JP2006174605A - Unmanned transport truck - Google Patents

Unmanned transport truck Download PDF

Info

Publication number
JP2006174605A
JP2006174605A JP2004364143A JP2004364143A JP2006174605A JP 2006174605 A JP2006174605 A JP 2006174605A JP 2004364143 A JP2004364143 A JP 2004364143A JP 2004364143 A JP2004364143 A JP 2004364143A JP 2006174605 A JP2006174605 A JP 2006174605A
Authority
JP
Japan
Prior art keywords
carriage
magnetic field
transport
alternating magnetic
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004364143A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Kuroda
光義 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asyst Shinko Inc
Original Assignee
Asyst Shinko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asyst Shinko Inc filed Critical Asyst Shinko Inc
Priority to JP2004364143A priority Critical patent/JP2006174605A/en
Publication of JP2006174605A publication Critical patent/JP2006174605A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control the drop of thrust or braking force on a curve when a transport truck travels on the curve in a configuration that the thrust or braking force is given to the transport truck in a linear motor comprising a primary alternating magnetic field generating device arranged at the transport truck side and secondary permanent magnets whose surface magnetic poles NS are arranged alternately along a traveling track including the curve of the transport trucks. <P>SOLUTION: The length of the permanent magnets in the radial direction from the center of curvature on the curving traveling track 11 of the transport truck is made longer than that of the permanent magnets on a rectilinear traveling track in the direction that perpendicularly intersects the traveling direction of the transport truck according to the largeness of the curvature of the curving traveling track 11. A series of magnetic pole surfaces of the alternating magnetic field generating device 12 are configured to face the surfaces of a series of the permanent magnets over the entire surface even on the curving traveling track. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、曲線部を含む所定の走行路に沿って走行し、半導体基板ほか各種被搬送物を異なるステーション相互間において移送させる無人搬送装置ほかの搬送台車の駆動装置に係る。
より具体的に述べると、本発明は、前記搬送台車側に設置され、搬送台車の走行方向へ進行する交番磁界発生装置と、この磁束発生面に対面し、表面磁極面の極性がNS交互となるように前記走行路に配置される一連の永久磁石と、からなるリニアモータの曲線部における推力の低下を抑制する手段に関するものである。
The present invention relates to a driving device for an unmanned transport device and other transport carts that travel along a predetermined travel path including a curved portion and transport semiconductor substrates and various other transported objects between different stations.
More specifically, the present invention is an alternating magnetic field generating device that is installed on the side of the transport carriage and that travels in the traveling direction of the transport carriage, and faces the magnetic flux generation surface, and the polarity of the surface magnetic pole surface is NS alternating. It is related with the means which suppresses the fall of the thrust in the curve part of a linear motor which consists of a series of permanent magnets arrange | positioned so that it may become.

例えば、半導体製造工程における各種処理(洗浄、CVDほか)を順次行うために半導体ウエハを収納、搬送するためのキャリアほか、液晶表示パネル製造、FA等において、板状体を各種処理部に移送させるためのキャリア等の被搬送物用搬送手段は、生産性向上の観点から、近年、Over head Shuttle(以下、OHSという)、Over head Hoist Transport(以下、OHTという)等の無人搬送装置が主流となってきている。
これら無人搬送装置に属するOHS、OHT等におけるリニアモータ式駆動手段は、搬送台車側に備えられ、必要推力に応じた前記搬送台車の走行方向における所定長の交番磁界発生装置と、この交番磁界発生装置の搬送台車の走行方向に沿う一連の磁束発生面と対向し、所定の間隔にて搬送台車の走行方向に沿って表面の極性がNS交互に配置される永久磁石とにより構成される。
For example, in order to sequentially perform various processes (cleaning, CVD, etc.) in the semiconductor manufacturing process, in addition to a carrier for storing and transporting a semiconductor wafer, the plate-shaped body is transferred to various processing units in liquid crystal display panel manufacturing, FA, etc. From the viewpoint of improving productivity, unmanned transport devices such as Over Head Shuttle (hereinafter referred to as OHS) and Over Head Hoist Transport (hereinafter referred to as OHT) have been mainly used in recent years. It has become to.
The linear motor type driving means in OHS, OHT, etc. belonging to these unmanned conveying devices is provided on the conveying cart side, and an alternating magnetic field generating device having a predetermined length in the traveling direction of the conveying cart according to the required thrust, and this alternating magnetic field generating It is composed of permanent magnets that face a series of magnetic flux generating surfaces along the traveling direction of the transport carriage of the apparatus and whose surface polarity is alternately arranged NS along the traveling direction of the transport carriage at a predetermined interval.

ところで、搬送台車に所定の推力を与えるために、リニアモータの一次側としての交番磁界発生装置の搬送台車における走行方向の長さは所定値以上必要とされる。
従って、搬送台車の走行路における曲線部の曲率が一定限度を超える場合には、搬送台車側に備えられ、リニアモータの一次側をなす交番磁界発生装置の搬送台車の走行方向に並ぶ一連の磁極面において、前記搬送台車の走行路に沿って配置されている二次側永久磁石に対向しない部分が生じる。
By the way, in order to give a predetermined thrust to the conveyance carriage, the length of the alternating magnetic field generator as the primary side of the linear motor in the running direction in the conveyance carriage is required to be a predetermined value or more.
Therefore, when the curvature of the curved portion in the travel path of the transport carriage exceeds a certain limit, a series of magnetic poles arranged on the transport carriage side of the alternating magnetic field generator that forms the primary side of the linear motor are provided on the transport carriage side. In the surface, a portion that does not face the secondary permanent magnet disposed along the traveling path of the transport carriage is generated.

この点について本願の従来技術の要部を抽出して示す図4を基に説明する。図4において、1は搬送台車(図示せず)の走行路である。2は搬送台車に設置されている交番磁界発生装置であって、磁束発生面を抽出して表示したもので、搬送台車が必要とする推力を得るにように搬送台車の進行方向(長手方向)に所定の長さを有している。
そして、この交番磁界発生装置2の搬送台車の進行方向における中心線2aは、走行路1の大半を占める直線部に適合するように直線をなしている。
一方、前記交番磁界発生装置2とでリニアモータを構成し、搬送台車の走行路1の中心線1aに沿って、前記交番磁界発生装置2の磁束発生用磁極面に対向する永久磁石3の表面磁極がNS交互となるように配置される。
This point will be described with reference to FIG. 4 which shows an extracted main part of the prior art of the present application. In FIG. 4, reference numeral 1 denotes a travel path of a transport carriage (not shown). Reference numeral 2 denotes an alternating magnetic field generator installed on the transport cart, which extracts and displays the magnetic flux generation surface, and the travel direction (longitudinal direction) of the transport cart so as to obtain the thrust required by the transport cart. Have a predetermined length.
And the center line 2a in the advancing direction of the conveyance trolley of this alternating magnetic field generator 2 forms a straight line so as to conform to the straight line portion that occupies most of the travel path 1.
On the other hand, a surface of the permanent magnet 3 that forms a linear motor with the alternating magnetic field generator 2 and faces the magnetic flux generating magnetic pole surface of the alternating magnetic field generator 2 along the center line 1a of the traveling path 1 of the transport carriage. It arrange | positions so that a magnetic pole may become NS alternating.

