板1、2として屈折率が1.46の石英硝子基板を用い、透明基板1を加工することによって透明部材4を形成する。透明部材4は、本発明の第1の実施の形態で説明した形状および配置を有し、透明部材4の形成はフォトリソグラフィー技術とドライエッチング技術を用いて行う。
(First embodiment)
A first embodiment in which the lateral electric field drive liquid crystal cell of the present invention is applied to a diffraction efficiency variable element will be described below. FIG. 1 is a sectional view showing a conceptual configuration of a horizontal electric field drive liquid crystal cell according to a first embodiment of the present invention. A quartz glass substrate having a refractive index of 1.46 is used as the transparent substrates 1 and 2 and the transparent substrate 1 is processed to form the transparent member 4. The transparent member 4 has the shape and arrangement described in the first embodiment of the present invention, and the transparent member 4 is formed using a photolithography technique and a dry etching technique.

透明部材4がなす格子の周期(以下、格子周期という。)は10μm、透明部材4の幅は約4μm、透明部材の高さは略2.7μmである。次に、透明基板1の透明部材4が形成された基板面側にスパッタ法で厚さが30nmのITO膜を堆積し、透明部材4上のITO膜を透明電極5a、5bとして残し、透明電極5a間および透明電極5b間で導通が得られ、透明電極5aと透明電極5bとの間に電界を印加できるように基板面上のITO膜を残し、他の部分のITO膜を除去する。上記のITO膜の除去はフォトリソグラフィー技術とドライエッチング技術を用いて行う。   The period of the grating formed by the transparent member 4 (hereinafter referred to as the grating period) is 10 μm, the width of the transparent member 4 is about 4 μm, and the height of the transparent member is about 2.7 μm. Next, an ITO film having a thickness of 30 nm is deposited on the surface of the transparent substrate 1 on which the transparent member 4 is formed by sputtering, leaving the ITO film on the transparent member 4 as transparent electrodes 5a and 5b. Conductivity is obtained between 5a and between the transparent electrodes 5b, and the ITO film on the substrate surface is left so that an electric field can be applied between the transparent electrodes 5a and 5b, and the other part of the ITO film is removed. The removal of the ITO film is performed using a photolithography technique and a dry etching technique.

一方、透明基板2に関しては、透明基板2の対向基板面のシール材6を設ける部分を基板面から8μmの深さまでエッチングによって除去してシール接触部分を形成する。次に、透明基板1の透明電極5a、5bが形成された基板面側、および、透明基板2のシール接触部分が形成された基板面側に垂直配向膜を塗布して焼成し、配向処理を施す。   On the other hand, with respect to the transparent substrate 2, a portion where the sealing material 6 on the opposite substrate surface of the transparent substrate 2 is provided is removed by etching to a depth of 8 μm from the substrate surface to form a seal contact portion. Next, a vertical alignment film is applied to the substrate surface side of the transparent substrate 1 where the transparent electrodes 5a and 5b are formed and the substrate surface side of the transparent substrate 2 where the seal contact portion is formed and baked to perform alignment treatment. Apply.

次に、ギャップを保持するための直径が8.2μmのスペーサを混合したシール材6を透明基板2のシール接触部分に印刷し、透明基板1と透明基板2とを熱圧着して液晶セルを形成する。上記のようにすることによって、透明電極5a、5bと透明基板2との間の基板透明部材間隙が0.2μm程度の、透明部材4の高さに比して1/10以下の狭い液晶セルを形成することができる。   Next, a sealing material 6 mixed with a spacer having a diameter of 8.2 μm for holding the gap is printed on the sealing contact portion of the transparent substrate 2, and the transparent substrate 1 and the transparent substrate 2 are thermocompression bonded to form a liquid crystal cell. Form. By doing as described above, a narrow liquid crystal cell having a substrate transparent member gap between the transparent electrodes 5a, 5b and the transparent substrate 2 of about 0.2 μm, which is not more than 1/10 of the height of the transparent member 4 Can be formed.

上記のように形成される液晶セルに常光屈折率が1.482、異常光屈折率が1.582の正の誘電異方性を有する液晶を注入して封止する。次に、上記で、透明電極5aと透明電極5bとの間に電界を印加できるように基板面上に残した各ITO膜上に電極パットを形成し、液晶の配向を制御するための電気信号を印加する端子とする。この端子に電気信号を印加することによって液晶3に透明基板の基板面に平行な横電界を印加することができる。   A liquid crystal having positive dielectric anisotropy having an ordinary light refractive index of 1.482 and an extraordinary light refractive index of 1.582 is injected into the liquid crystal cell formed as described above and sealed. Next, an electric signal for controlling the alignment of the liquid crystal by forming an electrode pad on each ITO film left on the substrate surface so that an electric field can be applied between the transparent electrode 5a and the transparent electrode 5b. The terminal to which is applied. By applying an electric signal to this terminal, a horizontal electric field parallel to the substrate surface of the transparent substrate can be applied to the liquid crystal 3.

