JP2006173323A - Method of manufacturing strained silicon wafer - Google Patents

Method of manufacturing strained silicon wafer Download PDF

Info

Publication number
JP2006173323A
JP2006173323A JP2004362989A JP2004362989A JP2006173323A JP 2006173323 A JP2006173323 A JP 2006173323A JP 2004362989 A JP2004362989 A JP 2004362989A JP 2004362989 A JP2004362989 A JP 2004362989A JP 2006173323 A JP2006173323 A JP 2006173323A
Authority
JP
Japan
Prior art keywords
layer
strained
silicon wafer
thickness
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004362989A
Other languages
Japanese (ja)
Inventor
Koji Sensai
宏治 泉妻
Takeshi Senda
剛士 仙田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2004362989A priority Critical patent/JP2006173323A/en
Publication of JP2006173323A publication Critical patent/JP2006173323A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a strained silicon wafer capable of further reducing feed through dislocation density in a strained Si layer formed on an SiGe layer in the strained silicon wafer including the SiGe layer. <P>SOLUTION: A composition gradient SiGe layer (Ge concentration ratio x of an Si<SB>1-x</SB>Ge<SB>x</SB>layer: 0<x≤0.5) is epitaxially grown into the thickness of 0.1 to 3 μm while raising Ge concentration on a single crystal silicon substrate, on which a strained relaxation Si<SB>1-x</SB>Ge<SB>x</SB>layer is formed where a Ge composition ratio with the thickness of 0.1 to 1 μm is constant, and further a 5 to 30 nm thick first strained Si layer is formed, on which a ≤10 nm thick strained Si layer is epitaxially grown at a lower temperature than the film formation temperature of the first strained Si layer as a second strained Si layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、単結晶シリコン基板上にSiGe層および歪みSi層をエピタキシャル成長させる方法において、歪みSi層の貫通転位密度を低減した歪みシリコンウェーハの製造方法に関する。   The present invention relates to a method for manufacturing a strained silicon wafer in which a threading dislocation density of a strained Si layer is reduced in a method of epitaxially growing a SiGe layer and a strained Si layer on a single crystal silicon substrate.

近年、単結晶シリコン基板上にSiGe層をエピタキシャル成長させ、該SiGe層の上に歪みSi層をエピタキシャル成長させた歪みシリコンウェーハが提案されている。   In recent years, a strained silicon wafer has been proposed in which a SiGe layer is epitaxially grown on a single crystal silicon substrate and a strained Si layer is epitaxially grown on the SiGe layer.

上記歪みSi層には、Siに比べて格子定数が大きいSiGe層によって、引っ張り歪みが生じており、この歪みにより、Siのバンド構造が変化し、縮退が解けてキャリア移動度が高まる。   In the strained Si layer, tensile strain is caused by the SiGe layer having a larger lattice constant than Si. This strain changes the band structure of Si, and the degeneration is solved and the carrier mobility is increased.

したがって、この歪みSi層をチャネル領域として用いることによって、通常のバルクシリコンを用いた半導体基板の場合と比べて、1.5倍以上のキャリア移動の高速化が可能となる。   Therefore, by using this strained Si layer as the channel region, the carrier movement speed can be increased by 1.5 times or more compared to the case of a semiconductor substrate using normal bulk silicon.

このため、歪みシリコンウェーハは、高速MOSFET、MODFET、HEMT等に好適なシリコンウェーハとして注目されている。   For this reason, strained silicon wafers are attracting attention as suitable silicon wafers for high-speed MOSFETs, MODFETs, HEMTs, and the like.

上記のような歪みシリコンウェーハにおいて、良質な歪みSi層を得るためには、その下地として、シリコン基板上に良質なSiGe層、すなわち、貫通転位密度が低く、歪みが緩和され、平滑な表面を有するSiGe層をエピタキシャル成長させることが必要である。   In order to obtain a high-quality strained Si layer in the strained silicon wafer as described above, a high-quality SiGe layer on the silicon substrate, that is, a threading dislocation density is low on the silicon substrate, a strain is reduced, and a smooth surface is formed. It is necessary to epitaxially grow the SiGe layer.