この永久磁石3の搬送台車の走行方向に直交する方向の長さは、従来、分岐箇所を除き、基本的に一定であり、このため走行路の曲線部の曲率が大きくなると、搬送台車の駆動源であるリニアモータの一次側交番磁界発生装置2の磁束発生用各磁極面は図4のように二次側永久磁石3と対向しない箇所が発生する。
即ち、図4において、前記交番磁界発生装置2の磁束発生用各磁束発生面は一連の永久磁石3に対面向しない領域が走行路1の曲線部における搬送台車の走行方向であって、曲率の中心方向の中央部、及び曲率の中心方向と反対側の両端に発生する。
Conventionally, the length of the permanent magnet 3 in the direction orthogonal to the traveling direction of the transporting carriage is basically constant except for the branching point. Therefore, when the curvature of the curved portion of the traveling path is increased, the driving of the transporting carriage is performed. Each magnetic flux generating magnetic pole surface of the primary side alternating magnetic field generation device 2 of the source linear motor has a portion that does not face the secondary permanent magnet 3 as shown in FIG.
That is, in FIG. 4, each magnetic flux generating surface for generating magnetic flux of the alternating magnetic field generating device 2 is a traveling direction of the transport carriage in the curved portion of the traveling path 1 in a region not facing the series of permanent magnets 3. It occurs at the center in the center direction and at both ends opposite to the center direction of curvature.

ところで、このような搬送台車側に設けられる交番磁界発生装置と、この磁束発生面に対面し、搬送台車の走行路に沿って表面極性をNS交互に配置した永久磁石の配列であって、曲線部に係る先行技術として下記特許文献1、2が存在する。
先ず、特許文献1に開示の技術は、一次側交番磁界発生用コイル1aと走行路に沿って表面磁極がNS交互に配された一連の永久磁石3、31、32とで搬送車1駆動用リニアモータを構成し、特に、搬送車1の分岐箇所の改良を要旨としている。
具体的には、図4に示される従来構成においてはリニアモータの構成要素としての一連の永久磁石31、32が分岐箇所において途切れることにより、直線方向における推進力及び制動力が適切に制御不能となることを改善している。
By the way, an alternating magnetic field generator provided on the side of the transport carriage and an array of permanent magnets facing the magnetic flux generation surface and having surface polarity NS alternately arranged along the travel path of the transport carriage, The following Patent Documents 1 and 2 exist as prior arts related to this section.
First, the technique disclosed in Patent Document 1 is for driving a conveyance vehicle 1 with a primary side alternating magnetic field generating coil 1a and a series of permanent magnets 3, 31, and 32 in which surface magnetic poles are alternately arranged NS along a traveling path. A linear motor is constituted, and in particular, the gist is to improve the branching portion of the transport vehicle 1.
Specifically, in the conventional configuration shown in FIG. 4, the series of permanent magnets 31 and 32 as the components of the linear motor are interrupted at the branch point, so that the propulsive force and the braking force in the linear direction cannot be appropriately controlled. Has improved.

このための手段として、図1に示されるように、分岐部Bには、円弧状の形態とされた分岐部用永久磁石4を設け、この永久磁石4により分岐部B前の走行軌道上の永久磁石3と、分岐部B後の曲線部軌道21上の永久磁石31、直線部軌道22上の永久磁石32とを夫々連続した永久磁石の列としている。
このことにより、分岐部B上においても、搬送車に対する推進力及び制動力を働かせることが可能であり、安定したシステムの運用を図るようにしている。
As a means for this, as shown in FIG. 1, the branching section B is provided with a branching permanent magnet 4 in the form of an arc, and this permanent magnet 4 is on the traveling track before the branching section B. The permanent magnet 3, the permanent magnet 31 on the curved portion track 21 after the branching portion B, and the permanent magnet 32 on the straight portion track 22 are formed as a continuous row of permanent magnets.
As a result, it is possible to apply the propulsive force and the braking force to the transport vehicle even on the branching portion B, so that the system can be operated stably.

また、特許文献2に開示の技術は、リニアモータの二次側永久磁石の敷設に際しての直線部分岐軌道1の改良に係るもので、図2に開示の従来構成においては、搬送車側のコイルの軸と軌道側の永久磁石の軸とがずれることにより生じる円弧状軌道での推力の低下を改善することを要旨としている。
このための具体的手段は、図1に示されるように、直線状軌道21と円弧状軌道11とにより構成される軌道の分岐・合流部4で、円弧状軌道の永久磁石群1aの表面積が直線状軌道の永久磁石群2aより大きくなるように両永久磁石群1a、1bを敷設している。
Further, the technique disclosed in Patent Document 2 relates to the improvement of the straight portion branch track 1 when laying the secondary side permanent magnet of the linear motor. In the conventional configuration disclosed in FIG. The main point is to improve the reduction in thrust on the arc-shaped track caused by the deviation of the axis of the track and the axis of the permanent magnet on the track side.
As shown in FIG. 1, the specific means for this is a branching / merging portion 4 of a track constituted by a linear track 21 and an arc track 11, and the surface area of the permanent magnet group 1a of the arc track is Both permanent magnet groups 1a, 1b are laid so as to be larger than the permanent magnet group 2a of the linear track.

前記特許文献1、2は共に搬送台車等の可動側に交番磁界発生装置を備え、搬送台車等の走行路に沿って一連の永久磁石の表面極性がNS交互になるように配置したリニアモータ式搬送装置の分岐・合流箇所におけるリニアモータの推力の低下を防止することを主眼としている。
従って、特許文献1、2とも、分岐部に限定されず搬送台車の曲線部における推力低下の防止に係る本願各発明とは直接の係りはないと言えるが、リニアモータの曲線部における推力低下を防止するという点、あるいは、リニアモータにて駆動される搬送台車の曲線部の走行態様が開示されている点において先行技術として開示した。
Both Patent Documents 1 and 2 are provided with an alternating magnetic field generator on the movable side of a transport carriage or the like, and are arranged so that the surface polarity of a series of permanent magnets alternates NS along the traveling path of the transport carriage or the like. The main purpose is to prevent the reduction of the thrust of the linear motor at the branching / merging point of the conveying device.
Therefore, both Patent Documents 1 and 2 are not limited to the branch part, and it can be said that there is no direct relationship with each invention of the present application related to prevention of thrust reduction in the curved part of the transport carriage, but the thrust reduction in the curved part of the linear motor is This is disclosed as a prior art in that it is prevented or the running mode of the curved portion of the transport carriage driven by a linear motor is disclosed.