上記のように作製される回折効率可変素子100は、波長が約470nm(青色)、約550nm(緑色)および約630nm(赤色)の入射光に対し、電界を印加しない場合には偏光方向によらず、85%以上の透過率を示す。透明電極5a、5b間に電界を印加し、徐々に電界を増加させると、格子直交偏光光に対する液晶の屈折率は、常光屈折率から異常光屈折率に徐々に変化する。このため、透過率は徐々に減少し、印加電界が約7Vのときの透過率は約470nm(青色)、約550nm(緑色)および約630nm(赤色)いずれの波長に対しても10%以下となる。
(第2の実施例)
以下、本発明の横電界駆動液晶セルを回折効率可変素子に適用した第2の実施例について説明する。図3は、本発明の第2の実施例に係る横電界駆動液晶セルの概念的な構成を示す断面図である。横電界駆動液晶セル300を構成する透明部材は、本発明の第1の実施の形態に係る横電界駆動液晶セルを構成する透明部材4が、両方の透明基板1、2の透明部材接触面に分けて設けられたものと同等の構成を有する。
In the diffraction efficiency variable element 100 manufactured as described above, the incident light with wavelengths of about 470 nm (blue), about 550 nm (green), and about 630 nm (red) depends on the polarization direction when no electric field is applied. The transmittance is 85% or more. When an electric field is applied between the transparent electrodes 5a and 5b and the electric field is gradually increased, the refractive index of the liquid crystal with respect to the lattice-polarized light gradually changes from the ordinary light refractive index to the extraordinary light refractive index. For this reason, the transmittance gradually decreases, and the transmittance when the applied electric field is about 7 V is 10% or less for all wavelengths of about 470 nm (blue), about 550 nm (green), and about 630 nm (red). Become.
(Second embodiment)
Hereinafter, a second embodiment in which the lateral electric field drive liquid crystal cell of the present invention is applied to a diffraction efficiency variable element will be described. FIG. 3 is a sectional view showing a conceptual configuration of a horizontal electric field drive liquid crystal cell according to a second embodiment of the present invention. The transparent member constituting the horizontal electric field drive liquid crystal cell 300 is the transparent member 4 constituting the horizontal electric field drive liquid crystal cell according to the first embodiment of the present invention on the transparent member contact surfaces of both transparent substrates 1 and 2. It has the same configuration as that provided separately.

まず、透明基板1、2の表面に、CVD法を用いて屈折率が1.51で厚さが約2.4μmのSiON膜を成膜する。透明部材4a、4bは、本発明の第2の実施の形態で説明した形状および配置を有し、透明部材4a、4bの形成はフォトリソグラフィー技術とドライエッチング技術を用いて行う。透明部材4がなす格子の格子周期は30μm、透明部材4の幅は約6μm、透明部材の高さは略2.4μmである。ここで、段差が略2.4μmのシール接触部分も同時に形成する。   First, a SiON film having a refractive index of 1.51 and a thickness of about 2.4 μm is formed on the surfaces of the transparent substrates 1 and 2 using the CVD method. The transparent members 4a and 4b have the shape and arrangement described in the second embodiment of the present invention, and the transparent members 4a and 4b are formed by using a photolithography technique and a dry etching technique. The grating period of the grating formed by the transparent member 4 is 30 μm, the width of the transparent member 4 is approximately 6 μm, and the height of the transparent member is approximately 2.4 μm. Here, a seal contact portion having a step of about 2.4 μm is formed at the same time.

次に、各透明基板1、2の透明部材4a、4bが形成された基板面側にスパッタ法で厚さが30nmのITO膜を堆積し、各透明基板1、2の透明部材4a、4b上のITO膜を透明電極35a、35bとして残し、透明電極35a間および透明電極35b間で導通が得られ、透明電極35aと透明電極35bとの間に電界を印加できるように基板面上のITO膜を残し、他の部分のITO膜を除去する。上記のITO膜の除去はフォトリソグラフィー技術とドライエッチング技術を用いて行う。   Next, an ITO film having a thickness of 30 nm is deposited by sputtering on the substrate surface side where the transparent members 4a and 4b of the transparent substrates 1 and 2 are formed, and on the transparent members 4a and 4b of the transparent substrates 1 and 2 Of the ITO film on the substrate surface so that electrical conduction can be obtained between the transparent electrodes 35a and 35b, and an electric field can be applied between the transparent electrodes 35a and 35b. The other part of the ITO film is removed. The removal of the ITO film is performed using a photolithography technique and a dry etching technique.