しかしながら、SiとSiGeの格子定数の違いから、シリコン基板上へのSiGe層のエピタキシャル成長の際、ミスフィット転位が発生する。そして、ミスフィット転位に起因する貫通転位が高密度で表面まで達し、SiGe層上に形成される歪みSi層にまで転位が高密度のまま伝播するという問題が生じていた。   However, due to the difference in lattice constant between Si and SiGe, misfit dislocations occur during the epitaxial growth of the SiGe layer on the silicon substrate. Further, threading dislocations due to misfit dislocations reach the surface at a high density, and the dislocations propagate to the strained Si layer formed on the SiGe layer with a high density.

歪みSi層における転位は、そこに形成されたデバイス素子において、接合リーク電流が増大する原因となる。さらに、貫通転位と残留歪みエネルギーにより、歪みSi層表面にクロスハッチ模様と呼ばれる凹凸が発生するという問題も生ずる。   Dislocations in the strained Si layer cause the junction leakage current to increase in the device element formed there. Furthermore, there arises a problem that unevenness called a cross hatch pattern is generated on the surface of the strained Si layer due to threading dislocations and residual strain energy.

このようにデバイスの活性領域となる歪みSi層に誘起される転位と表面の肌荒れは、デバイスの良・不良に直接係わるので、原因である貫通転位密度を低減させるため様々な提案がなされてきた。   Since dislocations and surface roughness induced in the strained Si layer as the active region of the device are directly related to the quality of the device, various proposals have been made to reduce the threading dislocation density. .

例えば、単結晶シリコン基板上に、Ge成分が約25%/μm以下の濃度勾配で増加させたSiGe階層化層(組成傾斜SiGe層)をエピタキシャル成長させ、さらに、Ge組成比が一定である歪み緩和SiGe層をエピタキシャル成長させた後、前記歪み緩和SiGe層の上に、歪みSi層をエピタキシャル成長させる歪みシリコンウェーハの製造方法が開示されている(例えば、特許文献1参照。)。しかし、この方法で貫通転位の密度を改善しても高々10/cmオーダーでありデバイスプロセスでの製造歩留りは、やはり危惧される。 For example, a SiGe layered layer (composition gradient SiGe layer) with a Ge component increased at a concentration gradient of about 25% / μm or less is epitaxially grown on a single crystal silicon substrate, and strain relaxation with a constant Ge composition ratio is performed. A method of manufacturing a strained silicon wafer in which a strained Si layer is epitaxially grown on the strain-relaxed SiGe layer after epitaxially growing the SiGe layer is disclosed (for example, see Patent Document 1). However, even if the density of threading dislocations is improved by this method, it is at most 10 5 / cm 2 order, and the production yield in the device process is still a concern.

また、シリコン基板上に、Ge組成比を漸次増加させたSiGe層のステップ組成傾斜層の上に、Ge組成比が一定であるSiGe緩和層、さらに、その上に歪みSi層を備えた歪みシリコンウェーハにおいて、ステップ数を増加させることにより、貫通転位密度を低減させることが提案されている(例えば、特許文献2参照。)。しかし、この方法においても歪みSi層の貫通転位密度を1×10/cm未満にまで低減することは難しい。
特許第2792785号公報 特開2002−118254号公報
Further, a SiGe relaxation layer having a constant Ge composition ratio on a step composition gradient layer of a SiGe layer with a gradually increasing Ge composition ratio on a silicon substrate, and a strained silicon having a strained Si layer thereon. It has been proposed to reduce the threading dislocation density by increasing the number of steps in the wafer (see, for example, Patent Document 2). However, even in this method, it is difficult to reduce the threading dislocation density of the strained Si layer to less than 1 × 10 5 / cm 2 .
Japanese Patent No. 2792785 JP 2002-118254 A

上記のように、様々な方法により、歪みシリコンウェーハにおける貫通転位密度の低減化を図ることが試みられている。   As described above, attempts have been made to reduce the threading dislocation density in strained silicon wafers by various methods.