特開平11−168805JP-A-11-168805 特開2002−315113JP 2002-315113 A

従来のOHS、OHT等における搬送台車の駆動装置として用いられるリニアモータの一次側の交番磁束発生装置は、前記のように所定の推力を搬送台車に与えるために、搬送台車の走行方向に対して一定以上の長さを必要とする。
従って、搬送台車の走行路のうち、特に曲線部の曲率が大きくなるにつれて、この曲線走行路の中心線に沿って極性が表面においてNS交互に配列される一連の永久磁石に対して、搬送台車側に設置される交番磁界発生装置の磁束発生面が、全面において対向できない箇所が生じ、搬送台車の推力の低下を来す。
これを改善するための手段として、搬送台車に設置される交番磁界発生装置を周知のボギー機構を用いて2分割することも考えられる。しかし、このために要する交番磁界発生装置の構造上の複雑化、コスト、保守の各観点から採用することは困難である。
The alternating magnetic flux generator on the primary side of a linear motor used as a driving device for a transport carriage in conventional OHS, OHT, etc., provides a predetermined thrust to the transport carriage as described above, with respect to the traveling direction of the transport carriage. Requires a certain length or more.
Therefore, among the traveling paths of the transport carriage, in particular, as the curvature of the curved portion increases, the transport carriage is against a series of permanent magnets whose polarities are alternately arranged NS on the surface along the center line of the curved travel path. A portion where the magnetic flux generating surface of the alternating magnetic field generating device installed on the side cannot be opposed to the entire surface is generated, resulting in a reduction in thrust of the transport carriage.
As a means for improving this, it is conceivable to divide the alternating magnetic field generator installed in the transport carriage into two parts using a well-known bogie mechanism. However, it is difficult to adopt from the viewpoints of structural complexity, cost, and maintenance of the alternating magnetic field generator required for this.

そこで、本発明の目的は、OHS、OHT等の搬送台車駆動用リニアモータの構成において、搬送台車側に設置され、その走行方向に直線的に延びる一次側交番磁界発生装置の各磁極面の全面が二次側永久磁石に対面できるようにし、搬送台車に対する推力を曲線走行路においても減少させないことにある。
これを実現するための具体的手段は、搬送台車の曲線走行路の曲率に応じて、リニアモータ二次側をなす永久磁石の搬送台車の走行方向に直交する方向の長さを直線走行部に比べて長く定めるようにしている。
この点における詳細は以下の説明で明らかにされる。
Accordingly, an object of the present invention is to provide an entire surface of each magnetic pole surface of a primary alternating magnetic field generator that is installed on the conveyance carriage side and linearly extends in the traveling direction in the configuration of the conveyance carriage driving linear motor such as OHS, OHT, etc. Is capable of facing the secondary side permanent magnet and does not reduce the thrust on the transport carriage even on the curved traveling path.
The specific means for realizing this is that the length of the permanent magnet forming the linear motor secondary side in the direction perpendicular to the traveling direction of the conveying carriage is set in the linear traveling section according to the curvature of the curved traveling path of the conveying carriage. Compared to longer times.
Details in this respect will be made clear in the following description.

課題を解決するための手段及び効果Means and effects for solving the problems

上記課題を解決するため、請求項1に記載の搬送台車の駆動装置は、所定の走行路に沿って走行する被搬送物搬送用台車の駆動手段であって、前記搬送台車側に備えられ、当該台車の走行方向における所定長さを有する一次側交番磁界発生装置と、この交番磁界発生装置から発生する交番磁界との相互作用にて前記搬送台車に推力を発生させ、前記走行路に沿って所定の間隔でNS交互の極性にて配置される一連の二次側永久磁石体と、からなる直流リニアモータにおいて、曲線部を含む前記搬送台車の走行路全体における何れの箇所であっても、前記一次側交番磁界発生装置の前記台車の走行方向において、略等間隔に位置する各交番磁界発生面の前記台車の走行方向と直交する方向の全長が、順次対向する各永久磁石に対して対面するように、各永久磁石における搬送台車の走行方向と直交する方向の長さを定めることを特徴とする。 In order to solve the above-described problem, the drive device for the transport carriage according to claim 1 is a drive means for the transport object transport cart that travels along a predetermined travel path, and is provided on the transport cart side. A thrust is generated in the transport carriage by the interaction between the primary alternating magnetic field generator having a predetermined length in the traveling direction of the carriage and the alternating magnetic field generated from the alternating magnetic field generator, along the traveling path. In a DC linear motor comprising a series of secondary permanent magnet bodies arranged with NS alternating polarities at predetermined intervals, any location in the entire travel path of the transport carriage including the curved portion, In the traveling direction of the carriage of the primary-side alternating magnetic field generation device, the total length of the alternating magnetic field generation surfaces located at substantially equal intervals in the direction perpendicular to the traveling direction of the carriage faces the permanent magnets facing each other sequentially. I will do it In, wherein the determining the length in the direction perpendicular to the running direction of the transporting carriage in the permanent magnets.

この請求項1に係る発明によれば、曲線部を有する走行路を搬送台車が走行するに際して、搬送台車側に設置されるリニアモータ一次側の交番磁界発生装置の磁束発生面は、直線走行路は元より曲線走行路においても的確にリニアモータ二次側の永久磁石に対面することができる。
従って、搬送台車の走行路における曲線部での推力低下が的確に抑制され、曲線部における搬送台車の稼動率低下を来すことなく、且つ、複雑なボギー機構を用いることなくリニアモータによる搬送台車の推力を、全走行路に亘って所定値以上に維持することができる。
According to the first aspect of the present invention, when the transport carriage travels on the travel path having the curved portion, the magnetic flux generation surface of the alternating magnetic field generator on the primary side of the linear motor installed on the transport cart side is the straight travel path. Can face the permanent magnet on the secondary side of the linear motor accurately even on a curved road.
Therefore, the thrust drop at the curved portion in the traveling path of the conveyance carriage is accurately suppressed, the operation rate of the conveyance carriage at the curved portion is not lowered, and the conveyance carriage by the linear motor is used without using a complicated bogie mechanism. This thrust can be maintained at a predetermined value or higher over the entire travel path.