次に、各透明基板1、2の透明部材4a、4bが形成された基板面側に、配向膜を塗布して焼成し、配向処理を施す。配向処理として、透明部材4a、4bの長手方向に液晶3が配向するようにラビング処理を施す。   Next, an alignment film is applied and baked on the substrate surface side of the transparent substrates 1 and 2 on which the transparent members 4a and 4b are formed, and an alignment process is performed. As the alignment process, a rubbing process is performed so that the liquid crystal 3 is aligned in the longitudinal direction of the transparent members 4a and 4b.

次に、ギャップを保持するための直径が2.6μmのスペーサを混合したシール材6を一方の透明基板のシール接触部分に印刷し、透明基板1と透明基板2とを熱圧着して液晶セルを形成する。上記のようにすることによって、透明電極35a、35bと透明基板1、2との間の基板透明部材間隙が0.2μm程度の透明部材の高さに比して1/10以下の狭い液晶セルを形成することができる。   Next, a sealing material 6 mixed with a spacer having a diameter of 2.6 μm for holding the gap is printed on the sealing contact portion of one transparent substrate, and the transparent substrate 1 and the transparent substrate 2 are thermocompression bonded to form a liquid crystal cell. Form. By doing so, a narrow liquid crystal cell in which the substrate transparent member gap between the transparent electrodes 35a and 35b and the transparent substrates 1 and 2 is 1/10 or less compared to the height of the transparent member of about 0.2 μm. Can be formed.

上記のように形成される液晶セルに常光屈折率が1.508、異常光屈折率が1.653の正の誘電異方性を有する液晶を注入して封止する。次に、上記で、透明電極35aと透明電極35bとの間に電界を印加できるように各透明基板1、2の基板面上に残した各ITO膜上に電極パットを形成し、液晶の配向を制御するための電気信号を印加する端子とする。この端子に電気信号を印加することによって、透明基板に平行な横電界を液晶3に印加することができる。   A liquid crystal having positive dielectric anisotropy having an ordinary light refractive index of 1.508 and an extraordinary light refractive index of 1.653 is injected into the liquid crystal cell formed as described above and sealed. Next, an electrode pad is formed on each ITO film left on the substrate surfaces of the transparent substrates 1 and 2 so that an electric field can be applied between the transparent electrode 35a and the transparent electrode 35b. This is a terminal to which an electric signal for controlling is applied. By applying an electric signal to this terminal, a lateral electric field parallel to the transparent substrate can be applied to the liquid crystal 3.

上記のように作製される回折効率可変素子300は、波長が約470nm(青色)、約550nm(緑色)および約630nm(赤色)で、格子直交偏光光に対し、電界を印加しない場合には95%以上の透過率を示す。透明電極35a、35b間に電界を印加し、徐々に電界強度を増加させると、格子直交偏光光に対する液晶の屈折率は、常光屈折率から異常光屈折率に徐々に変化する。   The diffraction efficiency variable element 300 manufactured as described above has wavelengths of about 470 nm (blue), about 550 nm (green), and about 630 nm (red), and is 95 when no electric field is applied to grating orthogonal polarization light. % Transmittance is shown. When an electric field is applied between the transparent electrodes 35a and 35b and the electric field strength is gradually increased, the refractive index of the liquid crystal with respect to the lattice-polarized light gradually changes from the ordinary light refractive index to the extraordinary light refractive index.

このため格子直交偏光光に対する透過率は徐々に減少し、約7Vの電圧を印加したときの電界に対する透過率は、青色、緑色、赤色いずれの波長に対しても10%以下となる。これに対して、長手方向偏光光に対しては、電界無印加の場合には入射した3つの波長の全てに対して10%以下の透過率を示すが、電界印加により屈折率が異常光屈折率から常光屈折率に徐々に変化する。このため長手方向偏光光に対する透過率は、徐々に増加し、約7Vの電圧を印加したときの電界に対する透過率は、入射する3つの波長の全てに対して95%以上となる。
(第3の実施例)
以下、本発明の横電界駆動液晶セルを波長可変フィルタ素子に適用した第3の実施例について説明する。図6は、本発明の第3の実施例に係る横電界駆動液晶セルの概念的な構成を示す側断面図である。本発明の第3の実施例に係る横電界駆動液晶セル600は、第1の液晶セル60と第2の液晶セル70とが接着剤7によって張り合わされた構成を有する。
For this reason, the transmittance with respect to the lattice-polarized light gradually decreases, and the transmittance with respect to the electric field when a voltage of about 7 V is applied is 10% or less for all the wavelengths of blue, green, and red. On the other hand, with respect to longitudinally polarized light, when no electric field is applied, the transmittance is 10% or less for all three incident wavelengths. Gradually changes from refractive index to ordinary refractive index. For this reason, the transmittance with respect to the longitudinally polarized light gradually increases, and the transmittance with respect to the electric field when a voltage of about 7 V is applied is 95% or more with respect to all three incident wavelengths.
(Third embodiment)
A third embodiment in which the transverse electric field drive liquid crystal cell of the present invention is applied to a wavelength tunable filter element will be described below. FIG. 6 is a side sectional view showing a conceptual configuration of a horizontal electric field drive liquid crystal cell according to a third embodiment of the present invention. A lateral electric field drive liquid crystal cell 600 according to the third embodiment of the present invention has a configuration in which a first liquid crystal cell 60 and a second liquid crystal cell 70 are bonded together by an adhesive 7.