しかしながら、従来技術のように高い貫通転位密度のままでは、デバイスプロセスにおける歩留りに大きな影響を及ぼすことになる。   However, if the threading dislocation density is high as in the prior art, the yield in the device process is greatly affected.

本発明は、上記技術的課題を解決するためになされたものであり、SiGe層を有する歪みシリコンウェーハにおいて、SiGe層上に形成される歪みSi層における貫通転位密度のより一層の低減化を図ることができる歪みシリコンウェーハの製造方法を提供することを目的とするものである。   The present invention has been made to solve the above technical problem, and in a strained silicon wafer having a SiGe layer, the threading dislocation density in the strained Si layer formed on the SiGe layer is further reduced. It is an object of the present invention to provide a method for producing a strained silicon wafer.

上記目的を達成するために、本発明に係る歪みシリコンウェーハの製造方法は、単結晶シリコン基板上に、Ge濃度を順次上げた組成傾斜Si1-xGex層(0<x≦0.5)を厚さ0.1〜3μmにエピタキシャル成長させる工程と、前記組成傾斜Si1-xGex層の上に所定のGe濃度の歪み緩和Si1-xGex層(0.1≦x≦0.5)を厚さ0.1〜1μmにエピタキシャル成長させる工程と、前記歪み緩和Si1-xGex層の上に第1の歪みSi層を厚さ5〜30nmにエピタキシャル成長させる工程と、前記第1の歪みSi層の上に第2の歪みSi層を厚さ10nm以下に前記第1の歪みSi層のエピタキシャル成長温度よりも低温でエピタキシャル成長させる工程と、を備えたことを特徴とする歪みシリコンウェーハの製造方法を提供する。 In order to achieve the above object, a strained silicon wafer manufacturing method according to the present invention includes a compositionally-graded Si 1-x Ge x layer (0 <x ≦ 0.5) on a single crystal silicon substrate with increasing Ge concentration. A step of epitaxially growing to a thickness of 0.1 to 3 μm, and a strain relaxation Si 1-x Ge x layer (0.1 ≦ x ≦ 0.5) having a predetermined Ge concentration is formed on the composition-gradient Si 1-x Ge x layer to a thickness of 0.1 to A step of epitaxially growing to 1 μm, a step of epitaxially growing a first strained Si layer on the strain-relaxed Si 1-x Ge x layer to a thickness of 5 to 30 nm, and a second on the first strained Si layer. And a step of epitaxially growing the strained Si layer to a thickness of 10 nm or less at a temperature lower than the epitaxial growth temperature of the first strained Si layer.

なお、前記第1の歪みSi層の成長温度を800〜900℃とし、第2の歪みSi層の成長温度を600〜750℃とすることが好ましい。   The growth temperature of the first strained Si layer is preferably 800 to 900 ° C., and the growth temperature of the second strained Si layer is preferably 600 to 750 ° C.

上述したとおり、本発明によれば、歪みシリコンウェーハにおける貫通転位密度を大幅に低減でき、更に、積層欠陥等の欠陥密度を従来よりもはるかに低減することができる。したがって、本発明に係る歪みシリコンウェーハは、上記のような高品質の歪みSi層を有しているため、デバイスプロセスにおける自由度が向上し、かつキャリア移動度の高速化が図られ、次世代以降のLSIや個別半導体デバイス等に好適に利用することができる。   As described above, according to the present invention, the threading dislocation density in the strained silicon wafer can be greatly reduced, and the defect density such as stacking faults can be further reduced as compared with the conventional case. Therefore, since the strained silicon wafer according to the present invention has the high-quality strained Si layer as described above, the degree of freedom in the device process is improved and the carrier mobility is increased, and the next generation is achieved. It can be suitably used for subsequent LSIs and individual semiconductor devices.