請求項2に記載の搬送台車の駆動装置は、請求項1に記載の搬送台車の駆動装置において、被搬送物搬送用台車が所定の走行路に沿って敷設されたレールに対して走行用車輪を係合させて走行する無人搬送台車であることを特徴とする。
この請求項2に係る発明によれば、引用元の請求項1に係る発明の効果に加えて、特に曲率が大きい曲線部を含む走行路を有するOHS、OHT等の無人搬送台車等における効率向上を図ることができる。
According to a second aspect of the present invention, there is provided the driving device for the transporting carriage according to the first aspect, wherein the transporting cart is the driving wheel for the rail on which the transporting cart for transporting the object is laid along a predetermined traveling path. It is an automatic guided vehicle which travels by engaging with.
According to the invention according to claim 2, in addition to the effect of the invention according to claim 1 of the citation source, the efficiency improvement in the automatic transport carts such as OHS and OHT having a traveling path including a curved portion having a particularly large curvature. Can be achieved.

請求項3に記載の搬送台車の駆動装置は、請求項1又は2に記載の搬送台車の駆動装置において、搬送台車の走行路における直線部は搬送台車の走行方向に対し直交する方向の永久磁石及び交番磁界発生面の各長さを等しくし、曲線部はこの曲率半径と、前記一次側交番磁界発生装置の搬送台車の走行方向における長さと、搬送台車の走行方向と直行する幅方向の長さと、に応じて永久磁石の搬送台車の走行方向に対し直交する方向における長さを増すように調整することを特徴とする。
この請求項3に係る発明によれば、引用元の請求項1又は2に係る発明の効果に加えて、走行路の曲線部に沿う永久磁石の搬送台車の走行方向と直交する方向の長さを必要最小限に定めることができる。
The drive device for the transport carriage according to claim 3 is the drive device for the transport cart according to claim 1 or 2, wherein the linear portion in the travel path of the transport cart is in a direction orthogonal to the travel direction of the transport cart. And the lengths of the alternating magnetic field generating surfaces are made equal, and the curved portion has the radius of curvature, the length of the primary alternating magnetic field generator in the traveling direction of the transport carriage, and the length in the width direction orthogonal to the traveling direction of the transport carriage. And according to this, it adjusts so that the length in the direction orthogonal to the running direction of the conveyance cart of a permanent magnet may be increased.
According to the invention according to claim 3, in addition to the effect of the invention according to claim 1 or 2, the length in the direction perpendicular to the traveling direction of the transport carriage of the permanent magnet along the curved portion of the traveling path. Can be determined to the minimum necessary.

請求項4に記載の搬送台車の駆動装置は、請求項1乃至3の何れかに記載の搬送台車の駆動装置において、走行路の曲線部における永久磁石を、当該永久磁石の搬送台車の走行方向と直交する方向における中心線が、曲線部の曲率の中心を通るように配置配置したことを特徴とする。
この請求項4に係る発明によれば、引用元の請求項1乃至3の効果に加えて、次の効果を奏する。
即ち、リニアモータ一次側をなし、台車に設置されている交番磁界発生装置の搬送台車の進行方向に配置される各磁束発生面のうち中央部に位置する磁束発生面の搬送台車の走行方向に対して直交する方向の中心線と、対面するリニアモータ二次側をなす永久磁石の搬送台車の走行方向と直交する方向の中心線方向と、が一致する。
従って、前記リニアモータの一次側及び二次側の台車の走行方向に直交する方向の中心線同士は交番磁界発生装置の搬送台車の走行方向において中心部から両端部に向けて少しずつ方向性の誤差を生じることがあっても、この誤差は最小限に極小化でき実質的に殆ど影響なく全体として曲線部における搬送台車の推力の向上を図ることができる。
The drive device for the transport carriage according to claim 4 is the drive device for the transport cart according to any one of claims 1 to 3, wherein the permanent magnet in the curved portion of the travel path is the travel direction of the transport cart of the permanent magnet. The center line in a direction perpendicular to the center of the curve portion is arranged and arranged so as to pass through the center of curvature of the curved portion.
According to the fourth aspect of the invention, in addition to the effects of the first to third aspects of the citation, the following effects are obtained.
That is, the linear motor primary side, the magnetic flux generating surface located in the center of the magnetic flux generating surfaces arranged in the traveling direction of the conveying cart of the alternating magnetic field generating device installed on the cart in the traveling direction of the conveying cart The center line in the direction orthogonal to the direction coincides with the direction of the center line in the direction orthogonal to the traveling direction of the conveying carriage of the permanent magnet that forms the facing secondary side of the linear motor.
Therefore, the center lines in the direction perpendicular to the traveling direction of the primary and secondary side carriages of the linear motor are slightly directional from the central part to both ends in the traveling direction of the conveyance carriage of the alternating magnetic field generator. Even if an error occurs, the error can be minimized and the thrust of the transport carriage in the curved portion can be improved as a whole with substantially no influence.

請求項5に記載の搬送台車の駆動装置は、請求項1乃至4の何れかに記載の搬送台車の駆動装置において、搬送台車の一次側交番磁界発生装置に対しては、高周波非接触給電を行い、これによって得られた高周波電圧を整流した後、搬送台車の走行速度に適合した周波数に変換するようにしたことを特徴とする。
この請求項5に係る発明によれば、引用元の請求項1乃至4の効果に加えて、搬送台車側に設置される交番磁界発生装置ほか搬送台車制御装置等、諸機器に対しての必要な電力を非接触にて給電可能であり、搬送台車の電源機構の簡素化、メンテナンスフリー化を図ることができる。
According to a fifth aspect of the present invention, there is provided the driving device for the conveyance carriage according to any one of the first to fourth aspects, wherein high-frequency non-contact power feeding is performed to the primary alternating magnetic field generation device for the conveyance carriage. This is characterized in that the high-frequency voltage obtained by this is rectified and then converted into a frequency suitable for the traveling speed of the carriage.
According to the invention according to claim 5, in addition to the effects of claims 1 to 4 of the citation source, it is necessary for various devices such as an alternating magnetic field generator installed on the conveyance carriage side and a conveyance carriage control apparatus. Power can be supplied in a non-contact manner, and the power supply mechanism of the transport carriage can be simplified and maintenance-free.

以下、本発明の好適な実施の形態について図面を参照しつつ説明する。
先ず、図面の概要を述べると、図1は本願各発明の適用箇所を抽出した概略平面図、図2は搬送台車の走行路のうち曲線部におけるリニアモータの一次側交番磁界発生装置とこの磁極面に対面する永久磁石との関係を示す模式図、図3は、本願各発明を実施する装置の具体例を示すOHSの断面図である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
First, the outline of the drawing will be described. FIG. 1 is a schematic plan view in which the application portions of the inventions of the present application are extracted. FIG. FIG. 3 is a cross-sectional view of an OHS showing a specific example of an apparatus for carrying out each invention of the present application.