図1は、横電界駆動液晶セル600を構成する各液晶セル60、70の概念的な構成を示す断面図である。横電界駆動液晶セル600を構成する各液晶セル60、70が有する透明部材64、74の形状および配置ならびに透明電極65a、65b、75a、75bの形状および配置は、本発明の第1の実施例に係る横電界駆動液晶セルを構成する透明部材4の形状および配置ならびに透明電極5a、5bの形状および配置と同様である。   FIG. 1 is a cross-sectional view showing a conceptual configuration of each of the liquid crystal cells 60 and 70 constituting the horizontal electric field drive liquid crystal cell 600. The shape and arrangement of the transparent members 64 and 74 included in the liquid crystal cells 60 and 70 constituting the horizontal electric field drive liquid crystal cell 600 and the shapes and arrangement of the transparent electrodes 65a, 65b, 75a and 75b are the first embodiment of the present invention. This is the same as the shape and arrangement of the transparent member 4 and the shapes and arrangement of the transparent electrodes 5a and 5b constituting the horizontal electric field drive liquid crystal cell.

各液晶セル60、70の透明基板1、2として屈折率が1.46の石英硝子基板を用いる。まず、各液晶セル60、70の透明基板1の表面に、スパッタ法を用いて屈折率が1.53で厚さが約7μmのSiON膜を成膜する。次に、フォトリソグラフィー技術とドライエッチング技術を用いて、透明部材64、74を形成する。透明部材64、74がなす格子の格子周期は20μm、透明部材4の幅は約1.6μm、透明部材の高さは略7μmである。   A quartz glass substrate having a refractive index of 1.46 is used as the transparent substrates 1 and 2 of the liquid crystal cells 60 and 70, respectively. First, a SiON film having a refractive index of 1.53 and a thickness of about 7 μm is formed on the surface of the transparent substrate 1 of each liquid crystal cell 60, 70 by sputtering. Next, the transparent members 64 and 74 are formed using a photolithography technique and a dry etching technique. The grating period of the grating formed by the transparent members 64 and 74 is 20 μm, the width of the transparent member 4 is approximately 1.6 μm, and the height of the transparent member is approximately 7 μm.

次に、各液晶セル60、70の透明基板1の透明部材64、74が形成された基板面側にスパッタ法で厚さが30nmのITO膜を堆積し、透明部材64、74上のITO膜を透明電極65a、65b、75a、75bとして残し、透明電極65a間、透明電極65b間、透明電極75a間および透明電極75b間でそれぞれ独立に導通が得られ、透明電極65aと透明電極65bとの間および透明電極75aと透明電極75bとの間に電界を印加できるように基板面上のITO膜を残し、他の部分のITO膜を除去する。上記のITO膜の除去はフォトリソグラフィー技術とドライエッチング技術を用いて行う。   Next, an ITO film having a thickness of 30 nm is deposited by sputtering on the substrate surface side where the transparent members 64 and 74 of the transparent substrate 1 of the liquid crystal cells 60 and 70 are formed, and the ITO film on the transparent members 64 and 74 is deposited. As transparent electrodes 65a, 65b, 75a, 75b, and conduction is obtained independently between the transparent electrodes 65a, between the transparent electrodes 65b, between the transparent electrodes 75a and between the transparent electrodes 75b, and between the transparent electrodes 65a and 65b. The ITO film on the substrate surface is left so that an electric field can be applied between the transparent electrode 75a and the transparent electrode 75b, and the other part of the ITO film is removed. The removal of the ITO film is performed using a photolithography technique and a dry etching technique.

次に、各液晶セル60、70の透明基板2の対向基板面のシール材6を設ける部分を対向基板面から5.2μmの深さまでエッチングによって除去してシール接触部分を形成する。次に、各液晶セル60、70の透明基板1の透明部材接触面側、および、各液晶セル60、70の透明基板2の対向基板面側に垂直配向膜を塗布して焼成し、配向処理を施す。   Next, a portion where the sealing material 6 on the opposing substrate surface of the transparent substrate 2 of each of the liquid crystal cells 60 and 70 is provided is removed by etching to a depth of 5.2 μm from the opposing substrate surface to form a sealing contact portion. Next, a vertical alignment film is applied and fired on the transparent member contact surface side of the transparent substrate 1 of each liquid crystal cell 60, 70 and on the opposite substrate surface side of the transparent substrate 2 of each liquid crystal cell 60, 70, and alignment treatment is performed. Apply.

