JP2006173366A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2006173366A
JP2006173366A JP2004363926A JP2004363926A JP2006173366A JP 2006173366 A JP2006173366 A JP 2006173366A JP 2004363926 A JP2004363926 A JP 2004363926A JP 2004363926 A JP2004363926 A JP 2004363926A JP 2006173366 A JP2006173366 A JP 2006173366A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
main surface
manufacturing
semiconductor device
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004363926A
Other languages
Japanese (ja)
Inventor
Koichi Nishikawa
恒一 西川
Tomoharu Minagawa
倫治 皆川
Akira Nakajima
章 中嶋
Kazushige Matsuyama
一茂 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2004363926A priority Critical patent/JP2006173366A/en
Publication of JP2006173366A publication Critical patent/JP2006173366A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for activating and forming a second principal surface side p+ collector layer 8 of a substrate by a low temperature heat treatment (anneal furnace) which does not detrimentally affect the existence of the metallic film of a first principal surface side gate and the emitter electrode of the substrate in an n-type semiconductor substrate 7. <P>SOLUTION: In a process for forming a p+ collector layer 8, ion implantation of boron (B<SP>+</SP>) or boron bifluoride (BF<SB>2</SB><SP>+</SP>) is carried out at accumulated 2E15/cm<SP>2</SP>, ion implantation is carried out twice or three times divisionally, and heating is carried out for 16 hours at 500°C in a low temperature anneal furnace for each divided ion implantation process, thus activating and forming a p<SP>+</SP>collector layer 8 at a low temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、絶縁ゲート型バイポーラトランジスタ(IGBT)の半導体装置における半導体基板で使用する製造方法に関するものである。 The present invention relates to a manufacturing method used for a semiconductor substrate in an insulated gate bipolar transistor (IGBT) semiconductor device.

絶縁ゲート型バイポーラトランジスタ(IGBT)は、一般に高価なエピタキシャルウェーハ(p基板とn層)とそれに比べ低価格のn型半導体基板を用いて製造されている(例えば、特許文献1参照)。 Insulated gate bipolar transistors (IGBTs) are generally manufactured using an expensive epitaxial wafer (p + substrate and n layer) and an n-type semiconductor substrate that is less expensive (see, for example, Patent Document 1).

n型半導体基板を用いてIGBTを製造する場合、第1の主面にゲート電極及びエミッタ電極の活性部などを形成してから第2の主面にpコレクタ層を形成する必要がある。これは、オン電圧の低減からn型半導体基板の第2の主面を研削する必要があり、そののちにpコレクタ層の形成となることによる。 When manufacturing an IGBT using an n-type semiconductor substrate, it is necessary to form an active portion of a gate electrode and an emitter electrode on the first main surface and then form a p + collector layer on the second main surface. This is because it is necessary to grind the second main surface of the n-type semiconductor substrate in order to reduce the on-voltage, and then the p + collector layer is formed.

従って、n型半導体基板を用いた場合、n型半導体基板の第2の主面にpコレクタ層を形成する工程において、一般には900℃以上での高温熱処理が必要となるが、第1の主面ゲート及びエミッタ電極の金属膜が溶融又は変質などする温度(577℃)より低い温度での熱処理が不可欠である。
特開2001−160559号公報
Therefore, when an n-type semiconductor substrate is used, in the step of forming a p + collector layer on the second main surface of the n-type semiconductor substrate, a high-temperature heat treatment at 900 ° C. or higher is generally required. Heat treatment at a temperature lower than the temperature (577 ° C.) at which the metal film of the main surface gate and emitter electrode melts or deteriorates is indispensable.
JP 2001-160559 A

本発明は、上述した事情に鑑みてなされたもので、n型半導体基板を用い、該基板第1の主面ゲート及びエミッタ電極の金属膜の存在に対し、悪影響を及ぼさない低温処理による該基板第2の主面にpコレクタ層を形成する製造方法を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and uses an n-type semiconductor substrate, and the substrate by low-temperature processing that does not adversely affect the presence of the metal film of the first main surface gate and emitter electrode of the substrate. It is an object of the present invention to provide a manufacturing method for forming a p + collector layer on the second main surface.