以下に、本発明の実施の形態について、図面を参照しながら説明する。図1は、本発明の実施の形態に係る歪みシリコンウェーハの製造方法による歪みシリコンウェーハの概略断面図である。本発明にかかる製造方法において用いられる単結晶シリコン基板としては、例えば窒素とボロンをドープし、チョクラルスキー法(CZ法)で引き上げた単結晶インゴットを切り出し、スライスした基板が好適に用いられる。もちろん、CZ基板以外の基板、例えば、FZ基板等も用いることができる。この単結晶シリコン基板は、表面を鏡面研磨しておくことが好ましい。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a strained silicon wafer produced by a strained silicon wafer manufacturing method according to an embodiment of the present invention. As the single crystal silicon substrate used in the manufacturing method according to the present invention, for example, a substrate obtained by doping a nitrogen and boron, cutting out a single crystal ingot pulled up by the Czochralski method (CZ method), and slicing it is preferably used. Of course, a substrate other than the CZ substrate, for example, an FZ substrate can also be used. The surface of this single crystal silicon substrate is preferably mirror-polished.

この単結晶シリコン基板上に、Si1−xGe層を形成する。このSi1−xGe層は、Ge濃度を所定の値とした一定組成層でも可能であるが、転位密度のより一層の低減化を図るためには、単結晶シリコン基板から外層に向かいGe濃度xが次第に増加するような組成傾斜層であることが好ましい。 A Si 1-x Ge x layer is formed on the single crystal silicon substrate. The Si 1-x Ge x layer can be a constant composition layer with a Ge concentration of a predetermined value, but in order to further reduce the dislocation density, the Ge 1 layer is directed from the single crystal silicon substrate toward the outer layer. A composition gradient layer in which the concentration x gradually increases is preferable.

また、組成傾斜Si1−xGe層におけるGe濃度xは0<x≦0.5であることが好ましく、Ge濃度が20%/μm未満の傾斜で増加するように形成することが好ましい。Ge濃度が20%/μmを超える場合は、濃度傾斜が急激すぎるため、エピタキシャル成長時に転位や欠陥を生じ易いからである。 In addition, the Ge concentration x in the composition gradient Si 1-x Ge x layer is preferably 0 <x ≦ 0.5, and the Ge concentration is preferably increased with a gradient of less than 20% / μm. This is because when the Ge concentration exceeds 20% / μm, the concentration gradient is too steep, so that dislocations and defects are likely to occur during epitaxial growth.

更に、組成傾斜SiGe層の厚さが0.1μm未満の場合は歪みが不十分となり、一方、3μmを超えても望ましい歪み量はあまり変わらないことから、組成傾斜SiGe層の
厚さは0.1〜3μmであることが好ましい。
Further, when the thickness of the composition gradient SiGe layer is less than 0.1 μm, the strain becomes insufficient, while when the thickness exceeds 3 μm, the desired amount of strain does not change so much. It is preferable that it is 1-3 micrometers.

上記Si1−xGe層を、組成傾斜層とする場合、このSi1−xGe層により生じた歪みを緩和するため、Ge濃度を最も高くした最上層の膜厚を厚く形成するのが好ましい。 In the case where the Si 1-x Ge x layer is a composition gradient layer, the uppermost layer with the highest Ge concentration is formed thick in order to alleviate the strain caused by the Si 1-x Ge x layer. Is preferred.

すなわち、歪み緩和層として、組成傾斜Si1−xGe層の上に、組成傾斜層の最上層において到達したGe濃度と同じGe濃度を有するGe組成比が一定の歪み緩和Si1−xGe層をエピタキシャル成長させて形成する。 That is, the strain relaxation layer, on the composition graded Si 1-x Ge x layer, the Ge composition ratio has the same Ge concentration as the Ge concentration reached in the top layer of the composition gradient layer is constant strain relaxation Si 1-x Ge The x layer is formed by epitaxial growth.

この歪み緩和Si1−xGe層は組成傾斜層より生じた歪みを充分に緩和させる観点から、厚さを0.1〜1μmで形成することが好ましい。 The strain relaxation Si 1-x Ge x layer is preferably formed with a thickness of 0.1 to 1 μm from the viewpoint of sufficiently relaxing the strain generated from the composition gradient layer.