次に、ギャップを保持するための直径が5.5μmのスペーサを混合したシール材6を、各液晶セル60、70の透明基板2の対向基板面のシール接触部分に印刷し、液晶セル60、70毎に透明基板1と透明基板2とを熱圧着して液晶セルを形成する。上記のようにすることによって、透明電極65a、65b、75a、75bと透明基板2の対向基板面との間の基板透明部材間隙が0.3μm程度の狭い液晶セルを形成することができる。   Next, the sealing material 6 mixed with a spacer having a diameter of 5.5 μm for holding the gap is printed on the sealing contact portion of the opposite substrate surface of the transparent substrate 2 of each liquid crystal cell 60, 70, and the liquid crystal cell 60, The transparent substrate 1 and the transparent substrate 2 are thermocompression bonded every 70 to form a liquid crystal cell. By doing so, a narrow liquid crystal cell in which the substrate transparent member gap between the transparent electrodes 65a, 65b, 75a, 75b and the opposing substrate surface of the transparent substrate 2 is about 0.3 μm can be formed.

上記のように形成した液晶セルのうちの第1の液晶セル60に、螺旋の回転方向が右回りで、螺旋ピッチが室温で約370nmのカイラルスメクチックC液晶を注入して封止する。同様に、第2の液晶セルに、螺旋の回転方向が左回りで、螺旋ピッチが上記の螺旋ピッチと同程度のカイラルスメクチックC液晶を注入して封止する。このように形成した第1の液晶セルと第2の液晶セルとを、図6に示すように基板面に垂直な方向から見たときに2つの液晶セル内の透明電極5a、5bの位置が重ならないように、接着させた。   Of the liquid crystal cells formed as described above, chiral smectic C liquid crystal having a spiral rotation direction clockwise and a spiral pitch of about 370 nm is injected and sealed into the first liquid crystal cell 60. Similarly, chiral smectic C liquid crystal in which the spiral rotation direction is counterclockwise and the spiral pitch is approximately the same as the spiral pitch is injected into the second liquid crystal cell and sealed. When the first liquid crystal cell and the second liquid crystal cell thus formed are viewed from a direction perpendicular to the substrate surface as shown in FIG. 6, the positions of the transparent electrodes 5a and 5b in the two liquid crystal cells are It was made to adhere so that it might not overlap.

次に、上記で、透明電極65a、65b間および透明電極75a、75b間に電界を印加できるように基板面上に残した各ITO膜上に電極パットを形成し、液晶の配向を制御するための電気信号を印加する端子とする。この端子に電気信号を印加することによって液晶63、73に透明基板の基板面に平行な横電界を印加することができる。   Next, in order to control the alignment of the liquid crystal, an electrode pad is formed on each ITO film left on the substrate surface so that an electric field can be applied between the transparent electrodes 65a and 65b and between the transparent electrodes 75a and 75b. The terminal to which the electrical signal is applied. By applying an electric signal to this terminal, a horizontal electric field parallel to the substrate surface of the transparent substrate can be applied to the liquid crystals 63 and 73.

上記のように作製される横電界駆動液晶セル600は、波長が約470nm(青色)の入射光に対し、電界を印加しない場合には偏光方向によらず、15%以下の透過率を示し、青色の補色フィルタとして機能する。透明電極65a、65b間および透明電極75a、75b間に電界を印加し始め、徐々に電界強度を増加させると、反射する光の波長は長波長側に移動し、透過率が15%以下の緑色(波長が約550nm)の補色フィルタから、透過率が15%以下の赤色(波長が約630nm)の補色フィルタへと機能が変化していく。   The lateral electric field drive liquid crystal cell 600 manufactured as described above exhibits a transmittance of 15% or less for incident light having a wavelength of about 470 nm (blue), regardless of the polarization direction when no electric field is applied, It functions as a blue complementary color filter. When an electric field is started to be applied between the transparent electrodes 65a and 65b and between the transparent electrodes 75a and 75b and the electric field strength is gradually increased, the wavelength of the reflected light shifts to the long wavelength side, and the transmittance is 15% or less. The function changes from a complementary color filter having a wavelength of about 550 nm to a red color filter having a transmittance of 15% or less (wavelength is about 630 nm).

本発明に係る横電界駆動液晶セルは、従来の横電界駆動液晶セルよりも開口率を向上させることができるという効果が有用な光学部品、光学素子等の用途にも適用できる。   The lateral electric field drive liquid crystal cell according to the present invention can also be applied to uses such as optical parts and optical elements that have an advantageous effect that the aperture ratio can be improved as compared with the conventional lateral electric field drive liquid crystal cell.