上記の課題を解決するために、本発明は、第1の主面と第2の主面を有する第1導電型の半導体基板を準備する第1の工程と、前記半導体基板に、前記第2の主面から第2導電型の不純物をイオンの状態で注入する第2の工程と、前記半導体基板に注入した不純物を熱処理によって活性化する第3の工程と、を備えると共に、前記第2の工程と前記第3の工程とをこの順に2回又は3回ずつ実行することによって、前記半導体基板の前記第2の主面に単一の第2導電型の高不純物濃度層を形成することを特徴とする半導体装置の製造方法である。   In order to solve the above problems, the present invention provides a first step of preparing a first conductivity type semiconductor substrate having a first main surface and a second main surface, and the semiconductor substrate includes the second step. A second step of implanting impurities of the second conductivity type from the main surface of the semiconductor substrate in an ion state, and a third step of activating the impurities implanted into the semiconductor substrate by heat treatment. Forming a single second conductivity type high impurity concentration layer on the second main surface of the semiconductor substrate by executing the step and the third step twice or three times in this order. This is a feature of a semiconductor device manufacturing method.

前記半導体基板は、シリコン(Si)基板であることを特徴とする請求項1に記載の半導体装置の製造方法である。   The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor substrate is a silicon (Si) substrate.

前記半導体基板の前記第2の主面に第2導電型高不純物濃度層を形成するイオン種は、ホウ素(B)または2フッ化ホウ素(BF )であることを特徴とする請求項1に記載の半導体装置の製造方法である。 The ionic species for forming the second conductivity type high impurity concentration layer on the second main surface of the semiconductor substrate is boron (B + ) or boron difluoride (BF 2 + ). 1. A method for manufacturing a semiconductor device according to 1.

前記不純物導入工程の1回当りのドーズ量が2E15/cm以下であることを特徴とする請求項1に記載の半導体装置の製造方法である。 2. The method of manufacturing a semiconductor device according to claim 1, wherein a dose amount per one impurity introduction step is 2E15 / cm 2 or less.

前記熱処理工程は、500℃で16時間加熱することを特徴とする請求項1に記載の半導体装置の製造方法である。   The method of manufacturing a semiconductor device according to claim 1, wherein the heat treatment step is performed by heating at 500 ° C. for 16 hours.

本発明は、半導体基板にイオン注入の分割不純物導入と低温熱処理を不純物導入の分割毎に行うことにより、前記不純物を活性化できる。低温熱処理は、アニール炉を用いるため半導体装置が安価にできる。   According to the present invention, the impurity can be activated by performing divided impurity introduction for ion implantation and low-temperature heat treatment in the semiconductor substrate for each division of impurity introduction. Low-temperature heat treatment uses an annealing furnace, so that the semiconductor device can be made inexpensive.

n型半導体基板を用いた絶縁ゲート型バイポーラトランジスタにおいて、n型半導体基板を用いた第2の主面のpコレクタ層を形成する工程において、ホウ素(B )又は2フッ化ほう素(BF )の決められたイオン注入量を分割し、低温熱処理(アニール炉使用)を該イオン注入の分割した工程毎に行うことにより、その第1の主面の電極を損なわない低温で活性化できる製造方法である。 In an insulated gate bipolar transistor using an n-type semiconductor substrate, boron (B + ) or boron difluoride (BF) is formed in the step of forming the p + collector layer of the second main surface using the n-type semiconductor substrate. 2 + ) is divided into a predetermined amount of ion implantation, and low-temperature heat treatment (using an annealing furnace) is performed for each of the divided steps of the ion implantation, thereby activating the first principal surface electrode at a low temperature. It is a production method that can be performed.

図1から図3は、n型半導体基板7を準備し、素子活性部の1部片側半分のみを示す第1の主面及び単一のp高不純物濃度層を備える第2の主面からなる絶縁ゲート型バイポーラトランジスタ(IGBT)の製造方法を工程順に示す断面図である。 FIGS. 1 to 3 show an n-type semiconductor substrate 7 prepared from a first main surface showing only one half of one part of an element active portion and a second main surface including a single p + high impurity concentration layer. It is sectional drawing which shows the manufacturing method of the insulated gate bipolar transistor (IGBT) which becomes this in order of a process.

図1は、本発明の実施例に係るn型半導体基板7を用いたIGBTのpコレクタ層を形成する前までの工程例の断面図である。n型半導体基板7の第1の主面に、ゲート酸化膜4とゲート電極膜(多結晶シリコン)3を形成加工後、ベース層6形成後エミッタ層5を形成する。その後、層間絶縁膜2を形成加工後、エミッタ電極膜1を形成加工する。 FIG. 1 is a cross-sectional view of a process example before forming an IGBT p + collector layer using an n-type semiconductor substrate 7 according to an embodiment of the present invention. After the gate oxide film 4 and the gate electrode film (polycrystalline silicon) 3 are formed on the first main surface of the n-type semiconductor substrate 7, the emitter layer 5 is formed after the base layer 6 is formed. Thereafter, after forming and processing the interlayer insulating film 2, the emitter electrode film 1 is formed and processed.