次に、この歪み緩和Si1−xGe層の上に、厚さ5〜30nmの第1の歪みSi層をエピタキシャル成長させて形成する。尚、この時の成長温度としては、例えば800〜900℃の比較的高温が好ましい。 Next, a first strained Si layer having a thickness of 5 to 30 nm is formed by epitaxial growth on the strain relaxation Si 1-x Ge x layer. In addition, as a growth temperature at this time, for example, a relatively high temperature of 800 to 900 ° C. is preferable.

次いで、第1の歪みSi層の上に、厚さ10nm以下の第2の歪みSi層をエピタキシャル成長させる。第2の歪みSi層の成膜温度は、第1の歪みSi層の成膜温度より低い温度とし、好ましくは600〜750℃とする。このことにより、第2の歪みSi層に擬似格子整合(Pseudomorphic)成長が維持され、貫通転位密度を1×10/cm以下まで低減できる。 Next, a second strained Si layer having a thickness of 10 nm or less is epitaxially grown on the first strained Si layer. The deposition temperature of the second strained Si layer is lower than the deposition temperature of the first strained Si layer, and preferably 600 to 750 ° C. As a result, pseudo-lattice growth is maintained in the second strained Si layer, and the threading dislocation density can be reduced to 1 × 10 3 / cm 2 or less.

なお、Si1−xGe層およびSi層のエピタキシャル成長方法としては、例えば、ランプ加熱によるCVD法、超高真空中でのCVD法(UHV−CVD)等の気相エピタキシャル成長法や分子線エピタキシャル成長法(MBE)等により行うことができる。 As an epitaxial growth method of the Si 1-x Ge x layer and the Si layer, for example, a vapor phase epitaxial growth method such as a CVD method by lamp heating, a CVD method in ultra high vacuum (UHV-CVD), or a molecular beam epitaxial growth method. (MBE) or the like.

成長条件は、成長させるSiGe層のSiとGeの組成比や、膜厚、用いる成長方法、装置等により異なり、適宜設定されるが、例えば、キャリアガス:H、原料ガス:SiH、GeH、チャンバ圧:1000〜10000Paの下で行われ、成長温度は、Si1−xGe層の形成の場合には、高いほど、転位密度の低減化に有効であり、好ましくは、800〜1100℃である。 The growth conditions vary depending on the composition ratio of Si and Ge of the SiGe layer to be grown, the film thickness, the growth method used, the apparatus, and the like, and are set as appropriate. For example, carrier gas: H 2 , source gas: SiH 4 , GeH 4. The chamber pressure is 1000 to 10000 Pa, and in the case of forming the Si 1-x Ge x layer, the higher the growth temperature, the more effective the reduction of the dislocation density. 1100 ° C.

なお、SiGe層の表面は、例えばH気流中850〜1200℃、圧力1000〜100000Pa程度での高温水素熱処理等により、平滑化しておくことが好ましい。 The surface of the SiGe layer is preferably smoothed by, for example, high-temperature hydrogen heat treatment at 850 to 1200 ° C. and a pressure of about 1000 to 100000 Pa in an H 2 stream.

これにより、その上に形成される歪みSi層の表面が平滑になり、かつ、転位の発生も抑制される。   Thereby, the surface of the strained Si layer formed thereon becomes smooth, and the occurrence of dislocations is also suppressed.

また、歪みSi層は、上記のようにして形成されたSi1−xGe層上に、例えばCVD法等による単結晶Si層をエピタキシャル成長によって積層される。 In addition, the strained Si layer is formed by epitaxially growing a single crystal Si layer by, for example, a CVD method on the Si 1-x Ge x layer formed as described above.

上記CVD法による歪みSi層の形成は、例えばキャリアガス:H、原料ガス:SiHClまたはSiH、チャンバ圧:1000〜100000Pa、温度:600〜1000℃の条件下で行われる。 The strained Si layer is formed by the CVD method under the conditions of, for example, carrier gas: H 2 , source gas: SiH 2 Cl 2 or SiH 4 , chamber pressure: 1000 to 100000 Pa, and temperature: 600 to 1000 ° C.