図1において、11は搬送台車(図示せず)の走行路であって特に曲線箇所を示している。12は搬送台車に設置されている交番磁界発生装置であって磁束発生面を抽出して表示したもので、搬送台車が必要とする推力を得るにように搬送台車の進行方向(長手方向)に所定の長さを有している。
そして、この交番磁界発生装置12の搬送台車の進行方向における中心線12aは、走行路12の大半を占める直線部に適合するように直線をなしている。
一方、前記交番磁界発生装置12とでリニアモータを構成し、搬送台車の曲線走行路11の中心線11aに沿って、前記交番磁界発生装置11の対向面がNS極交互となるように永久磁石13が配置される。
以上の基本となる構成は前記従来技術として開示した図4と均等である。
In FIG. 1, reference numeral 11 denotes a travel path of a transport carriage (not shown), and particularly shows a curved portion. Reference numeral 12 denotes an alternating magnetic field generator installed on the transport cart, which extracts and displays the magnetic flux generation surface, and in the traveling direction (longitudinal direction) of the transport cart so as to obtain the thrust required by the transport cart. It has a predetermined length.
And the center line 12a in the advancing direction of the conveyance carriage of this alternating magnetic field generator 12 forms a straight line so as to match the straight line portion that occupies most of the travel path 12.
On the other hand, the alternating magnetic field generator 12 constitutes a linear motor, and permanent magnets are formed so that the opposing surfaces of the alternating magnetic field generator 11 are alternately NS poles along the center line 11a of the curved traveling path 11 of the transport carriage. 13 is arranged.
The basic configuration described above is equivalent to that of FIG. 4 disclosed as the prior art.

ところで、本願各発明の要旨をなす構成は、交番磁界発生装置12の一連の各磁極面が全面的にリニアモータ二次側をなす永久磁石13の磁極面に対向できるように、永久磁石の搬送台車の走行方向と直交する方向、即ち、走行路の曲線部における径方向の長さを直線部に比べて長く定めている。
このように、曲線走行路11に沿って表面極性をNS交互に配列される永久磁石13の曲線走行路の径方向における長さの適正化を図るための手段について図2を基に説明する。
図2において、図1に表示の対応する構成要素は同一符号にて表示し、その詳細な説明は省略する。
By the way, the structure which makes the summary of each invention of this application is a conveyance of a permanent magnet so that a series of each magnetic pole surface of the alternating magnetic field generator 12 can completely oppose the magnetic pole surface of the permanent magnet 13 which makes the linear motor secondary side. The direction orthogonal to the traveling direction of the carriage, that is, the length in the radial direction at the curved portion of the traveling path is set longer than the straight portion.
A means for optimizing the length in the radial direction of the curved traveling path of the permanent magnets 13 whose surface polarities are alternately arranged NS along the curved traveling path 11 will be described with reference to FIG.
2, the corresponding components shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

今、リニアモータ用二次側永久磁石の搬送台車の曲線走行路における曲率の径方向の必要な長さの範囲を幾何学的に求めると、次の通りである。
先ず、前記曲率の径方向内側の範囲は、搬送台車の曲線走行路における曲率の中心Oにおいて、この曲率の中心Oを中心とし、交番磁界発生装置12の一連の磁極面における曲率の中心O方向の側面に接する円弧Sで規制される。
次に、前記曲率の径方向外側の範囲は、搬送台車の曲線走行路における曲率の中心Oにおいて、この曲率の中心Oを中心とし、交番磁界発生装置12の一連の磁極面における曲率の中心Oとは反対方向の側面を含む円弧Sで規制される。
Now, a geometrical range of the required length in the radial direction of curvature in the curved traveling path of the conveyance carriage of the secondary permanent magnet for the linear motor is as follows.
First, the range of the curvature inward in the radial direction is the center of curvature O in the curved traveling path of the carriage, and the direction of the center of curvature O in the series of magnetic pole faces of the alternating magnetic field generator 12 is centered on this center of curvature O. is restricted by the arc S 1 in contact with the side surfaces of the.
Next, the radially outer range of the curvature is the center of curvature O of the series of magnetic pole surfaces of the alternating magnetic field generator 12 at the center of curvature O of the curved traveling path of the carriage. is restricted by the arc S 2 containing the side surface of the opposite direction to the.

ところで、曲線走行部11においては、各永久磁石における搬送台車の走行方向と直交する方向の中心線は、曲線走行部における曲率の中心から径方向に向けて配置される。
従って、交番磁界発生装置12における一連の磁極面のうち、中央部に位置する磁極面の搬送台車の走行方向と直交する方向の中心線は、前記永久磁石13の中心線と一致するが、交番磁界発生装置12の搬送台車の走行方向における両端部に進むにつれて、交番磁界発生装置12の磁極面と、これに対面する永久磁石13との各中心線同士はズレ角が増す。
By the way, in the curve travel part 11, the center line of the direction orthogonal to the traveling direction of the conveyance trolley in each permanent magnet is arrange | positioned toward the radial direction from the center of curvature in a curve travel part.
Therefore, among the series of magnetic pole faces in the alternating magnetic field generator 12, the center line of the magnetic pole face located in the center of the magnetic pole face in the direction orthogonal to the traveling direction of the transport carriage coincides with the center line of the permanent magnet 13, As the magnetic field generator 12 proceeds to both ends in the traveling direction of the transport carriage, the misalignment angle increases between the center lines of the magnetic pole surface of the alternating magnetic field generator 12 and the permanent magnet 13 facing the magnetic pole surface.

この最大ズレ角θは、搬送台車の走行方向の前記交番磁界発生装置12における一連の磁極面の長さが大になることに応じて増し、曲線走行路11の曲率半径が大きくなるにつれて減少する。
ところで、この最大ズレ角θは、搬送台車に設置された交番磁界発生装置12が曲線走行路11のほか直線走行路においても対応する必要性から、必然的に生じることになる。
なお、この最大ズレ角θは、搬送台車の搬送効率の面から判断すると、さほど影響を来すことはないが、所定の稼動効率を維持できる限度を示すための目安として有効に利用できる。
This maximum deviation angle θ increases as the length of the series of magnetic pole faces in the alternating magnetic field generator 12 in the traveling direction of the transport carriage increases, and decreases as the radius of curvature of the curved traveling path 11 increases. .
By the way, the maximum deviation angle θ is inevitably generated because the alternating magnetic field generator 12 installed on the transport carriage needs to cope with the straight traveling road in addition to the curved traveling road 11.
It should be noted that the maximum deviation angle θ is not significantly affected when judged from the viewpoint of the conveyance efficiency of the conveyance carriage, but can be effectively used as a guideline for indicating a limit at which a predetermined operation efficiency can be maintained.