図2は、図1工程実施後のp コレクタ層8を形成した工程の断面図である。B 又はBF イオンの2E15/cmイオン注入を2回分割し、500℃16時間のアニール炉による加熱処理を分割毎行う。2回分割例として、該イオン注入ドーズ量1E15/cm 、アニール炉で500℃16時間加熱処理し、加えて該イオン注入ドーズ量1E15/cm、アニール炉で500℃16時間加熱処理を行う。なお、該イオン注入における結晶欠陥の回復のため、500℃16時間以上の加熱処理が望ましい。図3は、図2の工程実施後のpコレクタ電極膜9を形成した工程の断面図である。 FIG. 2 is a cross-sectional view of the process of forming the p + collector layer 8 after the process of FIG. The 2E15 / cm 2 ion implantation of B + or BF 2 + ions is divided twice, and heat treatment is performed in an annealing furnace at 500 ° C. for 16 hours for each division. As two exemplary division, the ion implantation dose 1E15 / cm 2, then heat treated 500 ° C. 16 hours at an annealing furnace, performing the ion implantation dose 1E15 / cm 2, 500 ℃ 16 hours of heat treatment at an annealing furnace in addition . Note that heat treatment at 500 ° C. for 16 hours or longer is desirable to recover crystal defects in the ion implantation. FIG. 3 is a cross-sectional view of the process of forming the p + collector electrode film 9 after the process of FIG.

前述のように形成されたpコレクタ層8は、分割を行わずに形成した場合と比較して低い比抵抗を有するため、pコレクタ電極膜9との良好なオーミック性を実現することができる。 Since the p + collector layer 8 formed as described above has a low specific resistance compared to the case where the p + collector layer 8 is formed without being divided, it is possible to realize a good ohmic property with the p + collector electrode film 9. it can.

最後にパッケージへの組立工程例として、 図示はしないが、ウェーハ状態におけるプレーナ型IGBTは、ダイシングによりチップ化される。そのチップは、 ゲート電極膜及びエミッタ電極膜3がアルミニウムのワイヤーボンディングによりそれぞれゲート、エミッタ端子に接続され、pコレクタ電極膜9は、フレーム(コレクタ端子)にはんだにより接続され、樹脂封止される。 Finally, as an example of an assembly process for a package, although not shown, the planar IGBT in the wafer state is made into chips by dicing. In the chip, the gate electrode film and the emitter electrode film 3 are connected to the gate and the emitter terminal by aluminum wire bonding, respectively, and the p + collector electrode film 9 is connected to the frame (collector terminal) by soldering and sealed with resin. The

なお、n型半導体基板7とpコレクタ層8の間にnバッファ層を設けてある構造についても適用できる。 Note that the present invention can also be applied to a structure in which an n + buffer layer is provided between the n-type semiconductor substrate 7 and the p + collector layer 8.

または、実施例1の2回分割を3回分割例として、該イオン注入ドーズ量0.5E15/cm 、アニール炉で500℃16時間加熱処理し、加えて該イオン注入ドーズ量0.5E15/cm、アニール炉で500℃16時間加熱処理し、加えて該イオン注入ドーズ量1E15/cm、アニール炉で500℃16時間加熱処理を行う。 Alternatively, the ion implantation dose amount of 0.5E15 / cm 2 in an annealing furnace is heated at 500 ° C. for 16 hours, and the ion implantation dose amount of 0.5E15 / cm 2, and heat treated 500 ° C. 16 hours at an annealing furnace, performing the ion implantation dose 1E15 / cm 2, 500 ℃ 16 hours of heat treatment at an annealing furnace in addition.