一方、前記組成傾斜エピタキシャル層と歪み緩和エピタキシャル層の組成が、Si1−x(1>x>0.1)、または、Si1−x(1>x≧0.1)でもSiGe層と同様な効果がある。 On the other hand, the composition of the composition gradient epitaxial layer and the strain relaxation epitaxial layer is Si 1-x C x (1>x> 0.1) or Si 1-x N x (1> x ≧ 0.1). There is a great effect.

具体的には、Cのソースガスとしてハイドロカーボン系ガス、Nのソースとして窒素あるいはNHを、キャリアガスとして水素を用いた。 Specifically, a hydrocarbon-based gas was used as the C source gas, nitrogen or NH 3 was used as the N source, and hydrogen was used as the carrier gas.

上記のような貫通転位密度の低い歪みSi層が形成された歪みシリコンウェーハは、該歪みSi層において、キャリア移動の高速化が図られ、高速デバイスを形成する上で好適な基板として用いることができる。   A strained silicon wafer on which a strained Si layer having a low threading dislocation density as described above is formed can be used as a suitable substrate for forming a high-speed device because the carrier movement is accelerated in the strained Si layer. it can.

以下に本発明の実施例を挙げて説明するが、本発明は実施例の記載によって何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the description of the examples.

(実施例と比較例)
歪みシリコンウェーハを形成するに際し、チョクラルスキー法で引き上げた単結晶インゴットをスライスして作製したP型、抵抗率0.1〜1.0Ω/cm、面方位(100)の鏡面研磨シリコンウェーハを供した。ウェーハの初期酸素濃度は15×1017atoms/cm以下であった。まずウェーハ鏡面に、前述したCVD法によりGe濃度を外層に向かって増加させながら最外表面での組成がSi70Ge30となる組成傾斜SiGe層をエピタキシャル生成し、厚さ2μmまで成長させた。その上に厚さ1μmのGe組成比が一定である歪み緩和Si70Ge30層を900℃でエピタキシャル生成した。その上に、第1歪みSi層を800℃でエピタキシャル生成し、厚さ20nmの層を形成した。さらに、この第1歪みSi層の上に、第2歪みSi層を種々のエピタキシャル成長温度で厚さ10nmに形成した。
(Examples and comparative examples)
When forming a strained silicon wafer, a P-type, resistivity 0.1-1.0 Ω / cm, plane-oriented (100) mirror-polished silicon wafer prepared by slicing a single crystal ingot pulled up by the Czochralski method Provided. The initial oxygen concentration of the wafer was 15 × 10 17 atoms / cm 3 or less. First, a composition-graded SiGe layer having a composition on the outermost surface of Si 70 Ge 30 was epitaxially formed on the mirror surface of the wafer while increasing the Ge concentration toward the outer layer by the CVD method described above, and grown to a thickness of 2 μm. A strain-relaxed Si 70 Ge 30 layer having a constant Ge composition ratio with a thickness of 1 μm was epitaxially formed thereon at 900 ° C. On top of this, a first strained Si layer was epitaxially produced at 800 ° C. to form a layer having a thickness of 20 nm. Further, on this first strained Si layer, a second strained Si layer was formed to a thickness of 10 nm at various epitaxial growth temperatures.

図2に第2歪みSi層の生成温度を500〜900℃で変化させたエピタキシャル成膜温度と貫通転位密度の関係結果を示す。図2から明らかなように、第2歪みSi層のエピタキシャル成長温度を600〜750℃に設定することにより、貫通転位密度が10/cm以下になった。なお、550℃以下の低温エピタキシャル成長温度だと貫通転位密度が増加することがわかった。 FIG. 2 shows the relationship between the epitaxial film formation temperature and the threading dislocation density when the generation temperature of the second strained Si layer was changed from 500 to 900 ° C. As apparent from FIG. 2, the threading dislocation density was 10 3 / cm 2 or less by setting the epitaxial growth temperature of the second strained Si layer to 600 to 750 ° C. It has been found that threading dislocation density increases at a low epitaxial growth temperature of 550 ° C. or lower.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment.