本願各発明の基本となる技術は前記の通りであるが、適用の具体的構成の一例としてOHSの機構について図3を参照しつつ説明する。
図3において、21は直線部におけるレール枠体で、押し出し成形等により形成され、OHS搬送システムにおける搬送台車22の走行路に沿って敷設されている。そして、このレール枠体21は鉛直方向に配置される左側面壁21aおよび右側面壁21bと、両側面壁21a・21bの下端部同士を連結した底面壁21cとを有している。左側面壁21aと右側面壁21bとは、左右対称に形成されている。各側面壁21a・21bは、上面部21dを上端位置に備えている。上面部21dは、底面壁21cに対して平行に配置され、内側方向に向けて形成されている。上面部21dの長さは、両側壁部21a・21bの上面部21d・21d同士が対向されたときに、搬送台車22の被搬送物載置台22aの支持部材22bが通過する最小限の隙間を出現させる程度に設定されている。これにより、上面部21dは、搬送台車22がレール枠体21内部を走行するのに伴い発生する塵埃がクリーンルーム等、外部に拡散するのを防止している。
The technology that is the basis of each invention of the present application is as described above. The OHS mechanism will be described with reference to FIG. 3 as an example of a specific configuration of application.
In FIG. 3, reference numeral 21 denotes a rail frame body in a straight portion, which is formed by extrusion molding or the like, and is laid along the travel path of the transport carriage 22 in the OHS transport system. And this rail frame 21 has the left side wall 21a and the right side wall 21b which are arrange | positioned at a perpendicular direction, and the bottom face wall 21c which connected the lower end part of both side wall 21a * 21b. The left side wall 21a and the right side wall 21b are formed symmetrically. Each of the side walls 21a and 21b has an upper surface portion 21d at the upper end position. 21 d of upper surface parts are arrange | positioned in parallel with the bottom wall 21c, and are formed toward the inner side direction. The length of the upper surface portion 21d is a minimum gap through which the support member 22b of the object mounting table 22a of the conveyance carriage 22 passes when the upper surface portions 21d and 21d of the side wall portions 21a and 21b are opposed to each other. It is set to the extent that it appears. Thereby, the upper surface part 21d prevents the dust generated as the transport carriage 22 travels inside the rail frame 21 from diffusing to the outside such as a clean room.

また、各側壁部21a・21bは、ガイド部21eを有している。このガイド部21eは、底面壁21cに対して平行に配置され、先端部が下方に曲折されている。そして、ガイド部21eは、搬送径路が2方向に分岐されている場合、後述する方向規制用ガイドローラの係合により搬送台車22を何れか所定の分岐方向に進行させるようになっている。 Moreover, each side wall part 21a * 21b has the guide part 21e. The guide portion 21e is disposed in parallel to the bottom wall 21c, and the tip end portion is bent downward. When the conveyance path is branched in two directions, the guide portion 21e is configured to advance the conveyance carriage 22 in any predetermined branch direction by engagement of a guide roller for restricting a direction described later.

上記のガイド部21eと上面部21dとの間には、絶縁材料で形成された支持梁21fが設けられている。この支持梁21fは、2つの先端部を有するように、縦断面がC字形状に形成されている。また、支持梁21fは、先端部が上下に位置するように取り付けられていると共に、これらの先端部間に給電機構22cを位置させるように取り付けられている。さらに、支持梁21fの各先端部には、一次給電線21gが夫々設けられている。また、支持梁21fは、一次給電線21gを搬送軌道の全長に渡って一定の高さ位置に保持するように、搬送軌道方向に所定の間隔で配置されている。一次給電線21gは、図示しない給電装置に接続されており、給電装置からの高周波電力を搬送台車22の給電機構22cに供給するようになっている。 A support beam 21f made of an insulating material is provided between the guide part 21e and the upper surface part 21d. The support beam 21f has a C-shaped longitudinal section so as to have two tip portions. Further, the support beam 21f is attached so that the tip end portions are positioned up and down, and is attached so that the power feeding mechanism 22c is positioned between these tip end portions. Further, a primary power supply line 21g is provided at each tip of the support beam 21f. Further, the support beams 21f are arranged at a predetermined interval in the transport track direction so as to hold the primary power supply line 21g at a constant height position over the entire length of the transport track. The primary power supply line 21g is connected to a power supply device (not shown), and supplies high-frequency power from the power supply device to the power supply mechanism 22c of the transport carriage 22.

また、レール枠体21の底面壁21cは、中心位置に配置された溝部21cxと、この溝部21cxを中心として左右対称に配置された走行部21iとを有している。また、溝部21cxの中央部に沿って表面の磁極がNS交互になるように永久磁石13が配置される。この永久磁石13は、接着剤等で溝部21cxに接着することにより固定されている。
また、永久磁石13は、フェライト磁石を所望のサイズに加工することにより形成されている。なお、永久磁石13は、サマリュウムコバルト磁石やネオジュウム磁石等で形成されていてもよい。
Further, the bottom wall 21c of the rail frame 21 has a groove portion 21cx disposed at the center position and a traveling portion 21i disposed symmetrically about the groove portion 21cx. Further, the permanent magnets 13 are arranged so that the magnetic poles on the surface are NS alternately along the central portion of the groove 21cx. The permanent magnet 13 is fixed by adhering to the groove 21cx with an adhesive or the like.
The permanent magnet 13 is formed by processing a ferrite magnet into a desired size. The permanent magnet 13 may be formed of a samarium cobalt magnet or a neodymium magnet.

22dは前記給電機構22cを搬送台車22と一体的に移動するための固定部材である。22eは搬送台車22の駆動機構を支持するための基台で、前記搬送台車支持部材22b、分岐制御機構22f、交番磁界発生装置22g等が固定される。交番磁界発生装置22gには、前記永久磁石13に対面する磁極12が搬送台車22の走行方向に配列されている。22hは走行車輪で、基台22eに回転自在に支持され、前記走行部21i上を転動する。22iは案内ローラで、基台22eに水平状態を保った状態で回動自在に支持され、各側壁部21a・21bの内面において転動する。22jは方向規制用案内ローラで、搬送台車22の分岐路の走行先に応じた前記分岐制御機構22fの作用に基づいて左右一対の方向規制用案内ローラ22jのうち何れか一方が対応して位置する何れかのガイド部21eに係合するように構成されている。 Reference numeral 22 d denotes a fixing member for moving the power supply mechanism 22 c integrally with the transport carriage 22. Reference numeral 22e denotes a base for supporting the drive mechanism of the transport carriage 22, on which the transport carriage support member 22b, the branch control mechanism 22f, the alternating magnetic field generator 22g, and the like are fixed. In the alternating magnetic field generator 22g, the magnetic poles 12 facing the permanent magnets 13 are arranged in the traveling direction of the transport carriage 22. Reference numeral 22h denotes a traveling wheel, which is rotatably supported by the base 22e and rolls on the traveling portion 21i. A guide roller 22i is rotatably supported on the base 22e in a horizontal state and rolls on the inner surfaces of the side wall portions 21a and 21b. Reference numeral 22j denotes a direction regulating guide roller, and one of the pair of left and right direction regulating guide rollers 22j corresponds to the position based on the action of the branch control mechanism 22f according to the travel destination of the branch path of the transport carriage 22. It is configured to engage with any of the guide portions 21e.