本発明の第1の実施の形態に係る横電界駆動液晶セルの概念的な構成を示す側断面図1 is a side sectional view showing a conceptual configuration of a horizontal electric field drive liquid crystal cell according to a first embodiment of the present invention. 本発明の第1の実施の形態に係る横電界駆動液晶セルの作用について説明するための説明図Explanatory drawing for demonstrating the effect | action of the horizontal electric field drive liquid crystal cell which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る横電界駆動液晶セルの概念的な構成を示す側断面図Side sectional view which shows the notional structure of the horizontal electric field drive liquid crystal cell which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る横電界駆動液晶セルの作用について説明するための説明図Explanatory drawing for demonstrating the effect | action of the horizontal electric field drive liquid crystal cell which concerns on the 2nd Embodiment of this invention. 横電界駆動液晶セル100の透明部材4の端面近傍で生ずる端部効果が、横電界駆動液晶セル300の透明部材4a、4bの端面近傍で抑制される様子を概念的に示す図The figure which shows notionally the edge part effect which arises in the end surface vicinity of the transparent member 4 of the horizontal electric field drive liquid crystal cell 100 being suppressed in the end surface vicinity of the transparent members 4a and 4b of the horizontal electric field drive liquid crystal cell 300. 本発明の第3の実施の形態に係る横電界駆動液晶セルの概念的な構成を示す側断面図Side sectional view which shows the notional structure of the horizontal electric field drive liquid crystal cell which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る横電界駆動液晶セルの作用について説明するための説明図Explanatory drawing for demonstrating the effect | action of the horizontal electric field drive liquid crystal cell which concerns on the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1、2 透明基板
3、63、73 液晶
4、4a、4b、64、74 透明部材
5a、5b、35a、35b、65a、65b、75a、75b 透明電極
6 シール材
7 接着剤
31、32 液晶分子
60、70 液晶セル
100、300、600 横電界駆動液晶セル
1, 2, Transparent substrate 3, 63, 73 Liquid crystal 4, 4a, 4b, 64, 74 Transparent member 5a, 5b, 35a, 35b, 65a, 65b, 75a, 75b Transparent electrode 6 Sealing material 7 Adhesive 31, 32 Liquid crystal molecule 60, 70 Liquid crystal cell 100, 300, 600 Horizontal electric field drive liquid crystal cell

Claims (13)