本発明の実施の形態に係る歪みシリコンウェーハの製造方法による歪みシリコンウェーハの概略断面図である。It is a schematic sectional drawing of the distortion silicon wafer by the manufacturing method of the distortion silicon wafer which concerns on embodiment of this invention. 貫通転位密度と第2の歪みSi層のエピタキシャル成長温度の関係を示す線図である。It is a diagram which shows the relationship between a threading dislocation density and the epitaxial growth temperature of a 2nd strained Si layer.

符号の説明Explanation of symbols

1・・・単結晶シリコン基板、2・・・組成傾斜SiGe層、3・・・緩和SiGe層、
4・・・第1の歪みSi層、5・・・第2の歪みSi層。
DESCRIPTION OF SYMBOLS 1 ... Single crystal silicon substrate, 2 ... Composition gradient SiGe layer, 3 ... Relaxation SiGe layer,
4 ... 1st strained Si layer, 5 ... 2nd strained Si layer.

Claims (3)

単結晶シリコン基板上に、
Ge濃度を順次上げた組成傾斜Si1-xGex層(0<x≦0.5)を厚さ0.1〜3μmにエピタキシャル成長させる工程と、
前記組成傾斜Si1-xGex層の上に所定のGe濃度の歪み緩和Si1-xGex層(0.1≦x≦0.5)を厚さ0.1〜1μmにエピタキシャル成長させる工程と、
前記歪み緩和Si1-xGex層の上に第1の歪みSi層を厚さ5〜30nmにエピタキシャル成長させる工程と、
前記第1の歪みSi層の上に第2の歪みSi層を厚さ10nm以下に前記第1の歪みSi層のエピタキシャル成長温度よりも低温でエピタキシャル成長させる工程と、
を備えたことを特徴とする歪みシリコンウェーハの製造方法。
On a single crystal silicon substrate,
A step of epitaxially growing a composition-graded Si 1-x Ge x layer (0 <x ≦ 0.5) with increasing Ge concentration to a thickness of 0.1 to 3 μm;
Epitaxially growing a strain relaxation Si 1-x Ge x layer (0.1 ≦ x ≦ 0.5) having a predetermined Ge concentration on the composition-graded Si 1-x Ge x layer to a thickness of 0.1 to 1 μm;
Epitaxially growing a first strained Si layer on the strain relaxed Si 1-x Ge x layer to a thickness of 5 to 30 nm;
Epitaxially growing a second strained Si layer on the first strained Si layer to a thickness of 10 nm or less at a temperature lower than the epitaxial growth temperature of the first strained Si layer;
A method for producing a strained silicon wafer, comprising:
前記第1の歪みSi層の成長温度を800〜900℃とし、前記第2の歪みSi層の成長温度を600〜750℃とすることを特徴とする請求項1に記載の歪みシリコンウェーハの製造方法。   2. The strained silicon wafer according to claim 1, wherein a growth temperature of the first strained Si layer is 800 to 900 ° C., and a growth temperature of the second strained Si layer is 600 to 750 ° C. 3. Method. 前記組成傾斜エピタキシャル層と歪み緩和エピタキシャル層の組成が、Si1−x(1>x>0.1)、または、Si1−x(1>x≧0.1)であることを特徴とする請求項1に記載の歪みシリコンウェーハの製造方法。 The composition of the composition gradient epitaxial layer and the strain relaxation epitaxial layer is Si 1-x C x (1>x> 0.1) or Si 1-x N x (1> x ≧ 0.1). A method for producing a strained silicon wafer according to claim 1.
JP2004362989A 2004-12-15 2004-12-15 Method of manufacturing strained silicon wafer Withdrawn JP2006173323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004362989A JP2006173323A (en) 2004-12-15 2004-12-15 Method of manufacturing strained silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004362989A JP2006173323A (en) 2004-12-15 2004-12-15 Method of manufacturing strained silicon wafer