前記図3に示す構成において、一次給電線21gに高周波電圧が与えられると、給電機構22cの二次巻線に電磁誘導により高周波電流を生成する。給電機構22cは図示しない電流変換部に接続されている。この電流変換部は整流回路において高周波電流を、一旦、直流に変換し、PWM変換回路において3相交流に変換した後、交番磁界発生装置22gのコイルに通電させ、進行磁界を発生させる。この進行磁界と永久磁石13から発生される磁束との電磁作用に基づいて搬送台車22は推力を受け、搬送台車22の走行路に沿って敷設されるレール枠体21に沿って走行し、進行磁界の制御により搬送台車22に制動力を与えることもできる。 In the configuration shown in FIG. 3, when a high frequency voltage is applied to the primary power supply line 21g, a high frequency current is generated by electromagnetic induction in the secondary winding of the power supply mechanism 22c. The power feeding mechanism 22c is connected to a current conversion unit (not shown). The current converter converts the high-frequency current into direct current in the rectifier circuit and converts it into three-phase alternating current in the PWM converter circuit, and then energizes the coil of the alternating magnetic field generator 22g to generate a traveling magnetic field. The transport carriage 22 receives thrust based on the electromagnetic action of the traveling magnetic field and the magnetic flux generated from the permanent magnet 13, travels along the rail frame 21 laid along the travel path of the transport carriage 22, and travels. A braking force can be applied to the transport carriage 22 by controlling the magnetic field.

なお、搬送台車22の走行路における直線路と曲線路との境界部の直線部は搬送台車22の方向が完全に直線方向を向くまでは、直線走行路における永久磁石13の搬送台車の走行方向と直交する方向の長さは除々に短くすることが好ましい。 Note that the travel direction of the transport carriage of the permanent magnet 13 on the straight traveling path is the straight line portion at the boundary between the straight path and the curved path on the travel path of the transport carriage 22 until the direction of the transport carriage 22 is completely in the straight line direction. It is preferable that the length in the direction orthogonal to the direction is gradually shortened.

本願各発明の適用箇所を抽出した概略平面図である。It is the schematic plan view which extracted the application location of each invention of this application. 搬送台車の走行路のうち曲線部におけるリニアモータの一次側交番磁界発生装置とこの磁極面に対面する永久磁石との関係を示す模式図である。It is a schematic diagram which shows the relationship between the primary side alternating magnetic field generator of the linear motor in the curve part among the travel paths of a conveyance trolley, and the permanent magnet which faces this magnetic pole surface. 本願各発明を実施する装置の具体例を示すOHSの断面図である。It is sectional drawing of OHS which shows the specific example of the apparatus which implements each invention of this application. 従来の構成を説明するための要部平面図である。It is a principal part top view for demonstrating the conventional structure.

符号の説明Explanation of symbols

12・・・磁極
13・・・永久磁石
21・・・レール枠体
21b・・右側面壁
21c・・底面壁
21cx・溝部
21d・・上面部
21e・・ガイド部
21f・・支持梁
21g・・一次給電線
21i・・走行部
22・・・搬送台車
22a・・被搬送物載置台
22b・・支持部材
22c・・給電機構
22d・・固定部材
22e・・基台
22f・・分岐制御機構
22g・・交番磁界発生装置
12 ... Magnetic pole 13 ... Permanent magnet 21 ... Rail frame 21b ... Right side wall 21c ... Bottom wall 21cx ... Groove part 21d ... Upper part 21e ... Guide part 21f ... Support beam 21g ... Primary Feed line 21i ··· Traveling part 22 ··· Carriage carriage 22a · · Transported object placement table 22b · · Support member 22c · · Feeding mechanism 22d · · Fixing member 22e · · Base 22f · · Branch control mechanism 22g ··· Alternating magnetic field generator

Claims (5)

所定の走行路に沿って走行する被搬送物搬送用台車の駆動手段であって、前記搬送台車側に備えられ、当該台車の走行方向における所定長さを有する一次側交番磁界発生装置と、
この交番磁界発生装置から発生する交番磁界との相互作用にて前記搬送台車に推力を発生させ、前記走行路に沿って所定の間隔でNS交互の極性にて配置される一連の二次側永久磁石体と、
からなるリニアモータにおいて、
曲線部を含む前記搬送台車の走行路全体における何れの箇所であっても、前記一次側交番磁界発生装置の前記台車の走行方向において、略等間隔に位置する各交番磁界発生面の前記台車の走行方向と直交する方向の全長が、順次対向する各永久磁石に対して対面するように、各永久磁石における搬送台車の走行方向と直交する方向の長さを定めることを特徴とする駆動装置を有する搬送台車。
A driving means for a carriage for transporting an object to be transported that travels along a predetermined travel path, provided on the transport carriage side, having a predetermined length in the traveling direction of the carriage, a primary alternating magnetic field generator,
A series of secondary side permanent magnets that generate thrust on the transport carriage by interaction with the alternating magnetic field generated by the alternating magnetic field generator and are arranged with NS alternating polarity at predetermined intervals along the travel path. A magnet body;
In a linear motor consisting of
At any location in the entire travel path of the transport carriage including the curved portion, the carts of the alternating magnetic field generation surfaces located at substantially equal intervals in the travel direction of the carriage of the primary alternating magnetic field generator. A driving device characterized in that the length of each permanent magnet in a direction orthogonal to the traveling direction of the transport carriage is determined such that the total length in the direction orthogonal to the traveling direction faces each permanent magnet that is sequentially opposed. Have a transport cart.
被搬送物搬送用台車が所定の走行路に沿って敷設されたレールに対して走行用車輪を係合させて走行する無人搬送台車であることを特徴とする請求項1に記載の駆動装置を有する搬送台車。   2. The drive device according to claim 1, wherein the carriage for transporting the object to be transported is an automatic guided carriage that travels by engaging a traveling wheel with a rail laid along a predetermined traveling path. Have a transport cart. 搬送台車の走行路における直線部は搬送台車の走行方向に対し直交する方向の永久磁石及び交番磁界発生面の各長さを等しくし、曲線部はこの曲率半径と、前記一次側交番磁界発生装置の搬送台車の走行方向における長さと、搬送台車の走行方向と直交する幅方向の長さと、に応じて永久磁石の搬送台車の走行方向に対し直交する方向における長さを増すように調整することを特徴とする請求項1又は2に記載の駆動装置を有する搬送台車。   The straight line portion in the travel path of the transport carriage equalizes the lengths of the permanent magnet and the alternating magnetic field generating surface in the direction orthogonal to the travel direction of the transport carriage, and the curved portion is the curvature radius and the primary alternating magnetic field generator. Adjusting the length of the permanent magnet in the direction perpendicular to the traveling direction of the transport carriage according to the length in the traveling direction of the transport carriage and the length in the width direction orthogonal to the traveling direction of the transport carriage. A conveying cart having the driving device according to claim 1. 走行路の曲線部に於ける永久磁石を、当該永久磁石の搬送台車の走行方向と直交する方向における中心線が、曲線部の曲率の中心を通るように配置したことを特徴とする請求項1乃至3の何れかに記載の駆動装置を有する搬送台車。 2. The permanent magnet in the curved portion of the traveling path is arranged so that a center line in a direction orthogonal to the traveling direction of the carriage of the permanent magnet passes through the center of curvature of the curved portion. A conveying cart having the driving device according to any one of claims 1 to 3. 搬送台車の一次側交番磁界発生装置に対しては、高周波非接触給電を行い、これによって得られた高周波電圧を整流した後、搬送台車の走行速度に適合した周波数に変換するようにしたことを特徴とする請求項1乃至4の何れかに記載の駆動装置を有する搬送台車。