図4はBF イオン注入分割回数ごとの500℃16時間加熱処理におけるBF 累積ドーズ量とPコレクタ層8のシート抵抗との関係図である。分割をせずに処理を行った場合に着目すると、 ドーズ量を増やした分だけシート抵抗は低減できるはずであるが、2E15/cmを超えるドーズ量でイオン注入を行うと、イオン注入時に形成される結晶欠陥が後の500℃の低温熱処理では回復困難となってしまうため、ドーズ量の増加に対しシート抵抗が逆に増大することがわかる。従って、イオン注入工程の1回当たりのドーズ量が2E15/cmであることが望ましい。さらに、分割を行った場合に着目すると、p コレクタ層8において、4回分割方法のシート抵抗は、実施例1、2における2回または3回分割処理方法とほぼ同じであることがわかる。従って、処理時間の短い2回または3回分割を用いることがよい。 FIG. 4 is a relationship diagram between BF 2 + accumulated dose and sheet resistance of the P + collector layer 8 in the heat treatment at 500 ° C. for 16 hours for each number of BF 2 + ion implantation divisions. Paying attention to the case where the process is performed without dividing, the sheet resistance should be reduced by the increase of the dose amount. However, if the ion implantation is performed at a dose amount exceeding 2E15 / cm 2 , it is formed at the time of ion implantation. It can be understood that the sheet resistance increases conversely with the increase in the dose because the crystal defects to be made are difficult to recover in the subsequent low-temperature heat treatment at 500 ° C. Therefore, it is desirable that the dose amount per ion implantation step is 2E15 / cm 2 . Further, when attention is paid to the case where the division is performed, it can be seen that the sheet resistance of the four-time division method in the p + collector layer 8 is substantially the same as the two-time or three-time division processing method in the first and second embodiments. Therefore, it is preferable to use two or three divisions with a short processing time.

なお、本発明は、n型半導体基板の第1の主面がトレンチ型であるIGBTのn型半導体基板の第2の主面研削する構造についても適用できる。   The present invention can also be applied to a structure in which the second main surface of an IGBT n-type semiconductor substrate of the IGBT whose first main surface is a trench type is ground.

本発明の第1の実施例に係るn型半導体基板7の第2主面にp コレクタ層を形成する工程前のIGBT例断面図。The IGBT example sectional drawing before the process of forming a p + collector layer in the 2nd main surface of the n-type semiconductor substrate 7 which concerns on the 1st Example of this invention. 図1実施工程後にpコレクタ層8を形成した後のIGBT例断面図。1 is a cross-sectional view of an IGBT example after forming a p + collector layer 8 after the implementation step. 図2実施後のp コレクタ層8にコレクタ電極膜9を形成した後のIGBT例断面図。FIG. 3 is a cross-sectional view of an IGBT example after a collector electrode film 9 is formed on the p + collector layer 8 after FIG. コレクタ層8のBF イオン注入分割回数毎及びBF イオン注入分割毎の500℃16時間加熱処理におけるBF ドーズ量とシート抵抗の関係図。relationship diagram BF 2 + dose and the sheet resistance in the BF 2 + ion implantation division number for each and BF 2 + ion implantation dividing 500 ° C. 16 hours of heat treatment for each of the p + collector layer 8.

符号の説明Explanation of symbols

1 エミッタ電極膜
2 層間絶縁膜
3 ゲート電極膜
4 ゲート酸化膜
5 エミッタ層
6 ベース層
7 n型半導体基板
8 コレクタ層
9 コレクタ電極膜
DESCRIPTION OF SYMBOLS 1 Emitter electrode film 2 Interlayer insulation film 3 Gate electrode film 4 Gate oxide film 5 Emitter layer 6 Base layer 7 N-type semiconductor substrate 8 Collector layer 9 Collector electrode film

Claims (5)

第1の主面と第2の主面を有する第1導電型の半導体基板を準備する第1の工程と、
前記半導体基板に、前記第2の主面から第2導電型の不純物をイオンの状態で注入する第2の工程と、
前記半導体基板に注入した不純物を熱処理によって活性化する第3の工程と、を備えると共に、
前記第2の工程と前記第3の工程とをこの順に2回又は3回ずつ実行することによって、前記半導体基板の前記第2の主面に単一の第2導電型の高不純物濃度層を形成することを特徴とする半導体装置の製造方法。
A first step of preparing a first conductivity type semiconductor substrate having a first main surface and a second main surface;
A second step of implanting ions of a second conductivity type from the second main surface into the semiconductor substrate in an ion state;
And a third step of activating the impurity implanted into the semiconductor substrate by heat treatment,
By performing the second step and the third step twice or three times in this order, a single second conductivity type high impurity concentration layer is formed on the second main surface of the semiconductor substrate. A method for manufacturing a semiconductor device, comprising: forming a semiconductor device.
前記半導体基板は、シリコン(Si)基板であることを特徴とする請求項1に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor substrate is a silicon (Si) substrate. 前記半導体基板の前記第2の主面に第2導電型高不純物濃度層を形成するイオン種は、ホウ素(B)または2フッ化ホウ素(BF )であることを特徴とする請求項1に記載の半導体装置の製造方法。 The ionic species for forming the second conductivity type high impurity concentration layer on the second main surface of the semiconductor substrate is boron (B + ) or boron difluoride (BF 2 + ). 2. A method for manufacturing a semiconductor device according to 1. 前記不純物導入工程の1回当りのドーズ量が2E15/cm以下であることを特徴とする請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein a dose per one time of the impurity introduction step is 2E15 / cm 2 or less. 前記熱処理工程は、500℃で16時間加熱することを特徴とする請求項1に記載の半導体装置の製造方法。