Publications (1)

Publication Number Publication Date
JP2006173323A true JP2006173323A (en) 2006-06-29

Family

ID=36673744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004362989A Withdrawn JP2006173323A (en) 2004-12-15 2004-12-15 Method of manufacturing strained silicon wafer

Country Status (1)

Country Link
JP (1) JP2006173323A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013032A1 (en) * 2006-07-25 2008-01-31 Shin-Etsu Handotai Co., Ltd. Method for manufacturing semiconductor substrate
JP2009004604A (en) * 2007-06-22 2009-01-08 Fujitsu Microelectronics Ltd Method for manufacturing semiconductor device, semiconductor device, and method for forming semiconductor layer
JP2013012750A (en) * 2008-03-20 2013-01-17 Siltronic Ag Semiconductor wafer with heteroepitaxial layer and method for producing the wafer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013032A1 (en) * 2006-07-25 2008-01-31 Shin-Etsu Handotai Co., Ltd. Method for manufacturing semiconductor substrate
JP2008028277A (en) * 2006-07-25 2008-02-07 Shin Etsu Handotai Co Ltd Manufacturing method for semiconductor substrate
US8076223B2 (en) 2006-07-25 2011-12-13 Shin-Etsu Handotai Co., Ltd. Method for producing semiconductor substrate
JP2009004604A (en) * 2007-06-22 2009-01-08 Fujitsu Microelectronics Ltd Method for manufacturing semiconductor device, semiconductor device, and method for forming semiconductor layer
US8293622B2 (en) 2007-06-22 2012-10-23 Fujitsu Semiconductor Limited Semiconductor device fabrication method, semiconductor device, and semiconductor layer formation method
JP2013012750A (en) * 2008-03-20 2013-01-17 Siltronic Ag Semiconductor wafer with heteroepitaxial layer and method for producing the wafer

Similar Documents

Publication Publication Date Title
TWI222106B (en) Semiconductor substrate, field-effect transistor, and their production methods
US7250357B2 (en) Manufacturing method for strained silicon wafer
JP5576114B2 (en) Semiconductor buffer structure
TWI398909B (en) A semiconductor wafer with a heteroepitaxial layer and a method for producing the wafer
US8043929B2 (en) Semiconductor substrate and method for production thereof
JP2005516395A (en) Strain-relieved SiGe-on-insulator and method for manufacturing the same
EP1437765B1 (en) Production method for semiconductor substrate and production method for field effect transistor
US7977221B2 (en) Method for producing strained Si-SOI substrate and strained Si-SOI substrate produced by the same
WO2004049411A1 (en) Method for producing semiconductor substrate and method for fabricating field effect transistor and semiconductor substrate and field effect transistor
JP2006319310A (en) Lamination layer structure and method for forming same
KR100679737B1 (en) A method for manufacturing a silicon substrate having a distorted layer
JP2006135329A (en) Multilayer structure comprising substrate and layer of silicon and germanium deposited heteroepitaxially thereon, and process for producing it
JP5463693B2 (en) Manufacturing method of silicon epitaxial wafer
JP2006173323A (en) Method of manufacturing strained silicon wafer
JP2010177355A (en) Silicon epitaxial wafer and method of manufacturing the same, and epitaxially growing silicon monocrystalline substrate
JP4158607B2 (en) Manufacturing method of semiconductor substrate
JP2004349522A (en) Manufacturing method of semiconductor substrate
JP2004356164A (en) Method of manufacturing strained silicon substrate wafer
JP2006024728A (en) Manufacturing method of strained silicon wafer
JP2004349374A (en) Method of manufacturing strained silicon substrate wafer
JP2005244187A (en) Strained silicon wafer and manufacturing method thereof
JP2005012196A (en) Method for manufacturing strained silicon substrate wafer
JP2006013119A (en) Strained silicon substrate wafer
JP2006086179A (en) Distorted silicon wafer and its manufacturing method
JP2006210697A (en) Strained silicon wafer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20070711

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091119