For the primary alternating magnetic field generator of the transport carriage, high-frequency non-contact power feeding is performed, and after the high-frequency voltage obtained by this is rectified, it is converted to a frequency that matches the traveling speed of the transport carriage. A transport cart having the drive device according to any one of claims 1 to 4.



JP2004364143A 2004-12-16 2004-12-16 Unmanned transport truck Pending JP2006174605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004364143A JP2006174605A (en) 2004-12-16 2004-12-16 Unmanned transport truck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004364143A JP2006174605A (en) 2004-12-16 2004-12-16 Unmanned transport truck

Publications (1)

Publication Number Publication Date
JP2006174605A true JP2006174605A (en) 2006-06-29

Family

ID=36674739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004364143A Pending JP2006174605A (en) 2004-12-16 2004-12-16 Unmanned transport truck

Country Status (1)

Country Link
JP (1) JP2006174605A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237728A (en) * 2007-03-28 2008-10-09 Asyst Technologies Japan Inc Transporting system having fireproof door, rail device having fireproof door, and transporting system
EP2288008A2 (en) 2009-08-18 2011-02-23 Kabushiki Kaisha Yaskawa Denki Linear and curvilinear motor system
WO2012056841A1 (en) * 2010-10-26 2012-05-03 村田機械株式会社 Conveyance system
KR101351588B1 (en) * 2012-02-03 2014-01-24 (주)큐엠씨 Apparatus for transferring chip and method for transferring chip using the same
WO2020036293A1 (en) * 2018-08-13 2020-02-20 현대무벡스 주식회사 Method for controlling moving speed of automatic guided vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11168805A (en) * 1997-12-03 1999-06-22 Shinko Electric Co Ltd Conveyance vehicle traveling system
JP2002315113A (en) * 2001-04-13 2002-10-25 Hitachi Kiden Kogyo Ltd Permanent magnet laying structure in linear motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11168805A (en) * 1997-12-03 1999-06-22 Shinko Electric Co Ltd Conveyance vehicle traveling system
JP2002315113A (en) * 2001-04-13 2002-10-25 Hitachi Kiden Kogyo Ltd Permanent magnet laying structure in linear motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237728A (en) * 2007-03-28 2008-10-09 Asyst Technologies Japan Inc Transporting system having fireproof door, rail device having fireproof door, and transporting system
EP2288008A2 (en) 2009-08-18 2011-02-23 Kabushiki Kaisha Yaskawa Denki Linear and curvilinear motor system
CN101997386A (en) * 2009-08-18 2011-03-30 株式会社安川电机 Linear and curvilinear motor system
JP2011067085A (en) * 2009-08-18 2011-03-31 Yaskawa Electric Corp Linear and curvilinear motor system
US8384251B2 (en) 2009-08-18 2013-02-26 Kabushiki Kaisha Denki Linear and curvilinear motor system
WO2012056841A1 (en) * 2010-10-26 2012-05-03 村田機械株式会社 Conveyance system
JP5556896B2 (en) * 2010-10-26 2014-07-23 村田機械株式会社 Transport system
KR101351588B1 (en) * 2012-02-03 2014-01-24 (주)큐엠씨 Apparatus for transferring chip and method for transferring chip using the same
WO2020036293A1 (en) * 2018-08-13 2020-02-20 현대무벡스 주식회사 Method for controlling moving speed of automatic guided vehicle
KR20200018899A (en) * 2018-08-13 2020-02-21 현대무벡스 주식회사 Method for controlling speed of RTV
KR102139127B1 (en) * 2018-08-13 2020-07-30 현대무벡스 주식회사 Method for controlling speed of RTV

Similar Documents

Publication Publication Date Title
US10246266B2 (en) Method for controlling the normal force of a transport unit of a long stator linear motor
KR101464211B1 (en) Carriage system having track
KR100699271B1 (en) Transporting appratus
KR101480785B1 (en) Conveyance system
JP5040271B2 (en) Tracked conveyor
KR101049222B1 (en) Magnetic levitation conveying device using vertical linear motor
JP4848862B2 (en) Conveyor truck trajectory
KR101049221B1 (en) Magnetic Levitation Carrier Using Linear Induction Motor
KR101101917B1 (en) Magnetic levitation conveyance device
KR102575953B1 (en) Magnetic levitation transfer apparatus
JP2006174605A (en) Unmanned transport truck
JP7083886B2 (en) Transport device and transport path
WO2012056840A1 (en) Conveyance system
JP2020033152A (en) Traveling device
JP4640035B2 (en) Contactless power supply equipment
KR101534210B1 (en) Magnetic levitation conveyance device having steering ability
JP2004217409A (en) Carrying device
JP2020031467A (en) Travel unit
JP2009119965A (en) Electric power supply system
JP2011254669A (en) Carrier vehicle system
KR100944154B1 (en) Track carriage system
JP2002165302A (en) Tracked flatcar system
KR101623474B1 (en) Magnetic levitation system having slanted electromagnet
JPH11205910A (en) Linear truck transporting device
JPH11215614A (en) Levitated carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100628