The method of manufacturing a semiconductor device according to claim 1, wherein the heat treatment step is performed by heating at 500 ° C. for 16 hours.


JP2004363926A 2004-12-16 2004-12-16 Manufacturing method of semiconductor device Pending JP2006173366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363926A JP2006173366A (en) 2004-12-16 2004-12-16 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363926A JP2006173366A (en) 2004-12-16 2004-12-16 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2006173366A true JP2006173366A (en) 2006-06-29

Family

ID=36673779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363926A Pending JP2006173366A (en) 2004-12-16 2004-12-16 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP2006173366A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200723A (en) * 1986-02-28 1987-09-04 Nec Corp Manufacture of semiconductor device
JPH03278430A (en) * 1990-03-28 1991-12-10 Kawasaki Steel Corp Manufacture of semiconductor device
JPH04312917A (en) * 1991-01-11 1992-11-04 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JP2002299278A (en) * 2001-04-02 2002-10-11 Fuji Electric Co Ltd Manufacturing method for semiconductor device
JP2004103763A (en) * 2002-09-09 2004-04-02 Fuji Electric Device Technology Co Ltd Method for manufacturing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200723A (en) * 1986-02-28 1987-09-04 Nec Corp Manufacture of semiconductor device
JPH03278430A (en) * 1990-03-28 1991-12-10 Kawasaki Steel Corp Manufacture of semiconductor device
JPH04312917A (en) * 1991-01-11 1992-11-04 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JP2002299278A (en) * 2001-04-02 2002-10-11 Fuji Electric Co Ltd Manufacturing method for semiconductor device
JP2004103763A (en) * 2002-09-09 2004-04-02 Fuji Electric Device Technology Co Ltd Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP5452062B2 (en) Method for manufacturing silicon carbide semiconductor device
CN1222986C (en) Manufacturing method for semiconductor device and semiconductor device
TWI574408B (en) Insulated gate bipolar transistor and manufacturing method thereof
CN104576347A (en) Method for improving back metallization of IGBT (Insulated Gate Bipolar Transistor)
JP5160001B2 (en) Manufacturing method of semiconductor device
US20120231618A1 (en) Method of manufacturing semiconductor device
JPH08181321A (en) Soi substrate and its manufacture
US9385210B2 (en) Method for manufacturing semiconductor device using a gettering layer
JP2003197633A (en) Manufacturing method for semiconductor device
JP2013135213A (en) Semiconductor element and manufacturing method of the same
JP4951872B2 (en) Manufacturing method of semiconductor device
JP4676708B2 (en) Manufacturing method of semiconductor device
JP2006173366A (en) Manufacturing method of semiconductor device
JP5301091B2 (en) Manufacturing method of semiconductor device
JP2018125352A (en) Semiconductor device manufacturing method
JP4882214B2 (en) Reverse blocking insulated gate semiconductor device and method for manufacturing the same
JP2008103562A (en) Manufacturing method of semiconductor device
JP2006080269A (en) High breakdown voltage semiconductor device and its manufacturing method
CN105322003A (en) Insulated gate bipolar transistor and preparation method thereof
JP2006140309A (en) Method of manufacturing semiconductor device
JP4821088B2 (en) Method of manufacturing reverse blocking insulated gate bipolar transistor
JP5445563B2 (en) Manufacturing method of semiconductor device
JP5626325B2 (en) Manufacturing method of semiconductor device
JP2004207567A (en) Manufacturing method of semiconductor device
JP2023040706A (en) Method for manufacturing silicon carbide semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802