対向する一対の透明基板と、対向する前記透明基板間に設けられた複数の透明部材と、前記透明部材の所定の表面上に設けられた透明電極と、一対の前記透明基板と複数の前記透明部材または前記透明電極との間に挟持される液晶とを備え、
各前記透明部材が、各前記透明基板の相互に対向する基板面である対向基板面のうちの少なくとも一方の前記透明基板の対向基板面に平行な透明部材接触面上に設けられ、前記透明部材接触面に垂直な方向に断面形状が略一定の形状を有し、前記透明電極が、前記透明部材の少なくとも側面上に設けられ、隣り合う前記透明電極間で前記液晶に横電界を印加できるように電気的に接続されていることを特徴とする横電界駆動液晶セル。
A pair of opposing transparent substrates, a plurality of transparent members provided between the opposing transparent substrates, a transparent electrode provided on a predetermined surface of the transparent member, a pair of the transparent substrates and the plurality of transparent A liquid crystal sandwiched between the member or the transparent electrode,
Each of the transparent members is provided on a transparent member contact surface parallel to the opposing substrate surface of at least one of the opposing substrate surfaces, which are opposing substrate surfaces of the transparent substrates, and the transparent member The cross-sectional shape is substantially constant in a direction perpendicular to the contact surface, and the transparent electrode is provided on at least the side surface of the transparent member so that a lateral electric field can be applied to the liquid crystal between the adjacent transparent electrodes. A lateral electric field drive liquid crystal cell, characterized in that the liquid crystal cell is electrically connected to the liquid crystal cell.
各前記透明部材が柱状の形状を有し、前記柱状の形状の中心軸が前記透明部材接触面に垂直な方向を向いている請求項1に記載の横電界駆動液晶セル。   The horizontal electric field drive liquid crystal cell according to claim 1, wherein each of the transparent members has a columnar shape, and a central axis of the columnar shape faces a direction perpendicular to the transparent member contact surface. 各前記透明部材が、直方体状の形状を有し、周期的に配置されて隔壁状の格子を構成する請求項1に記載の横電界駆動液晶セル。   The horizontal electric field drive liquid crystal cell according to claim 1, wherein each of the transparent members has a rectangular parallelepiped shape and is periodically arranged to form a partition-like lattice. 各前記透明部材が、前記透明部材が設けられた前記透明基板の前記透明部材接触面から離れる方向に断面形状の面積が小さくなるようにテーパーがついている請求項1から3までのいずれか1項に記載の横電界駆動液晶セル。   4. The method according to claim 1, wherein each of the transparent members is tapered so that an area of a cross-sectional shape decreases in a direction away from the transparent member contact surface of the transparent substrate on which the transparent member is provided. 2. A lateral electric field drive liquid crystal cell according to 1. 少なくとも前記透明部材の屈折率が、前記液晶の常光屈折率または異常光屈折率にほぼ等しい請求項1から4までのいずれか1項に記載の横電界駆動液晶セル。   5. The lateral electric field driving liquid crystal cell according to claim 1, wherein at least a refractive index of the transparent member is substantially equal to an ordinary light refractive index or an extraordinary light refractive index of the liquid crystal. 6. 少なくとも前記透明部材の屈折率が、前記液晶の常光屈折率と異常光屈折率との間のいずれかの値の屈折率になっている請求項1から4までのいずれか1項に記載の横電界駆動液晶セル。   The horizontal direction according to any one of claims 1 to 4, wherein at least the refractive index of the transparent member is a refractive index of any value between an ordinary light refractive index and an extraordinary light refractive index of the liquid crystal. Electric field driven liquid crystal cell. 複数の前記透明部材が、前記透明部材接触面上に周期的に配列され格子をなす請求項1から6までのいずれか1項に記載の横電界駆動液晶セル。   The horizontal electric field drive liquid crystal cell according to any one of claims 1 to 6, wherein a plurality of the transparent members are periodically arranged on the transparent member contact surface to form a lattice. 複数の前記透明部材が、2つの前記透明基板の前記透明部材接触面上に分配されて形成されている請求項1から7までのいずれか1項に記載の横電界駆動液晶セル。   The horizontal electric field drive liquid crystal cell according to any one of claims 1 to 7, wherein a plurality of the transparent members are distributed and formed on the transparent member contact surfaces of two transparent substrates. 各前記透明基板に分配されて形成されている複数の前記透明部材の相対的な配置が、2つの前記透明基板間で同一である請求項8に記載の横電界駆動液晶セル。   The horizontal electric field drive liquid crystal cell according to claim 8, wherein a relative arrangement of the plurality of transparent members distributed and formed on each transparent substrate is the same between the two transparent substrates. 前記液晶がコレステリック液晶であり、前記コレステリック液晶の螺旋軸が前記透明部材接触面に対してほぼ垂直な方向に配向している請求項1から9までのいずれか1項に記載の横電界駆動液晶セル。   The lateral electric field driving liquid crystal according to any one of claims 1 to 9, wherein the liquid crystal is a cholesteric liquid crystal, and a spiral axis of the cholesteric liquid crystal is aligned in a direction substantially perpendicular to the contact surface of the transparent member. cell. 前記コレステリック液晶が、カイラルスメクチックC相を呈する液晶を含む請求項10に記載の横電界駆動液晶セル。   The lateral electric field drive liquid crystal cell according to claim 10, wherein the cholesteric liquid crystal includes a liquid crystal exhibiting a chiral smectic C phase. 請求項1から11までのいずれか1項に記載の横電界駆動液晶セルが、複数積層されていることを特徴とする横電界駆動液晶セル。   12. A horizontal electric field drive liquid crystal cell, wherein a plurality of the horizontal electric field drive liquid crystal cells according to claim 1 are stacked. 積層される各前記横電界駆動液晶セルの各前記透明部材が、積層される各前記横電界駆動液晶セル間で相互に重ならないように、各前記横電界駆動液晶セルが積層されている請求項12に記載の横電界駆動液晶セル。   The horizontal electric field drive liquid crystal cells are stacked such that the transparent members of the stacked horizontal electric field drive liquid crystal cells do not overlap each other between the stacked horizontal electric field drive liquid crystal cells. 13. A transverse electric field drive liquid crystal cell according to item 12.
JP2004373369A 2004-12-24 2004-12-24 Horizontal electric field drive liquid crystal cell and wavelength tunable filter using the same Expired - Fee Related JP4984389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004373369A JP4984389B2 (en) 2004-12-24 2004-12-24 Horizontal electric field drive liquid crystal cell and wavelength tunable filter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004373369A JP4984389B2 (en) 2004-12-24 2004-12-24 Horizontal electric field drive liquid crystal cell and wavelength tunable filter using the same

Publications (2)

Publication Number Publication Date
JP2006178302A true JP2006178302A (en) 2006-07-06
JP4984389B2 JP4984389B2 (en) 2012-07-25

Family

ID=36732462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004373369A Expired - Fee Related JP4984389B2 (en) 2004-12-24 2004-12-24 Horizontal electric field drive liquid crystal cell and wavelength tunable filter using the same

Country Status (1)

Country Link
JP (1) JP4984389B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096630A1 (en) * 2010-02-03 2011-08-11 전북대학교산학협력단 Optically isotropic liquid crystal display device with low power
JP2012212078A (en) * 2011-03-31 2012-11-01 Sony Corp Optical device and imaging device
JP2015163980A (en) * 2010-04-12 2015-09-10 株式会社半導体エネルギー研究所 liquid crystal display device
KR20180125803A (en) * 2017-05-16 2018-11-26 엘지디스플레이 주식회사 Light controlling device and transparent display device including the same
KR20190053417A (en) * 2017-11-10 2019-05-20 엘지디스플레이 주식회사 Light controlling device and transparent display device including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016102488A1 (en) 2016-02-12 2017-08-17 Epcos Ag Method of manufacturing a piezoelectric transformer and piezoelectric transformer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238529A (en) * 1986-04-09 1987-10-19 Canon Inc Optical modulation element
JPS62293224A (en) * 1986-06-12 1987-12-19 Canon Inc Optical display device
JP2003066232A (en) * 2001-08-24 2003-03-05 Asahi Glass Co Ltd Multilayer diffraction polarizer and composite liquid crystal element
JP2004325790A (en) * 2003-04-24 2004-11-18 Asahi Glass Co Ltd Optical modulation element and optical attenuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238529A (en) * 1986-04-09 1987-10-19 Canon Inc Optical modulation element
JPS62293224A (en) * 1986-06-12 1987-12-19 Canon Inc Optical display device
JP2003066232A (en) * 2001-08-24 2003-03-05 Asahi Glass Co Ltd Multilayer diffraction polarizer and composite liquid crystal element
JP2004325790A (en) * 2003-04-24 2004-11-18 Asahi Glass Co Ltd Optical modulation element and optical attenuator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096630A1 (en) * 2010-02-03 2011-08-11 전북대학교산학협력단 Optically isotropic liquid crystal display device with low power
KR101104472B1 (en) * 2010-02-03 2012-01-13 전북대학교산학협력단 Low operating voltage optically isopropic liquid crystal display apparatus
JP2015163980A (en) * 2010-04-12 2015-09-10 株式会社半導体エネルギー研究所 liquid crystal display device
JP2012212078A (en) * 2011-03-31 2012-11-01 Sony Corp Optical device and imaging device
KR20180125803A (en) * 2017-05-16 2018-11-26 엘지디스플레이 주식회사 Light controlling device and transparent display device including the same
KR102374549B1 (en) * 2017-05-16 2022-03-14 엘지디스플레이 주식회사 Light controlling device and transparent display device including the same
KR20190053417A (en) * 2017-11-10 2019-05-20 엘지디스플레이 주식회사 Light controlling device and transparent display device including the same
KR102426270B1 (en) * 2017-11-10 2022-07-27 엘지디스플레이 주식회사 Light controlling device and transparent display device including the same

Also Published As

Publication number Publication date
JP4984389B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
US10222644B2 (en) Liquid crysal display including nanocapsule layer
KR101098202B1 (en) Polarized diffractive filter and layered polarized diffractive filter
JP4916770B2 (en) Liquid crystal display device and manufacturing method thereof
US8405806B2 (en) Liquid crystal display device that includes both a transmissive portion and a reflective portion
EP2208111B1 (en) Beam shaping device
KR20100024389A (en) Multi-layer achromatic liquid crystal polarization gratings and related fabrication methods
JP5236529B2 (en) ELECTRO-OPTICAL ELEMENT AND DISPLAY DEVICE
JP6169482B2 (en) Liquid crystal device, electronic apparatus, and liquid crystal device manufacturing method
US7336332B2 (en) Reflective type continuous domain in-plane switching liquid crystal display
KR20000014693A (en) Reflective liquid crystal display having high opening rate and high transmittance and fabricating method thereof
JP4984389B2 (en) Horizontal electric field drive liquid crystal cell and wavelength tunable filter using the same
JP2004212943A (en) Structure for reducing optical diffraction effect due to circulative arrangement of electrode and liquid crystal display device having the structure
US10048565B2 (en) Optical modulation device and driving method thereof
JP4636626B2 (en) Liquid crystal display element
JP4952415B2 (en) Transmitted light amount variable element and projection display device
JP2005316330A (en) Liquid crystal display device
JP3581925B2 (en) Liquid crystal light modulation element and method of manufacturing the same
JP2008522236A (en) Bistable liquid crystal device
JP2003315776A (en) Liquid crystal display
JP2003005171A (en) Liquid crystal display device and method for manufacturing the same
JP2003315781A (en) Liquid crystal display
KR100475640B1 (en) Liquid crystal display device and the method for designing liquid crystal display device
JP5041436B2 (en) Liquid crystal display
JP2007102164A (en) Liquid crystal display device
KR20080084490A (en) Diffusion plate and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees